Localisation Cardinals on the Generalised Baire Space

Tristan van der Vlugt Universität Hamburg

Kobe Set Theory Seminar June 15, 2022 Introduction 2/42

The Baire space is the set ${}^\omega\omega=\{f\mid f:\omega\to\omega\}$. Its topology is generated by clopen sets $[s]=\{f\in{}^\omega\omega\mid s\subseteq f\}$ for $s\in{}^{<\omega}\omega$, then ${}^\omega\omega$ is homeomorphic to the irrationals. We can define Lebesgue measure on ${}^\omega\omega$, and the set ${\mathcal N}$ of Lebesgue null sets.

$$\begin{split} \operatorname{add}(\mathcal{N}) &= \min \left\{ |\mathcal{A}| \ \middle| \ \mathcal{A} \subseteq \mathcal{N} \text{ and } \bigcup \mathcal{A} \notin \mathcal{N} \right\}, \\ \operatorname{cof}(\mathcal{N}) &= \min \left\{ |\mathcal{C}| \ \middle| \ \mathcal{C} \subseteq \mathcal{N} \text{ and } \forall N \in \mathcal{N} \exists C \in \mathcal{C}(N \subseteq C) \right\}. \end{split}$$

Cichoń Diagram:

$$\begin{array}{c} \operatorname{cov}(\mathcal{N}) \longrightarrow \operatorname{non}(\mathcal{M}) \longrightarrow \operatorname{cof}(\mathcal{M}) \longrightarrow \operatorname{\mathbf{cof}}(\mathcal{N}) \to 2^{\aleph_0} \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \flat \longrightarrow \qquad \uparrow \qquad \qquad \uparrow \\ \aleph_1 \to \operatorname{\mathbf{add}}(\mathcal{N}) \to \operatorname{add}(\mathcal{M}) \to \operatorname{cov}(\mathcal{M}) \to \operatorname{non}(\mathcal{N}) \end{array}$$

Introduction 3/42

Let κ be uncountable, then ${}^{\kappa}\kappa$ is a **generalised Baire space**. We say $f \in {}^{\kappa}\kappa$ are κ -reals. If κ is strongly inaccessible, we can generalise the middle part of the Cichoń Diagram:

$$\begin{array}{ccc}
\operatorname{non}(\mathcal{M}_{\kappa}) \longrightarrow \operatorname{cof}(\mathcal{M}_{\kappa}) \longrightarrow 2^{\kappa} \\
\uparrow & \uparrow \\
\mathfrak{b}_{\kappa} \longrightarrow \mathfrak{d}_{\kappa} \\
\uparrow & \uparrow \\
\kappa^{+} \longrightarrow \operatorname{add}(\mathcal{M}_{\kappa}) \longrightarrow \operatorname{cov}(\mathcal{M}_{\kappa})
\end{array}$$

There is no Lebesgue measure on ${}^{\kappa}\kappa$, so there is no generalisation of $\mathcal N$ to ${}^{\kappa}\kappa$. We can generalise $\operatorname{add}(\mathcal N)$ and $\operatorname{cof}(\mathcal N)$ using a combinatorial definition instead.

Contents 4/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

Slaloms 5/42

Let κ be regular strong limit and $h \in {}^{\kappa}\kappa$ be an increasing cofinal cardinal function.

An h-slalom is any function $\varphi: \kappa \to [\kappa]^{<\kappa}$ such that $|\varphi(\alpha)| \le h(\alpha)$ for all $\alpha \in \kappa$.

For $f \in {}^{\kappa}\kappa$, we say $f \in {}^{*}\varphi$, or f is **localised** by φ , if there exists some $\xi < \kappa$ such that $f(\alpha) \in \varphi(\alpha)$ for all $\alpha \in [\xi, \kappa)$.

We will let Loc_h be the set of h-slaloms.

[Bartoszyński, 1987]

We define the following cardinal characteristics:

$$\mathfrak{b}_{\kappa}^{h}(\in^{*}) = \min \left\{ |B| \mid B \subseteq {}^{\kappa}\kappa \text{ and } \forall \varphi \in \mathrm{Loc}_{h} \exists f \in B(f \notin^{*} \varphi) \right\},$$
$$\mathfrak{d}_{\kappa}^{h}(\in^{*}) = \min \left\{ |D| \mid D \subseteq \mathrm{Loc}_{h} \text{ and } \forall f \in {}^{\kappa}\kappa \exists \varphi \in D(f \in^{*} \varphi) \right\}.$$

These are the **unbounded** and **dominating** h-localisation cardinals.

Proposition [Brendle et al., 2018] sections 4.3 & 4.4 $\kappa^+ \leq \mathfrak{b}^h_\kappa(\in^*) \leq \mathfrak{d}^h_\kappa(\in^*) \leq 2^\kappa \text{, and all relations can consistently be strict inequalities.} \square$

Proposition [Bartoszyński, 1987] or [Bartoszyński and Judah, 1995]
$$\mathfrak{b}_{\omega}(\in^*) = \operatorname{add}(\mathcal{N}) \text{ and } \mathfrak{d}_{\omega}(\in^*) = \operatorname{cof}(\mathcal{N}) \qquad \Box$$

Theorem [Bartoszyński, 1987] or [Blass, 2010] remark 5.15 (for $\kappa = \omega$) If $h,g \in {}^{\kappa}\kappa$ are continuous (i.e. $h(\gamma) = \bigcup_{\alpha < \gamma} h(\alpha)$ for limit γ) and unbounded, then $\mathfrak{d}^h_{\kappa}(\in^*) = \mathfrak{d}^g_{\kappa}(\in^*)$ and $\mathfrak{b}^h_{\kappa}(\in^*) = \mathfrak{b}^g_{\kappa}(\in^*)$.

