Yusuke Hayashi

July 6, 2022

• This is joint work with H.Sakai.

- 1 Introduction
- 2 Proof of Theorem 1
- 3 Preliminaries of pcf theory
- **4** Proof of theorem 3.

- Introduction
- 2 Proof of Theorem 1
- Preliminaries of pcf theory
- 4 Proof of theorem 3.

If λ is a strong limit singular cardinal, then $\mathfrak{d}_{\lambda}=2^{\lambda}$.

Theorem 2(H., Sakai)(Done).

$$\mathfrak{b}_{\lambda} = \operatorname{cf}(\lambda)^{+}.$$

Introduction 000

Theorem 3(H., Sakai).

$$\mathfrak{d}_{\aleph_{\omega}} \geq \max \operatorname{pcf} (\{\aleph_n \mid n < \omega\}).$$

Today, we will prove Theorem 1 and Theorem 3.

Each proof consists of two steps.

Step

Introduction

- **1** We show that if there is a "good" unbounded family $\mathcal{P} \subseteq {}^{\lambda}(\kappa^+)$, then \mathfrak{d}_{λ} is large.
- **2** We construct the "good" unbounded family $\mathcal{P} \subseteq {}^{\lambda}(\kappa^{+})$.

Last week, we constructed the map $f_{\bullet} : {}^{\lambda}(\kappa^{+}) \longrightarrow {}^{\lambda}\lambda$ and showed the following lemma.

Definition($\Psi(\mu)$).

Let $\mathcal{P}\subseteq {}^{\lambda}(\kappa^+)$. \mathcal{P} has the property $\Psi(\mu)$ if $\mu=|\mathcal{P}|\in(\kappa,\lambda)$ is a regular cardinal and $\{\alpha<\lambda\mid|\{p(\alpha)\mid p\in\mathcal{Q}\}|\geq\kappa\}$ has the size λ for all $\mathcal{Q}\in[\mathcal{P}]^{\mu}$.

Lemma 1.

If \mathcal{P} has $\Psi(\mu)$, then $\{f_p \mid p \in \mathcal{P}\}$ is an unbounded family.

- 2 Proof of Theorem 1
- Preliminaries of pcf theory
- 4 Proof of theorem 3.

In this talk, let λ be a singular cardinal and κ be its cofinality. Also, fix an increasing cofinal sequence $\langle \lambda_i \mid i < \kappa \rangle$ in λ .

Today, we will prove the stronger form of Theorem 1.

Theorem 4.

If $\mu^{\kappa} < \lambda$ for all $\mu < \lambda$, then $\mathfrak{d}_{\lambda} \geq \lambda^{\kappa}$.

If λ is a strong limit, then $\lambda^{\kappa} = 2^{\lambda}$. Hence it Theorem 1 follows from Theorem 4. In this section, we assume that $\mu^{\kappa} < \lambda$ for all $\mu < \lambda$.

Let $\mathcal{P} \subseteq {}^{\lambda}(\kappa^+)$. Assume that \mathcal{P} satisfies

- $|\mathcal{P}| = \lambda^{\kappa}$ and
- $\{f_p \mid p \in \mathcal{Q}\}\$ is unbounded for all $\mathcal{Q} \in [\mathcal{P}]^{(2^{\kappa})^+}$.

Then $\mathfrak{d}_{\lambda} > \lambda^{\kappa}$.

Proof.

Let $\mathcal{G} = \{g_{\mathcal{E}} \mid \xi < \mathfrak{d}_{\lambda}\} \subseteq {}^{\lambda}\lambda$ be a dominating family. Let \mathcal{F}_{ξ} be $\{f_p \mid p \in \mathcal{P}, f_p <^* g_{\xi}\}$ for all $\xi < \mathfrak{d}_{\lambda}$. Then $\bigcup_{\varepsilon < \mathfrak{d}_{\Sigma}} \mathcal{F}_{\varepsilon} = \{ f_p \mid p \in \mathcal{P} \}.$

On the other hand, $\mathcal{F}_{\varepsilon}$ is a bounded family. Hence, $|\mathcal{F}_{\varepsilon}| < (2^{\kappa})^+$ by the assumption. Thus,

$$\lambda^{\kappa} = |\mathcal{P}| = |\{f_p \mid p \in \mathcal{P}\}| = \left| \bigcup_{\xi < \mathfrak{d}_{\lambda}} \mathcal{F}_{\xi} \right| \leq \mathfrak{d}_{\lambda} \cdot (2^{\kappa})^+ = \mathfrak{d}_{\lambda}.$$

Let us construct $\mathcal{P} \subseteq {}^{\lambda}(\kappa^{+})$ as in Proposition 4.

