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The Baire space is the set “w = {f | f : w — w}. Its topology is
generated by clopen sets [s] = {f € “w | s C f} for s € <“w, then
“w is homeomorphic to the irrationals. We can define Lebesgue
measure on “w, and the set NV of Lebesgue null sets.

add(\) = min { |4 \ ACNand (Jagn},
cof (M) =min {|C| | CC N and VN e NIC € C(N CO)}.
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Let x be uncountable, then “x is a generalised Baire space. We
say [ € "k are r-reals. If x is strongly inaccessible, we can
generalise the middle part of the Cichon Diagram:

non(M,) — cof (M) — 2

+ +
by ——— O
+ +

kT — add(My) — cov(M,)

There is no Lebesgue measure on “k, so there is no generalisation
of N to ®k. We can generalise add(N) and cof(N) using a
combinatorial definition instead.



Contents 4/42

Slaloms & localisation cardinals

@)

Generalised Sacks-like forcing

O

Properties of the forcing

Products

O

@)

Anti-localisation & bounded spaces

Trivial & nontrivial cases

O

O

Separating cardinalities



Slaloms 5/42

Let k be regular strong limit
and h € "k be an increasing

cofinal cardinal function.

An h-slalom is any function
¢+ k — [K]<" such that
lo(@)| < h(a) for all a € k.

For f € "k, we say f € ¢, or
f is localised by ¢, if there

exists some £ < k such that
f(a) € p(a) for all a € [¢, k).

We will let Locy, be the set of

h-slaloms.

[Bartoszynski, 1987]
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We define the following cardinal characteristics:
b"(e*) = min{|B| | B C " and V¢ € Loc,3f € B(f ¢* )},
o"(e*) = min {|D| | D C Locy, and Vf € "k3p € D(f €* ¢)}.
These are the unbounded and dominating h-localisation cardinals.

Proposition [Brendle et al., 2018] sections 4.3 & 4.4
kT < bP(e*) <of(e*) < 2%, and all relations can consistently be
strict inequalities. O

Proposition [Bartoszynski, 1987] or [Bartoszyriski and Judah, 1995]
b, (€*) = add(N) and d,,(€*) = cof (N) O
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Theorem  [Bartoszyriski, 1987] or [Blass, 2010] remark 5.15 (for k = w)

If h, g € "k are continuous (i.e. h(y) = U, h(e) for limit v) and
unbounded, then 2%(€*) = d{(€*) and bl (€*) = b (€*).

Proof. Enumerate a club (§, | @ € k) in k s.t. h(a) < g(&,). Let
I = [£a,€ar1) and 7, @ & >» Lok bijective.

If ferrlet f/:aw 7, (f I I) and if ¢ € Locy, € € I, let
¢'(§) = {ma(i)(€) | i € p(a)}. Then f'(a) € p() and £ € I,
implies f(§) = f I 1a(§) = ma(f'())(£) € ¢'(£).

So f" €* ¢ implies f €* ¢'. O
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Let pow : @ — 2/°l and id : o = ||

Proposition [Brendle et al., 2018] proposition 65 & 66
ZFC + 3 Inaccessible - “ Con (22" (%) < did(e*))" O

Proved using the generalised Sacks forcing from [Kanamori, 1980].

Question
Does there exist h € " such that 27 (€*) is consistently different
from 0£°"(€*) and 2id(c*)?

Answer. Yes, by using a similar Sacks-like forcing.
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Our goal is to separate d"(c*) from d%(€*) for two h, g € “.

Definition

A forcing notion (P, <) has the (generalised) h-Sacks property if
for every P-name f and condition p € P such that p I f € #x"
there exists a ¢ < p and h-slalom ¢ € Locy, such that

qIF" fla) € g(a)" for all a < k.

Lemma
If P has the h-Sacks property, G is P-generic over V, then
VI[G] E“ol(e*) < (27)V".
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Let T C <"k be a tree. For any node u € T let

suc(u, T) ={veT |30 < k(v=u"p)}.

Node u is a-splitting in T if o < |suc(u, T)|. If u is a-splitting
but not || -splitting, then we call u a sharp a-splitting node. A
splitting node is a 2-splitting node, and any other node is
non-splitting.

We let u € Split,, (T) iff w is splitting and
ot({B < ot(u) | u | B is splitting}) = «, and we call « the
splitting level of u.

fueT, thenT,={veT|uCvorvCu}.
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Let h € "k be an increasing cofinal cardinal function. The
conditions of the forcing S" are trees T C <"k that satisfy the

following properties:

(i) for any u € T there exists splitting v € T such that u C v,

(ii) if vy < Kk and (uq | @ <) € 7T are splitting nodes with

uq C ug for a < B, then u =, _., uo € T and u is splitting,

a<y
(iii) if w € Split,(T), then u is an h(«)-splitting node in T'.

