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The starting point

An object is ordinal definable if it is the unique object satisfying a
formula involving ordinal parameters.

We want to weaken this notion.
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Blurring definability

Definition (ZF)

Let κ > 1 be a cardinal, and let a be a set.

A <κ-blurry definition of a is an OD set A of cardinality less than κ

with a ∈ A.

The set a is <κ-blurrily ordinal definable, or <κ-OD, if it has a
<κ-blurry definition. I will also write <κ-OD for the class of all
sets that are <κ-OD.

The set a is hereditarily <κ-blurrily ordinal definable, denoted
<κ-HOD, iff TC({a}) ⊆ <κ-OD. Again, I write <κ-HOD for the class
of all <κ-HOD sets.

So an object is <κ-blurrily ordinal definable if it is one of fewer than
κ objects having a property using ordinal parameters.
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History

The case κ = 2 is (hereditary) ordinal definability (Gödel,
Myhill-Scott).

The case κ = ω is (hereditary) ordinal algebraicity (Hamkins, Leahy).

The case κ = ω1 was recently proposed and coined (hereditary)
“nontypicality” (Tzouvaras).
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Three aspects

1. Structural ZF/ZFC results on blurry HOD

2. Interaction with forcing

3. Consistency strength



Basics

Proposition (ZF)

Let 2 ≤ κ < λ be cardinals.

1. OD ⊆ <κ-OD ⊆ <λ-OD.

2. <κ-HOD is transitive, and HOD ⊆ <κ-HOD ⊆ <λ-HOD.

3. Under AC, Hκ ⊆ <(2<κ)+-HOD.

4. So under AC, V is the increasing union
∪

κ∈Card <κ-HOD.



<κ-HOD is an inner model

Proposition (ZF)

Let κ ≥ ω be a cardinal. Then <κ-HOD is an inner model.



<κ-HOD is an inner model

Proof.
Let κ ≥ ω. It suffices to show that <κ-HOD satisfies the following
condition: for every u ⊆ <κ-HOD, there is a transitive v ∈ <κ-HOD
such that u ⊆ v and Def(〈v,∈〉) ⊆ <κ-HOD.

So let u ⊆ <κ-HOD be given. Let u ⊆ Vα, and set v = Vα ∩<κ-HOD.
Clearly, v is transitive, OD and contained in <κ-HOD, so
v ∈ <κ-HOD, and u ⊆ v. To show that Def(〈v,∈〉) ⊆ <κ-HOD, let
φ(x, y⃗) be a formula, and let a⃗ = a0, . . . , an−1 ∈ v. We have to show
that z = {x ∈ v | 〈v,∈〉 |= φ(x, a⃗)} ∈ <κ-HOD. Since
z ⊆ v ⊆ <κ-HOD, it suffices to show that z is <κ-OD. For each i < n,
let Ai be an OD set containing ai such that card(Ai) < κ.

Then z is in the set

B = {{x ∈ v | 〈v,∈〉 |= φ(x, b⃗)} | 〈b0, . . . ,bn−1〉 ∈ A0 × . . .× An−1}.

B is OD, as A0, . . . , An−1 and v are, and
card(B) ≤ card(A)0 · . . . · card(A)n−1 < κ.
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Blurry choice

Theorem (ZF)

Let κ > 1 be a cardinal. Then, whenever C ∈ <κ-HOD is a set
consisting of nonempty sets, there is a function f : C −→ ([

∪
C]<κ)

V

such that f ∈ <κ-HOD, and such that for every c ∈ C, ∅ 6= f(c) ⊆ c.



Blurry Codes

Fix a recursive enumeration 〈φn | n < ω〉 of all internal first order
formulas in the language of set theory with two free variables. Let
Sat(x, y, z) be the satisfaction relation, so that for a set u, a natural
number n and a pair 〈a,b〉 ∈ u2, Sat(u,n, 〈a,b〉) holds iff
〈u,∈ ∩ u2〉 |= φn(a,b).

For a set a, let Σ(a) be least such that there is an OD set A with a ∈ A
and card(A) = Σ(a) (exists assuming AC).

