Structural Reflection on the edge and beyond

Joan Bagaria

Kobe Set Theory Seminar, 1 November 2023

Joint work with Philip Lücke

Sequential *ESR*

Let \mathcal{L} be a first-order language containing unary predicate symbols $\vec{P} = \langle \dot{P}_m \mid m < \omega \rangle$.

Given a strictly increasing sequence $\vec{\lambda} = \langle \lambda_m \mid m < \omega \rangle$ of cardinals with supremum λ , an \mathcal{L} -structure A has $type\ \vec{\lambda}$ (with respect to \vec{P}) if the universe of A has rank λ and $rank(\dot{P}_m^A) = \lambda_m$ for all $m < \omega$.

Definition:

Given a class $\mathcal C$ of $\mathcal L$ -structures and a strictly increasing sequence $\vec\lambda = \langle \lambda_m \mid m < \omega \rangle$ of cardinals, let **Exact Structural Reflection** for $\mathcal C$ and $\vec\lambda$ (written $ESR_{\mathcal C}(\vec\lambda)$) be the following assertion:

For every A in $\mathbb C$ of type $\langle \lambda_{m+1} \mid m < \omega \rangle$, there is an elementary embedding of some B in $\mathbb C$ of type $\langle \lambda_m \mid m < \omega \rangle$ into A.

Recall that $C^{(n)}$ is the closed unbounded Π_n -definable class of ordinals α that are Σ_n -correct in V, i.e., $V_{\alpha} \preceq_{\Sigma_n} V$.

n-exact cardinals

Definition:

Given a natural number n>0 and a strictly increasing sequence $\vec{\lambda}=\langle \lambda_m \mid m<\omega \rangle$ of cardinals with supremum λ , a cardinal $\kappa<\lambda_0$ is $n\text{-exact for }\vec{\lambda}$ if for every $A\in V_{\lambda+1}$, there exists a cardinal $\lambda<\theta\in C^{(n)}$, a cardinal $\lambda<\theta'\in C^{(n+1)}$, an elementary submodel X of V_θ with $V_\lambda\cup\{\lambda\}\subseteq X$, and an elementary embedding $j:X\longrightarrow V_{\theta'}$ with $A\in \operatorname{ran}(j),\ j(\kappa)=\lambda_0$ and $j(\lambda_m)=\lambda_{m+1}$ for all $m<\omega$.

If, for $z \in V_{\kappa}$ we further require that $z \in X$ and j(z) = z, then we say that κ is *n*-exact for $\vec{\lambda}$ and z.

We say that κ is parametrically *n*-exact for $\vec{\lambda}$ if κ is *n*-exact for $\vec{\lambda}$ and z, for each $z \in V_{\kappa}$.

n-exact cardinals

If κ is n-exact for $\vec{\lambda} = \langle \lambda_i : i < \omega \rangle$, witnessed by some j such that $j(\operatorname{crit}(j)) = \kappa$, then $\operatorname{crit}(j)$ is parametrically n-exact for the sequence $\langle \kappa \rangle^{\frown} \langle \lambda_i : i < \omega \rangle$.

Moreover, if κ is the least parametrically *n*-exact cardinal for some sequence $\vec{\lambda}$, then this is witnessed by some j with $j(\text{crit}(j)) = \kappa$.

Theorem

Let $\vec{\lambda} = \langle \lambda_m \mid m < \omega \rangle$ be a strictly increasing sequence of cardinals.

- 1. The cardinal λ_0 is n-exact for $\langle \lambda_{m+1} \mid m < \omega \rangle$ if and only if Σ_{n+1} -ESR($\vec{\lambda}$) holds.
- 2. If λ_0 is parametrically n-exact for $\langle \lambda_{m+1} \mid m < \omega \rangle$ iff $\Sigma_{n+1}(V_{\lambda_0})$ -ESR $(\vec{\lambda})$ holds.

The strength of *n*-exact cardinals

We have following lower bounds on the strength of 0-exact and 0-parametrically exact cardinals:

- Let λ be the supremum of $\vec{\lambda}$. If $\kappa < \lambda_0$ is 0-exact for $\vec{\lambda}$, then there exists an I3-embedding $j: V_{\lambda} \to V_{\lambda}$.
- If κ is the least cardinal that is parametrically 0-exact for $\vec{\lambda}$, then the set of I3-cardinals is stationary in κ .

The strength of *n*-exact cardinals

We also have the following upper bound:

• If κ is the critical point of an I1 embedding $j:V_{\lambda+1}\to V_{\lambda+1}$, then κ is parametrically 0-exact for the sequence $\vec{\lambda}=\langle j^{i+1}(\kappa):i<\omega\rangle$. Hence, $\Sigma_1(V_\kappa)$ -ESR $(\vec{\lambda})$ holds.