We say that T' < S iff T C S and for every splitting u € T, either
suc(u, T) = suc(u, S) or |suc(u, T)| < [suc(u, S)|.
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Proposition [vdV] lemma 4

Let v < x and (T¢ | € < v) € 7(S%) be decreasing. If

u e T =(Tg, then In < vV € [, v)(suc(u, T') = suc(u, T¢)).
Proof. Let A\¢ = |suc(u, T¢)|, then (A¢ | £ < A) decreases. So there
is & such that \¢ = A, for n > &. Then suc(u, T¢) = suc(u, T})) for
all p > €. 0l
Corollary  [vdV] lemma 4

St is <k-closed.

Proof. Check that (i) (ii) and (iii) from the definition hold using
the above proposition. O
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Let T' <, S iff T' < S and Split, (7") = Split,(S). A fusion
sequence is a sequence (T, | a < k) s.t. Tg <, T, forall 5> a.

Proposition [vdV] lemma 6
Sh is closed under fusion and has the <(2%)*-cc.

Proof. Let u € T'and a > ot({ € k| w [ B splits in T'}) + 1, then
Split,, (1) = Split,, (7).

(i), (ii) and (iii) and T" < T¢ follow easily. O
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If T € Sh and u € T, then T, is a condition and T}, < T..
Every T has a sharp T* < T such that Split, (7*) C Split, (T)
and each u € Split, (T™) is a sharp h(«a)-splitting node.

Theorem [vdV] theorem 7
Let h € *k be increasing cofinal cardinal function, g : o+ h(a)ll,

then S” has the g-Sacks property.

Proof. Let f be a name, Ty € S and Ty I- f € "k". Find fusion
sequence (T¢ | £ < k), {Be C k| £ <k} and ¢ € Log s.t.

(a) Each T is a sharp tree,

(b) Tey1 - £(€) € Be" for all € € &,

(c) [Bel < g(&) and p(&) = Be

ThenT:ﬂngeSZ by fusion, and T'IF" f €* 3" S>>
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Limit step

Let v be limit. By <r-closure T =, T¢ € Sk. By fusion,
Split, (T7) = Split,(Ta). Let T, = (T7)*, then

Split, (T:;) = Split,,(T) for all a < v by sharpness and ordering of
Sh, so T, satisfies the fusion requirements and is sharp.

Successor step

Let u € Splitg(1¢) and v € suc(u, T¢). Find TV < (T¢), and

B <rst. TVIF" f(§) = B¢". Let u € Splite(T") and

v" € suc(u/, T?) be arbitrary and TV = (T"),,. Note that

Split,, (T*") C Splite 1,4 (T"). Let

Ve=U {suc(u, Te) | u € Splité(Tg)} and Ty = (Uvevg TV )*
and Bg = {¢ | v € Ve ). Now |Bg| < |Ve| < h(§)l = g(¢) since
Te is sharp. Teiq IF“ f(€) € Be" since {T? | v € V¢} is predense
below T¢ 1. O
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Corollary
If VE“2F = k1" then SZ preserves all cardinals and cofinalities.

Proof. |P(<"k)| = |P(k)| = 2% = k' and each T € S! is a subset
of <Fk. So S! has the x*-c.c. and is <k-closed. Hence S/
preserves \ if A < K or kT < \.

If fisanameand T'IF" f:k — k", use the proof of the Sacks
property to find 77 < T and B¢ with |B¢| < & such that

T IF* f(§) € Be" forall ¢ Then T" I+ “ran(f) C U, Be # w1,
so f does not name a surjection. Hence S/ preserves x+. O
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Lemma [vdV] theorem 9
The set C = {a < k| T N*k = Split,(T)} is club.

Theorem  [vdV] theorem 9
Let g(a) < h(a) for all a € S stationary, then S does not have
the g-Sacks property.

Proof. Let G be S" generic and f = (G, then f € "x. Working in
the ground model, let f name f and ¢ € Locy. If u € Split,, (1)
and ag € K, then take g < @ € SN C, then

g(a) < h(a) < |suc(u,T)|. Let S € suc(u,T’) such that 5 ¢ ¢(a).

Then (T)u-s IF “3a > ao(f(a) # $(a))". By density and
arbitrariness of ag then T'IF" f ¢* " O
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SP™ has the pow-Sacks property, but not the id-Sacks property.

