Good ultrafilters and universality properties of forcing

Francesco Parente

2024-03-27

Introduction

- 1. Good ultrafilters and saturation
- 2. Universality properties of forcing (joint with Matteo Viale)

Boolean-valued structures

Let L be a first-order language and let $\mathbb B$ be a Boolean algebra. A $\mathbb B$ -valued structure $\mathfrak M$ for L generalizes the usual Tarski semantics by assigning to each L-formula φ a Boolean value $\llbracket \varphi \rrbracket^{\mathfrak M} \in \mathbb B$.

Boolean-valued structures

Let L be a first-order language and let $\mathbb B$ be a Boolean algebra. A $\mathbb B$ -valued structure $\mathfrak M$ for L generalizes the usual Tarski semantics by assigning to each L-formula φ a Boolean value $\llbracket \varphi \rrbracket^{\mathfrak M} \in \mathbb B$.

Given an ultrafilter U on \mathbb{B} , let \equiv_U be the equivalence relation on \mathfrak{M} defined by

$$\tau \equiv_{U} \sigma \iff \llbracket \tau = \sigma \rrbracket^{\mathfrak{M}} \in U.$$

The quotient of $\mathfrak M$ by the above equivalence relation gives rise to a 2-valued structure $\mathfrak M/U$.

Definition

A \mathbb{B} -valued structure \mathfrak{M} is full if for every L-formula $\varphi(x, y_1, \ldots, y_n)$ and parameters $\sigma_1, \ldots, \sigma_n \in M$ there exist $\tau_1, \ldots, \tau_m \in M$ such that

$$\llbracket\exists x \varphi(x, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}} = \bigvee_{i=1}^m \llbracket \varphi(\tau_i, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}}.$$

Definition

A $\mathbb B$ -valued structure $\mathfrak M$ is full if for every L-formula $\varphi(x,y_1,\ldots,y_n)$ and parameters $\sigma_1,\ldots,\sigma_n\in M$ there exist $\tau_1,\ldots,\tau_m\in M$ such that

$$\llbracket\exists x \varphi(x, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}} = \bigvee_{i=1}^m \llbracket \varphi(\tau_i, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}}.$$

Definition

Let δ be a cardinal; a $\mathbb B$ -valued structure $\mathfrak M$ satisfies the δ -mixing property if for every antichain $A\subset \mathbb B$ with $|A|<\delta$ and every set $\{\tau_a\mid a\in A\}\subseteq M$ there exists $\tau\in M$ such that for all $a\in A$

$$a \leq \llbracket \tau_a = \tau
rbracket^{\mathfrak{M}}.$$

Definition

A $\mathbb B$ -valued structure $\mathfrak M$ is full if for every L-formula $\varphi(x,y_1,\ldots,y_n)$ and parameters $\sigma_1,\ldots,\sigma_n\in M$ there exist $\tau_1,\ldots,\tau_m\in M$ such that

$$\llbracket\exists x \varphi(x, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}} = \bigvee_{i=1}^m \llbracket \varphi(\tau_i, \sigma_1, \ldots, \sigma_n)\rrbracket^{\mathfrak{M}}.$$

Definition

Let δ be a cardinal; a $\mathbb B$ -valued structure $\mathfrak M$ satisfies the δ -mixing property if for every antichain $A\subset \mathbb B$ with $|A|<\delta$ and every set $\{\tau_a\mid a\in A\}\subseteq M$ there exists $\tau\in M$ such that for all $a\in A$

$$a \leq \llbracket \tau_a = \tau
rbracket^{\mathfrak{M}}.$$

Proposition

If $\mathfrak M$ satisfies the δ -mixing property for all cardinals δ , then $\mathfrak M$ is full.

Correspondence

combinatorial properties of $U \longleftrightarrow \mathsf{model}\text{-theoretic}$ properties of \mathfrak{M}/U

Correspondence

combinatorial properties of $U \longleftrightarrow \mathsf{model}\text{-theoretic}$ properties of \mathfrak{M}/U

For the purpose of this talk, we shall be concerned with the model-theoretic property of saturation.

Definition

Let κ be a cardinal, \mathbb{B} a Boolean algebra, and $f: [\kappa]^{\leq \aleph_0} \to \mathbb{B}$.

- ▶ f is monotonic if for all $S, T \in [\kappa]^{<\aleph_0}$, $S \subseteq T$ implies $f(T) \le f(S)$.
- ▶ f is multiplicative if for all $S, T \in [\kappa]^{<\aleph_0}$, $f(S \cup T) = f(S) \wedge f(T)$.

