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Theorem 1(H., Sakai).

If λ is a strong limit singular cardinal, then dλ = 2λ.

Theorem 2(H., Sakai)(Done).

bλ = cf (λ)
+.

Theorem 3(H., Sakai).

dℵω
≥ maxpcf ({ℵn | n < ω}).

Today, we will prove Theorem 1 and Theorem 3.
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Each proof consists of two steps.

Step

1 We show that if there is a “good” unbounded family P ⊆ λ (κ+), then dλ is large.

2 We construct the “good” unbounded family P ⊆ λ (κ+).

Last week, we constructed the map f• :
λ (κ+) −→ λλ and showed the following lemma.

Definition(Ψ(µ)).

Let P ⊆ λ (κ+). P has the property Ψ(µ) if µ = |P| ∈ (κ, λ) is a regular cardinal and
{α < λ | |{p(α) | p ∈ Q}| ≥ κ} has the size λ for all Q ∈ [P]µ.

Lemma 1.

If P has Ψ(µ), then {fp | p ∈ P} is an unbounded family.

Yusuke Hayashi

The dominating number and the unbounded number for singular cardinals 6 / 29



Introduction Proof of Theorem 1 Preliminaries of pcf theory Proof of theorem 3.

1 Introduction

2 Proof of Theorem 1

3 Preliminaries of pcf theory

4 Proof of theorem 3.

Yusuke Hayashi

The dominating number and the unbounded number for singular cardinals 7 / 29



Introduction Proof of Theorem 1 Preliminaries of pcf theory Proof of theorem 3.

In this talk, let λ be a singular cardinal and κ be its cofinality. Also, fix an increasing cofinal sequence
⟨λi | i < κ⟩ in λ.
Today, we will prove the stronger form of Theorem 1.

Theorem 4.

If µκ < λ for all µ < λ, then dλ ≥ λκ.

If λ is a strong limit, then λκ = 2λ. Hence it Theorem 1 follows from Theorem 4.
In this section, we assume that µκ < λ for all µ < λ.
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Proposition 4.

Let P ⊆ λ (κ+). Assume that P satisfies

• |P| = λκ and

• {fp | p ∈ Q} is unbounded for all Q ∈ [P](2
κ)+ .

Then dλ ≥ λκ.

Proof.

Let G = {gξ | ξ < dλ} ⊆ λλ be a dominating family. Let Fξ be {fp | p ∈ P , fp <∗ gξ} for all ξ < dλ.
Then

⋃
ξ<dλ

Fξ = {fp | p ∈ P}.
On the other hand, Fξ is a bounded family. Hence, |Fξ| < (2κ)

+ by the assumption. Thus,

λκ = |P| = |{fp | p ∈ P}| =

∣∣∣∣∣∣
⋃

ξ<dλ

Fξ

∣∣∣∣∣∣ ≤ dλ · (2κ)+ = dλ.
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Let us construct P ⊆ λ (κ+) as in Proposition 4.
We will define a function p• :

∏
i<κ λi −→ λ (κ+) and let P =

{
px | x ∈

∏
i<κ λi

}
.

For each j < κ, let Tj =
∏

i<j λi and Hj = [Tj ]
κ. Note that |Tj |, |Hj | < λ since µκ < λ for all µ < λ.

Let T =
⋃

i<κ Ti and H =
⋃

i<κ Hi.
Enumerate H = {Hα | α < λ} such that each member of H appears λ-many times.
Now, we will construct φ :

⋃
{Ti × [λi, λi+1) | i < κ} −→ κ+ and define p• by

px(α) = φ (x ↾ i, α)

where α ∈ [λi, λi+1).

Yusuke Hayashi

The dominating number and the unbounded number for singular cardinals 10 / 29



Introduction Proof of Theorem 1 Preliminaries of pcf theory Proof of theorem 3.

Let t ∈ Ti and α ∈ [λi, λi+1). Let j < κ be such that
Hα ∈ Hj . Now, if i < j, then we define φ(t, α) = 0. If
i ≥ j, then we define φ by

φ(t, α) =

{
k (∃k < κ [t ↾ j = tk])

0 (otherwise)

where Hα = {tk | k < κ} is an injective enumeration.