(in fact S2 where 2 : o+ 2 already has the pow-Sacks property
but not the id-Sacks property)

If S is stationary co-stationary and F € "« s.t. F(a) = F(a)ll,

hl|S=F|S gl Ss=2F18
hSc=2F18 gl Sc=F|S

Then S has the h-Sacks property, but not the g-Sacks property,
and S, has the g-Sacks property, but not the h-Sacks property.
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Definition

Let A be an index set and ((P¢, <¢) | £ € A) a sequence of forcing
notions. Let C be the set of choice functions p: A — (Jec g Pe. If
p € C let supp(p) = {£ € A | p(§) # 1¢}. Define the <r-support

product of (P¢ | £ € A) as:

P = {p € C | |supp(p)| < x}

ordered by ¢ <p p iff q(&§) <¢ p(&) for all £ € A.

Lemma
If P¢ is <r-closed for each £ € A, then P is <x-closed.
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(pa € Pe | o < k) is a fusion sequence if pg <, p, for all 5> a.

Given p,q € P, a € k and Z C A, let ¢ <zapiff¢g<pand
q(§) <o p(&) for each £ € Z. A generalised fusion sequence is a
sequence ((pa, Za) | @ < k) such that:

(i) pa € P and Z, € [A]<F for each a < k,

(il) P8 <Zu,a Pa and Z, C Zg for all a < 5 < &,
(iii) for limit 0 we have Zs = {J .5 Za.

(IV) Ua</~; = Ua</@ Supp(pa)'

Lemma Kanamori [1980] for products of r-Sacks forcing
If each P¢ is closed under fusion, then P is closed under generalised

fusion.
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Theorem [vdV] Lemma 13

Let A be an index set, B C A and B¢ = A\ B, and foreach £ € A
let he € "k be an increasing cofinal cardinal function. Let S be the
<k-support product of (SZ5 | £ € A) and G be S-generic over V.

If g:a — (supgepe he(a))lel is well-defined, then for each
f € V[G] there is ¢ € (Locy) VIGIBl such that f €* .

Theorem

Let A be an index set, B C A and B¢ = A\ B, and foreach £ € A
let he € "k be an increasing cofinal cardinal function. Let S be the
<k-support product of (SZ5 | £ € A) and G be S-generic over V.

Let S¢ be a stationary set for each £ € B and let g € "« such that
¢ € B implies g(a) < he() for all a € Se, then |B| < d(€*).
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If S is stationary co-stationary and F € *x s.t. F(a) = F(a)ll,

RIS=F18S grs=218
hlSc=2F18 g|Sc=F|S
Then S has the h-Sacks property, but not the g-Sacks property,
and S, has the g-Sacks property, but not the h-Sacks property.

By the last theorems, if we assume V " 2% = k™" and we let
he = h for all £ < X with k™ < )\, then the <x-support product S
of (SIE | € < \) forces that k= di(€*) < dL(€%) = A = 2%,

If each he = g instead, we can force d%(€*) < 2% (€*).
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Theorem  Solovay, see Jech [2003] theorem 8.10

There exists a disjoint family of sets {S¢ | £ < r} such that each
S¢ is stationary in &.

Theorem [vdV] theorem 17 & corollary 18

Let F' € *k such that F(a) = F(a)!®l, and for £ < & let

gg[S£=F[S§ gngEZQFfS§

If X:x — Ord be a cardinal function with k™ < A(&) for all £ € &,
then there exists a forcing S that forces for all ¢ < & that

w (€%) = A(€).
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If o € Locy, and f € "k, let f eX ¢ if {a € k| fla) € p(a)} is
cofinal in k. If f,g ek, let f=gif{aer]| fla)=g(a)}is
cofinal in k. We define the h-anti-localisation cardinals and the
eventually different cardinals

b"(€*) = min {|B| | B C "k and Yy € Locy3f € B(f ¢™ ¢)},
97(e*®) = min{|D| | D C Locy, and Vf € *x3p € D(f € ¢)},
b.(#%°) =min{|B| | B C "r and Vg € "s3f € B(f =~ g)},
0,.(#®) =min{|D| | D C "k and Vf € "k3g € D(f #* g)}.

If we consider k = w and any h € “w, then:

Theorem  Bartoszyiiski [1987] or Bartoszyriski and Judah [1995]
o (€%°) = b, (#°°) = non(M) and b () = d,(#>) = cov(M)
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2No
1
nj)n(M) -
cov(N) —— DZ;h(GOO) — cof( M) —— owviéi/;))
b (#°) 1 by
e
2oen || ™
057 (e™) -
= I )
[‘szh(e*) — v ac _ wujh - -
add(A) add(M) f:;:)v((i/l)) —— non(N)
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This generalises to strongly inaccessible :

Theorem Landver [1992] and Blass et al. [2005]

0, (#*°) = cov(M,) and b, (#>°) = non(M,).

Theorem

If h € "k, then 02(€%) = b, (#£>) and bl (€>®) =, (#>).