Let D(a) be the least ordinal of the form ≺α,n, β� such that the set

{x ∈ Vα | Sat(Vα, φn, 〈x, β〉)}

has cardinality Σ(a) and contains a.
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Observation

We have the following facts about Σ and D.

1. The functions Σ and D are ordinal definable. Assuming ZFC, both
are total.

2. Let a be a set for which Σ(a) is defined. Let D(a) = ρ. Then
D−1(ρ) = {x | D(x) = ρ} is a blurry ordinal definition of a, and
card(D−1(ρ)) = Σ(a).

So every set a ∈ <λ-HOD has a “canonical” blurry definition D−1(ρ),
which has cardinality Σ(a) < λ.
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How close is HOD to blurry HOD?

Two important notions of closeness between models of set theory
are Hamkins’ approximation and cover properties. The following are
slight variants suitable in the ZFC context, where the inner models
are only assumed to satisfy ZF.

Definition

Let M ⊆ N be transitive class models of ZF, and let κ be a cardinal.

M satisfies the (external) κ-cover property in N if for every set a ∈ N
with a ⊆ M and card(a) < κ, there is a set c ∈ M such that a ⊆ c
and card(c) < κ.

Let a ∈ N be a set with a ⊆ M. A set of the form a ∩ c, where c ∈ M
and card(c) < κ, is called a κ-approximation to a in M. The set a is
said to be κ-approximated in M if every κ-approximation to a in M
belongs to M. M satisfies the (external) κ-approximation property in
N if whenever a ∈ N with a ⊆ M is κ-approximated in M, then a ∈ M.
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Approximation and cover

Theorem

Let κ ≤ λ be cardinals. Then <κ-HOD satisfies the λ-approximation
and -cover properties in <λ-HOD.

Note that the fact that HOD satisfies the ω-approximation property in
<ω-HOD immediately implies:

Theorem (Hamkins-Leahy)

<ω-HOD = HOD.

Hence, <κ-HOD is an inner model also for 2 < κ < ω, and the fact
about the approximation property holds for all cardinals 2 ≤ κ < λ.
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A useful fact

Lemma (ZFC)

Let λ be an infinite cardinal, and let M ⫋ N be inner models such
that M satisfies the λ-approximation-property in N.

1. There is a set a ∈ N \M with a ⊆ M and card(a) < λ.
2. If M in addition satisfies the λ-cover property in N, then there are
sets a, b such that a ∈ N \M, a ⊆ b ∈ M and card(b) < λ.

[Proof sketch: For 1, let a be an ∈-minimal element of N \M of
minimal cardinality µ. a is then µ-approximated in M. Hence µ < λ,
or else a is λ-approximated in M, and hence in M. 2. now follows
immediately.]

Note: This situation arises in particular in the case where
M = <κ-HOD ⫋ <λ-HOD = N.
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Consequences: Definability

Theorem

Let λ ≥ 2 be a cardinal and let κ ≥ λ be a regular cardinal. Then
HOD is definable in <λ-HOD using P(κ) ∩ HOD as a parameter.



Consequences: No New Large Cardinals

Proposition

Let κ be an infinite cardinal, and let λ ≥ κ be inaccessible in HOD.

1. If λ weakly compact in <κ-HOD, then it is weakly compact in
HOD.

2. If λ is measurable in <κ-HOD, then it is measurable in HOD.



How close is HOD to blurry HOD?, part 2

Definition (Bukovský)
Let M1 ⊆ M2 be transitive models, and let κ be a cardinal in M2.
Then AprM1,M2

(κ) says that whenever f ∈ M2 is a function from an
ordinal α to an ordinal β, then there is a function g : α −→ P(β) in
M1 such that for every ξ < α, f(ξ) ∈ g(ξ) and card(g(ξ))M1 < κ.

