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Theorem 1(H., Sakai).

If X is a strong limit singular cardinal, then 2, = 2*.

Theorem 2(H., Sakai)(Done).
by =cf(A)7.

Theorem 3(H., Sakai).
Oy, > maxpcef ({XN,, | n < w}).

Today, we will prove Theorem 1 and Theorem 3.
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Each proof consists of two steps.

Step

©® We show that if there is a “good” unbounded family P C * (x*), then 0, is large.
® We construct the “good” unbounded family P C * (s%).

Last week, we constructed the map fo: * (k*) — *X and showed the following lemma.

Definition(W(u)).

Let P C * (k). P has the property W(u) if u = |P| € (k,\) is a regular cardinal and
{a <A | {p(a) | p € Q}| > Kk} has the size A for all Q € [P]~.

Lemma 1.
If P has ¥(u), then {f, | p € P} is an unbounded family.
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In this talk, let \ be a singular cardinal and k be its cofinality. Also, fix an increasing cofinal sequence
(Ai |3 < kY in A
Today, we will prove the stronger form of Theorem 1.

If u < X forall uw < A, then 0\ > A",

If X is a strong limit, then \* = 2*. Hence it Theorem 1 follows from Theorem 4.
In this section, we assume that pu < A for all u < A.
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Proposition 4.

Let P C * (k). Assume that P satisfies

e |P|=A\"and

e {fp | p € Q} is unbounded for all Q € (P19
Then 0, > A",

Proof.

Let G = {g¢ | € <)} € *\ be a dominating family. Let F¢ be {f, | p € P, f, <* g¢} for all £ < 0,.
Then Ugo, Fe = {fp | P €P}.

On the other hand, F; is a bounded family. Hence, |F¢| < (2%)" by the assumption. Thus,

M=IPl=I{flpePl=||J Fe|<on-2)" =0u.

£<0
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Let us construct P C * (k1) as in Proposition 4.
We will define a function p, : [T, A\i — (/ﬁ) and let P={p, |z €[], . N
For each j <k, let Tj = [[,_; \i and H; = [T 51", Note that |T}|, |H,; |<)\smce,u < Aforall < A

Let T=U,.. T and H=U.H

Enumerate H = {H, | a < A} such that each member of H appears A-many times.

Now, we will construct ¢ : |J{T; x [Ai, \i+1) | 2 < K} — &T and define p, by
pe(a@) = (x i, )

where a € [)\“ /\i+1)-
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Let t € T; and o € [A\;, A\i+1). Let j < k be such that
H, € H;. Now, if i < j, then we define p(t,a) = 0. If
1 > j, then we define ¢ by

R VATATATAVAVATAT A

0 (otherwise)
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Let t € T; and o € [A\;, A\i+1). Let j < k be such that
H, € H;. Now, if i < j, then we define p(t,a) = 0. If
1 > j, then we define ¢ by :
, AR YATAYE /Al Y aEaat ,

_ [k Ge<nltri=t) VNVVNVVVY :
o(t,a) = ' e L A

0 (otherwise) B | ‘

where H,, = {t;. | k < k} is an injective enumeration. - ‘vzz‘w‘ | ; '\Z‘H '\'/ ““““ A
== - - - - - - —_— e - - - - 4 Aj
. Ha " :
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In order to prove that P = {p, | # € [[,_, \;} satisfies the assumptions of Theorem 4, we will show

some lemma.

Pe is injective.

Let z,y € [T}]" and z # y. We will show that p, # p,. Thereis j < xk such that z [ j #y | j.
Take H € H; such that = | j,y | j € H. By the choice of (H, | @ < A), there is some a < X such that
a> )\ and H = H,. Take i < k with a € [A;; Aiy1). Thus,

px(a) = QO(.’,U ri7a) 7é (p(y riaa) :py(a)

since (z [4) [j=x[j#ylj=(xli)]].
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If X C T has the size (27)", then there exists some i <  such that {z | i | z € X} has the size x+.

Proof.

Suppose, for a contradiction, that S; = {z [ ¢ | # € X'} has the size at most & for all i < k. Then
S =J{S:| i< k} also has the size at most k.