Proof. Enumerate a club $\langle \xi_{\alpha} \mid \alpha \in \kappa \rangle$ in κ s.t. $h(\alpha) \leq g(\xi_{\alpha})$. Let $I_{\alpha} = [\xi_{\alpha}, \xi_{\alpha+1})$ and $\pi_{\alpha} : \kappa \rightarrowtail^{I_{\alpha}} \kappa$ bijective.

If $f \in {}^{\kappa}\kappa$ let $f' : \alpha \mapsto \pi_{\alpha}^{-1}(f \upharpoonright I_{\alpha})$ and if $\varphi \in \operatorname{Loc}_h$, $\xi \in I_{\alpha}$, let $\varphi'(\xi) = \{\pi_{\alpha}(i)(\xi) \mid i \in \varphi(\alpha)\}$. Then $f'(\alpha) \in \varphi(\alpha)$ and $\xi \in I_{\alpha}$ implies $f(\xi) = f \upharpoonright I_{\alpha}(\xi) = \pi_{\alpha}(f'(\alpha))(\xi) \in \varphi'(\xi)$.

So $f' \in {}^*\varphi$ implies $f \in {}^*\varphi'$.

Let pow : $\alpha \mapsto 2^{|\alpha|}$ and id : $\alpha \mapsto |\alpha|$.

Proposition [Brendle et al., 2018] proposition 65 & 66

$$\mathsf{ZFC} + \exists \; \mathsf{Inaccessible} \vdash \text{``} \mathsf{Con}(\mathfrak{d}_{\kappa}^{\mathsf{pow}}(\in^*) < \mathfrak{d}_{\kappa}^{\mathsf{id}}(\in^*)) \text{''}$$

Proved using the generalised Sacks forcing from [Kanamori, 1980].

Question

Does there exist $h \in {}^{\kappa}\kappa$ such that $\mathfrak{d}^h_{\kappa}(\in^*)$ is consistently different from $\mathfrak{d}^{\mathsf{pow}}_{\kappa}(\in^*)$ and $\mathfrak{d}^{\mathsf{id}}_{\kappa}(\in^*)$?

Answer. Yes, by using a similar Sacks-like forcing.

Contents 9/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

Our goal is to separate $\mathfrak{d}^h_\kappa(\in^*)$ from $\mathfrak{d}^g_\kappa(\in^*)$ for two $h,g\in{}^\kappa\kappa.$

Definition

A forcing notion $\langle \mathbb{P}, \leq \rangle$ has the **(generalised)** h-Sacks property if for every \mathbb{P} -name \dot{f} and condition $p \in \mathbb{P}$ such that $p \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ " there exists a $q \leq p$ and h-slalom $\varphi \in \operatorname{Loc}_h$ such that $q \Vdash$ " $\dot{f}(\alpha) \in \check{\varphi}(\alpha)$ " for all $\alpha < \kappa$.

Lemma

If $\mathbb P$ has the h-Sacks property, G is $\mathbb P$ -generic over $\mathbf V$, then $\mathbf V[G] \vDash ``\mathfrak d^h_\kappa(\in^*) \le (2^\kappa)^\mathbf V$ ''.

Trees 11/42

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree. For any node $u \in T$ let $\mathrm{suc}(u,T) = \{v \in T \mid \exists \beta < \kappa(v = u^{\frown}\beta)\}.$

Node u is α -splitting in T if $\alpha \leq |\mathrm{suc}(u,T)|$. If u is α -splitting but not $|\alpha|^+$ -splitting, then we call u a sharp α -splitting node. A splitting node is a 2-splitting node, and any other node is non-splitting.

We let $u \in \operatorname{Split}_{\alpha}(T)$ iff u is splitting and $\operatorname{ot}(\{\beta < \operatorname{ot}(u) \mid u \upharpoonright \beta \text{ is splitting}\}) = \alpha$, and we call α the splitting level of u.

If $u \in T$, then $T_u = \{v \in T \mid u \subseteq v \text{ or } v \subseteq u\}$.

Let $h \in {}^{\kappa}\kappa$ be an increasing cofinal cardinal function. The conditions of the forcing \mathbb{S}^h_{κ} are trees $T \subseteq {}^{<\kappa}\kappa$ that satisfy the following properties:

- (i) for any $u \in T$ there exists splitting $v \in T$ such that $u \subseteq v$,
- (ii) if $\gamma < \kappa$ and $\langle u_{\alpha} \mid \alpha < \gamma \rangle \in {}^{\gamma}T$ are splitting nodes with $u_{\alpha} \subseteq u_{\beta}$ for $\alpha < \beta$, then $u = \bigcup_{\alpha < \gamma} u_{\alpha} \in T$ and u is splitting,
- (iii) if $u \in \mathrm{Split}_{\alpha}(T)$, then u is an $h(\alpha)$ -splitting node in T.