We will define a function $p_{\bullet}: \prod_{i<\kappa} \lambda_i \longrightarrow {}^{\lambda}(\kappa^+)$ and let $\mathcal{P} = \{p_x \mid x \in \prod_{i<\kappa} \lambda_i\}$.

For each $j < \kappa$, let $T_j = \prod_{i < j} \lambda_i$ and $\mathcal{H}_j = [T_j]^{\kappa}$. Note that $|T_j|, |\mathcal{H}_j| < \lambda$ since $\mu^{\kappa} < \lambda$ for all $\mu < \lambda$.

Let $T = \bigcup_{i < \kappa} T_i$ and $\mathcal{H} = \bigcup_{i < \kappa} \mathcal{H}_i$.

Enumerate $\mathcal{H} = \{H_{\alpha} \mid \alpha < \lambda\}$ such that each member of \mathcal{H} appears λ -many times.

Now, we will construct $\varphi: \bigcup \{T_i \times [\lambda_i, \lambda_{i+1}) \mid i < \kappa\} \longrightarrow \kappa^+$ and define p_{\bullet} by

$$p_x(\alpha) = \varphi\left(x \upharpoonright i, \alpha\right)$$

where $\alpha \in [\lambda_i, \lambda_{i+1})$.

Let $t \in T_i$ and $\alpha \in [\lambda_i, \lambda_{i+1})$. Let $j < \kappa$ be such that $H_{\alpha} \in \mathcal{H}_{i}$. Now, if i < j, then we define $\varphi(t, \alpha) = 0$. If i > j, then we define φ by

$$\varphi(t,\alpha) = \begin{cases} k & (\exists k < \kappa [t \upharpoonright j = t_k]) \\ 0 & (otherwise) \end{cases}$$

where $H_{\alpha} = \{t_k \mid k < \kappa\}$ is an injective enumeration.

Let $t\in T_i$ and $\alpha\in[\lambda_i,\lambda_{i+1})$. Let $j<\kappa$ be such that $H_\alpha\in\mathcal{H}_j$. Now, if i< j, then we define $\varphi(t,\alpha)=0$. If $i\geq j$, then we define φ by

$$\varphi(t,\alpha) = \begin{cases} k & (\exists k < \kappa [t \upharpoonright j = t_k]) \\ 0 & (otherwise) \end{cases}$$

where $H_{\alpha} = \{t_k \mid k < \kappa\}$ is an injective enumeration.

Let $t \in T_i$ and $\alpha \in [\lambda_i, \lambda_{i+1})$. Let $j < \kappa$ be such that $H_{\alpha} \in \mathcal{H}_{i}$. Now, if i < j, then we define $\varphi(t, \alpha) = 0$. If i > j, then we define φ by

$$\varphi(t,\alpha) = \begin{cases} k & (\exists k < \kappa [t \upharpoonright j = t_k]) \\ 0 & (otherwise) \end{cases}$$

where $H_{\alpha} = \{t_k \mid k < \kappa\}$ is an injective enumeration.

Lemma 2.

 p_{\bullet} is injective.

Proof.

Let $x, y \in [T_i]^{\kappa}$ and $x \neq y$. We will show that $p_x \neq p_y$. There is $j < \kappa$ such that $x \upharpoonright j \neq y \upharpoonright j$. Take $H \in \mathcal{H}_i$ such that $x \upharpoonright j, y \upharpoonright j \in H$. By the choice of $\langle H_\alpha \mid \alpha < \lambda \rangle$, there is some $\alpha < \lambda$ such that $\alpha \geq \lambda_i$ and $H = H_{\alpha}$. Take $i < \kappa$ with $\alpha \in [\lambda_i, \lambda_{i+1})$. Thus,

$$p_x(\alpha) = \varphi(x \upharpoonright i, \alpha) \neq \varphi(y \upharpoonright i, \alpha) = p_y(\alpha)$$

since $(x \upharpoonright i) \upharpoonright j = x \upharpoonright j \neq y \upharpoonright j = (x \upharpoonright i) \upharpoonright j$.

