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The Baire space is the set ωω = {f | f : ω → ω}. Its topology is
generated by clopen sets [s] = {f ∈ ωω | s ⊆ f} for s ∈ <ωω, then
ωω is homeomorphic to the irrationals. We can define Lebesgue
measure on ωω, and the set N of Lebesgue null sets.

add(N ) = min
{
|A|

∣∣∣ A ⊆ N and
⋃
A /∈ N

}
,

cof(N ) = min
{
|C|
∣∣ C ⊆ N and ∀N ∈ N∃C ∈ C(N ⊆ C)

}
.

Cichoń Diagram:

ℵ1 add(N ) add(M)

cov(N ) non(M)

b d

cov(M) non(N )

cof(M) cof(N ) 2ℵ0
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Let κ be uncountable, then κκ is a generalised Baire space. We
say f ∈ κκ are κ-reals. If κ is strongly inaccessible, we can
generalise the middle part of the Cichoń Diagram:

κ+ add(Mκ)

non(Mκ)

bκ dκ

cov(Mκ)

cof(Mκ) 2κ

There is no Lebesgue measure on κκ, so there is no generalisation
of N to κκ. We can generalise add(N ) and cof(N ) using a
combinatorial definition instead.
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Let κ be regular strong limit
and h ∈ κκ be an increasing
cofinal cardinal function.

An h-slalom is any function
ϕ : κ→ [κ]<κ such that
|ϕ(α)| ≤ h(α) for all α ∈ κ.

For f ∈ κκ, we say f ∈∗ ϕ, or
f is localised by ϕ, if there
exists some ξ < κ such that
f(α) ∈ ϕ(α) for all α ∈ [ξ, κ).

We will let Loch be the set of
h-slaloms. [Bartoszyński, 1987]
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We define the following cardinal characteristics:

bhκ(∈∗) = min {|B| | B ⊆ κκ and ∀ϕ ∈ Loch∃f ∈ B(f /∈∗ ϕ)} ,
dhκ(∈∗) = min {|D| | D ⊆ Loch and ∀f ∈ κκ∃ϕ ∈ D(f ∈∗ ϕ)} .

These are the unbounded and dominating h-localisation cardinals.

Proposition [Brendle et al., 2018] sections 4.3 & 4.4

κ+ ≤ bhκ(∈∗) ≤ dhκ(∈∗) ≤ 2κ, and all relations can consistently be
strict inequalities.

Proposition [Bartoszyński, 1987] or [Bartoszyński and Judah, 1995]

bω(∈∗) = add(N ) and dω(∈∗) = cof(N )
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Theorem [Bartoszyński, 1987] or [Blass, 2010] remark 5.15 (for κ = ω)

If h, g ∈ κκ are continuous (i.e. h(γ) =
⋃
α<γ h(α) for limit γ) and

unbounded, then dhκ(∈∗) = dgκ(∈∗) and bhκ(∈∗) = bgκ(∈∗).

Proof. Enumerate a club 〈ξα | α ∈ κ〉 in κ s.t. h(α) ≤ g(ξα). Let
Iα = [ξα, ξα+1) and πα : κ ›→→ Iακ bijective.

If f ∈ κκ let f ′ : α 7→ π−1α (f � Iα) and if ϕ ∈ Loch, ξ ∈ Iα, let
ϕ′(ξ) = {πα(i)(ξ) | i ∈ ϕ(α)}. Then f ′(α) ∈ ϕ(α) and ξ ∈ Iα
implies f(ξ) = f � Iα(ξ) = πα(f ′(α))(ξ) ∈ ϕ′(ξ).

So f ′ ∈∗ ϕ implies f ∈∗ ϕ′.



Consistently different localisation cardinals 8/42

Let pow : α 7→ 2|α| and id : α 7→ |α|.

Proposition [Brendle et al., 2018] proposition 65 & 66

ZFC + ∃ Inaccessible ` “ Con(dpowκ (∈∗) < didκ (∈∗)) ”

Proved using the generalised Sacks forcing from [Kanamori, 1980].

Question
Does there exist h ∈ κκ such that dhκ(∈∗) is consistently different
from dpowκ (∈∗) and didκ (∈∗)?

Answer. Yes, by using a similar Sacks-like forcing.
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Our goal is to separate dhκ(∈∗) from dgκ(∈∗) for two h, g ∈ κκ.