We say that $T \leq S$ iff $T \subseteq S$ and for every splitting $u \in T$, either $\mathrm{suc}(u,T) = \mathrm{suc}(u,S)$ or $|\mathrm{suc}(u,T)| < |\mathrm{suc}(u,S)|$.

Contents 13/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

Proposition [vdV] lemma 4

Let $\gamma < \kappa$ and $\langle T_{\xi} \mid \xi < \gamma \rangle \in {}^{\gamma}(\mathbb{S}^h_{\kappa})$ be decreasing. If $u \in T = \bigcap T_{\xi}$, then $\exists \eta < \kappa \forall \xi \in [\eta, \gamma)(\mathrm{suc}(u, T) = \mathrm{suc}(u, T_{\xi}))$.

Proof. Let $\lambda_{\xi} = |\mathrm{suc}(u, T_{\xi})|$, then $\langle \lambda_{\xi} \mid \xi < \lambda \rangle$ decreases. So there is ξ such that $\lambda_{\xi} = \lambda_{\eta}$ for $\eta > \xi$. Then $\mathrm{suc}(u, T_{\xi}) = \mathrm{suc}(u, T_{\eta})$ for all $\eta > \xi$.

Corollary [vdV] lemma 4

 \mathbb{S}^h_{κ} is $<\kappa$ -closed.

Proof. Check that (i) (ii) and (iii) from the definition hold using the above proposition.

Let $T \leq_{\alpha} S$ iff $T \leq S$ and $\mathrm{Split}_{\alpha}(T) = \mathrm{Split}_{\alpha}(S)$. A fusion sequence is a sequence $\langle T_{\alpha} \mid \alpha < \kappa \rangle$ s.t. $T_{\beta} \leq_{\alpha} T_{\alpha}$ for all $\beta > \alpha$.

Proposition [vdV] lemma 6

 \mathbb{S}^h_{κ} is closed under fusion and has the $<(2^{\kappa})^+$ -cc.

Proof. Let $u \in T$ and $\alpha > \operatorname{ot}(\{\beta \in \kappa \mid u \upharpoonright \beta \text{ splits in } T\}) + 1$, then $\operatorname{Split}_{\alpha}(T_{\alpha}) = \operatorname{Split}_{\alpha}(T)$.

(i), (ii) and (iii) and $T \leq T_{\xi}$ follow easily.

If $T \in \mathbb{S}^h_{\kappa}$ and $u \in T$, then T_u is a condition and $T_u \leq T$.

Every T has a sharp $T^* \leq T$ such that $\mathrm{Split}_{\alpha}(T^*) \subseteq \mathrm{Split}_{\alpha}(T)$ and each $u \in \mathrm{Split}_{\alpha}(T^*)$ is a sharp $h(\alpha)$ -splitting node.

Theorem [vdV] theorem 7

Let $h \in {}^{\kappa}\kappa$ be increasing cofinal cardinal function, $g: \alpha \mapsto h(\alpha)^{|\alpha|}$, then \mathbb{S}^h_{κ} has the g-Sacks property.

Proof. Let \dot{f} be a name, $T_0 \in \mathbb{S}^h_{\kappa}$ and $T_0 \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ ". Find fusion sequence $\langle T_{\xi} \mid \xi < \kappa \rangle$, $\{B_{\xi} \subseteq \kappa \mid \xi < \kappa\}$ and $\varphi \in \operatorname{Loc}_g$ s.t.

- (a) Each T_{ξ} is a sharp tree,
- (b) $T_{\xi+1} \Vdash \text{``} \dot{f}(\xi) \in \check{B}_{\xi} \text{''} \text{ for all } \xi \in \kappa$,
- (c) $|B_{\xi}| \leq g(\xi)$ and $\varphi(\xi) = B_{\xi}$

Then $T = \bigcap_{\xi} T_{\xi} \in \mathbb{S}^h_{\kappa}$ by fusion, and $T \Vdash \text{``} \dot{f} \in {}^* \check{\varphi} \text{''}$ $\cdots >$

Limit step

Let γ be limit. By $<\kappa$ -closure $T'_{\gamma}=\bigcap_{\xi<\gamma}T_{\xi}\in\mathbb{S}^h_{\kappa}$. By fusion, $\mathrm{Split}_{\alpha}(T'_{\gamma})=\mathrm{Split}_{\alpha}(T_{\alpha})$. Let $T_{\gamma}=(T'_{\gamma})^*$, then $\mathrm{Split}_{\alpha}(T_{\gamma})=\mathrm{Split}_{\alpha}(T'_{\gamma})$ for all $\alpha<\gamma$ by sharpness and ordering of \mathbb{S}^h_{κ} , so T_{γ} satisfies the fusion requirements and is sharp.