Define a function o from X to [S]" by

ol@)=Az]i]i<k}.

Then o is an injection since | Jo(z) = x. Therefore (2°)" = |X| < [[S]"| < 2. This is a
contradiction.
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Proposition 5.

P = {p, | x € T} satisfies the assumptions in Proposition 4.

By Lemma 2, P has the size |[],, Ai| = A*. We will

show that {f, | p € Q} is unbounded for all N S -y P ]
Q€ [P, ’ ,

By Lemma 1, it suffices to show that Q has ¥ ((2”)+). IAAAAAAA e

In order to prove this, let R € [Q](2N)+.

Let X € [T](zﬁ)+ such that R = {p, | z € X'}. Then we AN AAAAA -

can find j < r such that {z | j | z € X'} has the size kT
by Lemma 3. In particular, there is ) C X such that
H={z]j|z €Y} has the size «.
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Now, by the choice of (H, | v < A),

S:{a<)\|Ha:H7a2)\j}hasthesize)\. ED e BT R D e N
Let @ € S and a € [A\;, A\iy1). Thus,

Gl e et i) e €/ CVVNYVYNY

={po(x i,a) |z €V} ==k

Hence, {p, | © € X'} satisfies ¥ ((2n)+)- :::gy ;\Z:@ :\Z:\'/:::::::i”
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Pcf theory is a theory introduced by Saharon Shelah. It has many applications about combinatorics for
singular cardinals.

Let A be a set of ordinals. Let [[A={f: A — On|Va € A(f(a) € a)}. Let F be a filter over A
and f,g € [[ A. We define f <p g, cf ([[ A, I), and pct (A) by

f<rg={acA|fla) <gla)}eF
cf ([TA, F) = min {|X|[|Vf € [[A,3g € X(f <r 9)}
pcf (A) = {ct ([[ A, D) | D is an ultrafilter over A}

“pcf” means the possible cofinality.
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Let A be a set of ordinals. Suppose that F is a filter over A and (f¢ | £ € L) is a <p -increasing
sequence, where L is a set of ordinals. Then f is said to be strongly <g-increasing if there are sets
S¢ € F for all £ € L such that

&Cel,é<(—Vae SgﬂSg (fg(a) < f{(a))

Suppose A is a set of ordinals and I is an ideal over A. Let p be a regular cardinal and (fe | £ < p) be
a <y -increasing sequence.
We say that (fe | € < p) satisfies (x), for a regular cardinal v < p if for all unbounded X C i, there is

Xo C X such that
e otp(Xy) =v and
e (fe | & € Xo) is strongly increasing.
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In this talk, we consider pcf ({X,, | » < w}). Next facts are important for the proof of Theorem 3. They
are proved in [1].

Fact(Shelah).
There exists mp (X,,).

Hence, we can find an ultrafilter D over w such that cf (T,c., Nn ,D) = max pcf ({X,, | n < w}) and
fix it. In the rest of this talk, we denote max pcf ({X,, | n < w}) y mp (X,,). By the definition,
mp (R,,) is a regular cardinal.

Fact(Shelah).

There exists a <p-cofinal <p-increasing sequence (f; | i < mp (X)) in [],.,, Nn satisfying (¥).,
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First, we will give a sufficient condition for that dx_, > mp (R,,).

Let P C Rww;. Assume that P satisfies

e |P| =mp(X,) and

e {f, | p € Q} is unbounded for all Q € [P]mP(}w),
Then 2y, > mp (R,,).

Let G = {ge | € <dn,} C "N, be a dominating family. Suppose, for a contradiction, that

Ox, < maxpcf ({X, |n <w}). Let Fe ={fp |p € P, fp <* g¢} forall £ <dy,. Then

U§<DNw Fe={fpIpeP}

By the assumption, regularity of mp (X,,), and the pigeonhole principle, there exists £ < Dy, such that
|F¢| = mp (R,,). On the other hand, F¢ is an unbounded family by the assumption. This is a
contradiction. OJ
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We would like to construct p, as we did in section 2.

We will define a function pe : [[,, ., N0 — Yoy and let P = {px |z €[], Nn}

For each m < w, let T}, = [T, N and Hy, = [T5,]%. Note that [T,,,], [Hym| < Ry, since p < X, for
all p <Ry, Let T'=J,, ., T and H =, ., Hn.