Definition
A forcing notion 〈P,≤〉 has the (generalised) h-Sacks property if
for every P-name ḟ and condition p ∈ P such that p  “ ḟ ∈ κκ ”
there exists a q ≤ p and h-slalom ϕ ∈ Loch such that
q  “ ḟ(α) ∈ ϕ̌(α) ” for all α < κ.

Lemma
If P has the h-Sacks property, G is P-generic over V, then
V[G] � “ dhκ(∈∗) ≤ (2κ)V ”.



Trees 11/42

Let T ⊆ <κκ be a tree. For any node u ∈ T let
suc(u, T ) = {v ∈ T | ∃β < κ(v = u_β)}.

Node u is α-splitting in T if α ≤ |suc(u, T )|. If u is α-splitting
but not |α|+-splitting, then we call u a sharp α-splitting node. A
splitting node is a 2-splitting node, and any other node is
non-splitting.

We let u ∈ Splitα(T ) iff u is splitting and
ot({β < ot(u) | u � β is splitting}) = α, and we call α the
splitting level of u.

If u ∈ T , then Tu = {v ∈ T | u ⊆ v or v ⊆ u}.



Forcing notion Shκ 12/42

Let h ∈ κκ be an increasing cofinal cardinal function. The
conditions of the forcing Shκ are trees T ⊆ <κκ that satisfy the
following properties:

(i) for any u ∈ T there exists splitting v ∈ T such that u ⊆ v,
(ii) if γ < κ and 〈uα | α < γ〉 ∈ γT are splitting nodes with

uα ⊆ uβ for α < β, then u =
⋃
α<γ uα ∈ T and u is splitting,

(iii) if u ∈ Splitα(T ), then u is an h(α)-splitting node in T .

We say that T ≤ S iff T ⊆ S and for every splitting u ∈ T , either
suc(u, T ) = suc(u, S) or |suc(u, T )| < |suc(u, S)|.
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Proposition [vdV] lemma 4

Let γ < κ and 〈Tξ | ξ < γ〉 ∈ γ(Shκ) be decreasing. If
u ∈ T =

⋂
Tξ, then ∃η < κ∀ξ ∈ [η, γ)(suc(u, T ) = suc(u, Tξ)).

Proof. Let λξ = |suc(u, Tξ)|, then 〈λξ | ξ < λ〉 decreases. So there
is ξ such that λξ = λη for η > ξ. Then suc(u, Tξ) = suc(u, Tη) for
all η > ξ.

Corollary [vdV] lemma 4

Shκ is <κ-closed.

Proof. Check that (i) (ii) and (iii) from the definition hold using
the above proposition.



Properties of Shκ 15/42

Let T ≤α S iff T ≤ S and Splitα(T ) = Splitα(S). A fusion
sequence is a sequence 〈Tα | α < κ〉 s.t. Tβ ≤α Tα for all β > α.

Proposition [vdV] lemma 6

Shκ is closed under fusion and has the <(2κ)+-cc.

Proof. Let u ∈ T and α > ot({β ∈ κ | u � β splits in T}) + 1, then
Splitα(Tα) = Splitα(T ).

(i), (ii) and (iii) and T ≤ Tξ follow easily.
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If T ∈ Shκ and u ∈ T , then Tu is a condition and Tu ≤ T .

Every T has a sharp T ∗ ≤ T such that Splitα(T ∗) ⊆ Splitα(T )

and each u ∈ Splitα(T ∗) is a sharp h(α)-splitting node.

Theorem [vdV] theorem 7

Let h ∈ κκ be increasing cofinal cardinal function, g : α 7→ h(α)|α|,
then Shκ has the g-Sacks property.

Proof. Let ḟ be a name, T0 ∈ Shκ and T0  “ ḟ ∈ κκ ”. Find fusion
sequence 〈Tξ | ξ < κ〉, {Bξ ⊆ κ | ξ < κ} and ϕ ∈ Locg s.t.

(a) Each Tξ is a sharp tree,
(b) Tξ+1  “ ḟ(ξ) ∈ B̌ξ ” for all ξ ∈ κ,
(c) |Bξ| ≤ g(ξ) and ϕ(ξ) = Bξ

Then T =
⋂
ξ Tξ ∈ Shκ by fusion, and T  “ ḟ ∈∗ ϕ̌ ” · · ·>
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Limit step
Let γ be limit. By <κ-closure T ′γ =

⋂
ξ<γ Tξ ∈ Shκ. By fusion,

Splitα(T ′γ) = Splitα(Tα). Let Tγ = (T ′γ)∗, then
Splitα(Tγ) = Splitα(T ′γ) for all α < γ by sharpness and ordering of
Shκ, so Tγ satisfies the fusion requirements and is sharp.

