Old Morley

Ordered Graphs

Will Boney Texas State University

July 10, 2023 Kobe Set Theory Seminar Kobe University

Outline

- The new* adventures of an old theorem of Morley
- Generalizing the Erdős-Rado Theorem
- The curious case of ordered graphs
- To (large) infinity and beyond!

Outline

- The new* adventures of an old theorem of Morley
- Generalizing the Erdős-Rado Theorem
- The curious case of ordered graphs
- To (large) infinity and beyond!

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems, Morley's Omitting Types Theorem from 1965:

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems,
 Morley's Omitting Types Theorem from 1965:

Fact (Morley's Omitting Types Theorem)

The class of linear orders is minimal amongst large, finitely accessible categories.

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems,
 Morley's Omitting Types Theorem from 1965:

Fact (Morley)

Given a sentence $\psi \in \mathbb{L}_{\omega_1,\omega}$, if ψ has models of arbitrarily large sizes (\beth_{ω_1} is enough), then, for any linear order I, we can build a model of ψ that contains I as order indiscernibles.

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems,
 Morely's Categoricity Theorem from 1965:

Fact (Chang)

Given a sentence $\psi \in \mathbb{L}_{\kappa^+,\omega}$, if it has models of arbitrarily large sizes ($\beth_{(2^\kappa)^+}$ is enough), then, for any linear order I, we can build a model of ψ that contains I as order indiscernibles.

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems,
 Morely's Categoricity Theorem from 1965:

Fact (Chang)

Given a sentence $\psi \in \mathbb{L}_{\kappa^+,\omega}$, if it has models of arbitrarily large sizes ($\beth_{(2^\kappa)^+}$ is enough), then, for any linear order I, we can build a model of ψ that contains I as order indiscernibles.

• Chang connects this to type omission

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems, from 1965:

Fact (Morley's Omitting Types Theorem, as phrased by Makkai-Paré)

Linear orders is minimal among large, finitely accessible categories.

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems, from 1965:

Fact (Morley's Omitting Types Theorem, as phrased by Makkai-Paré)

Linear orders is minimal among large, finitely accessible categories. This means that if \mathbb{K} is a large, finitely accessible category, then there is a faithful functor from linear orders to \mathbb{K} that preserves directed colimits.

- Michael Morley was a pioneering model theorist who, in his 1962 thesis, arguably started classification theory by proving Morley's Categoricity Theorem.
- I want to start with another one of his well-known theorems. from 1965:

Fact (Morley's Omitting Types Theorem, as phrased by Makkai-Paré)

Linear orders is minimal among large, finitely accessible categories. This means that if \mathbb{K} is a large, finitely accessible category, then there is a faithful functor from linear orders to \mathbb{K} that preserves directed colimits.

(This has been my weak attempt at a joke, so some pity laughter would be appropriate)

Goal (Talk)

In this talk, I want to talk about how to find other minimal categories, and also a little what we can do with them

- The category theorist in me is really interested in nice diagrammatic ways to express this
- The set theorist in me is really interested in how we find minimal categories
- The model theorist in me is really interested in what we can do in this

Notation | What it means

Notation	What it means
\mathcal{K}^{or}	the category of linear orders

Notation	What it means
\mathcal{K}^{or}	the category of linear orders
\mathcal{K}	Index categories, like linear orders, ordered graphs, trees, etc.

Notation	What it means
\mathcal{K}^{or}	the category of linear orders
\mathcal{K}	Index categories, like linear orders, ordered graphs, trees, etc.
K	Target categories where indiscernibles exist, like $\mathbb{L}_{\infty,\omega}$ -elementary classes, AECs, etc. (admit a faithful functor from a finitely accessible category)

Category theory

Model theory

Category theory	Model theory	
Finitely accessible categories	Classes axiomatized in $\mathbb{L}_{\infty,\omega}$ (modulo equivalence and Skolemization)	

Category theory	Model theory
Finitely accessible categories	Classes axiomatized in $\mathbb{L}_{\infty,\omega}$
	(modulo equivalence and Skolemization)
Large	Class many models up to isomorphism; equivalently, arbitarily large models

Category theory	Model theory	
Finitely accessible categories	Classes axiomatized in $\mathbb{L}_{\infty,\omega}$	
	(modulo equivalence and Skolemization)	
Large	Class many models up to isomorphism; equivalently, arbitarily large models	
Faithful functor preserving directed colimits	Blueprints/order indiscernibles	