Definition

Let κ be a cardinal, \mathbb{B} a Boolean algebra, and $f: [\kappa]^{\leq \aleph_0} \to \mathbb{B}$.

- f is monotonic if for all $S, T \in [\kappa]^{<\aleph_0}$, $S \subseteq T$ implies $f(T) \le f(S)$.
- ▶ f is multiplicative if for all $S, T \in [\kappa]^{<\aleph_0}$, $f(S \cup T) = f(S) \wedge f(T)$.

Note that every multiplicative function is monotonic.

Definition

Let κ be a cardinal, \mathbb{B} a Boolean algebra, and $f: [\kappa]^{<\aleph_0} \to \mathbb{B}$.

- ▶ f is monotonic if for all $S, T \in [\kappa]^{<\aleph_0}$, $S \subseteq T$ implies $f(T) \le f(S)$.
- ▶ f is multiplicative if for all $S, T \in [\kappa]^{<\aleph_0}$, $f(S \cup T) = f(S) \land f(T)$.

Note that every multiplicative function is monotonic.

Definition (Mansfield [1971])

Let δ be a cardinal. An ultrafilter U on a Boolean algebra $\mathbb B$ is δ -good if for every $\kappa < \delta$ and every monotonic function $f: [\kappa]^{<\aleph_0} \to U$, there exists a multiplicative function $g: [\kappa]^{<\aleph_0} \to U$ such that $g(S) \le f(S)$ for all $S \in [\kappa]^{<\aleph_0}$.

Theorem (Mansfield [1971])

Let δ be an uncountable cardinal, $\mathbb B$ a δ -complete Boolean algebra, and L a language with $|L|<\delta$. Suppose $\mathfrak M$ is a full $\mathbb B$ -valued structure for L which satisfies the δ -mixing property, and U is an countably incomplete δ -good ultrafilter on $\mathbb B$; then the quotient $\mathfrak M/U$ is δ -saturated.

Theorem (Mansfield [1971])

Let δ be an uncountable cardinal, $\mathbb B$ a δ -complete Boolean algebra, and L a language with $|L|<\delta$. Suppose $\mathfrak M$ is a full $\mathbb B$ -valued structure for L which satisfies the δ -mixing property, and U is an countably incomplete δ -good ultrafilter on $\mathbb B$; then the quotient $\mathfrak M/U$ is δ -saturated.

Question

What about the converse implication? If an ultrafilter U makes every quotient δ -saturated, must U necessarily be δ -good?

Capturing saturation

Three years later, Benda [1974] observed that, using Mansfield's definition, "it is not straightforward to prove the other implication". To get around this problem, Benda introduced another class of ultrafilters, which we shall call δ -Benda, and proved an ultrafilter is δ -Benda if and only if every quotient by U is δ -saturated.

Capturing saturation

Three years later, Benda [1974] observed that, using Mansfield's definition, "it is not straightforward to prove the other implication". To get around this problem, Benda introduced another class of ultrafilters, which we shall call δ -Benda, and proved an ultrafilter is δ -Benda if and only if every quotient by U is δ -saturated.

In 1982, Balcar and Franěk acknowledged the existence of two different definitions of goodness for ultrafilters on Boolean algebras, and claimed that Mansfield's definition "is apparently stronger than Benda's".

Capturing saturation

Three years later, Benda [1974] observed that, using Mansfield's definition, "it is not straightforward to prove the other implication". To get around this problem, Benda introduced another class of ultrafilters, which we shall call δ -Benda, and proved an ultrafilter is δ -Benda if and only if every quotient by U is δ -saturated.

In 1982, Balcar and Franěk acknowledged the existence of two different definitions of goodness for ultrafilters on Boolean algebras, and claimed that Mansfield's definition "is apparently stronger than Benda's".

Theorem (P. [2021])

A countably incomplete ultrafilter U is δ -good if and only if it is δ -Benda. Thus, the combinatorial property of goodness precisely captures the model-theoretic property of saturation.

Further work

Moreno Pierobon, in his master's thesis [2019] and his joint work with Matteo Viale [2022], further deepens this analysis of saturated quotients of Boolean-valued structures, by connecting the fullness and mixing properties with topological properties of presheaves and étalé spaces.