Successor step

Let $u \in \operatorname{Split}_{\xi}(T_{\xi})$ and $v \in \operatorname{suc}(u, T_{\xi})$. Find $T^v \leq (T_{\xi})_u$ and $\beta^v_{\xi} < \kappa$ s.t. $T^v \Vdash "\dot{f}(\xi) = \check{\beta}^v_{\xi}"$. Let $u' \in \operatorname{Split}_{\xi}(T^v)$ and $v' \in \operatorname{suc}(u', T^v)$ be arbitrary and $T^{v'} = (T^v)_{v'}$. Note that $\operatorname{Split}_{\alpha}(T^{v'}) \subseteq \operatorname{Split}_{\xi+1+\alpha}(T^v)$. Let $V_{\xi} = \bigcup \left\{ \operatorname{suc}(u, T_{\xi}) \mid u \in \operatorname{Split}_{\xi}(T_{\xi}) \right\}$ and $T_{\xi+1} = (\bigcup_{v \in V_{\xi}} T^{v'})^*$ and $B_{\xi} = \left\{ \beta^v_{\xi} \mid v \in V_{\xi} \right\}$. Now $|B_{\xi}| \leq |V_{\xi}| \leq h(\xi)^{|\xi|} = g(\xi)$ since T_{ξ} is sharp. $T_{\xi+1} \Vdash "\dot{f}(\xi) \in B_{\xi}"$ since $\{T^v \mid v \in V_{\xi}\}$ is predense below $T_{\xi+1}$.

Corollary

If $\mathbf{V} \vDash ``2^{\kappa} = \kappa^+"$, then \mathbb{S}^h_{κ} preserves all cardinals and cofinalities.

Proof. $|\mathcal{P}({}^{<\kappa}\kappa)| = |\mathcal{P}(\kappa)| = 2^{\kappa} = \kappa^+$ and each $T \in \mathbb{S}^h_{\kappa}$ is a subset of ${}^{<\kappa}\kappa$. So \mathbb{S}^h_{κ} has the κ^+ -c.c. and is ${}^{<\kappa}$ -closed. Hence \mathbb{S}^h_{κ} preserves λ if $\lambda \leq \kappa$ or $\kappa^+ < \lambda$.

If \dot{f} is a name and $T \Vdash \text{``} \dot{f} : \kappa \to \kappa^+ \text{''}$, use the proof of the Sacks property to find $T' \leq T$ and B_{ξ} with $|B_{\xi}| < \kappa$ such that $T' \Vdash \text{``} \dot{f}(\xi) \in \check{B}_{\xi} \text{''}$ for all ξ . Then $T' \Vdash \text{``} \operatorname{ran}(\dot{f}) \subseteq \bigcup_{\xi} \check{B}_{\xi} \neq \kappa^+ \text{''}$, so \dot{f} does not name a surjection. Hence \mathbb{S}^h_{κ} preserves κ^+ .

Lemma [vdV] theorem 9

The set $C = \{ \alpha < \kappa \mid T \cap {}^{\alpha}\kappa = \mathrm{Split}_{\alpha}(T) \}$ is club.

Theorem [vdV] theorem 9

Let $g(\alpha) < h(\alpha)$ for all $\alpha \in S$ stationary, then \mathbb{S}^h_κ does not have the g-Sacks property.

Proof. Let G be \mathbb{S}^h_κ generic and $f=\bigcap G$, then $f\in {}^\kappa\kappa$. Working in the ground model, let \dot{f} name f and $\varphi\in \mathrm{Loc}_h$. If $u\in \mathrm{Split}_\alpha(T)$ and $\alpha_0\in\kappa$, then take $\alpha_0<\alpha\in S\cap C$, then $g(\alpha)< h(\alpha)\leq |\mathrm{suc}(u,T)|$. Let $\beta\in \mathrm{suc}(u,T)$ such that $\beta\notin\varphi(\alpha)$.

Then $(T)_{u \cap \beta} \Vdash \text{``} \exists \alpha > \alpha_0 (\dot{f}(\alpha) \notin \check{\varphi}(\alpha))\text{''}$. By density and arbitrariness of α_0 then $T \Vdash \text{``} \dot{f} \notin^* \varphi\text{''}$.

 $\mathbb{S}^{\mathsf{pow}}_{\kappa}$ has the pow-Sacks property, but not the id-Sacks property.

(in fact \mathbb{S}^2_{κ} where $2:\alpha\mapsto 2$ already has the pow-Sacks property but not the id-Sacks property)

If S is stationary co-stationary and $F \in {}^{\kappa}\kappa$ s.t. $F(\alpha) = F(\alpha)^{|\alpha|}$,

$$h \upharpoonright S = F \upharpoonright S$$
 $g \upharpoonright S = 2^F \upharpoonright S$
 $h \upharpoonright S^c = 2^F \upharpoonright S$ $g \upharpoonright S^c = F \upharpoonright S$

Then \mathbb{S}^h_κ has the h-Sacks property, but not the g-Sacks property, and \mathbb{S}^g_κ has the g-Sacks property, but not the h-Sacks property.

Contents 21/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

Products 22/42

Definition

Let A be an index set and $\langle\langle \mathbb{P}_\xi, \leq_\xi \rangle \mid \xi \in A \rangle$ a sequence of forcing notions. Let $\mathcal C$ be the set of choice functions $p:A \to \bigcup_{\xi \in A} \mathbb{P}_\xi$. If $p \in \mathcal C$ let $\mathrm{supp}(p) = \{\xi \in A \mid p(\xi) \neq \mathbb{1}_\xi\}$. Define the $\leq \kappa$ -support product of $\langle \mathbb{P}_\xi \mid \xi \in A \rangle$ as:

$$\overline{\mathbb{P}} = \{ p \in \mathcal{C} \mid |\mathrm{supp}(p)| \le \kappa \}$$

ordered by $q \leq_{\overline{\mathbb{P}}} p$ iff $q(\xi) \leq_{\xi} p(\xi)$ for all $\xi \in A$.