...

...

...

λ0

λ1

λ2

λ3

...

λj

λj+1

...

λi

λi+1

...

α

t
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In order to prove that P =
{
px | x ∈

∏
i<κ λi

}
satisfies the assumptions of Theorem 4, we will show

some lemma.

Lemma 2.

p• is injective.

Proof.

Let x, y ∈ [Tj ]
κ and x ̸= y. We will show that px ̸= py. There is j < κ such that x ↾ j ̸= y ↾ j.

Take H ∈ Hj such that x ↾ j, y ↾ j ∈ H. By the choice of ⟨Hα | α < λ⟩, there is some α < λ such that
α ≥ λj and H = Hα. Take i < κ with α ∈ [λi, λi+1). Thus,

px(α) = φ (x ↾ i, α) ̸= φ (y ↾ i, α) = py(α)

since (x ↾ i) ↾ j = x ↾ j ̸= y ↾ j = (x ↾ i) ↾ j.
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Lemma 3.

If X ⊆ T has the size (2κ)
+, then there exists some i < κ such that {x ↾ i | x ∈ X} has the size κ+.

Proof.

Suppose, for a contradiction, that Si = {x ↾ i | x ∈ X} has the size at most κ for all i < κ. Then
S =

⋃
{Si | i < κ} also has the size at most κ.

Define a function σ from X to [S]κ by

σ(x) = {x ↾ i | i < κ} .

Then σ is an injection since
⋃
σ(x) = x. Therefore (2κ)

+
= |X | ≤ |[S]κ| ≤ 2κ. This is a

contradiction.
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Proposition 5.

P = {px | x ∈ T} satisfies the assumptions in Proposition 4.

Proof.

By Lemma 2, P has the size
∣∣∏

i<κ λi

∣∣ = λκ. We will
show that {fp | p ∈ Q} is unbounded for all

Q ∈ [P](2
κ)+ .

By Lemma 1, it suffices to show that Q has Ψ
(
(2κ)

+
)
.

In order to prove this, let R ∈ [Q](2
κ)+ .

Let X ∈ [T ]
(2κ)+ such that R = {px | x ∈ X}. Then we

can find j < κ such that {x ↾ j | x ∈ X} has the size κ+

by Lemma 3. In particular, there is Y ⊆ X such that
H = {x ↾ j | x ∈ Y} has the size κ.

...

...

...

λ0

λ1

λ2

λ3

...

λj

λj+1

...

λi

λi+1

...

λ
size = (2κ)

+
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Proof.

Now, by the choice of ⟨Hα | α < λ⟩,
S = {α < λ | Hα = H,α ≥ λj} has the size λ.
Let α ∈ S and α ∈ [λi, λi+1). Thus,

{px(α) | x ∈ X} ⊇ {px(α) | x ∈ Y}
= {φ(x ↾ i, α) | x ∈ Y} = κ.

Hence, {px | x ∈ X} satisfies Ψ
(
(2κ)

+
)
.

...

...

...

λ0

λ1

λ2

λ3

...

λj

λj+1

...

λi

λi+1

...

λ
size = (2κ)

+

Hα = H : size = κ

α
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Pcf theory is a theory introduced by Saharon Shelah. It has many applications about combinatorics for
singular cardinals.

Definition

Let A be a set of ordinals. Let
∏

A = {f : A −→ On | ∀a ∈ A(f(a) ∈ a)}. Let F be a filter over A
and f, g ∈

∏
A. We define f ≤F g, cf (

∏
A, I), and pcf (A) by

f <F g ⇐⇒ {a ∈ A | f(a) < g(a)} ∈ F

cf (
∏

A,F ) = min {|X||∀f ∈
∏

A, ∃g ∈ X(f ≤F g)}
pcf (A) = {cf (

∏
A,D) | D is an ultrafilter over A}

“pcf” means the possible cof inality.

Yusuke Hayashi

The dominating number and the unbounded number for singular cardinals 17 / 29



Introduction Proof of Theorem 1 Preliminaries of pcf theory Proof of theorem 3.

Definition.