Exercise

Let κ be a cardinal. Then AprHOD,<κ-HOD(κ) holds.
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Consequences: Cardinalities and Cofinalities

Proposition

Let κ be an infinite cardinal. Then HOD and <κ-HOD have the same
cardinals and cofinalities above κ, in the following sense:

1. If λ is a limit ordinal such that cfHOD(λ) ≥ κ, then
cfHOD(λ) = cf<κ-HOD(λ).

2. For λ ≥ κ, λ is regular in HOD iff λ is regular in <κ-HOD.

3. CardHOD \ κ = Card<κ-HOD \ κ.
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Consequences: Generic Passage from HOD to blurry HOD

Theorem (ZFC, Bukovský 1973)

Suppose M is a transitive inner model of ZFC, and κ is an infinite
cardinal. Then the following conditions are equivalent:

1. V is a forcing extension of M by a κ-c.c. forcing notion.
2. AprM,V(κ) holds.

Hence, we get:

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

1. <κ-HOD satisfies the axiom of choice.

2. <κ-HOD is a forcing extension of HOD by a κ-c.c. forcing notion.
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Interactions with forcing: preserving upwards

Proposition

Suppose that P is a notion of forcing, G is generic for P over V, κ is
a cardinal in V[G], and V is definable in V[G] from a parameter in
<κ-ODV[G]. Then

<κ-ODV ⊆ <κ-ODV[G]

and so, <κ-HODV ⊆ <κ-HODV[G] as well.

Corollary
Let κ be a cardinal, and let P be a notion of forcing of cardinality γ,
where 22γ < κ. If G is P-generic over V, then

<κ-HODV ⊆ <κ-HODV[G].
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Interactions with forcing: homogeneity

Lemma

Let κ be a regular cardinal, P a cone homogeneous, <κ-closed
forcing notion, and let G ⊆ P be P-generic over V. Then

<κ-HODV[G] ⊆ V.

Note how nicely this lemma generalizes the folklore fact that if P is
cone homogeneous and G ⊆ P is generic, then HODV[G] ⊆ V - this is
the special case κ = ω.
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Interactions with forcing: preserving downwards

Lemma

Let κ be a regular cardinal, P a cone homogeneous, <κ-closed
forcing notion, κ̄ ≤ κ a cardinal such that P is <κ̄-OD, and let G ⊆ P
be P-generic over V. Then

<κ̄-HODV[G] ⊆ <κ̄-HODV.

Again, note how nicely this generalizes the fact that if P is and OD
forcing notion and G ⊆ P is generic, then HODV[G] ⊆ HODV.

I have used these general forcing tools in order to study the possible
constellations of leaps.
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Leaps

Definition
A cardinal λ > 2 is a leap if

<δ-HOD ⫋ <λ-HOD,

for every cardinal δ < λ.

Lemma

1. The class of leaps is closed in the ordinals.

2. The least leap, if there is one, is an uncountable successor
cardinal.

3. Successor leaps are successor cardinals.
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Big leaps

Definition
Say that a leap λ is a big leap if ∪

δ<λ,δ∈Card
<δ-HOD

 ⫋ <λ-HOD.

Theorem

Every leap is big, and if λ is a limit leap, then <λ-HOD does not
satisfy the axiom of choice.
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λ is a big leap

Let
T = {κ < λ | κ is a successor leap}.

For κ ∈ T, let κ− be its predecessor leap, and let τκ be least such that

Bκ = Vτκ ∩ (<κ-HOD \<κ−-HOD) 6= ∅.

So for every b ∈ Bκ, b ∈ <κ-HOD, b /∈ <κ−-HOD, but b ⊆ <κ−-HOD.
Then B⃗ = 〈Bκ | κ ∈ T〉 is OD, and B⃗ belongs to <λ-HOD, but it is not in
<κ-HOD for any cardinal κ < λ.
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Sample applications on leaps

By forcing, one can arrange that:

• GCH holds and the least leap is the double successor cardinal of
any regular cardinal (using Cohen forcing over L, say).

• GCH holds and the least leap is ℵ1 (using Kanovei-Lyubetsky’s
variant of a forcing due to Jensen, over L).

• GCH holds and each ℵn is a leap.
• GCH holds and the least leap is the successor of an inaccessible
cardinal (by forcing with a very homogeneous Souslin tree over
L, say).

• the least leap is the successor of a singular cardinal (by adding
lots of Kanovei-Lyubetsky reals over L, say - the singular cardinal
won’t be a strong limit then).