If $\mathcal{X} \subseteq T$ has the size $(2^{\kappa})^+$, then there exists some $i < \kappa$ such that $\{x \mid i \mid x \in \mathcal{X}\}$ has the size κ^+ .

Proof.

Suppose, for a contradiction, that $S_i = \{x \mid i \mid x \in \mathcal{X}\}$ has the size at most κ for all $i < \kappa$. Then $S = \bigcup \{S_i \mid i < \kappa\}$ also has the size at most κ .

Define a function σ from \mathcal{X} to $[S]^{\kappa}$ by

$$\sigma(x) = \{x \mid i \mid i < \kappa\}.$$

Then σ is an injection since $|\int \sigma(x) = x$. Therefore $(2^{\kappa})^+ = |\mathcal{X}| \leq |S|^{\kappa} \leq 2^{\kappa}$. This is a contradiction.

$\mathcal{P} = \{p_x \mid x \in T\}$ satisfies the assumptions in Proposition 4.

Proof.

By Lemma 2, \mathcal{P} has the size $\left|\prod_{i<\kappa}\lambda_i\right|=\lambda^{\kappa}$. We will show that $\{f_p \mid p \in \mathcal{Q}\}$ is unbounded for all $\mathcal{Q} \in [\mathcal{P}]^{(2^{\kappa})^+}$

By Lemma 1, it suffices to show that \mathcal{Q} has $\Psi\left(\left(2^{\kappa}\right)^{+}\right)$.

In order to prove this, let $\mathcal{R} \in [\mathcal{Q}]^{(2^{\kappa})^+}$.

Let $\mathcal{X} \in [T]^{(2^{\kappa})^+}$ such that $\mathcal{R} = \{p_x \mid x \in \mathcal{X}\}$. Then we can find $j < \kappa$ such that $\{x \mid j \mid x \in \mathcal{X}\}$ has the size κ^+ by Lemma 3. In particular, there is $\mathcal{Y} \subseteq \mathcal{X}$ such that $H = \{x \mid j \mid x \in \mathcal{Y}\}$ has the size κ .

 $\mathcal{P} = \{p_x \mid x \in T\}$ satisfies the assumptions in Proposition 4.

Proof.

By Lemma 2, \mathcal{P} has the size $\left|\prod_{i<\kappa}\lambda_i\right|=\lambda^{\kappa}$. We will show that $\{f_p \mid p \in \mathcal{Q}\}$ is unbounded for all $\mathcal{Q} \in [\mathcal{P}]^{(2^{\kappa})^+}$

By Lemma 1, it suffices to show that \mathcal{Q} has $\Psi\left(\left(2^{\kappa}\right)^{+}\right)$.

In order to prove this, let $\mathcal{R} \in [\mathcal{Q}]^{(2^{\kappa})^+}$.

Let $\mathcal{X} \in [T]^{(2^{\kappa})^+}$ such that $\mathcal{R} = \{p_x \mid x \in \mathcal{X}\}$. Then we can find $j < \kappa$ such that $\{x \mid j \mid x \in \mathcal{X}\}$ has the size κ^+ by Lemma 3. In particular, there is $\mathcal{Y} \subseteq \mathcal{X}$ such that $H = \{x \mid j \mid x \in \mathcal{Y}\}$ has the size κ .

Proof.

Now, by the choice of $\langle H_{\alpha} \mid \alpha < \lambda \rangle$, $S = \{ \alpha < \lambda \mid H_{\alpha} = H, \alpha \geq \lambda_i \}$ has the size λ . Let $\alpha \in S$ and $\alpha \in [\lambda_i, \lambda_{i+1})$. Thus,

$$\{p_x(\alpha) \mid x \in \mathcal{X}\} \supseteq \{p_x(\alpha) \mid x \in \mathcal{Y}\}$$
$$= \{\varphi(x \mid i, \alpha) \mid x \in \mathcal{Y}\} = \kappa.$$

Hence, $\{p_x \mid x \in \mathcal{X}\}$ satisfies $\Psi\left(\left(2^{\kappa}\right)^+\right)$.