Let A be a set of ordinals. Suppose that F is a filter over A and ⟨fξ | ξ ∈ L⟩ is a <F -increasing
sequence, where L is a set of ordinals. Then f is said to be strongly <F -increasing if there are sets
Sξ ∈ F for all ξ ∈ L such that

ξ, ζ ∈ L, ξ < ζ −→ ∀a ∈ Sξ ∩ Sζ (fξ(a) < fζ(a)) .

Definition.

Suppose A is a set of ordinals and I is an ideal over A. Let µ be a regular cardinal and ⟨fξ | ξ < µ⟩ be
a <I -increasing sequence.
We say that ⟨fξ | ξ < µ⟩ satisfies (∗)ν for a regular cardinal ν ≤ µ if for all unbounded X ⊆ µ, there is
X0 ⊆ X such that

• otp(X0) = ν and

• ⟨fξ | ξ ∈ X0⟩ is strongly increasing.

Yusuke Hayashi
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In this talk, we consider pcf ({ℵn | n < ω}). Next facts are important for the proof of Theorem 3. They
are proved in [1].

Fact(Shelah).

There exists mp (ℵω).

Hence, we can find an ultrafilter D over ω such that cf
(∏

n∈ω ℵn, D
)
= maxpcf ({ℵn | n < ω}) and

fix it. In the rest of this talk, we denote maxpcf ({ℵn | n < ω}) by mp (ℵω). By the definition,
mp (ℵω) is a regular cardinal.

Fact(Shelah).

There exists a <D-cofinal <D-increasing sequence ⟨fi | i < mp (ℵω)⟩ in
∏

n<ω ℵn satisfying (∗)ω1 .

Yusuke Hayashi
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First, we will give a sufficient condition for that dℵω
≥ mp (ℵω).

Proposition 6.

Let P ⊆ ℵωω1. Assume that P satisfies

• |P| = mp (ℵω) and

• {fp | p ∈ Q} is unbounded for all Q ∈ [P]mp(ℵω).

Then dℵω
≥ mp (ℵω).

Proof.

Let G = {gξ | ξ < dℵω} ⊆ ℵωℵω be a dominating family. Suppose, for a contradiction, that
dℵω < maxpcf ({ℵn | n < ω}). Let Fξ = {fp | p ∈ P , fp <∗ gξ} for all ξ < dℵω . Then⋃

ξ<dℵω
Fξ = {fp | p ∈ P}.

By the assumption, regularity of mp (ℵω), and the pigeonhole principle, there exists ξ < dℵω
such that

|Fξ| = mp (ℵω). On the other hand, Fξ is an unbounded family by the assumption. This is a
contradiction.

Yusuke Hayashi

The dominating number and the unbounded number for singular cardinals 21 / 29



Introduction Proof of Theorem 1 Preliminaries of pcf theory Proof of theorem 3.

We would like to construct p• as we did in section 2.

We will define a function p• :
∏

n<ω ℵn −→ ℵωω1 and let P =
{
px | x ∈

∏
n<ω ℵn

}
.

For each m < ω, let Tm =
∏

n<m ℵn and Hm = [Tm]
ω. Note that |Tm|, |Hm| < ℵω since µω < ℵω for

all µ < ℵω. Let T =
⋃

n<ω Tn and H =
⋃

n<ω Hn.
Enumerate H = {Hα | α < ℵω} such that each member of H appears ℵω-many times.
Now, we will construct φ :

⋃
{Tn × [ℵn,ℵn+1) | n < ω} −→ ω1 and define p• by

px(α) = φ (x ↾ n, α)

where α ∈ [ℵn,ℵn+1).· · ·

However, it should be noted that we do not have the exponential assumptions we had in section 2. In
particular, we need to modify this parts.
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Lemma 4.

cf
(
[ℵn]

ℵ0 ,⊆
)
= ℵn for all n ≥ 1.

Proof.

It suffices to show that cf
(
[ℵn+1]

ℵ0 ,⊆
)
≤ cf

(
[ℵn]

ℵ0 ,⊆
)
· ℵn+1. This is because [ℵ0,ℵ1) is a cofinal set

in cf
(
[ℵ1]

ℵ0 ,⊆
)
and thus

cf
(
[ℵn]

ℵ0 ,⊆
)
≤ cf

(
[ℵn−1]

ℵ0 ,⊆
)
· ℵn

≤ · · · ≤ cf
(
[ℵ1]

ℵ0 ,⊆
)
· ℵ2 · · · ℵn = ℵn.