Motivation

Explain the "unreasonable effectiveness" of forcing in constructing models of set theory.

Motivation

Explain the "unreasonable effectiveness" of forcing in constructing models of set theory.

This part is joint work with Matteo Viale,

available at arXiv:2310.11691 [math.LO]

Given a (the?) set-theoretic universe V, we do not have access to its theory.

Given a (the?) set-theoretic universe V, we do not have access to its theory.

Theorem (Tarski [1939])

There is no truth definition for V.

Given a (the?) set-theoretic universe V, we do not have access to its theory.

Theorem (Tarski [1939])

There is no truth definition for V.

Let $\operatorname{trcl}(x)$ denote the transitive closure of a set x. For each cardinal λ , we define

$$H_{\lambda} = \{x \mid |\mathsf{trcl}(x)| < \lambda\},\$$

so that

$$V=\bigcup_{\lambda}H_{\lambda}.$$

Circumventing Tarski's theorem, we do have access to the theory of each initial segment H_{λ} . How should these theories be axiomatized?

Circumventing Tarski's theorem, we do have access to the theory of each initial segment H_{λ} . How should these theories be axiomatized?

Definition

Let \in_{Δ_0} be the expansion of the language $\{\in\}$ containing an n-ary relation symbol R_{φ} for each Δ_0 $\{\in\}$ -formula $\varphi(x_1,\ldots,x_n)$, as well as constant symbols for \emptyset and ω .

Circumventing Tarski's theorem, we do have access to the theory of each initial segment H_{λ} . How should these theories be axiomatized?

Definition

Let \in_{Δ_0} be the expansion of the language $\{\in\}$ containing an n-ary relation symbol R_{φ} for each Δ_0 $\{\in\}$ -formula $\varphi(x_1,\ldots,x_n)$, as well as constant symbols for \emptyset and ω .

- ▶ Th $(H_{\lambda}, \in_{\Delta_0})$ is the set of \in_{Δ_0} -sentences which are true in H_{λ}
- ▶ Th $_{\forall}(H_{\lambda}, \in_{\Delta_0})$ is its universal fragment

Circumventing Tarski's theorem, we do have access to the theory of each initial segment H_{λ} . How should these theories be axiomatized?

Definition

Let \in_{Δ_0} be the expansion of the language $\{\in\}$ containing an n-ary relation symbol R_{φ} for each Δ_0 $\{\in\}$ -formula $\varphi(x_1,\ldots,x_n)$, as well as constant symbols for \emptyset and ω .

- ▶ Th $(H_{\lambda}, \in_{\Delta_0})$ is the set of \in_{Δ_0} -sentences which are true in H_{λ}
- ▶ Th $_{\forall}(H_{\lambda}, \in_{\Delta_0})$ is its universal fragment

Question

Are models constructed by forcing somehow "canonical" or "universal" among all the models of the above theories?

Given a complete Boolean algebra \mathbb{B} , let $V^{\mathbb{B}}$ be the full \mathbb{B} -valued model of ZFC as constructed in Scott, Solovay, and Vopěnka.

Given a complete Boolean algebra \mathbb{B} , let $V^{\mathbb{B}}$ be the full \mathbb{B} -valued model of ZFC as constructed in Scott, Solovay, and Vopěnka.

Let δ be a cardinal such that $\left[\!\left[\check{\delta}\right]$ is a cardinal $\!\right]^{V^{\mathbb{B}}}=\mathbb{1}.$ We define

$$extstyle{\mathcal{H}^{\mathbb{B}}_{reve{\delta}}} = \left\{ au \in V^{\mathbb{B}} \;\middle|\; \llbracket |\mathsf{trcl}(au)| < \check{\delta}
rbracket^{V^{\mathbb{B}}} = \mathbb{1}
ight\}$$

with caution.

Given a complete Boolean algebra \mathbb{B} , let $V^{\mathbb{B}}$ be the full \mathbb{B} -valued model of ZFC as constructed in Scott, Solovay, and Vopěnka.

Let δ be a cardinal such that $\left[\!\left[\check{\delta}\right]$ is a cardinal $\!\right]^{V^{\mathbb{B}}}=\mathbb{1}.$ We define

$$oldsymbol{\mathcal{H}}_{oldsymbol{\check{\delta}}}^{\mathbb{B}} = \left\{ au \in V^{\mathbb{B}} \; \middle| \; \llbracket |\mathsf{trcl}(au)| < \check{\delta}
rbracket^{V^{\mathbb{B}}} = \mathbb{1}
ight\}$$

with caution. Whenever G is \mathbb{B} -generic over V, we have

$$H_{\delta}^{V[G]} = \left\{ \tau_G \mid \tau \in H_{\delta}^{\mathbb{B}} \right\}.$$

In other words, $H^{\mathbb{B}}_{\check{\delta}}$ is a canonical set of names for H_{δ} as computed in the forcing extension by \mathbb{B} .