Lemma

If \mathbb{P}_{ξ} is $<\kappa$ -closed for each $\xi\in A$, then $\overline{\mathbb{P}}$ is $<\kappa$ -closed.

 $\langle p_{\alpha} \in \mathbb{P}_{\xi} \mid \alpha < \kappa \rangle$ is a fusion sequence if $p_{\beta} \leq_{\alpha} p_{\alpha}$ for all $\beta > \alpha$.

Given $p,q\in\overline{\mathbb{P}}$, $\alpha\in\kappa$ and $Z\subseteq A$, let $q\leq_{Z,\alpha}p$ iff $q\leq p$ and $q(\xi)\leq_{\alpha}p(\xi)$ for each $\xi\in Z$. A generalised fusion sequence is a sequence $\langle (p_{\alpha},Z_{\alpha})\mid \alpha<\kappa\rangle$ such that:

- (i) $p_{\alpha} \in \overline{\mathbb{P}}$ and $Z_{\alpha} \in [A]^{<\kappa}$ for each $\alpha < \kappa$,
- (ii) $p_{\beta} \leq_{Z_{\alpha},\alpha} p_{\alpha}$ and $Z_{\alpha} \subseteq Z_{\beta}$ for all $\alpha \leq \beta < \kappa$,
- (iii) for limit δ we have $Z_{\delta} = \bigcup_{\alpha < \delta} Z_{\alpha}$,
- (iv) $\bigcup_{\alpha < \kappa} Z_{\alpha} = \bigcup_{\alpha < \kappa} \operatorname{supp}(p_{\alpha}).$

Lemma Kanamori [1980] for products of κ -Sacks forcing If each \mathbb{P}_{ξ} is closed under fusion, then $\overline{\mathbb{P}}$ is closed under generalised fusion.

Theorem [vdV] Lemma 13

Let A be an index set, $B\subseteq A$ and $B^c=A\setminus B$, and for each $\xi\in A$ let $h_\xi\in {}^\kappa\kappa$ be an increasing cofinal cardinal function. Let $\overline{\mathbb{S}}$ be the $\leq\kappa$ -support product of $\langle\mathbb{S}^{h_\xi}_\kappa\mid \xi\in A\rangle$ and G be $\overline{\mathbb{S}}$ -generic over \mathbf{V} .

If $g: \alpha \to (\sup_{\xi \in B^c} h_{\xi}(\alpha))^{|\alpha|}$ is well-defined, then for each $f \in \mathbf{V}[G]$ there is $\varphi \in (\operatorname{Loc}_g)^{\mathbf{V}[G \upharpoonright B]}$ such that $f \in {}^*\varphi$.

Theorem

Let A be an index set, $B\subseteq A$ and $B^c=A\setminus B$, and for each $\xi\in A$ let $h_\xi\in {}^\kappa\kappa$ be an increasing cofinal cardinal function. Let $\overline{\mathbb{S}}$ be the $\leq\kappa$ -support product of $\langle\mathbb{S}^{h_\xi}_\kappa\mid \xi\in A\rangle$ and G be $\overline{\mathbb{S}}$ -generic over \mathbf{V} .

Let S_{ξ} be a stationary set for each $\xi \in B$ and let $g \in {}^{\kappa}\kappa$ such that $\xi \in B$ implies $g(\alpha) < h_{\xi}(\alpha)$ for all $\alpha \in S_{\xi}$, then $|B| \leq \mathfrak{d}_{\kappa}^g(\in^*)$.

If S is stationary co-stationary and $F \in {}^{\kappa}\kappa$ s.t. $F(\alpha) = F(\alpha)^{|\alpha|}$,

$$h \upharpoonright S = F \upharpoonright S$$
 $g \upharpoonright S = 2^F \upharpoonright S$
 $h \upharpoonright S^c = 2^F \upharpoonright S$ $g \upharpoonright S^c = F \upharpoonright S$

Then \mathbb{S}^h_κ has the h-Sacks property, but not the g-Sacks property, and \mathbb{S}^g_κ has the g-Sacks property, but not the h-Sacks property.

By the last theorems, if we assume $\mathbf{V} \vDash \text{``} 2^\kappa = \kappa^+ \text{''}$ and we let $h_\xi = h$ for all $\xi < \lambda$ with $\kappa^+ < \lambda$, then the $\leq \kappa$ -support product $\overline{\mathbb{S}}$ of $\langle \mathbb{S}_\kappa^{h_\xi} \mid \xi < \lambda \rangle$ forces that $\kappa^+ = \mathfrak{d}_\kappa^h(\in^*) < \mathfrak{d}_\kappa^g(\in^*) = \lambda = 2^\kappa$.

If each $h_{\xi} = g$ instead, we can force $\mathfrak{d}_{\kappa}^{g}(\in^{*}) < \mathfrak{d}_{\kappa}^{h}(\in^{*})$.

Theorem Solovay, see Jech [2003] theorem 8.10

There exists a disjoint family of sets $\{S_\xi \mid \xi < \kappa\}$ such that each S_ξ is stationary in κ .