In particular, the choice of h does not have influence on the
cardinality of 9"(€°) and bf(€>).
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Let b: Kk — Ord be an increasing cardinal function and let

[16=1lpe.b(a) ={f:x— Ord | Va < k(f(a) < b())}. Let
Loc? be the set of ¢ s.t. dom(p) = & and p(a) € [b(a)] <.

We define the following cardinal characteristics:
bb h(E*)

Db h(E*)

min {|B| | B C []band V¢ € Loch3f € B(f ¢* ¢)},
{|D|‘DgLochandeEHbElgoeD(fe @)},
b%"(€) = min {|B| | B C b and Vi € Loch3f € B(f ¢~ ¢)},
20h(e%) = m {|D|‘DgLochandeEHbEIcpED(feoocp)},
)
)

—min{|B| | BC[[band Vg € [[b3f € B(f == g)},
—min {|D| | D C [[band Vf € [[b3g € D(f #> g)}.
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For some choices of b and h, the bounded (anti-)localisation

cardinals may be trivial.

Lemma
oY (e*) = 1iff b <* h, which implies 62" (€*) is undefined.
%" (€%°) = 1 iff b <> h, which implies b2"(€>) is undefined.

Lemma Cardona and Mejia [2019] & Goldstern and Shelah [1993] (k = w)
If A < k exists and is minimal s.t. Dy = {a € k| h(a) = A} is
cofinal in «, then bﬁ’h(e*) = Xand 2" < D,‘Qh(e*). If no such A
exists, kT < b2 (€*), and if also b < 2, then 2% (%) < 2.
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Let increasing f : kK — Ord be continuous at v € « if
f(7) = Ua<y f(@). We call f stationarily continuous there exists
S stationary in k s.t. f is continuous at all limit v € S.

Lemma
For A < k let
Dy={ack|bla)<AtU{a€r]|h(a)=>ba)Acf(b(a)) < A}

(i) If A < Kk exists and is minimal s.t. D, is cofinal in k, then
ol (e™) = .
(i) If all Dy are bounded, b is stat.cont., then 22"(€>) = k.
(iii) If all Dy are bounded, b is not stat.cont., then k't < 22" (€>).

A dual result for the relation between b%™(€>) and 2% is not

known vyet.
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Say that b overshadows h if there exists an interval partition
(In | a < K) of k with |I,| = h(a) for each a € k such that
b(a) = b(€) = b(a)™®) for all € € I, and « € .

Theorem

If b overshadows h, then 2% (€) = bt (£>°) and

br"(€%) = 05(#>).

If b: a— k for all & € k and h € "k, then the conditions of the
theorem are satisfied, and DZ’H(G‘X’) =o' (e>) and

bﬁ’m(eoo) = b (€>), where AT : a — h(a)*. In particular, the
cardinality of 9"(€>°) and b"(€>) does not depend on the choice
of h € *k.
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Let b = K be the constant x function and h < h' < b and h < b.

OF(<H) T
[ 6 ()
cov(Ms)
b (%) T
OE(#%)

T

b (er) —— b (%)

The dotted line implies equality if b/ =* b.
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Assume that h < V' < b € ®k and b overshadows h.

b}(<7) —— bh(#%°) = 0" (%) — o"(€)
by (<) —— bi’;(;“’)
agthm — ol (e
bl " (€7) — bl " (€%)
02’(%) — (<)

be" (€7) = b(€%) = 0(#%) — (<)
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The same forcings S that were used to separate cardinals of the
form 07 (€*) can be used on the space [[b. That is, if 2F € []b
and h(a), h'() take the values F(a) or 2F(®) dependent on
whether oo € S for some stationary costationary set S, then
obl(en) < Di’h/(e*) and Dz’hl(é*) < 2%"(€*) are both consistent.
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Theorem
If b € "k then cov(M,) = b2 (™) < b2"(€) is consistent.

The forcing used is }P’Z’h with trees 7" on Locz as conditions, i.e.

w € T implies u : a — []<" s.t. u(€) € [b(&)]<ME) for each £ < a.
If u e T with o = ot(u), let ||ul|; be the least v < &k such that
there exists A € [b(a)]” such that A € A’ for all A" € suc(u,T).

Let T € P iff
(i) forallu e T, v < k there is v € T with u C v and v < ||v||,
(ii) If {ug | € <) is a sequence of splitting nodes and ug C u; for

§ <& then |Jg_, ug splitsin T,
(iii) if u € Split,(T), then max {|a|, 2} < [Jul| .

Let S <pon T if S CT and for each s € S either
suc(s, 8) = suc(s, T) or |lslls < Isly-



About b%"(€*>) and cov(M,) 41/42

P%" is <k-closed, has fusion and is ®k-bounding. Moreover, the
<k-support iteration of Po" is ®k-bounding as well.

Hence, forcing with P> increases the size of bZ’h(EOO) but keeps
cov(M,;) small.
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