Proposition

If $\mathbb B$ is a complete Boolean algebra then $H^{\mathbb B}_{\check\delta}$, with the Boolean values inherited from $V^{\mathbb B}$, is a $\mathbb B$ -valued structure for \in_{Δ_0} which satisfies the λ -mixing property for all cardinals λ .

Proposition

If $\mathbb B$ is a complete Boolean algebra then $H^{\mathbb B}_{\check\delta}$, with the Boolean values inherited from $V^{\mathbb B}$, is a $\mathbb B$ -valued structure for \in_{Δ_0} which satisfies the λ -mixing property for all cardinals λ .

As usual, we wish to quotient $H^{\mathbb{B}}_{\check{\delta}}$ by an ultrafilter U on \mathbb{B} to recover a 2-valued structure $H^{\mathbb{B}}_{\check{\delta}}/U$.

Proposition

If $\mathbb B$ is a complete Boolean algebra then $H^{\mathbb B}_{\check\delta}$, with the Boolean values inherited from $V^{\mathbb B}$, is a $\mathbb B$ -valued structure for \in_{Δ_0} which satisfies the λ -mixing property for all cardinals λ .

As usual, we wish to quotient $H^{\mathbb{B}}_{\delta}$ by an ultrafilter U on \mathbb{B} to recover a 2-valued structure $H^{\mathbb{B}}_{\delta}/U$.

In fact, we shall show that, for carefully chosen $\mathbb B$, there exist densely many ultrafilters U on $\mathbb B$ such that the model $H^{\mathbb B}_{\delta}/U$ obtained by forcing is universal among the models of $\operatorname{Th}_{\forall}(H_{\kappa^+},\in_{\Delta_0})$.

Lévy's collapsing algebra

Let δ be an inaccessible cardinal. For every infinite regular cardinal $\kappa < \delta$, let $\operatorname{Coll}(\kappa, < \delta)$ be the completion of the poset

$$P = \left\{ p \mid p \text{ is a function, } |p| < \kappa, \text{ dom}(p) \subset \delta \times \kappa, \\ \forall \langle \alpha, \xi \rangle \in \text{dom}(p)(p(\alpha, \xi) \in \alpha \cup \{0\}) \right\}$$

ordered by $q \leq p \iff p \subseteq q$.

Lévy's collapsing algebra

Let δ be an inaccessible cardinal. For every infinite regular cardinal $\kappa < \delta$, let $\operatorname{Coll}(\kappa, < \delta)$ be the completion of the poset

$$P = \big\{ p \mid p \text{ is a function, } |p| < \kappa, \ \mathsf{dom}(p) \subset \delta \times \kappa, \\ \forall \langle \alpha, \xi \rangle \in \mathsf{dom}(p) (p(\alpha, \xi) \in \alpha \cup \{0\}) \big\}$$

ordered by $q \leq p \iff p \subseteq q$.

In other words, $\operatorname{Coll}(\kappa, <\delta)$ is the complete Boolean algebra which generically adjoins surjections $\kappa \to \alpha$ for any $\alpha < \delta$.

First universality result

First universality result

Theorem (P. and Viale)

Let δ be an inaccessible cardinal and $\kappa < \delta$ be an infinite regular cardinal. Then there exist densely many ultrafilters U on $\mathsf{Coll}(\kappa, < \delta)$ such that:

- the quotient $H^{\mathsf{Coll}(\kappa,<\delta)}_{\check{\delta}}/U$ is a model of $\mathsf{Th}_{\forall}(H_{\kappa^+},\in_{\Delta_0});$
- for every model $\mathfrak{M}\models \mathsf{Th}_\forall(H_{\kappa^+},\in_{\Delta_0})$ such that $|M|\leq \delta$, there exists an embedding $e\colon \mathfrak{M}\to H^{\mathsf{Coll}(\kappa,<\delta)}_{\check{\delta}}/U$ of \in_{Δ_0} -structures.