Theorem [vdV] theorem 17 & corollary 18 Let $F \in {}^{\kappa}\kappa$ such that $F(\alpha) = F(\alpha)^{|\alpha|}$, and for $\xi < \kappa$ let

$$g_{\xi} \upharpoonright S_{\xi} = F \upharpoonright S_{\xi}$$
 $g_{\xi} \upharpoonright S_{\xi}^{c} = 2^{F} \upharpoonright S_{\xi}$

If $\lambda: \kappa \to \operatorname{Ord}$ be a cardinal function with $\kappa^+ \le \lambda(\xi)$ for all $\xi \in \kappa$, then there exists a forcing $\overline{\mathbb{S}}$ that forces for all $\xi < \kappa$ that $\mathfrak{d}^{g_{\xi}}_{\kappa}(\in^*) = \lambda(\xi)$.

Contents 27/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

If $\varphi \in \operatorname{Loc}_h$ and $f \in {}^\kappa \kappa$, let $f \in {}^\infty \varphi$ if $\{\alpha \in \kappa \mid f(\alpha) \in \varphi(\alpha)\}$ is cofinal in κ . If $f,g \in {}^\kappa \kappa$, let $f = {}^\infty g$ if $\{\alpha \in \kappa \mid f(\alpha) = g(\alpha)\}$ is cofinal in κ . We define the h-anti-localisation cardinals and the eventually different cardinals

$$\begin{split} \mathfrak{b}_{\kappa}^{h}(\in^{\infty}) &= \min \left\{ |B| \mid B \subseteq {}^{\kappa}\kappa \text{ and } \forall \varphi \in \mathrm{Loc}_{h} \exists f \in B(f \notin^{\infty} \varphi) \right\}, \\ \mathfrak{d}_{\kappa}^{h}(\in^{\infty}) &= \min \left\{ |D| \mid D \subseteq \mathrm{Loc}_{h} \text{ and } \forall f \in {}^{\kappa}\kappa \exists \varphi \in D(f \in^{\infty} \varphi) \right\}, \\ \mathfrak{b}_{\kappa}(\neq^{\infty}) &= \min \left\{ |B| \mid B \subseteq {}^{\kappa}\kappa \text{ and } \forall g \in {}^{\kappa}\kappa \exists f \in B(f =^{\infty} g) \right\}, \\ \mathfrak{d}_{\kappa}(\neq^{\infty}) &= \min \left\{ |D| \mid D \subseteq {}^{\kappa}\kappa \text{ and } \forall f \in {}^{\kappa}\kappa \exists g \in D(f \neq^{\infty} g) \right\}. \end{split}$$

If we consider $\kappa = \omega$ and any $h \in {}^{\omega}\omega$, then:

Theorem Bartoszyński [1987] or Bartoszyński and Judah [1995] $\mathfrak{d}^h_\omega(\in^\infty) = \mathfrak{b}_\omega(\neq^\infty) = \mathrm{non}(\mathcal{M}) \text{ and } \mathfrak{b}^h_\omega(\in^\infty) = \mathfrak{d}_\omega(\neq^\infty) = \mathrm{cov}(\mathcal{M})$

This generalises to strongly inaccessible κ :

Theorem Landver [1992] and Blass et al. [2005]
$$\mathfrak{d}_{\kappa}(\neq^{\infty}) = \operatorname{cov}(\mathcal{M}_{\kappa})$$
 and $\mathfrak{b}_{\kappa}(\neq^{\infty}) = \operatorname{non}(\mathcal{M}_{\kappa})$.

Theorem

If
$$h \in {}^{\kappa}\kappa$$
, then $\mathfrak{d}^h_{\kappa}(\in^{\infty}) = \mathfrak{b}_{\kappa}(\neq^{\infty})$ and $\mathfrak{b}^h_{\kappa}(\in^{\infty}) = \mathfrak{d}_{\kappa}(\neq^{\infty})$.

In particular, the choice of h does not have influence on the cardinality of $\mathfrak{d}^h_{\kappa}(\in^{\infty})$ and $\mathfrak{b}^h_{\kappa}(\in^{\infty})$.

Let $b:\kappa \to \operatorname{Ord}$ be an increasing cardinal function and let $\prod b = \prod_{\alpha \in \kappa} b(\alpha) = \{f:\kappa \to \operatorname{Ord} \mid \forall \alpha < \kappa(f(\alpha) < b(\alpha))\}$. Let Loc_h^b be the set of φ s.t. $\operatorname{dom}(\varphi) = \kappa$ and $\varphi(\alpha) \in [b(\alpha)]^{< h(\alpha)}$.