Faithful functor preserving directed colimits

Blueprints/order indiscernibles

Faithful functor preserving directed colimits

Blueprints/order indiscernibles

• Typically, a blueprint Φ (for order indiscernibles) is a set of instructions that tells you how to generate a $\tau(\Phi)$ -structure from a given linear order I that contains I as indiscernibles

$$I \hookrightarrow \mathsf{EM}(I, \Phi)$$

Faithful functor preserving directed colimits

Blueprints/order indiscernibles

• Typically, a blueprint Φ (for order indiscernibles) is a set of instructions that tells you how to generate a $\tau(\Phi)$ -structure from a given linear order I that contains I as indiscernibles

$$I \hookrightarrow \mathsf{EM}(I,\Phi)$$

- These instructions are faithfully functorial, so a map $I \to J$ lifts to $\mathsf{EM}(I,\Phi) \to EM(J,\Phi)$
- These instructions are finitely generated, so commutes with increasing unions/directed colimits

 So Makkai-Paré's observation is that any blueprint generates a faithful functor that preserves directed colimits

$$\Phi:\mathcal{K}^{\textit{or}}\rightarrow\mathbb{K}$$

 So Makkai-Paré's observation is that any blueprint generates a faithful functor that preserves directed colimits

$$\Phi:\mathcal{K}^{\textit{or}}\rightarrow\mathbb{K}$$

• With a little work, this can be reversed:

Proposition (Baldwin-B., as would be phrased by Makkai-Paré)

Any faithful functor $\Phi: \mathcal{K}^{\mathsf{or}}_{<\omega} \to \mathbb{K}_{\kappa}$ lifts to a blueprint for order indiscernibles in \mathbb{K} .

Prelim wrap-up

Observation

Blueprints for order indiscernibles in \mathbb{K} are (up to natural isomorphism) directed colimit-preserving, faithful functors

$$\Phi:\mathcal{K}^{\textit{or}}\rightarrow\mathbb{K}$$

(Thanks to Tibor Beke for pointing out the necessity of natural isomorphisms.)

Prelim wrap-up

Observation

Blueprints for order indiscernibles in \mathbb{K} are (up to natural isomorphism) directed colimit-preserving, faithful functors

$$\Phi:\mathcal{K}^{\textit{or}}\rightarrow\mathbb{K}$$

(Thanks to Tibor Beke for pointing out the necessity of natural isomorphisms.)

Some natural questions:

- Can we do this with classes other than linear orders?
- What can we do with these?
- What does this have to do with set theory?

Outline

- The new* adventures of an old theorem of Morley
- Generalizing the Erdős-Rado Theorem
- The curious case of ordered graphs
- To (large) infinity and beyond!

Generalized Indiscernibles

- Want indiscernibles generalized by structures other than linear order
- Notationally dificult to write out, but functorial definition simplifies it a lot
 - Misha Gavrillovich indexes generalized blueprints by the simplicial category

Generalized Indiscernibles

Definition

ullet A blueprint for order indiscernibles in $\mathbb K$ is a colimit-preserving, faithful functor

$$\Phi:\mathcal{K}^{\textit{or}}
ightarrow \mathbb{K}$$

Generalized Indiscernibles

Definition

• A blueprint for order indiscernibles in \mathbb{K} is a colimit-preserving, faithful functor

$$\Phi:\mathcal{K}^{or} \to \mathbb{K}$$

• Fix a category K, probably a simple finitely accessible category.

A blueprint for K-indiscernibles in \mathbb{K} is a colimit-preserving, faithful functor

$$\Phi:\mathcal{K}\to\mathbb{K}$$

How do we build blueprints?

- "Definitions can't be wrong," but need to actually have blueprints for this to be useful
- For \mathcal{K}^{or} , this is what Morley's Omitting Types Theorem tells us!

Fact (Morley-Chang)

Given a theory $T\subset \mathbb{L}_{\kappa^+,\omega}$, if it has models of arbitrarily large sizes $(\beth_{(2^\kappa)^+}$ is enough), then, for any linear order I, we can build a model of T that contains I as order indiscernibles.

How do we build blueprints?

Old Morley

- "Definitions can't be wrong," but need to actually have blueprints for this to be useful
- For \mathcal{K}^{or} , this is what Morley's Omitting Types Theorem tells us!

Fact (Morley-Chang)

Given a theory $T \subset \mathbb{L}_{\kappa^+,\omega}$, if it has models of arbitrarily large sizes $(\beth_{(2^\kappa)^+}$ is enough), then, there is a faithful colimit-preserving:

$$\Phi: \mathcal{K}^{or} \to Mod(T)$$

How do we build blueprints?

- "Definitions can't be wrong," but need to actually have blueprints for this to be useful
- For \mathcal{K}^{or} , this is what Morley's Omitting Types Theorem tells us!