Enumerate H = {H, | @ < N, } such that each member of H appears N,,-many times.

Now, we will construct ¢ : |J{T, X [Rn,Rpt1) | n < w} — wy and define p, by

pz(a) =@ (z [ n,a)

where a € [N, Ry, 41).- -
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We would like to construct p, as we did in section 2.

We will define a function pe : [T, ., R — Nwy and let P = {p, |z € [],,., Nn}.
For each m < w, let Tp,, = [[,,<,,, N and H,p, = [T ] Note that [T}, |Hm| < Ry, since p~ < R,
forall p <N,. Let T =, ., Thand H=U,,., "

Enumerate H = {H, | @ < N, } such that each member of H appears N,,-many times.
Now, we will construct ¢ : |J{T\, X [Rn,Rp41) | n < w} — wy and define p, by

pe(a) =@ (z [ n,a)
where a € [N, Ry, 19).- - -

However, it should be noted that we do not have the exponential assumptions we had in section 2. In
particular, we need to modify this parts.
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of ([Nn]‘*‘) ,g) — R, foralln>1.

Proof.
It suffices to show that cf ([Nn+1]N°, Q) <cf ([Nn]NO, g) N, 41. This is because [Rg, N;) is a cofinal set

in cf ([Ry]%, C) and thus

of ([R,]™°, ) < f ([Rpq]™0, ©) - R,
< Zef ()R, Q) Ry Ry, =R,

Also, the reverse inequality is clear.
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Proof.

Now, let X be a cofinal set in ([X,]%, C) and we construct a cofinal set in ([R,,41]™,C). For each

7 € [Rn,Ry11), let my be a bijective function from v to N,,. We denote [ ¢x, x,..1) {r;'B|Be X}
by Y. Then |Y| < |X|-N,41 We show that Y is cofinal in ([N,41]%, C).

Let A € [R,,1]%°, then there exists 7 < R, such that A C ~. Denote my“A by A’. Since X is a
cofinal set, there is some B € X such that A’ C B. Hence A C ﬂ;lB. O
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Proposition 7.

Let X be a <p-increasing <p-cofinal sequence in [[,_ R, atisfying (*).,. Then P = {p, | x € X'}
satisfies the assumptions in Proposition 6.

This proof is similar to Proposition 5.
By Lemma 2, P has the size mp (X,,). We will show that e ----Ee=====- -~ >
{f» | p € Q} is unbounded for all Q € [P]™P(Re),

Let Y e [x]mexPelnln<w]) Gince X satisfies ()., -- va

we can find a strongly increasing sequence o 'V: v:v'\z'\z M V:v
Z = (z¢ | £ <wi) in Y. Thus, We can take S € D
such that

E<(<wi —VneS:NS: (ze(n) < ze(n)).
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We will show that {p, | z € £} holds ¥(w;). In order to

prove this, let Z’ € [Z]*". Take ng € S¢ for each £ < wy. oy W ey SO o
By the pigeon hole principle, there exists m < w such
that W = {z¢ € Z’ | ng = m} has the size wy. Thus,
{ze(m) | z¢ € W} has the size wy since if g,z €W AVAVAVAYAY A '
and & < ¢, then x¢(m) < z¢(m). Therefore, we can find "'V:y"\z'v V:'\ZM v """" o
W' C W such that {z | (m + 1) | 2 € W'} has the size

W' [ (m+1):size=w
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Now, by the choice of (H,, | o < R,,),

S={a <N, |Hy=H,a>R,;,} has the size R,,. e
Let « € S and a € [N,,,X,,41). Thus, B _m

{p=e() |2 € 2| 2 |{pec(a) | 22 € W3] EA'AA V__\Z}Z_\_/::::‘:W

:|{s0pz,§ n,a)|pm§EW’}|:w. :"
Then {f,, | x € Z} is an unbounded family by Lemma ---r PTG -
1. Hence, {f,, | x € Y} is also an unbounded family and H\ZH&@% v ________ R

this completes the proof.
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Thank you for your attention!
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