We define the following cardinal characteristics:

$$\begin{split} \mathfrak{b}_{\kappa}^{b,h}(\in^*) &= \min \left\{ |B| \mid B \subseteq \prod b \text{ and } \forall \varphi \in \operatorname{Loc}_h^b \exists f \in B(f \not\in^* \varphi) \right\}, \\ \mathfrak{d}_{\kappa}^{b,h}(\in^*) &= \min \left\{ |D| \mid D \subseteq \operatorname{Loc}_h^b \text{ and } \forall f \in \prod b \exists \varphi \in D(f \in^* \varphi) \right\}, \\ \mathfrak{b}_{\kappa}^{b,h}(\in^\infty) &= \min \left\{ |B| \mid B \subseteq \prod b \text{ and } \forall \varphi \in \operatorname{Loc}_h^b \exists f \in B(f \not\in^\infty \varphi) \right\}, \\ \mathfrak{d}_{\kappa}^{b,h}(\in^\infty) &= \min \left\{ |D| \mid D \subseteq \operatorname{Loc}_h^b \text{ and } \forall f \in \prod b \exists \varphi \in D(f \in^\infty \varphi) \right\}, \\ \mathfrak{b}_{\kappa}^{b}(\not\in^\infty) &= \min \left\{ |B| \mid B \subseteq \prod b \text{ and } \forall g \in \prod b \exists f \in B(f =^\infty g) \right\}, \\ \mathfrak{d}_{\kappa}^{b}(\not\in^\infty) &= \min \left\{ |D| \mid D \subseteq \prod b \text{ and } \forall f \in \prod b \exists g \in D(f \not\in^\infty g) \right\}. \end{split}$$

Contents 32/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

For some choices of b and h, the bounded (anti-)localisation cardinals may be trivial.

Lemma

 $\mathfrak{d}_{\kappa}^{b,h}(\in^*)=1 \text{ iff } b<^*h \text{, which implies } \mathfrak{b}_{\kappa}^{b,h}(\in^*) \text{ is undefined.} \\ \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty})=1 \text{ iff } b<^{\infty}h \text{, which implies } \mathfrak{b}_{\kappa}^{b,h}(\in^{\infty}) \text{ is undefined.}$

Lemma Cardona and Mejía [2019] & Goldstern and Shelah [1993] $(\kappa = \omega)$ If $\lambda < \kappa$ exists and is minimal s.t. $D_{\lambda} = \{\alpha \in \kappa \mid h(\alpha) = \lambda\}$ is cofinal in κ , then $\mathfrak{b}_{\kappa}^{b,h}(\in^*) = \lambda$ and $2^{\kappa} \leq \mathfrak{d}_{\kappa}^{b,h}(\in^*)$. If no such λ exists, $\kappa^+ \leq \mathfrak{b}_{\kappa}^{b,h}(\in^*)$, and if also $b \leq 2^{\kappa}$, then $\mathfrak{d}_{\kappa}^{b,h}(\in^*) \leq 2^{\kappa}$.

Let increasing $f:\kappa\to\operatorname{Ord}$ be continuous at $\gamma\in\kappa$ if $f(\gamma)=\bigcup_{\alpha<\gamma}f(\alpha).$ We call f stationarily continuous there exists S stationary in κ s.t. f is continuous at all limit $\gamma\in S$.

Lemma

For $\lambda < \kappa$ let

$$D_{\lambda} = \{ \alpha \in \kappa \mid b(\alpha) \le \lambda \} \cup \{ \alpha \in \kappa \mid h(\alpha) = b(\alpha) \land \mathrm{cf}(b(\alpha)) \le \lambda \}.$$

- (i) If $\lambda < \kappa$ exists and is minimal s.t. D_{λ} is cofinal in κ , then $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) = \lambda$.
- (ii) If all D_{λ} are bounded, b is stat.cont., then $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) = \kappa$.
- (iii) If all D_{λ} are bounded, b is not stat.cont., then $\kappa^{+} \leq \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty})$.

A dual result for the relation between $\mathfrak{b}^{b,h}_{\kappa}(\in^{\infty})$ and 2^{κ} is not known yet.

Say that b overshadows h if there exists an interval partition $\langle I_{\alpha} \mid \alpha < \kappa \rangle$ of κ with $|I_{\alpha}| = h(\alpha)$ for each $\alpha \in \kappa$ such that $b(\alpha) = b(\xi) = b(\alpha)^{h(\alpha)}$ for all $\xi \in I_{\alpha}$ and $\alpha \in \kappa$.

Theorem

If b overshadows h, then $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty})=\mathfrak{b}_{\kappa}^{b}(\neq^{\infty})$ and $\mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})=\mathfrak{d}_{\kappa}^{b}(\neq^{\infty})$.

If $b:\alpha\mapsto\kappa$ for all $\alpha\in\kappa$ and $h\in{}^\kappa\kappa$, then the conditions of the theorem are satisfied, and $\mathfrak{d}^{b,h^+}_\kappa(\in^\infty)=\mathfrak{d}^h_\kappa(\in^\infty)$ and $\mathfrak{b}^{b,h^+}_\kappa(\in^\infty)=\mathfrak{b}^h_\kappa(\in^\infty)$, where $h^+:\alpha\mapsto h(\alpha)^+$. In particular, the cardinality of $\mathfrak{d}^h_\kappa(\in^\infty)$ and $\mathfrak{b}^h_\kappa(\in^\infty)$ does not depend on the choice of $h\in{}^\kappa\kappa$.

Let $b = \kappa$ be the constant κ function and h < h' < b and h < b.

The dotted line implies equality if h' = b.