Fact (Morley-Chang)

Given a theory $T \subset \mathbb{L}_{\kappa^+,\omega}$, if it has models of arbitrarily large sizes $(\beth_{(2^\kappa)^+}$ is enough), then, there is a faithful colimit-preserving:

$$\Phi:\mathcal{K}^{or}\rightarrow \textit{Mod}\ (\textit{T})$$

• The proof makes crucial use of the Erdős-Rado Theorem: for every $n<\omega$ and cardinal κ

$$\beth_{n-1}(\kappa)^+ \to (\kappa^+)^n_{\kappa}$$

The dream construction

Here's a (model theoretic) construction of blueprints that almost works:

The dream construction

Here's a (model theoretic) construction of blueprints that almost works:

• Take a Skolemized structure M and a big subset $X_0 \subset M$. We inductively build Φ by finding n-indiscernibles for each $n < \omega$ by induction

Here's a (model theoretic) construction of blueprints that almost works:

- Take a Skolemized structure M and a big subset $X_0 \subset M$. We inductively build Φ by finding n-indiscernibles for each $n < \omega$ by induction
- Base case is 0-indiscernibles, which is anything!

Here's a (model theoretic) construction of blueprints that almost works:

- Take a Skolemized structure M and a big subset $X_0 \subset M$. We inductively build Φ by finding n-indiscernibles for each $n < \omega$ by induction
- Base case is 0-indiscernibles, which is anything!
- Given a large set $X_n \subset M$ of *n*-indiscernibles, define a coloring of the k+1 tuples from X_n by their type.

Here's a (model theoretic) construction of blueprints that almost works:

- Take a Skolemized structure M and a big subset $X_0 \subset M$. We inductively build Φ by finding n-indiscernibles for each $n < \omega$ by induction
- Base case is 0-indiscernibles, which is anything!
- Given a large set $X_n \subset M$ of *n*-indiscernibles, define a coloring of the k+1 tuples from X_n by their type.
 - Since X_n is big, we can use Erdős-Rado to find a homogeneous subset $X_{n+1} \subset X_n$
 - Homogeneous sets for this coloring are exactly n + 1-indiscernibles

Here's a (model theoretic) construction of blueprints that almost works:

- Take a Skolemized structure M and a big subset $X_0 \subset M$. We inductively build Φ by finding n-indiscernibles for each $n < \omega$ by induction
- Base case is 0-indiscernibles, which is anything!
- Given a large set $X_n \subset M$ of *n*-indiscernibles, define a coloring of the k+1 tuples from X_n by their type.
 - Since X_n is big, we can use Erdős-Rado to find a homogeneous subset $X_{n+1} \subset X_n$
 - Homogeneous sets for this coloring are exactly n + 1-indiscernibles
- ullet Iterate ω -many steps to get the indiscernible blueprint

Question

How big is 'big'?

The ill-founded dream

Question

How big is 'big'?

• Let's mine the proof to see what's needed:

The ill-founded dream

Question

How big is 'big'?

- Let's mine the proof to see what's needed:
- To use the Erdős-Rado Theorem to shrink X_n into homogeneous X_{n+1} , we need

$$|X_n| \ge \beth_n(|X_{n+1}|)^+$$

Ordered Graphs

The ill-founded dream

Question

How big is 'big'?

- Let's mine the proof to see what's needed:
- To use the Erdős-Rado Theorem to shrink X_n into homogeneous X_{n+1} , we need

$$|X_n| \geq \beth_n(|X_{n+1}|)^+$$

but this means

$$|X_0| > |X_1| > |X_2| > |X_3| > \dots$$

So our dream has turned into an ill-founded nightmare!

Waking from our ill-founded nightmare

- All is not lost! We can go through the construction with some technical bookkeeping that translates as poorly to a talk format as it does to paper
- Essentially, rather than a single linear chain X_n of length ω , you build a well-founded tree of height ω

Waking from our ill-founded nightmare

- All is not lost! We can go through the construction with some technical bookkeeping that translates as poorly to a talk format as it does to paper
- Essentially, rather than a single linear chain X_n of length ω , you build a well-founded tree of height ω
 - The indiscernibility is shared across a level, so you can read Φ out of the tree without any ill-foundedness
 - Jiři Rosický has a nice argument that makes this tree idea explicit that removes a lot of the technical details

Waking from our ill-founded nightmare

Old Morley

- All is not lost! We can go through the construction with some technical bookkeeping that translates as poorly to a talk format as it does to paper
- Essentially, rather than a single linear chain X_n of length ω , you build a well-founded tree of height ω
 - The indiscernibility is shared across a level, so you can read Φ out of the tree without any ill-foundedness
 - Jiři Rosický has a nice argument that makes this tree idea explicit that removes a lot of the technical details
- In the end, you need to start with a set of size at least

$$\beth_{(2^{\kappa})^+}$$

• How do we define generalized blueprints?