Successor step
Let u ∈ Splitξ(Tξ) and v ∈ suc(u, Tξ). Find T v ≤ (Tξ)u and
βvξ < κ s.t. T v  “ ḟ(ξ) = β̌vξ ”. Let u

′ ∈ Splitξ(T
v) and

v′ ∈ suc(u′, T v) be arbitrary and T v ′ = (T v)v′ . Note that
Splitα(T v ′) ⊆ Splitξ+1+α(T v). Let
Vξ =

⋃{
suc(u, Tξ) | u ∈ Splitξ(Tξ)

}
and Tξ+1 = (

⋃
v∈Vξ T

v ′)∗

and Bξ =
{
βvξ | v ∈ Vξ

}
. Now |Bξ| ≤ |Vξ| ≤ h(ξ)|ξ| = g(ξ) since

Tξ is sharp. Tξ+1  “ ḟ(ξ) ∈ Bξ ” since {T v | v ∈ Vξ} is predense
below Tξ+1.
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Corollary
If V � “ 2κ = κ+ ”, then Shκ preserves all cardinals and cofinalities.

Proof. |P(<κκ)| = |P(κ)| = 2κ = κ+ and each T ∈ Shκ is a subset
of <κκ. So Shκ has the κ+-c.c. and is <κ-closed. Hence Shκ
preserves λ if λ ≤ κ or κ+ < λ.

If ḟ is a name and T  “ ḟ : κ→ κ+ ”, use the proof of the Sacks
property to find T ′ ≤ T and Bξ with |Bξ| < κ such that
T ′  “ ḟ(ξ) ∈ B̌ξ ” for all ξ. Then T ′  “ ran(ḟ) ⊆

⋃
ξ B̌ξ 6= κ+ ”,

so ḟ does not name a surjection. Hence Shκ preserves κ+.



Sacks property of Shκ 19/42

Lemma [vdV] theorem 9

The set C = {α < κ | T ∩ ακ = Splitα(T )} is club.

Theorem [vdV] theorem 9

Let g(α) < h(α) for all α ∈ S stationary, then Shκ does not have
the g-Sacks property.

Proof. Let G be Shκ generic and f =
⋂
G, then f ∈ κκ. Working in

the ground model, let ḟ name f and ϕ ∈ Loch. If u ∈ Splitα(T )

and α0 ∈ κ, then take α0 < α ∈ S ∩ C, then
g(α) < h(α) ≤ |suc(u, T )|. Let β ∈ suc(u, T ) such that β /∈ ϕ(α).

Then (T )u_β  “ ∃α > α0(ḟ(α) /∈ ϕ̌(α)) ”. By density and
arbitrariness of α0 then T  “ ḟ /∈∗ ϕ ”.
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Spowκ has the pow-Sacks property, but not the id-Sacks property.

(in fact S2κ where 2 : α 7→ 2 already has the pow-Sacks property
but not the id-Sacks property)

If S is stationary co-stationary and F ∈ κκ s.t. F (α) = F (α)|α|,

h � S = F � S g � S = 2F � S

h � Sc = 2F � S g � Sc = F � S

Then Shκ has the h-Sacks property, but not the g-Sacks property,
and Sgκ has the g-Sacks property, but not the h-Sacks property.
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Definition
Let A be an index set and 〈〈Pξ,≤ξ〉 | ξ ∈ A〉 a sequence of forcing
notions. Let C be the set of choice functions p : A→

⋃
ξ∈A Pξ. If

p ∈ C let supp(p) = {ξ ∈ A | p(ξ) 6= 1ξ}. Define the ≤κ-support
product of 〈Pξ | ξ ∈ A〉 as:

P = {p ∈ C | |supp(p)| ≤ κ}

ordered by q ≤P p iff q(ξ) ≤ξ p(ξ) for all ξ ∈ A.

Lemma
If Pξ is <κ-closed for each ξ ∈ A, then P is <κ-closed.
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〈pα ∈ Pξ | α < κ〉 is a fusion sequence if pβ ≤α pα for all β > α.