Preliminaries of pcf theory

0000

- Introduction
- 2 Proof of Theorem 1
- 3 Preliminaries of pcf theory
- 4 Proof of theorem 3.

Preliminaries of pcf theory

0000

Definition

Let A be a set of ordinals. Let $\prod A = \{f : A \longrightarrow \text{On } | \forall a \in A(f(a) \in a)\}$. Let F be a filter over A and $f,g \in \prod A$. We define $f \leq_F g$, cf $(\prod A,I)$, and pcf (A) by

$$\begin{split} f <_F g &\iff \{a \in A \mid f(a) < g(a)\} \in F \\ \mathrm{cf}\left(\prod A, F\right) &= \min\left\{|X| | \forall f \in \prod A, \exists g \in X (f \leq_F g)\right\} \\ \mathrm{pcf}\left(A\right) &= \left\{\mathrm{cf}\left(\prod A, D\right) \mid D \text{ is an ultrafilter over } A\right\} \end{split}$$

"pcf" means the possible cofinality.

Let A be a set of ordinals. Suppose that F is a filter over A and $\langle f_{\xi} | \xi \in L \rangle$ is a $\langle f_{\xi} | \xi \in L \rangle$ sequence, where L is a set of ordinals. Then f is said to be strongly $\langle F$ -increasing if there are sets $S_{\xi} \in F$ for all $\xi \in L$ such that

Preliminaries of pcf theory

$$\xi, \zeta \in L, \xi < \zeta \longrightarrow \forall a \in S_{\xi} \cap S_{\zeta} (f_{\xi}(a) < f_{\zeta}(a)).$$

Definition.

Suppose A is a set of ordinals and I is an ideal over A. Let μ be a regular cardinal and $\langle f_{\mathcal{E}} | \mathcal{E} < \mu \rangle$ be a $<_I$ -increasing sequence.

We say that $\langle f_{\mathcal{E}} | \mathcal{E} < \mu \rangle$ satisfies $(*)_{\nu}$ for a regular cardinal $\nu \leq \mu$ if for all unbounded $X \subseteq \mu$, there is $X_0 \subseteq X$ such that

- $otp(X_0) = \nu$ and
- $\langle f_{\xi} | \xi \in X_0 \rangle$ is strongly increasing.

In this talk, we consider $pcf(\{\aleph_n \mid n < \omega\})$. Next facts are important for the proof of Theorem 3. They are proved in [1].

Preliminaries of pcf theory

0000

Fact(Shelah).

There exists $mp(\aleph_{\omega})$.

Hence, we can find an ultrafilter D over ω such that $\operatorname{cf}\left(\prod_{n\in\omega}\aleph_n,D\right)=\operatorname{max}\operatorname{pcf}\left(\{\aleph_n\mid n<\omega\}\right)$ and fix it. In the rest of this talk, we denote $\max \operatorname{pcf}(\{\aleph_n \mid n < \omega\})$ by $\operatorname{mp}(\aleph_\omega)$. By the definition, $mp(\aleph_{\omega})$ is a regular cardinal.

Fact(Shelah).

There exists a $<_D$ -cofinal $<_D$ -increasing sequence $\langle f_i \mid i < \min(\aleph_\omega) \rangle$ in $\prod_{n > \omega} \aleph_n$ satisfying $(*)_{\omega_1}$.

2 Proof of Theorem 1

Preliminaries of pcf theory

4 Proof of theorem 3.

First, we will give a sufficient condition for that $\mathfrak{d}_{\aleph_{\omega}} \geq \operatorname{mp}(\aleph_{\omega})$.

Proposition 6.

Let $\mathcal{P} \subseteq {}^{\aleph_{\omega}}\omega_1$. Assume that \mathcal{P} satisfies

- $|\mathcal{P}| = \operatorname{mp}(\aleph_{\omega})$ and
- $\{f_p \mid p \in \mathcal{Q}\}$ is unbounded for all $\mathcal{Q} \in [\mathcal{P}]^{\mathrm{mp}(\aleph_\omega)}$.