First universality result

Theorem (P. and Viale)

Let δ be an inaccessible cardinal and $\kappa < \delta$ be an infinite regular cardinal. Then there exist densely many ultrafilters U on $\mathsf{Coll}(\kappa, < \delta)$ such that:

- ▶ the quotient $H_{\check{\delta}}^{\mathsf{Coll}(\kappa,<\delta)}/U$ is a model of $\mathsf{Th}_{\forall}(H_{\kappa^+},\in_{\Delta_0});$
- for every model $\mathfrak{M}\models \operatorname{Th}_\forall(H_{\kappa^+},\in_{\Delta_0})$ such that $|M|\leq \delta$, there exists an embedding $e\colon \mathfrak{M}\to H^{\operatorname{Coll}(\kappa,<\delta)}_{\check\delta}/U$ of \in_{Δ_0} -structures.

Woodin's stationary tower

Definition

A non-empty set a is stationary if for every function $f: (| J a)^{<\omega} \to | J a$ there exists $Z \in a$ such that $f[Z^{<\omega}] \subseteq Z$.

Woodin's stationary tower

Definition

A non-empty set a is stationary if for every function $f: (\bigcup a)^{<\omega} \to \bigcup a$ there exists $Z \in a$ such that $f[Z^{<\omega}] \subseteq Z$.

Definition

Let δ be a Woodin cardinal; for every infinite $\kappa < \delta$ the stationary tower of height δ and critical point κ^+ is defined as

$$\mathbb{Q}^{\kappa}_{<\delta} = \left\{ a \in V_{\delta} \mid a \text{ is stationary, } \forall Z \in a (|Z| \leq \kappa \text{ and } Z \cap \kappa^{+} \in \kappa^{+}) \right\}$$

ordered by

$$b \le a \iff \bigcup a \subseteq \bigcup b \text{ and } \forall Z \in b (Z \cap \bigcup a \in a).$$

Woodin's stationary tower

Definition

A non-empty set a is stationary if for every function $f: (\bigcup a)^{<\omega} \to \bigcup a$ there exists $Z \in a$ such that $f[Z^{<\omega}] \subseteq Z$.

Definition

Let δ be a Woodin cardinal; for every infinite $\kappa < \delta$ the stationary tower of height δ and critical point κ^+ is defined as

$$\mathbb{Q}^{\kappa}_{<\delta} = \left\{ a \in V_{\delta} \mid a \text{ is stationary, } \forall Z \in a (|Z| \leq \kappa \text{ and } Z \cap \kappa^{+} \in \kappa^{+}) \right\}$$

ordered by

$$b \le a \iff \bigcup a \subseteq \bigcup b \text{ and } \forall Z \in b (Z \cap \bigcup a \in a).$$

In fact, if defined in terms of towers of normal ideals, $\mathbb{Q}^{\kappa}_{<\delta}$ inherits the structure of δ -complete Boolean algebra.

Definition

If ${\mathcal A}$ is any set of relations on H_{κ^+} , let us say

 $\mathcal{A} \subseteq \bigcup_{n<\omega} \mathcal{P}(^n(H_{\kappa^+}))$, then we let $\in_{\mathcal{A}}$ be the expansion of \in_{Δ_0} obtained naming each element of \mathcal{A} by a new relation symbol.

Definition

If ${\mathcal A}$ is any set of relations on H_{κ^+} , let us say

 $\mathcal{A} \subseteq \bigcup_{n < \omega} \mathcal{P}(^n(H_{\kappa^+}))$, then we let $\in_{\mathcal{A}}$ be the expansion of \in_{Δ_0} obtained naming each element of \mathcal{A} by a new relation symbol.

Definition

Let δ be a Woodin cardinal; for every infinite $\kappa < \delta$ we define

$$\mathsf{Ult}(H_{\kappa^+},\delta)=\{f\colon \mathcal{P}(X)\to H_{\kappa^+}\mid X\in V_\delta\}.$$

Proposition

For every set of relations $\mathcal A$ on H_{κ^+} , the set $\mathrm{Ult}(H_{\kappa^+},\delta)$ is a full $\mathbb Q^\kappa_{<\delta}$ -valued structure for $\in_{\mathcal A}$ with the δ -mixing property.

Proposition

For every set of relations $\mathcal A$ on H_{κ^+} , the set $\mathrm{Ult}(H_{\kappa^+},\delta)$ is a full $\mathbb Q^\kappa_{<\delta}$ -valued structure for $\in_{\mathcal A}$ with the δ -mixing property.