Given p, q ∈ P, α ∈ κ and Z ⊆ A, let q ≤Z,α p iff q ≤ p and
q(ξ) ≤α p(ξ) for each ξ ∈ Z. A generalised fusion sequence is a
sequence 〈(pα, Zα) | α < κ〉 such that:

(i) pα ∈ P and Zα ∈ [A]<κ for each α < κ,

(ii) pβ ≤Zα,α pα and Zα ⊆ Zβ for all α ≤ β < κ,

(iii) for limit δ we have Zδ =
⋃
α<δ Zα,

(iv)
⋃
α<κ Zα =

⋃
α<κ supp(pα).

Lemma Kanamori [1980] for products of κ-Sacks forcing

If each Pξ is closed under fusion, then P is closed under generalised
fusion.
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Theorem [vdV] Lemma 13

Let A be an index set, B ⊆ A and Bc = A \B, and for each ξ ∈ A
let hξ ∈ κκ be an increasing cofinal cardinal function. Let S be the
≤κ-support product of 〈Shξκ | ξ ∈ A〉 and G be S-generic over V.

If g : α→ (supξ∈Bc hξ(α))|α| is well-defined, then for each
f ∈ V[G] there is ϕ ∈ (Locg)

V[G�B] such that f ∈∗ ϕ.

Theorem
Let A be an index set, B ⊆ A and Bc = A \B, and for each ξ ∈ A
let hξ ∈ κκ be an increasing cofinal cardinal function. Let S be the
≤κ-support product of 〈Shξκ | ξ ∈ A〉 and G be S-generic over V.

Let Sξ be a stationary set for each ξ ∈ B and let g ∈ κκ such that
ξ ∈ B implies g(α) < hξ(α) for all α ∈ Sξ, then |B| ≤ dgκ(∈∗).
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If S is stationary co-stationary and F ∈ κκ s.t. F (α) = F (α)|α|,

h � S = F � S g � S = 2F � S

h � Sc = 2F � S g � Sc = F � S

Then Shκ has the h-Sacks property, but not the g-Sacks property,
and Sgκ has the g-Sacks property, but not the h-Sacks property.

By the last theorems, if we assume V � “ 2κ = κ+ ” and we let
hξ = h for all ξ < λ with κ+ < λ, then the ≤κ-support product S
of 〈Shξκ | ξ < λ〉 forces that κ+ = dhκ(∈∗) < dgκ(∈∗) = λ = 2κ.

If each hξ = g instead, we can force dgκ(∈∗) < dhκ(∈∗).
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Theorem Solovay, see Jech [2003] theorem 8.10

There exists a disjoint family of sets {Sξ | ξ < κ} such that each
Sξ is stationary in κ.

Theorem [vdV] theorem 17 & corollary 18

Let F ∈ κκ such that F (α) = F (α)|α|, and for ξ < κ let

gξ � Sξ = F � Sξ gξ � S
c
ξ = 2F � Sξ

If λ : κ→ Ord be a cardinal function with κ+ ≤ λ(ξ) for all ξ ∈ κ,
then there exists a forcing S that forces for all ξ < κ that
d
gξ
κ (∈∗) = λ(ξ).
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If ϕ ∈ Loch and f ∈ κκ, let f ∈∞ ϕ if {α ∈ κ | f(α) ∈ ϕ(α)} is
cofinal in κ. If f, g ∈ κκ, let f =∞ g if {α ∈ κ | f(α) = g(α)} is
cofinal in κ. We define the h-anti-localisation cardinals and the
eventually different cardinals

bhκ(∈∞) = min {|B| | B ⊆ κκ and ∀ϕ ∈ Loch∃f ∈ B(f /∈∞ ϕ)} ,
dhκ(∈∞) = min {|D| | D ⊆ Loch and ∀f ∈ κκ∃ϕ ∈ D(f ∈∞ ϕ)} ,
bκ(6=∞) = min {|B| | B ⊆ κκ and ∀g ∈ κκ∃f ∈ B(f =∞ g)} ,
dκ(6=∞) = min {|D| | D ⊆ κκ and ∀f ∈ κκ∃g ∈ D(f 6=∞ g)} .