Then $\mathfrak{d}_{\aleph_{\omega}} \geq \operatorname{mp}(\aleph_{\omega})$.

Proof.

Let $\mathcal{G} = \{q_{\mathcal{E}} \mid \xi < \mathfrak{d}_{\aleph_{\omega}}\} \subseteq {}^{\aleph_{\omega}} \aleph_{\omega}$ be a dominating family. Suppose, for a contradiction, that $\mathfrak{d}_{\aleph_n} < \max \operatorname{pcf}(\{\aleph_n \mid n < \omega\})$. Let $\mathcal{F}_{\mathcal{E}} = \{f_n \mid p \in \mathcal{P}, f_n <^* q_{\mathcal{E}}\}$ for all $\mathcal{E} < \mathfrak{d}_{\aleph_n}$. Then $\bigcup_{\xi < p_{0}} \mathcal{F}_{\xi} = \{ f_{p} \mid p \in \mathcal{P} \}.$

By the assumption, regularity of $\operatorname{mp}(\aleph_{\omega})$, and the pigeonhole principle, there exists $\xi < \mathfrak{d}_{\aleph}$ such that $|\mathcal{F}_{\mathcal{E}}| = \operatorname{mp}(\aleph_{\omega})$. On the other hand, $\mathcal{F}_{\mathcal{E}}$ is an unbounded family by the assumption. This is a contradiction.

We would like to construct p_{\bullet} as we did in section 2.

We will define a function $p_{\bullet}: \prod_{n \leq \omega} \aleph_n \longrightarrow \aleph_{\omega} \omega_1$ and let $\mathcal{P} = \{p_x \mid x \in \prod_{n \leq \omega} \aleph_n\}$. For each $m < \omega$, let $T_m = \prod_{n < m} \aleph_n$ and $\mathcal{H}_m = [T_m]^\omega$. Note that $|T_m|, |\mathcal{H}_m| < \aleph_\omega$ since $\mu^\omega < \aleph_\omega$ for all $\mu < \aleph_{\omega}$. Let $T = \bigcup_{n < \omega} T_n$ and $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$. Enumerate $\mathcal{H} = \{H_{\alpha} \mid \alpha < \aleph_{\omega}\}$ such that each member of \mathcal{H} appears \aleph_{ω} -many times.

Now, we will construct $\varphi: \bigcup \{T_n \times [\aleph_n, \aleph_{n+1}) \mid n < \omega\} \longrightarrow \omega_1$ and define p_{\bullet} by

$$p_x(\alpha) = \varphi\left(x \upharpoonright n, \alpha\right)$$

where $\alpha \in [\aleph_n, \aleph_{n+1})...$

We would like to construct p_{\bullet} as we did in section 2.

We will define a function $p_{\bullet}: \prod_{n \leq \omega} \aleph_n \longrightarrow \aleph_{\omega} \omega_1$ and let $\mathcal{P} = \{p_x \mid x \in \prod_{n \leq \omega} \aleph_n\}$.

For each $m < \omega$, let $T_m = \prod_{n < m} \aleph_n$ and $\mathcal{H}_m = [T_m]^{\omega}$. Note that $|T_m|, |\mathcal{H}_m| < \aleph_{\omega}$ since $\mu^{\omega} < \aleph_{\omega}$ for all $\mu < \aleph_{\omega}$. Let $T = \bigcup_{n < \omega} T_n$ and $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$.

Enumerate $\mathcal{H} = \{H_{\alpha} \mid \alpha < \aleph_{\omega}\}$ such that each member of \mathcal{H} appears \aleph_{ω} -many times. Now, we will construct $\varphi: \bigcup \{T_n \times [\aleph_n, \aleph_{n+1}) \mid n < \omega\} \longrightarrow \omega_1$ and define p_{\bullet} by

$$p_x(\alpha) = \varphi\left(x \upharpoonright n, \alpha\right)$$

where $\alpha \in [\aleph_n, \aleph_{n+1}), \cdots$

However, it should be noted that we do not have the exponential assumptions we had in section 2. In particular, we need to modify this parts.

We would like to construct p_{\bullet} as we did in section 2.

We will define a function $p_{\bullet}: \prod_{n \leq \omega} \aleph_n \longrightarrow \aleph_{\omega} \omega_1$ and let $\mathcal{P} = \{p_x \mid x \in \prod_{n \leq \omega} \aleph_n\}$.