The following was an open question:

Question

Does ZFC prove that Σ_2 -ESR($\vec{\lambda}$) fails for every $\vec{\lambda}$ of length ω ?

The main theorem

Theorem

If $j: L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ be an I0-embedding with critical sequence $\langle \kappa_m \mid m < \omega \rangle$, then there is a transitive model M of ZFC with $M \cap \operatorname{Ord} = \lambda^+$, $\vec{\kappa} \in M$ and κ_0 is parametrically n-exact for $\vec{\kappa} = \langle \kappa_{m+1} \mid m < \omega \rangle$ in M for every natural number n.

Hence $ESR_{\mathfrak{C}}(\vec{\kappa})$ holds in M for every class \mathfrak{C} of \mathcal{L} -structures that is definable in M with parameters in V_{κ_0} .

Proof:

We start with the following observation:

Claim

There exists a well-ordering \lhd of V_{λ} of order-type λ , with $j(\lhd) = \lhd$.

Proof of claim:

Pick a wellordering \lhd_0 of V_{κ_0} , and let $\lhd_1 = j(\lhd_0) \setminus \lhd_0$. Given \lhd_n , $n \geqslant 1$, let $\lhd_{n+1} = j(\lhd_n)$. Finally, let $\lhd = \bigcup_{n < \omega} \lhd_n$. Then \lhd is as required.

Now, set $\Gamma = V_{\lambda} \cup \{\vec{\kappa}, \lhd\}$ and note that it belongs to $L(V_{\lambda+1})$.

By using \lhd , in $L(\Gamma)$ we may easily well-order Γ in order-type λ , so that $L(\Gamma)$ is a model of ZFC.

Moreover, since $j(\lhd) = \lhd$, we have that $j(\Gamma) = V_\lambda \cup \{j(\vec{\kappa}), \lhd\}$, hence $L(\Gamma) = L(j(\Gamma))$, and so j restricted to $L(\Gamma)$ yields an elementary embedding $L(\Gamma) \to L(\Gamma)$. Thus by a classical result of Kunen, $(\Gamma)^\sharp$ exists, and therefore λ^+ is inaccessible in $L(\Gamma)$.

Hence, letting $M = L_{\lambda^+}(\Gamma)$ we have that M is a model of ZFC.

Moreover, since $j(\lambda^+) = \lambda^+$, the restriction map $j \upharpoonright M : M \longrightarrow M$ is an elementary embedding.

Now fix a natural number n and assume, aiming for a contradiction, that, in M, the cardinal κ_0 is not parametrically n-exact for $\langle \kappa_{m+1} \mid m < \omega \rangle$.

Pick an ordinal $\lambda < \theta < \lambda^+$ such that $j(\theta) = \theta$ and $\theta \in (C^{(n+1)})^M$.

Working in M, let $A \in V_{\lambda+1}$ be such that, for every elementary substructure Y of H_{θ} with $V_{\lambda} \cup \{\lambda\} \subseteq Y$, there is no elementary embedding $i: Y \longrightarrow H_{\theta}$ with $i(\operatorname{crit}(i)) = \kappa_0$, $A \in \operatorname{ran}(i)$ and $i(\kappa_m) = \kappa_{m+1}$ for all $m < \omega$.

Without loss of generality, we may assume that $A \notin \kappa_0 \cup {\kappa_m \mid m < \omega}$.

The elementarity of $j \upharpoonright M$ then implies that, in M, for every elementary substructure Y of H_{θ} with $V_{\lambda} \cup \{\lambda\} \subseteq Y$, there is no elementary embedding $i: Y \longrightarrow H_{\theta}$ with $i(\operatorname{crit}(i)) = \kappa_1$, $j(A) \in \operatorname{ran}(i)$ and $i(\kappa_m) = \kappa_{m+1}$ for all $0 < m < \omega$.

Still in M, let X_0 be an elementary substructure of H_0 of cardinality λ , containing A, and with $V_\lambda \cup \{\lambda\} \subseteq X_0$. Pick a bijection b_0 : $\lambda \longrightarrow X_0$ with $b_0(0) = A$, $b_0(m+1) = \kappa_m$ for all $m < \omega$ and $b_0(\omega + \alpha) = \alpha$ for all $\alpha < \kappa_0$.

Set $X_1 = j(X_0)$ and $b_1 = j(b_0)$.

The set X_1 is an elementary substructure of H_θ of cardinality λ with $V_\lambda \cup \{\lambda\} \subseteq X_0$ and $b_1 : \lambda \longrightarrow X_1$ is a bijection with $b_1(0) = j(A)$, $b_1(m+1) = \kappa_{m+1}$ for all $m < \omega$ and $b_1(\omega + \alpha) = \alpha$ for all $\alpha < \kappa_1$.