If we consider κ = ω and any h ∈ ωω, then:

Theorem Bartoszyński [1987] or Bartoszyński and Judah [1995]

dhω(∈∞) = bω( 6=∞) = non(M) and bhω(∈∞) = dω( 6=∞) = cov(M)
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ℵ1

bω,hω (∈∗)
add(N )

add(M)

cov(N )

non(M)

dω,hω (∈∞)

bωω(6=∞)

b

bω,ωω (∈∗)
dω,ωω (∈∞)

bω,ωω (∈∞)

dω,ωω (∈∗)
d

dωω(6=∞)

bω,hω (∈∞)

cov(M)

non(N )

cof(M)
cof(N )

dω,hω (∈∗)

2ℵ0
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This generalises to strongly inaccessible κ:

Theorem Landver [1992] and Blass et al. [2005]

dκ( 6=∞) = cov(Mκ) and bκ( 6=∞) = non(Mκ).

Theorem
If h ∈ κκ, then dhκ(∈∞) = bκ(6=∞) and bhκ(∈∞) = dκ(6=∞).

In particular, the choice of h does not have influence on the
cardinality of dhκ(∈∞) and bhκ(∈∞).
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Let b : κ→ Ord be an increasing cardinal function and let∏
b =

∏
α∈κ b(α) = {f : κ→ Ord | ∀α < κ(f(α) < b(α))}. Let

Locbh be the set of ϕ s.t. dom(ϕ) = κ and ϕ(α) ∈ [b(α)]<h(α).

We define the following cardinal characteristics:

bb,hκ (∈∗) = min
{
|B|

∣∣ B ⊆∏ b and ∀ϕ ∈ Locbh∃f ∈ B(f /∈∗ ϕ)
}
,

db,hκ (∈∗) = min
{
|D|

∣∣∣ D ⊆ Locbh and ∀f ∈
∏
b∃ϕ ∈ D(f ∈∗ ϕ)

}
,

bb,hκ (∈∞) = min
{
|B|

∣∣ B ⊆∏ b and ∀ϕ ∈ Locbh∃f ∈ B(f /∈∞ ϕ)
}
,

db,hκ (∈∞) = min
{
|D|

∣∣∣ D ⊆ Locbh and ∀f ∈
∏
b∃ϕ ∈ D(f ∈∞ ϕ)

}
,

bbκ( 6=∞) = min {|B| | B ⊆
∏
b and ∀g ∈

∏
b∃f ∈ B(f =∞ g)} ,

dbκ( 6=∞) = min {|D| | D ⊆
∏
b and ∀f ∈

∏
b∃g ∈ D(f 6=∞ g)} .
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Trivial cases: bb,hκ (∈∗) and db,hκ (∈∗) 33/42

For some choices of b and h, the bounded (anti-)localisation
cardinals may be trivial.

Lemma
db,hκ (∈∗) = 1 iff b <∗ h, which implies bb,hκ (∈∗) is undefined.
db,hκ (∈∞) = 1 iff b <∞ h, which implies bb,hκ (∈∞) is undefined.

Lemma Cardona and Mejía [2019] & Goldstern and Shelah [1993] (κ = ω)

If λ < κ exists and is minimal s.t. Dλ = {α ∈ κ | h(α) = λ} is
cofinal in κ, then bb,hκ (∈∗) = λ and 2κ ≤ db,hκ (∈∗). If no such λ
exists, κ+ ≤ bb,hκ (∈∗), and if also b ≤ 2κ, then db,hκ (∈∗) ≤ 2κ.



Trivial cases: db,hκ (∈∞) 34/42

Let increasing f : κ→ Ord be continuous at γ ∈ κ if
f(γ) =

⋃
α<γ f(α). We call f stationarily continuous there exists

S stationary in κ s.t. f is continuous at all limit γ ∈ S.

Lemma
For λ < κ let
Dλ = {α ∈ κ | b(α) ≤ λ} ∪ {α ∈ κ | h(α) = b(α) ∧ cf(b(α)) ≤ λ}.

(i) If λ < κ exists and is minimal s.t. Dλ is cofinal in κ, then
db,hκ (∈∞) = λ.

(ii) If all Dλ are bounded, b is stat.cont., then db,hκ (∈∞) = κ.

(iii) If all Dλ are bounded, b is not stat.cont., then κ+ ≤ db,hκ (∈∞).