For each $m < \omega$, let $T_m = \prod_{m < m} \aleph_m$ and \mathcal{H}_m be a cofinal set in $([T_m]^\omega, \subseteq)$. Note that $|T_m|, |\mathcal{H}_m| < \infty$ \aleph_{ω} . Let $T = \bigcup_{n \leq \omega} T_n$ and $\mathcal{H} = \bigcup_{n \leq \omega} \mathcal{H}_n$.

Enumerate $\mathcal{H} = \{H_{\alpha} \mid \alpha < \aleph_{\omega}\}$ such that each member of \mathcal{H} appears \aleph_{ω} -many times.

Now, we will construct $\varphi: \bigcup \{T_n \times [\aleph_n, \aleph_{n+1}) \mid n < \omega\} \longrightarrow \omega_1$ and define p_{\bullet} by

$$p_x(\alpha) = \varphi\left(x \upharpoonright n, \alpha\right)$$

where $\alpha \in [\aleph_n, \aleph_{n+1}), \cdots$

However, it should be noted that we do not have the exponential assumptions we had in section 2. In particular, we need to modify this parts.

Lemma 4.

$$\operatorname{cf}\left(\left[\aleph_{n}\right]^{\aleph_{0}},\subseteq\right)=\aleph_{n} \text{ for all } n\geq1.$$

Proof.

It suffices to show that $\operatorname{cf}([\aleph_{n+1}]^{\aleph_0},\subseteq) \leq \operatorname{cf}([\aleph_n]^{\aleph_0},\subseteq) \cdot \aleph_{n+1}$. This is because $[\aleph_0,\aleph_1)$ is a cofinal set in cf ($[\aleph_1]^{\aleph_0}$, \subseteq) and thus

$$cf([\aleph_n]^{\aleph_0}, \subseteq) \le cf([\aleph_{n-1}]^{\aleph_0}, \subseteq) \cdot \aleph_n$$

$$\le \dots \le cf([\aleph_1]^{\aleph_0}, \subseteq) \cdot \aleph_2 \dots \aleph_n = \aleph_n.$$

Also, the reverse inequality is clear.

Now, let X be a cofinal set in $([\aleph_n]^{\aleph_0}, \subseteq)$ and we construct a cofinal set in $([\aleph_{n+1}]^{\aleph_0}, \subseteq)$. For each $\gamma \in [\aleph_n, \aleph_{n+1})$, let π_γ be a bijective function from γ to \aleph_n . We denote $\bigcup_{\gamma \in [\aleph_n, \aleph_{n+1})} \{\pi_\gamma^{-1} B \mid B \in X\}$ by Y. Then $|Y| \leq |X| \cdot \aleph_{n+1}$ We show that Y is cofinal in $([\aleph_{n+1}]^{\aleph_0}, \subseteq)$. Let $A \in [\aleph_{n+1}]^{\aleph_0}$, then there exists $\gamma < \aleph_{n+1}$ such that $A \subseteq \gamma$. Denote π_{γ} "A by A'. Since X is a cofinal set, there is some $B \in X$ such that $A' \subseteq B$. Hence $A \subseteq \pi_{\sim}^{-1}B$.

Let \mathcal{X} be a $<_D$ -increasing $<_D$ -cofinal sequence in $\prod_{n < \omega} \aleph_n$ atisfying $(*)_{\omega_1}$. Then $\mathcal{P} = \{p_x \mid x \in \mathcal{X}\}$ satisfies the assumptions in Proposition 6.

Proof.