Definition (B., Categorical version of Erdős-Rado Class)

 ${\cal K}$ is an almost Erdős-Rado Class iff for all large, finitely accessible categories ${\Bbb K}$, there is a blueprint

$$\Phi:\mathcal{K}\to\mathbb{K}$$

• There a more precise and fine tuned model theoretic version that we're suppressing (hence the 'almost')

• How do we define generalized blueprints?

Definition (B., Categorical version of Erdős-Rado Class)

 ${\cal K}$ is an almost Erdős-Rado Class iff for all large, finitely accessible categories ${\mathbb K}$, there is a blueprint

$$\Phi:\mathcal{K}\to\mathbb{K}$$

- There a more precise and fine tuned model theoretic version that we're suppressing (hence the 'almost')
- To actually build these, we need something like the Erdős-Rado Theorem
 - Structural Partition Relations

Structural partition relations

Start with a cautionary tale:

Example

Let \mathcal{K}^{2-or} be the class of two disjoint linear orders and let $(I_0, I_1) \in \mathcal{K}^{2-or}$.

Ordered Graphs

Structural partition relations

Start with a cautionary tale:

Example

Let \mathcal{K}^{2-or} be the class of two disjoint linear orders and let $(I_0, I_1) \in \mathcal{K}^{2-or}$. Take a coloring of pairs

$$c:[(I_0,I_1)]^2\to 2$$

Ordered Graphs

given by

$$c(i,j) = \begin{cases} 0 & i \in I_0 \iff j \in I_0 \\ 1 & \text{otherwise} \end{cases}$$

Structural partition relations

Start with a cautionary tale:

Example

Let \mathcal{K}^{2-or} be the class of two disjoint linear orders and let $(I_0, I_1) \in \mathcal{K}^{2-or}$. Take a coloring of pairs

$$c:[(I_0,I_1)]^2\to 2$$

Ordered Graphs

given by

$$c(i,j) = \begin{cases} 0 & i \in I_0 \iff j \in I_0 \\ 1 & \text{otherwise} \end{cases}$$

Want a big part of both linear orders $(I_0^*, I_1^*) \subset (I_0, I_1)$ that is homogeneous.

Structural Partition Relations

Example

Let $(I_0, I_1) \in \mathcal{K}^{2-or}$ and

$$c:[(I_0,I_1)]^2\to 2$$

given by

$$c(i,j) = \begin{cases} 0 & i \in I_0 \iff j \in I_0 \\ 1 & \text{otherwise} \end{cases}$$

Two changes:

- Want both parts represented in the homogeneous set: replace cardinality with universality
- Used type to color, so can't get large, homogeneous set from both parts: replace homogeneity with type-homogeneity

Structural Partition Relations

"There are cases in mathematical history when a well-chosen notation can enormously enhance the development of a branch of mathematics and a case in point is the ordinary partition symbol."

András Hajnal and Jean Larson

Definition

Fix K.

$$\lambda \xrightarrow{\mathcal{K}} (\kappa)_{\mu}^{n}$$

means: for any $< \lambda$ -universal M and coloring

$$c:[M]^n\to \mu$$

there is a $< \kappa$ -universal N \subset M that is type-homogeneous; that is, $c \upharpoonright N$ only depends on the type of the input.

Theorem (B., Generlized Omitting Types Theorem)

The following combinatorial statement suffices to build blueprints in large, finitely accesible categories: for every $n < \omega$ and κ, μ , there is a λ so

Ordered Graphs

$$\lambda \xrightarrow{\mathcal{K}} (\kappa)_{\mu}^{n}$$

Proof:

Theorem (B., Generlized Omitting Types Theorem)

The following combinatorial statement suffices to build blueprints in large, finitely accesible categories: for every $n<\omega$ and κ,μ , there is a λ so

$$\lambda \xrightarrow{\mathcal{K}} (\kappa)_{\mu}^{n}$$

Proof:

 Morally the same argument as before, but with a lot more bookkeeping

Theorem (B., Generlized Omitting Types Theorem)

The following combinatorial statement suffices to build blueprints in large, finitely accesible categories: for every $n<\omega$ and κ,μ , there is a λ so

$$\lambda \xrightarrow{\mathcal{K}} (\kappa)_{\mu}^{n}$$

Proof:

- Morally the same argument as before, but with a lot more bookkeeping
 - A lot more bookkeeping
 - Typically, $\lambda = \beth_{p(n)}(\kappa)^+$ where p(x) is a polynomial
 - This gives the threshold as the same $\beth_{(2^\kappa)^+}$ as before

Examples!

