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Introduction

1. Good ultrafilters and saturation

2. Universality properties of forcing (joint with Matteo Viale)



Boolean-valued structures

Let L be a first-order language and let B be a Boolean algebra.
A B-valued structure M for L generalizes the usual Tarski semantics
by assigning to each L-formula φ a Boolean value JφKM ∈ B.

Given an ultrafilter U on B, let ≡U be the equivalence relation on
M defined by

τ ≡U σ ⇐⇒ Jτ = σKM ∈ U.

The quotient of M by the above equivalence relation gives rise to a
2-valued structure M/U.
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Fullness

Definition
A B-valued structure M is full if for every L-formula
φ(x , y1, . . . , yn) and parameters σ1, . . . , σn ∈ M there exist
τ1, . . . , τm ∈ M such that

J∃xφ(x , σ1, . . . , σn)KM =
m∨
i=1

Jφ(τi , σ1, . . . , σn)KM.

Definition
Let δ be a cardinal; a B-valued structure M satisfies the δ-mixing
property if for every antichain A ⊂ B with |A| < δ and every set
{τa | a ∈ A} ⊆ M there exists τ ∈ M such that for all a ∈ A

a ≤ Jτa = τKM.

Proposition
If M satisfies the δ-mixing property for all cardinals δ, then M is full.
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model-theoretic property of saturation.
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Good ultrafilters

Definition
Let κ be a cardinal, B a Boolean algebra, and f : [κ]<ℵ0 → B.
▶ f is monotonic if for all S ,T ∈ [κ]<ℵ0 , S ⊆ T implies

f (T ) ≤ f (S).
▶ f is multiplicative if for all S ,T ∈ [κ]<ℵ0 ,

f (S ∪ T ) = f (S) ∧ f (T ).

Note that every multiplicative function is monotonic.

Definition (Mansfield [1971])
Let δ be a cardinal. An ultrafilter U on a Boolean algebra B is
δ-good if for every κ < δ and every monotonic function
f : [κ]<ℵ0 → U, there exists a multiplicative function
g : [κ]<ℵ0 → U such that g(S) ≤ f (S) for all S ∈ [κ]<ℵ0 .
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Good ultrafilters

Theorem (Mansfield [1971])
Let δ be an uncountable cardinal, B a δ-complete Boolean algebra,
and L a language with |L| < δ. Suppose M is a full B-valued
structure for L which satisfies the δ-mixing property, and U is an
countably incomplete δ-good ultrafilter on B; then the quotient
M/U is δ-saturated.

Question
What about the converse implication? If an ultrafilter U makes
every quotient δ-saturated, must U necessarily be δ-good?
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Capturing saturation

Three years later, Benda [1974] observed that, using Mansfield’s
definition, “it is not straightforward to prove the other implication”.
To get around this problem, Benda introduced another class of
ultrafilters, which we shall call δ-Benda, and proved an ultrafilter is
δ-Benda if and only if every quotient by U is δ-saturated.

In 1982, Balcar and Franěk acknowledged the existence of two
different definitions of goodness for ultrafilters on Boolean algebras,
and claimed that Mansfield’s definition “is apparently stronger than
Benda’s”.

Theorem (P. [2021])
A countably incomplete ultrafilter U is δ-good if and only if it is
δ-Benda. Thus, the combinatorial property of goodness precisely
captures the model-theoretic property of saturation.
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Further work

Moreno Pierobon, in his master’s thesis [2019] and his joint work
with Matteo Viale [2022], further deepens this analysis of saturated
quotients of Boolean-valued structures, by connecting the fullness
and mixing properties with topological properties of presheaves and
étalé spaces.
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Explain the “unreasonable effectiveness” of forcing in constructing
models of set theory.

This part is joint work with Matteo Viale,

available at arXiv:2310.11691 [math.LO]
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Set-theoretic truth

Given a (the?) set-theoretic universe V , we do not have access to
its theory.

Theorem (Tarski [1939])
There is no truth definition for V .

Let trcl(x) denote the transitive closure of a set x . For each
cardinal λ, we define

Hλ =
{
x
∣∣ |trcl(x)| < λ

}
,

so that
V =

⋃
λ

Hλ.
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Set-theoretic truth

Circumventing Tarski’s theorem, we do have access to the theory of
each initial segment Hλ. How should these theories be axiomatized?

Definition
Let ∈∆0 be the expansion of the language {∈} containing an n-ary
relation symbol Rφ for each ∆0 {∈}-formula φ(x1, . . . , xn), as well
as constant symbols for ∅ and ω.
▶ Th(Hλ,∈∆0) is the set of ∈∆0-sentences which are true in Hλ

▶ Th∀(Hλ,∈∆0) is its universal fragment

Question
Are models constructed by forcing somehow “canonical” or
“universal” among all the models of the above theories?
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Boolean-valued models of set theory

Given a complete Boolean algebra B, let V B be the full B-valued
model of ZFC as constructed in Scott, Solovay, and Vopěnka.

Let δ be a cardinal such that
q
δ̌ is a cardinal

yV B
= 1. We define

HB
δ̌
=

{
τ ∈ V B

∣∣∣ q
|trcl(τ)| < δ̌

yV B
= 1

}
with caution. Whenever G is B-generic over V , we have

H
V [G ]
δ =

{
τG

∣∣∣ τ ∈ HB
δ̌

}
.