Moreover, note that

$$b_1 \circ (j \upharpoonright \lambda) = (j \upharpoonright X_0) \circ b_0 \tag{1}$$

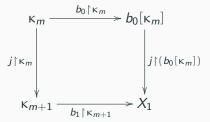
holds. I.e., the following diagram commutes:

$$\lambda \xrightarrow{b_0} X_0$$

$$\downarrow j \upharpoonright X_0$$

$$\lambda \xrightarrow{b_1} X_1$$

Now, note that in the restricted diagram

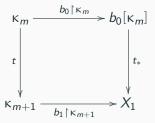


The map $j \upharpoonright \kappa_m$ is the identity on κ_0 , and the map $j \upharpoonright (b_0[\kappa_m])$ yields a partial elementary embedding from X_0 to X_1 .

So let us define T to be the set of all functions $t: \kappa_m \longrightarrow \kappa_{m+1}$, some $m < \omega$, such that $t \upharpoonright \kappa_0 = \mathrm{id}_{\kappa_0}$ and the partial function

$$t_*: b_0[\kappa_m] \longrightarrow X_1; \ x \mapsto (b_1 \circ t \circ b_0^{-1})(x)$$

is a partial elementary embedding from X_0 to X_1 . I.e.,



By ordering T under end-extensions, we can turn T into a tree of height at most ω .

Since $j \upharpoonright X_0 : X_0 \longrightarrow X_1$ is an elementary embedding, we can conclude that $j \upharpoonright \kappa_m \in T$ for all $m < \omega$.

This shows that T has a cofinal branch in V and hence it has a cofinal branch B in M. Then $\bigcup B$ is a function from λ to λ and, if we define

$$i = b_1 \circ \left(\bigcup B\right) \circ b_0^{-1} : X_0 \longrightarrow X_1$$

then, in M, i is an elementary embedding of X_0 into H_θ with $j(A) \in \operatorname{ran}(i)$, $i \upharpoonright \kappa_0 = \operatorname{id}_{\kappa_0}$ and $i(\kappa_m) = \kappa_{m+1}$ for all $m < \omega$. This contradicts our earlier conclusions. \square

Sequential *ESR* **beyond Choice**

Sequential ESR beyond Choice

Definition: (ZF)

A cardinal κ is **Reinhardt** if it is the critical point of an elementary embedding $j: V \to V$.

Theorem: (ZF)

If κ is a Reinhardt cardinal, then there exists a strictly increasing sequence $\vec{\lambda} = \langle \lambda_i \mid i < \omega \rangle$ of cardinals such that $ESR_{\mathfrak{C}}(\vec{\lambda})$ holds for all classes \mathfrak{C} that are definable with parameters in V_{κ} .

Proof:

Let $j:V\to V$ be an elementary embedding with critical point κ . Let $\vec{\lambda}=\langle \lambda_i:i<\omega\rangle$ be the critical sequence. Thus, $\lambda_0=\kappa$.

Fix a formula $\varphi(v_0, v_1)$ and $z \in V_{\kappa}$ such that the class $\mathfrak{C} = \{A \mid \varphi(A, z)\}$ consists of \mathcal{L} -structures.

Pick a structure A in \mathcal{C} of type $\langle \lambda_{i+1} \mid i < \omega \rangle$.

Then the elementarity of j implies that $\varphi(j(A), z)$ holds.

Thus, j(A) is an \mathcal{L} -structure of type $j(\langle \lambda_{i+1} \mid i < \omega \rangle)$ and the restriction map $j \upharpoonright A : A \to j(A)$ is an elementary embedding of structures in \mathcal{C} .

Since we have $j(\vec{\lambda}) = \langle \lambda_{i+1} \mid i < \omega \rangle$, the elementarity of j yields that there is an \mathcal{L} -structure B of type $\vec{\lambda}$ with the property that $\phi(B,z)$ holds and there exists an elementary embedding $j: B \to A$.

This shows that $ESR_{\mathfrak{C}}(\vec{\lambda})$ holds. \square

Sequential *ESR* **beyond Choice**

Definition: (ZF)

An ordinal δ is a **proto-Berkeley cardinal** if for all transitive sets M with $\delta \in M$, there exists a non-trivial elementary embedding $j: M \to M$ with $\text{crit} j < \delta$.

An ordinal δ is a **Berkeley cardinal** if for all transitive sets M with $\delta \in M$, for every $\eta < \delta$ there exists a non-trivial elementary embedding $j: M \to M$ with $\eta < \operatorname{crit} j < \delta$.