Example (χ -linear orders)

 $\mathcal{K}^{\chi-or}$ is the class of χ disjoint linear orders in the language $(<,P_i)_{i<\chi}$. Erdős-Hajnal-Rado show

$$\beth_{n(n+1)}(\kappa)^+ \xrightarrow{\chi-or} (\kappa)^n_{\kappa}$$

Example (Convexly-ordered equivalence relations)

 \mathcal{K}^{cer} is the class of linear orders with an equivalence relation so each equivalence class is convex. Several uses of the $\mathcal{K}^{\chi-or}$ partition theorem give

$$\beth_{n(n+2)}(\kappa)^+ \xrightarrow{ceq} (\kappa^+)^n_{\kappa}$$

Examples!

Example (Well-founded trees)

 \mathcal{K}^{wf-tr} is the class of trees (in the above language) with no infinite branches. Gruenhut and Shelah show

Ordered Graphs

$$\beth_{1,n}(\kappa) \xrightarrow{wf-tr} (\kappa)_{\kappa}^n$$

• $\beth_{1,n}(\kappa)$ is very big

Examples!

Example (Trees of height $m < \omega$)

 \mathcal{K}^{m-tr} is the class of trees of height n in the language $(P_{\ell},<_{tr},\prec,\wedge)_{\ell< m}$. Shelah proved there is $p(n,m)<\omega$ so

$$\beth_{p(n,m)}(\kappa)^+ \xrightarrow{m-tr} (\kappa^+)^n_{\kappa}$$

Example (Trees of height ω)

 $\mathcal{K}^{\omega-tr}$ is the class of trees of height ω in the language $(P_{\ell},<_{tr},\prec,\wedge)_{\ell<\omega}$.

No (known) combinatorics here! But still build blueprints by seeing an ω -height tree as a union of n-height trees.

Applications!

- Briefly mention:
 - Compactness-like proofs mimicing first-order
 - Defining dividing lines via indiscernible collapse

Theorem (Shelah)

Let T be a countable first-order theory. One of the following holds:

- **1** T is stable on a tail starting at 2^{ω} .
- **2** T is unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Shelah)

Let T be a countable first-order theory. One of the following holds:

- **1** T is stable on a tail starting at 2^{ω} .
- **2** T is unstable in every $\lambda < \lambda^{\omega}$.

Given instability in $\lambda < \lambda^{\omega}$, build Shelah tree on ${}^{\omega}\lambda$

- Parametets indexed by $^{<\omega}\lambda$, types indexed by branches
- ullet Write down theory T_{λ} to axiomatize the Shelah tree
- For any μ , finite subsets of T_{μ} and T_{λ} are the same!
- ullet Use compactness to build a Shelah tree at μ

Ordered Graphs

Shelah trees in AECs

Theorem (Shelah)

Let T be a countable first-order theory. One of the following holds:

- **1** T is stable on a tail starting at 2^{ω} .
- 2 T is unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Shelah)

Let T be a countable first-order theory. One of the following holds:

Ordered Graphs

- **1** T is stable on a tail starting at 2^{ω} .
- **2** T is unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Baldwin-Shelah, B.)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

- **1** \mathbb{K} is Galois stable on a tail starting at $\chi < \beth_{(2^{\kappa})^+}$.
- **2** \mathbb{K} is Galois unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Baldwin-Shelah, B.)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

- **1** \mathbb{K} is Galois stable on a tail starting at $\chi < \beth_{(2^{\kappa})^+}$.
- ② \mathbb{K} is Galois unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Baldwin-Shelah, B.)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

Ordered Graphs

- **1** \mathbb{K} is Galois stable on a tail starting at $\chi < \beth_{(2^{\kappa})^+}$.
- **2** \mathbb{K} is Galois unstable in every $\lambda < \lambda^{\omega}$.

Given Galois instability in big $\lambda < \lambda^{\omega}$, build Shelah tree on ${}^{\omega}\lambda$

- Parameters indexed by $<\omega \lambda$, types indexed by branches
- Build a $\mathcal{K}^{\omega-tr}$ -blueprint Φ patterned on this Shelah tree
- For any μ , $\Phi(^{<\omega}\mu)$ is a Shelah tree at μ

Theorem (Baldwin-Shelah, B.)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

Ordered Graphs

- **1** \mathbb{K} is Galois stable on a tail starting at $\chi < \beth_{(2^{\kappa})^+}$.
- **2** \mathbb{K} is Galois unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Baldwin-Shelah, B.)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

Ordered Graphs

- **1** If is Galois stable on a tail starting at $\chi < \beth_{(2^{\kappa})^+}$.
- **2** \mathbb{K} is Galois unstable in every $\lambda < \lambda^{\omega}$.