In other words, HB
δ̌

is a canonical set of names for Hδ as computed
in the forcing extension by B.
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Boolean-valued models of set theory

Proposition
If B is a complete Boolean algebra then HB

δ̌
, with the Boolean

values inherited from V B, is a B-valued structure for ∈∆0 which
satisfies the λ-mixing property for all cardinals λ.

As usual, we wish to quotient HB
δ̌

by an ultrafilter U on B to
recover a 2-valued structure HB

δ̌
/U.

In fact, we shall show that, for carefully chosen B, there exist
densely many ultrafilters U on B such that the model HB

δ̌
/U

obtained by forcing is universal among the models of Th∀(Hκ+ ,∈∆0).
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Lévy’s collapsing algebra

Let δ be an inaccessible cardinal. For every infinite regular cardinal
κ < δ, let Coll(κ,<δ) be the completion of the poset

P =
{
p

∣∣ p is a function, |p| < κ, dom(p) ⊂ δ × κ,

∀⟨α, ξ⟩ ∈ dom(p)(p(α, ξ) ∈ α ∪ {0})
}

ordered by q ≤ p ⇐⇒ p ⊆ q.

In other words, Coll(κ,<δ) is the complete Boolean algebra which
generically adjoins surjections κ → α for any α < δ.
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First universality result

Theorem (P. and Viale)
Let δ be an inaccessible cardinal and κ < δ be an infinite regular
cardinal. Then there exist densely many ultrafilters U on
Coll(κ,<δ) such that:

▶ the quotient HColl(κ,<δ)

δ̌
/U is a model of Th∀(Hκ+ ,∈∆0);

▶ for every model M |= Th∀(Hκ+ ,∈∆0) such that |M| ≤ δ, there
exists an embedding e : M → H

Coll(κ,<δ)

δ̌
/U of ∈∆0-structures.
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Woodin’s stationary tower

Definition
A non-empty set a is stationary if for every function
f : (

⋃
a)<ω →

⋃
a there exists Z ∈ a such that f [Z<ω] ⊆ Z .

Definition
Let δ be a Woodin cardinal; for every infinite κ < δ the stationary
tower of height δ and critical point κ+ is defined as

Qκ
<δ =

{
a ∈ Vδ

∣∣ a is stationary, ∀Z ∈ a (|Z | ≤ κ and Z ∩ κ+ ∈ κ+)
}

ordered by

b ≤ a ⇐⇒
⋃

a ⊆
⋃
b and ∀Z ∈ b (Z ∩

⋃
a ∈ a).

In fact, if defined in terms of towers of normal ideals, Qκ
<δ inherits

the structure of δ-complete Boolean algebra.
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Generic ultrapower

Definition
If A is any set of relations on Hκ+ , let us say
A ⊆

⋃
n<ω P(n(Hκ+)), then we let ∈A be the expansion of ∈∆0

obtained naming each element of A by a new relation symbol.

Definition
Let δ be a Woodin cardinal; for every infinite κ < δ we define

Ult(Hκ+ , δ) = {f : P(X ) → Hκ+ | X ∈ Vδ}.
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Generic ultrapower

Proposition
For every set of relations A on Hκ+ , the set Ult(Hκ+ , δ) is a full
Qκ

<δ-valued structure for ∈A with the δ-mixing property.

Theorem (Woodin)
If G is Qκ

<δ-generic over V , then Ult(Hκ+ , δ)/G is well founded and
thus may be identified with its transitive collapse.
Modulo this identification, we obtain

H
V [G ]
δ ⊆ Ult(Hκ+ , δ)/G .



Generic ultrapower

Proposition
For every set of relations A on Hκ+ , the set Ult(Hκ+ , δ) is a full
Qκ

<δ-valued structure for ∈A with the δ-mixing property.

Theorem (Woodin)
If G is Qκ

<δ-generic over V , then Ult(Hκ+ , δ)/G is well founded and
thus may be identified with its transitive collapse.
Modulo this identification, we obtain

H
V [G ]
δ ⊆ Ult(Hκ+ , δ)/G .



Second universality result

Theorem (P. and Viale)
Let δ be a Woodin cardinal and κ < δ be an infinite cardinal. Then
there exist densely many ultrafilters U on Qκ

<δ such that for every
set of relations A on Hκ+ :
▶ the quotient Ult(Hκ+ , δ)/U is a model of Th(Hκ+ ,∈A);
▶ for every model M |= Th∀(Hκ+ ,∈A) such that |M| ≤ δ, there

exists an embedding e : M → Ult(Hκ+ , δ)/U of ∈A-structures;
▶ for every model M |= Th(Hκ+ ,∈A) such that |M| ≤ δ, there

exists an elementary embedding j : M → Ult(Hκ+ , δ)/U of
∈A-structures.
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Further work

In the first universality result, the Lévy collapse Coll(κ,<δ) is a
δ-c.c. complete Boolean algebra. On the other hand, in the second
result the stationary tower Qκ

<δ is not δ-c.c. and not complete,
which makes this and other arguments technically awkward.

In his PhD thesis, Tsvetlin Marinov constructed an ideal I on Qκ
<δ

such that (modulo a game-theoretic conjecture) the quotient
Qκ

<δ/I is δ-c.c. and complete, while still enjoying the desirable
properties of the stationary tower.

Problem
Analyze the (universal fragments of) the theories of Hλ for λ limit.
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Thank you!