Assume that $h \leq b' \leq b \in {}^{\kappa}\kappa$ and b overshadows h.

$$\mathfrak{b}_{\kappa}^{b}(\leq^{*}) \longrightarrow \mathfrak{b}_{\kappa}^{b}(\neq^{\infty}) = \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) \longrightarrow \mathfrak{d}_{\kappa}^{b,h}(\in^{*})$$

$$\mathfrak{d}_{\kappa}^{b'}(\leq^{*}) \longrightarrow \mathfrak{b}_{\kappa}^{b'}(\neq^{\infty})$$

$$\mathfrak{d}_{\kappa}^{b',h}(\in^{\infty}) \longrightarrow \mathfrak{d}_{\kappa}^{b',h}(\in^{*})$$

$$\mathfrak{d}_{\kappa}^{b',h}(\in^{*}) \longrightarrow \mathfrak{d}_{\kappa}^{b',h}(\in^{\infty})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Contents 38/42

- Slaloms & localisation cardinals
- Generalised Sacks-like forcing
- Properties of the forcing
- Products
- Anti-localisation & bounded spaces
- Trivial & nontrivial cases
- Separating cardinalities

The same forcings \mathbb{S}^h_κ that were used to separate cardinals of the form $\mathfrak{d}^h_\kappa(\in^*)$ can be used on the space $\prod b$. That is, if $2^F \in \prod b$ and $h(\alpha), h'(\alpha)$ take the values $F(\alpha)$ or $2^{F(\alpha)}$ dependent on whether $\alpha \in S$ for some stationary costationary set S, then $\mathfrak{d}^{b,h}_\kappa(\in^*) < \mathfrak{d}^{b,h'}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h'}_\kappa(\in^*) < \mathfrak{d}^{b,h}_\kappa(\in^*)$ are both consistent.

Theorem

If $b \in {}^{\kappa}\kappa$ then $cov(\mathcal{M}_{\kappa}) = \mathfrak{b}_{\kappa}^{h}(\in^{\infty}) < \mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})$ is consistent.

The forcing used is $\mathbb{P}^{b,h}_{\kappa}$ with trees T on Loc_h^b as conditions, i.e. $u \in T$ implies $u : \alpha \to [\kappa]^{<\kappa}$ s.t. $u(\xi) \in [b(\xi)]^{< h(\xi)}$ for each $\xi < \alpha$. If $u \in T$ with $\alpha = \operatorname{ot}(u)$, let $\|u\|_T$ be the least $\nu < \kappa$ such that there exists $A \in [b(\alpha)]^{\nu}$ such that $A \not\subseteq A'$ for all $A' \in \operatorname{suc}(u,T)$.

Let $T \in \mathbb{P}^{b,h}_{\kappa}$ iff

- (i) for all $u \in T$, $\nu < \kappa$ there is $v \in T$ with $u \subseteq v$ and $\nu \le \|v\|_T$,
- (ii) If $\langle u_\xi \mid \xi < \gamma \rangle$ is a sequence of splitting nodes and $u_\xi \subseteq u_\xi'$ for $\xi < \xi'$, then $\bigcup_{\xi < \gamma} u_\xi$ splits in T,
- (iii) if $u \in \mathrm{Split}_{\alpha}(T)$, then $\max\{|\alpha|,2\} \leq \|u\|_T$.

Let $S \leq_{\mathbb{P}^{b,h}_{\kappa}} T$ if $S \subseteq T$ and for each $s \in S$ either $\mathrm{suc}(s,S) = \mathrm{suc}(s,T)$ or $\|s\|_S < \|s\|_T$.

 $\begin{array}{l} \mathbb{P}^{b,h}_{\kappa} \text{ is } <\kappa\text{-closed, has fusion and is }^{\kappa}\kappa\text{-bounding. Moreover, the} \\ \leq \kappa\text{-support iteration of } \mathbb{P}^{b,h}_{\kappa} \text{ is }^{\kappa}\kappa\text{-bounding as well.} \end{array}$

Hence, forcing with $\mathbb{P}^{b,h}_{\kappa}$ increases the size of $\mathfrak{b}^{b,h}_{\kappa}(\in^{\infty})$ but keeps $cov(\mathcal{M}_{\kappa})$ small.

References 42/42

Tomek Bartoszyński. Combinatorial aspects of measure and category. Fundamenta Mathematicae, 127 (3):225–239, 1987.

- Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line. A.K. Peters, Wellesley, MA, 1995.
- Andreas Blass. Combinatorial Cardinal Characteristics of the Continuum. In Handbook of Set Theory Vol. 1, pages 395–489. Springer, Dordrecht, 2010.
- Andreas Blass, Tapani Hyttinen, and Yi Zhang. Mad families and their neighbors. preprint, 2005.
- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cichoń's diagram for uncountable cardinals. Israel Journal of Mathematics, 225(2):959–1010, 2018.
- Miguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Mathematical Logic Quarterly, 65(2):170–199, 2019.
- Martin Goldstern and Saharon Shelah. Many simple cardinal invariants. Archive for Mathematical Logic, 32(3):203–221, 1993.
- Thomas Jech. Set Theory: Third Millennium Edition. Springer Monographs in Mathematics, 2003.
- Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19(1-2): 97–114, 1980.
- Avner Landver. Baire numbers, uncountable cohen sets and perfect-set forcing. The Journal of symbolic logic, 57(3):1086–1107, 1992.
- Tristan van der Vlugt. Separating Many Localisation Cardinals on the Generalised Baire Space. Preprint: https://arxiv.org/abs/2203.03256, 2022.