Theorem (Vasey)

Let \mathbb{K} be a κ -tame AEC with amalgamation. One of the following holds:

- Is Galois stable on a tail.
- and $\mu < \lambda \implies \mu^{\lambda_0} < \lambda$ (λ_0 is the first Galois stability cardinal).

Ordered Graphs •00000000

Outline

- The new* adventures of an old theorem of Morley
- Generalizing the Erdős-Rado Theorem
- The curious case of ordered graphs
- To (large) infinity and beyond!

The curious case of ordered graphs

- There is an elephant in the room: the class of ordered graphs Kog
- This class is well-studied among elementary classes

Fact (Scow)

NIP theories can be characterized by indiscernible collapse from ordered graphs to linear orders

NIP AECs

 This suggests a way to generalize the notion of NIP to infinitary model theory (AECs)

Ordered Graphs

Wentao Yang has another notion

Definition

An Abstract Elementary Class is NIP iff ordered graph indiscernibles collapse to order indiscernibles; that is, we have the following lifting diagram for every directed colimit preserving, faithful functor Φ (suppressing a natural isomorphism):

 But this definition only works if there is an Erdős-Rado Theorem for ordered graphs!

Graph Erdős-Rado

Question

Is there a nice partition calculus for the class of ordered graphs (a la the Erdős-Rado theorem)?

Answer

Graph Erdős-Rado

Question

Is there a nice partition calculus for the class of ordered graphs (a la the Erdős-Rado theorem)?

Answer

Maybe?

Graph Erdős-Rado

Question

Is there a nice partition calculus for the class of ordered graphs (a la the Erdős-Rado theorem)?

Answer

Maybe?

 Like all good 'maybe's, this is a question of set theory and consistency

Theorem (Deuber, Erdős-Hajnal-Pósa, Nešetřil-Rödl)

Ordered graphs is a Ramsey class.

Theorem (Deuber, Erdős-Hajnal-Pósa, Nešetřil-Rödl)

Ordered graphs is a Ramsey class.

Theorem (Erdős-Hajnal-Pósa)

For countable H and $k < \omega$, there is G so

$$G \rightarrow (H)_k^2$$

Theorem (Deuber, Erdős-Hajnal-Pósa, Nešetřil-Rödl)

Ordered graphs is a Ramsey class.

Theorem (Erdős-Hajnal-Pósa)

For countable H and $k < \omega$, there is G so

$$G \rightarrow (H)_k^2$$

Theorem (Hajnal-Komjáth)

It is consistent with ZFC that: there is a graph H of size ω_1 so for all G

$$G \not\rightarrow (H)_2^2$$

Theorem (Hajnal-Komjáth)

It is consistent with ZFC that: there is a graph H of size ω_1 so for all G

$$G \not\rightarrow (H)_2^2$$

Proof:

- Start with a model of CH and an eventually dominating family $\langle f_\alpha:\omega\to\omega:\alpha<\omega_1\rangle$
- ullet We force to add a Cohen real, so $V^{\mathbb{P}}$ has a generic $G:\omega o 2$
- Define X to be a bipartite graph on ω, ω_1 with edge relation

$$\{n,\alpha\}\in E(X)\iff G(f_{\alpha}(n))=1$$

I don't have a quick explanation for it, but this works

The other half of the maybe

Theorem (Hajnal-Komjáth)

It is consistent with ZFC that: there is a graph H of size ω_1 so for all G

$$G \not\rightarrow (H)_2^2$$

The other half of the maybe

Theorem (Hajnal-Komjáth)

It is consistent with ZFC that: there is a graph H of size ω_1 so for all G

$$G \not\rightarrow (H)_2^2$$

Theorem (Shelah)

It is consistent with ZFC that: for all H, for all κ , for all n < ω , there is G such that

$$G \rightarrow (H)^n_{\kappa}$$

(and also for colored hypergraphs)

Question

Is there a nice partition calculus for the class of ordered graphs (a *la the Erdős-Rado theorem)?*

Answer

Maybe.

- But this isn't the actual question we care about!
- Looking at the positive proof more, we can extract some information

Theorem (Shelah)

It is consistent with ZFC that ordered graphs have nice combinatorics (in terms of structural partition relations).

Ingredients:

Assume we have GCH to get some nice initial combinatorics

Theorem (Shelah)

It is consistent with ZFC that ordered graphs have nice combinatorics (in terms of structural partition relations).