Sequential ESR beyond Choice

Theorem: (ZF)

If δ is the least Berkeley cardinal, then there exists a strictly increasing sequence $\vec{\lambda} = \langle \lambda_i \mid i < \omega \rangle$ of cardinals, with supremum less than δ , such that $ESR_{\mathbb{C}}(\vec{\lambda})$ holds for every class \mathbb{C} of \mathcal{L} -structures that is definable with parameters.

Proof:

Let \mathcal{C} be Σ_n -definable with parameter z.

Pick a cardinal $\theta > \delta$ in $C^{(n)}$, with $z \in V_{\theta}$, θ large enough. There exists a non-trivial elementary embedding $j: V_{\theta} \to V_{\theta}$ with $\mathrm{crit}(j) < \delta$, $j(\delta) = \delta$ and j(z) = z.

Let $\vec{\lambda} = \langle \lambda_i : i < \omega \rangle$ be the critical sequence. Since we picked θ large enough, we may assume that the supremum of the sequence is less than δ .

Fix a Σ_n -formula $\varphi(v_0, v_1)$ such that $\mathcal{C} = \{A \mid \varphi(A, z)\}.$

Pick a structure A in $\mathcal{C} \cap V_{\theta}$ of type $\langle \lambda_{i+1} \mid i < \omega \rangle$.

We have that $\varphi(A, z)$ holds in V, and therefore also in V_{θ} . Then the elementarity of j implies that $\varphi(j(A), z)$ holds in V_{θ} too.

Thus, j(A) is an \mathcal{L} -structure of type $j(\langle \lambda_{i+1} \mid i < \omega \rangle)$ and the restriction map $j \upharpoonright A : A \to j(A)$ is an elementary embedding of \mathcal{L} -structures that is an element of V_{θ} .

Since we have $j(\vec{\lambda}) = \langle \lambda_{i+1} \mid i < \omega \rangle$, the elementarity of j now allows us to conclude that, in V_{θ} , there is an \mathcal{L} -structure B of type $\vec{\lambda}$ with the property that $\phi(B,z)$ holds and there exists an elementary embedding $j: B \to A$.

This shows that $ESR_{\mathfrak{C}}(\vec{\lambda})$ holds in V_{θ} . But since $\theta \in C^{(n)}$, it holds also in V. \square

ESR and Berkeley cardinals

Corollary: (ZF)

Let δ be the least Berkeley cardinal. Given $\eta < \delta$, there exists a strictly increasing sequence $\vec{\lambda} = \langle \lambda_i \mid i < \omega \rangle$ of cardinals greater than η and with supremum less than δ such that $ESR_{\mathfrak{C}}(\vec{\lambda})$ holds for every class \mathfrak{C} of \mathfrak{L} -structures that is definable with parameters.

ESR and **Berkeley** cardinals

Proposition

Suppose that for every class ${\mathbb C}$ of structures in the language $\{\in,\dot{P}\}$ that is definable by a Σ_0 -formula, with parameters, there exists an ordinal $\lambda < \delta$ with the property that for every structure A in ${\mathbb C}$ with ${\rm rank}(\dot{P}^A) = \lambda$, there exists a structure B in ${\mathbb C}$ with ${\rm rank}(\dot{P}^B) < \lambda$ and an elementary embedding of B into A. Then δ is a proto-Berkeley cardinal.

Proof:

Fix a transitive set M with $\delta \in M$. Define $\mathcal C$ to be the class of all $\mathcal L_{\in,\dot P}$ -structures A with domain M such that $\dot P^A$ is an ordinal in M. Then $\mathcal C$ is definable by a Σ_0 -formula with parameter M.

By our assumption, there exists an ordinal $\lambda < \delta$ with the property that for every A in $\mathcal C$ with $\mathrm{rank}(\dot{P}^A) = \lambda$, there exists a structure B in $\mathcal C$ with $\mathrm{rank}(\dot{P}^B) < \lambda$ and an elementary embedding of B into A.

Let A denote the unique structure in $\mathcal C$ with $\dot P^A=\lambda$. Then there exists a structure $B\in\mathcal C$ such that such that $\dot P^B=\eta$ with $\eta<\lambda$ and an elementary embedding $j:B\to A$.

But then $\eta \in \dot{P}^A \setminus \dot{P}^B$ and therefore the elementarity of j implies that $\eta < \lambda \leqslant j(\eta) \in M \cap \text{Ord}$. Thus, j is a non-trivial elementary embedding with critical point less than δ . \square

ESR and **Berkeley** cardinals

Corollary

The following are equivalent:

- 1. $ESR_{\mathfrak{C}}(\vec{\lambda})$ holds for some increasing sequence $\vec{\lambda} = \langle \lambda_i : i < \omega \rangle$ of cardinals, for all Σ_0 -definable, with parameters, classes \mathfrak{C} of structures of type $\langle \dot{P}_i : i < \omega \rangle$.
- 2. There exists a Berkeley cardinal.