A dual result for the relation between bb,hκ (∈∞) and 2κ is not
known yet.
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Say that b overshadows h if there exists an interval partition
〈Iα | α < κ〉 of κ with |Iα| = h(α) for each α ∈ κ such that
b(α) = b(ξ) = b(α)h(α) for all ξ ∈ Iα and α ∈ κ.

Theorem
If b overshadows h, then db,hκ (∈∞) = bbκ( 6=∞) and
bb,hκ (∈∞) = dbκ(6=∞).

If b : α 7→ κ for all α ∈ κ and h ∈ κκ, then the conditions of the
theorem are satisfied, and db,h

+

κ (∈∞) = dhκ(∈∞) and
bb,h

+

κ (∈∞) = bhκ(∈∞), where h+ : α 7→ h(α)+. In particular, the
cardinality of dhκ(∈∞) and bhκ(∈∞) does not depend on the choice
of h ∈ κκ.
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Let b = κ be the constant κ function and h ≤ h′ ≤ b and h < b.

dκ,hκ (∈∗)

bκ,hκ (∈∗) bκκ(≤∗)

dκκ(≤∗)

bκκ(6=∞)

dκ,hκ (∈∞)

non(Mκ)

cov(Mκ)

bκ,hκ (∈∞)

dκκ(6=∞)

dκ,h
′

κ (∈∗)

bκ,h
′

κ (∈∗)

dκ,h
′

κ (∈∞)

bκ,h
′

κ (∈∞)

The dotted line implies equality if h′ =∗ b.
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Assume that h ≤ b′ ≤ b ∈ κκ and b overshadows h.

db,hκ (∈∗)

bb,hκ (∈∗)

bbκ(≤∗)

dbκ(≤∗)

bbκ( 6=∞) = db,hκ (∈∞)

bb,hκ (∈∞) = dbκ(6=∞)

db
′,h
κ (∈∗)

bb
′,h
κ (∈∗)

db
′,h
κ (∈∞)

bb
′,h
κ (∈∞)

bb
′
κ (≤∗)

db
′
κ (≤∗)

bb
′
κ ( 6=∞)

db
′
κ (6=∞)



Contents 38/42

# Slaloms & localisation cardinals

# Generalised Sacks-like forcing

# Properties of the forcing

# Products

# Anti-localisation & bounded spaces

# Trivial & nontrivial cases

 Separating cardinalities



About separating cardinals of the form db,hκ (∈∗) 39/42

The same forcings Shκ that were used to separate cardinals of the
form dhκ(∈∗) can be used on the space

∏
b. That is, if 2F ∈

∏
b

and h(α), h′(α) take the values F (α) or 2F (α) dependent on
whether α ∈ S for some stationary costationary set S, then
db,hκ (∈∗) < db,h

′
κ (∈∗) and db,h

′
κ (∈∗) < db,hκ (∈∗) are both consistent.



About bb,hκ (∈∞) and cov(Mκ) 40/42

Theorem
If b ∈ κκ then cov(Mκ) = bhκ(∈∞) < bb,hκ (∈∞) is consistent.

The forcing used is Pb,hκ with trees T on Locbh as conditions, i.e.
u ∈ T implies u : α→ [κ]<κ s.t. u(ξ) ∈ [b(ξ)]<h(ξ) for each ξ < α.
If u ∈ T with α = ot(u), let ‖u‖T be the least ν < κ such that
there exists A ∈ [b(α)]ν such that A 6⊆ A′ for all A′ ∈ suc(u, T ).

Let T ∈ Pb,hκ iff

(i) for all u ∈ T , ν < κ there is v ∈ T with u ⊆ v and ν ≤ ‖v‖T ,
(ii) If 〈uξ | ξ < γ〉 is a sequence of splitting nodes and uξ ⊆ u′ξ for

ξ < ξ′ , then
⋃
ξ<γ uξ splits in T ,

(iii) if u ∈ Splitα(T ), then max {|α|, 2} ≤ ‖u‖T .

Let S ≤Pb,hκ
T if S ⊆ T and for each s ∈ S either

suc(s, S) = suc(s, T ) or ‖s‖S < ‖s‖T .
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Pb,hκ is <κ-closed, has fusion and is κκ-bounding. Moreover, the
≤κ-support iteration of Pb,hκ is κκ-bounding as well.

Hence, forcing with Pb,hκ increases the size of bb,hκ (∈∞) but keeps
cov(Mκ) small.
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