Ingredients:

- Assume we have GCH to get some nice initial combinatorics
- Fixing μ , come up with a forcing \mathbb{P}_{μ} that (sort of) takes care of all graphs of size $\leq \mu$

Theorem (Shelah)

It is consistent with ZFC that ordered graphs have nice combinatorics (in terms of structural partition relations).

Ingredients:

- Assume we have GCH to get some nice initial combinatorics
- Fixing μ , come up with a forcing \mathbb{P}_{μ} that (sort of) takes care of all graphs of size $\leq \mu$
 - \mathbb{P}_{μ} are partial functions from $[\kappa_{\mu}]^2 \to 2$ of size $<\mu$
 - \mathbb{P}_{μ} is $<\mu$ -directed closed
 - 'Sort of' means there's a coloring result for end-homogeneity

Theorem (Shelah)

It is consistent with ZFC that ordered graphs have nice combinatorics (in terms of structural partition relations).

Ingredients:

- Assume we have GCH to get some nice initial combinatorics
- Fixing μ , come up with a forcing \mathbb{P}_{μ} that (sort of) takes care of all graphs of size $\leq \mu$
 - \mathbb{P}_{μ} are partial functions from $[\kappa_{\mu}]^2 \to 2$ of size $<\mu$
 - \mathbb{P}_{μ} is $<\mu$ -directed closed
 - 'Sort of' means there's a coloring result for end-homogeneity
- Easton support iterate to get 'sort of's everywhere
- String together the 'sort of's to get the actual result.

- The new* adventures of an old theorem of Morley
- Generalizing the Erdős-Rado Theorem
- The curious case of ordered graphs
- To (large) infinity and beyond!

• We want to use large cardinals to directly imply this combinatorics

Ordered Graphs

End up with Ramsey-style cardinals

Theorem (B.-Shelah)

Suppose that κ is Laver indestructible supercompact. If G is a $< \kappa$ -universal graph of size κ , then every coloring of n-tuples by $< \kappa$ -many colors has a type-homogeneous subset of any κ -sized graph.

Theorem (B.-Shelah)

Suppose that κ is Laver indestructible supercompact. If G is a $< \kappa$ -universal graph of size κ , then every coloring of n-tuples by $< \kappa$ -many colors has a type-homogeneous subset of any κ -sized graph.

- We can force the existence of G^* so $G^* \to (H)^n_{<\kappa}$ for all n,H of size $\leq \kappa$
 - ullet Indestructibility guarantees that κ is still supercompact

Theorem (B.-Shelah)

Suppose that κ is Laver indestructible supercompact. If G is a $<\kappa$ -universal graph of size κ , then every coloring of n-tuples by $<\kappa$ -many colors has a type-homogeneous subset of any κ -sized graph.

- We can force the existence of G^* so $G^* \to (H)^n_{<\kappa}$ for all n,H of size $\leq \kappa$
 - ullet Indestructibility guarantees that κ is still supercompact
- Let d be a coloring of G. Using strong compactness and universality, build a coloring of G^* so any $< \kappa$ -sized piece is embedded in G
 - The forcing is closed enough to guarantee these pieces are in the ground model

Theorem (B.-Shelah)

Suppose that κ is Laver indestructible supercompact. If G is a $<\kappa$ -universal graph of size κ , then every coloring of n-tuples by $<\kappa$ -many colors has a type-homogeneous subset of any κ -sized graph.

- We can force the existence of G^* so $G^* \to (H)^n_{\leq \kappa}$ for all n, Hof size $< \kappa$
 - Indestructibility guarantees that κ is still supercompact
- Let d be a coloring of G. Using strong compactness and universality, build a coloring of G^* so any $< \kappa$ -sized piece is embedded in G
 - The forcing is closed enough to guarantee these pieces are in the ground model
- Use the tree property to increase this to κ -sized pieces

Question

Is there a nice partition calculus for the class of ordered graphs (a la the Erdős-Rado theorem)?

Answer

Yes from large cardinals.

• In fact, get a Ramsey cardinal-style result

$$\kappa \xrightarrow{\mathsf{og}} (\kappa)_{<\kappa}^n$$

- ullet This allows us to build blueprints from models at size κ
- Laver indestructible strong compacts are enough, but not sure if that's a thing
- Would work for anything where we force to make partition relation hold in a sufficiently directed-closed way
 - Work in progress to figure out exactly what those classes are

Old Morley

In fact, get a Ramsey cardinal-style result

$$\kappa \xrightarrow{\operatorname{og}} (\kappa)_{<\kappa}^n$$

- ullet This allows us to build blueprints from models at size κ
- Laver indestructible strong compacts are enough, but not sure if that's a thing
- Would work for anything where we force to make partition relation hold in a sufficiently directed-closed way
 - Work in progress to figure out exactly what those classes are
- But we can do better!