Theorem (Woodin)

If G is $\mathbb{Q}^{\kappa}_{<\delta}$ -generic over V, then $\mathrm{Ult}(H_{\kappa^+},\delta)/G$ is well founded and thus may be identified with its transitive collapse.

Modulo this identification, we obtain

$$H_{\delta}^{V[G]} \subseteq \mathsf{Ult}(H_{\kappa^+}, \delta)/G.$$

Second universality result

Theorem (P. and Viale)

Let δ be a Woodin cardinal and $\kappa < \delta$ be an infinite cardinal. Then there exist densely many ultrafilters U on $\mathbb{Q}^{\kappa}_{<\delta}$ such that for every set of relations $\mathcal A$ on H_{κ^+} :

- the quotient $\mathrm{Ult}(H_{\kappa^+},\delta)/U$ is a model of $\mathrm{Th}(H_{\kappa^+},\in_{\mathcal{A}})$;
- ▶ for every model $\mathfrak{M} \models \mathsf{Th}_{\forall}(H_{\kappa^+}, \in_{\mathcal{A}})$ such that $|M| \leq \delta$, there exists an embedding $e \colon \mathfrak{M} \to \mathsf{Ult}(H_{\kappa^+}, \delta)/U$ of $\in_{\mathcal{A}}$ -structures;

Second universality result

Theorem (P. and Viale)

Let δ be a Woodin cardinal and $\kappa < \delta$ be an infinite cardinal. Then there exist densely many ultrafilters U on $\mathbb{Q}^{\kappa}_{<\delta}$ such that for every set of relations $\mathcal A$ on H_{κ^+} :

- the quotient $\text{Ult}(H_{\kappa^+}, \delta)/U$ is a model of $\text{Th}(H_{\kappa^+}, \in_{\mathcal{A}})$;
- ▶ for every model $\mathfrak{M} \models \mathsf{Th}_{\forall}(H_{\kappa^+}, \in_{\mathcal{A}})$ such that $|M| \leq \delta$, there exists an embedding $e \colon \mathfrak{M} \to \mathsf{Ult}(H_{\kappa^+}, \delta)/U$ of $\in_{\mathcal{A}}$ -structures;
- ▶ for every model $\mathfrak{M} \models \mathsf{Th}(H_{\kappa^+}, \in_{\mathcal{A}})$ such that $|M| \leq \delta$, there exists an elementary embedding $j \colon \mathfrak{M} \to \mathsf{Ult}(H_{\kappa^+}, \delta)/U$ of $\in_{\mathcal{A}}$ -structures.

Further work

In the first universality result, the Lévy collapse $\operatorname{Coll}(\kappa,<\delta)$ is a δ -c.c. complete Boolean algebra. On the other hand, in the second result the stationary tower $\mathbb{Q}^{\kappa}_{<\delta}$ is not δ -c.c. and not complete, which makes this and other arguments technically awkward.

Further work

In the first universality result, the Lévy collapse $\operatorname{Coll}(\kappa,<\delta)$ is a δ -c.c. complete Boolean algebra. On the other hand, in the second result the stationary tower $\mathbb{Q}^{\kappa}_{<\delta}$ is not δ -c.c. and not complete, which makes this and other arguments technically awkward.

In his PhD thesis, Tsvetlin Marinov constructed an ideal I on $\mathbb{Q}^{\kappa}_{<\delta}$ such that (modulo a game-theoretic conjecture) the quotient $\mathbb{Q}^{\kappa}_{<\delta}/I$ is δ -c.c. and complete, while still enjoying the desirable properties of the stationary tower.

Further work

In the first universality result, the Lévy collapse $\operatorname{Coll}(\kappa,<\delta)$ is a δ -c.c. complete Boolean algebra. On the other hand, in the second result the stationary tower $\mathbb{Q}^{\kappa}_{<\delta}$ is not δ -c.c. and not complete, which makes this and other arguments technically awkward.

In his PhD thesis, Tsvetlin Marinov constructed an ideal I on $\mathbb{Q}^{\kappa}_{<\delta}$ such that (modulo a game-theoretic conjecture) the quotient $\mathbb{Q}^{\kappa}_{<\delta}/I$ is δ -c.c. and complete, while still enjoying the desirable properties of the stationary tower.

Problem

Analyze the (universal fragments of) the theories of H_{λ} for λ limit.