Also, the reverse inequality is clear.
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Proof.

Now, let X be a cofinal set in
(
[ℵn]

ℵ0 ,⊆
)
and we construct a cofinal set in

(
[ℵn+1]

ℵ0 ,⊆
)
. For each

γ ∈ [ℵn,ℵn+1), let πγ be a bijective function from γ to ℵn. We denote
⋃

γ∈[ℵn,ℵn+1)

{
π−1
γ B | B ∈ X

}
by Y . Then |Y | ≤ |X| · ℵn+1 We show that Y is cofinal in

(
[ℵn+1]

ℵ0 ,⊆
)
.

Let A ∈ [ℵn+1]
ℵ0 , then there exists γ < ℵn+1 such that A ⊆ γ. Denote πγ“A by A′. Since X is a

cofinal set, there is some B ∈ X such that A′ ⊆ B. Hence A ⊆ π−1
γ B.
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Proposition 7.

Let X be a <D-increasing <D-cofinal sequence in
∏

n<ω ℵn atisfying (∗)ω1
. Then P = {px | x ∈ X}

satisfies the assumptions in Proposition 6.

Proof.

This proof is similar to Proposition 5.
By Lemma 2, P has the size mp (ℵω). We will show that
{fp | p ∈ Q} is unbounded for all Q ∈ [P]mp(ℵω).

Let Y ∈ [X ]
maxpcf({ℵn|n<ω}). Since X satisfies (∗)ω1 ,

we can find a strongly increasing sequence
Z = ⟨xξ | ξ < ω1⟩ in Y. Thus, We can take Sξ ∈ D
such that

ξ < ζ < ω1 −→ ∀n ∈ Sξ ∩ Sζ (xξ(n) < xζ(n)) .
...

...

...

ℵ0

ℵ1

ℵ2

ℵ3

...

ℵm

ℵm+1

...

ℵn

ℵn+1

...

ℵω
size = mp (ℵω)
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Proof.

We will show that {px | x ∈ Z} holds Ψ(ω1). In order to
prove this, let Z ′ ∈ [Z]

ω1 . Take nξ ∈ Sξ for each ξ < ω1.
By the pigeon hole principle, there exists m < ω such
that W = {xξ ∈ Z ′ | nξ = m} has the size ω1. Thus,
{xξ(m) | xξ ∈ W} has the size ω1 since if xξ, xζ ∈ W
and ξ < ζ, then xξ(m) < xζ(m). Therefore, we can find
W ′ ⊆ W such that {x ↾ (m+ 1) | x ∈ W ′} has the size
ω. Take H ∈ H such that {x ↾ (m+ 1) | x ∈ W ′} ⊆ H.

...

...

...

ℵ0

ℵ1

ℵ2

ℵ3

...

ℵm

ℵm+1

...

ℵn

ℵn+1

...

ℵω
size = mp (ℵω)

W ′ ↾ (m+ 1) : size = ω
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Proof.

Now, by the choice of ⟨Hα | α < ℵω⟩,
S = {α < ℵω | Hα = H,α ≥ ℵm+1} has the size ℵω.
Let α ∈ S and α ∈ [ℵn,ℵn+1). Thus,∣∣{pxξ

(α) | xξ ∈ Z ′}∣∣ ≥ ∣∣{pxξ
(α) | pxξ

∈ W ′}∣∣
=

∣∣{φ(pxξ
↾ n, α) | pxξ

∈ W ′}∣∣ = ω.

Then {fpx | x ∈ Z} is an unbounded family by Lemma
1. Hence, {fpx

| x ∈ Y} is also an unbounded family and
this completes the proof. ...

...

...

ℵ0

ℵ1

ℵ2

ℵ3

...

ℵm

ℵm+1

...

ℵn

ℵn+1

...

ℵω
size = mp (ℵω)

W ′ ↾ (m+ 1) : size = ω H = Hα

α
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Thank you for your attention!
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