• The key question is what are blueprints?

- The key question is what are blueprints?
- A blueprint Φ is generated by a functor

$$\mathcal{K}_{<\mu} \to \mathbb{K}$$

for some μ

- The key question is what are blueprints?
- ullet A blueprint Φ is generated by a functor

$$\mathcal{K}_{<\mu} \to \mathbb{K}$$

for some μ

- So even though blueprints are built around rank $\beth_{(2^{\mu})^+}$, Φ itself is in $V_{\mu+\omega}$
 - ullet Easier to see with model theory: blueprints are functions from types over the emptyset in $\mathcal K$ to types over the emptyset in $\mathbb K$

Theorem (Shelah)

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

Theorem (Shelah)

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

Ordered Graphs

(Missing some pieces from the model-theoretic definition)

 Force to make GCH hold high enough and force to make ordered graphs combinatorics hold

Theorem (Shelah)

Old Morley

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

Ordered Graphs

- Force to make GCH hold high enough and force to make ordered graphs combinatorics hold
 - Do each of these in a sufficiently directed closed way
 - Easton support iteration preserves this

Theorem (Shelah)

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

Ordered Graphs

- Force to make GCH hold high enough and force to make ordered graphs combinatorics hold
 - Do each of these in a sufficiently directed closed way
 - Easton support iteration preserves this
- Build blueprints in V[G] using Generalized Morley's Omitting Types Theorem

Theorem (Shelah)

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

Ordered Graphs

- Force to make GCH hold high enough and force to make ordered graphs combinatorics hold
 - Do each of these in a sufficiently directed closed way
 - Easton support iteration preserves this
- Build blueprints in V[G] using Generalized Morley's Omitting Types Theorem
 - By sufficient closure, these are in V!

Theorem (Shelah)

Ordered graphs and colored hypergraphs are almost Erdős-Rado classes: For any large \mathbb{K} , there is a blueprint $\Phi: \mathcal{K}^{og} \to \mathbb{K}$.

- Force to make GCH hold high enough and force to make ordered graphs combinatorics hold
 - Do each of these in a sufficiently directed closed way
 - Easton support iteration preserves this
- ullet Build blueprints in V[G] using Generalized Morley's Omitting Types Theorem
 - By sufficient closure, these are in V!
- The verification that Φ is proper is Δ_1 in the parameters, so it passes from V[G] to V

• Beyond ordered graphs: Shelah's result is about 'colored hypergraphs.'

- Beyond ordered graphs: Shelah's result is about 'colored hypergraphs.' How far can this be pushed?
 - Well-founded trees feel like they are of a different character (remember $\beth_{1,n}$)

- **Beyond ordered graphs:** Shelah's result is about 'colored hypergraphs.' How far can this be pushed?
 - Well-founded trees feel like they are of a different character (remember $\beth_{1,n}$)
- Classification theory through indiscernible collapse: Gives access to lots of definitions. What can we do with this?

- Beyond ordered graphs: Shelah's result is about 'colored hypergraphs.' How far can this be pushed?
 - Well-founded trees feel like they are of a different character (remember $\beth_{1,n}$)

Ordered Graphs

- Classification theory through indiscernible collapse: Gives access to lots of definitions. What can we do with this?
- Forcing free proofs: Forcing to get ZFC results is always nice, but makes one wonder if it can be done without forcing

- **Beyond ordered graphs:** Shelah's result is about 'colored hypergraphs.' How far can this be pushed?
 - Well-founded trees feel like they are of a different character (remember $\beth_{1,n}$)
- Classification theory through indiscernible collapse: Gives access to lots of definitions. What can we do with this?
- Forcing free proofs: Forcing to get ZFC results is always nice, but makes one wonder if it can be done without forcing
 - Depends on your tastes, but seems to give real improvement
 - Hajnal has a result that suggests an approach

- Beyond ordered graphs: Shelah's result is about 'colored hypergraphs.' How far can this be pushed?
 - Well-founded trees feel like they are of a different character (remember $\beth_{1,n}$)

Ordered Graphs

- Classification theory through indiscernible collapse: Gives access to lots of definitions. What can we do with this?
- Forcing free proofs: Forcing to get ZFC results is always nice, but makes one wonder if it can be done without forcing
 - Depends on your tastes, but seems to give real improvement
 - Hajnal has a result that suggests an approach

THANKS!