This proof is similar to Proposition 5. By Lemma 2, \mathcal{P} has the size mp (\aleph_{ω}) . We will show that

 $\{f_p \mid p \in \mathcal{Q}\}\$ is unbounded for all $\mathcal{Q} \in [\mathcal{P}]^{\mathrm{mp}(\aleph_{\omega})}$. Let $\mathcal{V} \in [\mathcal{X}]^{\max \operatorname{pcf}(\{\aleph_n | n < \omega\})}$. Since \mathcal{X} satisfies $(*)_{\omega_1}$, we can find a strongly increasing sequence $\mathcal{Z} = \langle x_{\mathcal{E}} \mid \xi < \omega_1 \rangle$ in \mathcal{Y} . Thus, We can take $S_{\mathcal{E}} \in D$

$$\xi < \zeta < \omega_1 \longrightarrow \forall n \in S_\xi \cap S_\zeta \left(x_\xi(n) < x_\zeta(n) \right).$$

We will show that $\{p_x \mid x \in \mathcal{Z}\}\$ holds $\Psi(\omega_1)$. In order to prove this, let $\mathcal{Z}' \in [\mathcal{Z}]^{\omega_1}$. Take $n_{\mathcal{E}} \in S_{\mathcal{E}}$ for each $\xi < \omega_1$. By the pigeon hole principle, there exists $m < \omega$ such that $\mathcal{W} = \{x_{\mathcal{E}} \in \mathcal{Z}' \mid n_{\mathcal{E}} = m\}$ has the size ω_1 . Thus, $\{x_{\mathcal{E}}(m) \mid x_{\mathcal{E}} \in \mathcal{W}\}$ has the size ω_1 since if $x_{\mathcal{E}}, x_{\mathcal{E}} \in \mathcal{W}$ and $\xi < \zeta$, then $x_{\xi}(m) < x_{\zeta}(m)$. Therefore, we can find $\mathcal{W}' \subseteq \mathcal{W}$ such that $\{x \mid (m+1) \mid x \in \mathcal{W}'\}$ has the size ω . Take $H \in \mathcal{H}$ such that $\{x \upharpoonright (m+1) \mid x \in \mathcal{W}'\} \subseteq H$.

We will show that $\{p_x \mid x \in \mathcal{Z}\}\$ holds $\Psi(\omega_1)$. In order to prove this, let $\mathcal{Z}' \in [\mathcal{Z}]^{\omega_1}$. Take $n_{\mathcal{E}} \in S_{\mathcal{E}}$ for each $\xi < \omega_1$. By the pigeon hole principle, there exists $m < \omega$ such that $\mathcal{W} = \{x_{\mathcal{E}} \in \mathcal{Z}' \mid n_{\mathcal{E}} = m\}$ has the size ω_1 . Thus, $\{x_{\mathcal{E}}(m) \mid x_{\mathcal{E}} \in \mathcal{W}\}$ has the size ω_1 since if $x_{\mathcal{E}}, x_{\mathcal{E}} \in \mathcal{W}$ and $\xi < \zeta$, then $x_{\xi}(m) < x_{\zeta}(m)$. Therefore, we can find $\mathcal{W}' \subseteq \mathcal{W}$ such that $\{x \mid (m+1) \mid x \in \mathcal{W}'\}$ has the size ω . Take $H \in \mathcal{H}$ such that $\{x \upharpoonright (m+1) \mid x \in \mathcal{W}'\} \subseteq H$.

Proof.

Now, by the choice of $\langle H_{\alpha} \mid \alpha < \aleph_{\alpha} \rangle$. $S = \{ \alpha < \aleph_{\omega} \mid H_{\alpha} = H, \alpha \geq \aleph_{m+1} \}$ has the size \aleph_{ω} . Let $\alpha \in S$ and $\alpha \in [\aleph_n, \aleph_{n+1})$. Thus,

$$\begin{aligned} \left| \left\{ p_{x_{\xi}}(\alpha) \mid x_{\xi} \in \mathcal{Z}' \right\} \right| &\geq \left| \left\{ p_{x_{\xi}}(\alpha) \mid p_{x_{\xi}} \in \mathcal{W}' \right\} \right| \\ &= \left| \left\{ \varphi(p_{x_{\xi}} \upharpoonright n, \alpha) \mid p_{x_{\xi}} \in \mathcal{W}' \right\} \right| = \omega. \end{aligned}$$

Then $\{f_{p_x} \mid x \in \mathcal{Z}\}$ is an unbounded family by Lemma 1. Hence, $\{f_{p_x} \mid x \in \mathcal{Y}\}\$ is also an unbounded family and this completes the proof.

Thank you for your attention!

Reference I

Uri Abraham and Menachem Magidor.

Cardinal arithmetic.

In Handbook of set theory, pp. 1149-1227. Springer, 2010.