The question arises: can the least leap be the successor of a singular
strong limit cardinal? Or, more generally, can the leaps be bounded
below a singular strong limit cardinal whose successor is a leap?
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Strength

It turns out that a positive answer requires large cardinals:

Theorem (F.)
Suppose that λ is a singular strong limit cardinal such that

1. λ+ is a leap,
2. the leaps are bounded below λ.

Then there is an inner model with a measurable cardinal.

Skip the proof sketch?
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Assume towards a contradiction that there is no inner model with a
measurable cardinal.

Let λ̄ < λ be a cardinal which is greater than all the leaps below λ.
So <λ-HOD = <λ̄-HOD.

Let a0 be ∈-minimal in <λ+-HOD \<λ̄-HOD, of minimal cardinality
possible. Then κ := card(a0) ≤ λ.

It’s natural to try to use the Dodd-Jensen covering lemma. If <λ̄-HOD
were equal to HOD, then a0 ⊆ HOD could be identified with a set of
ordinals.

We have to work with blurry codes instead.
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So let P = D[a0], π = otp(P), and let e : π −→ P be the monotone
enumeration of P. Since card(a0) ≤ λ, it follows that π < λ+. For
ξ ≤ π, let

a0↾ξ = {x ∈ a0 | e−1(D(x)) < ξ} = a0 ∩ D−1[e[ξ]].

So a0↾π = a0. Let Ω ≤ π be least such that a0↾Ω /∈ <λ-HOD.



Claim: Ω is a limit ordinal.

Otherwise, say Ω = Ω̄ + 1. Let a′0 = a0 ∩ D−1(e(Ω̄)). Then
a0↾Ω = a↾Ω̄ ∪ a′0. Let κ̄ = card(D−1(e(Ω̄))). Then κ̄ < λ. So
P(D−1(e(Ω̄))) is OD (using e(Ω̄) as a parameter), has cardinality less
than λ, and contains a′0, making it a <λ-blurry ordinal definition of
a′0. Since a′0 ⊆ <λ-HOD, it follows that a′0 ∈ <λ-HOD. But also, by
minimality of Ω, a0↾Ω̄ ∈ <λ-HOD. Hence,

a0↾Ω = (a0↾Ω̄) ∪ a′0 ∈ <λ-HOD,

a contradiction.



Claim: κ < λ.

Since Ω is a limit ordinal, it makes sense to consider its cofinality.

As Ω ≤ π < λ+ and λ is singular, it follows that cf(Ω) < λ. And since
K ⊆ <λ+-HOD and K has the covering property, Ω̄ = cf<λ+-HOD(Ω) < λ.

So let c : Ω̄ −→ Ω be monotone and cofinal, c ∈ <λ+-HOD. Let
a′0 = {a0↾c(ξ) | ξ < Ω̄}. Then a′0 ∈ <λ+-HOD, a′0 ⊆ <λ-HOD and
a′0 /∈ <λ-HOD. So by minimality of κ, κ ≤ card(a′0) ≤ Ω̄ < λ, as
wished.



So we have κ = card(a0) < λ, and hence, card(D[a0]) < λ.

By the Dodd-Jensen Covering Lemma, there is a set c ∈ K such that
D[a0] ⊆ c and card(c) ≤ ℵ1 + card(D[a0]) < λ.

Let c′ = {ξ ∈ c | card(D−1(ξ)) < λ̄}. Then c′ is OD, and we still have
that D[a0] ⊆ c′.

It then follows that card(D−1[c′]) ≤ λ̄ · card(c′) < λ, and that
a0 ⊆ D−1[c′].

But then P(D−1[c′]) is an OD set of cardinality 2card(D−1[c′]) < λ, and it
contains a0, so a0 has a <λ-blurry ordinal definition and
a0 ⊆ <λ-HOD. This means that a0 ∈ <λ-HOD. This is a contradiction.
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Question
Is the consistency strength of a singular strong limit cardinal λ
which is a limit of leaps such that λ+ is also a leap, lower than a
measurable cardinal?

Remark
If in L, λ is a regular cardinal that’s not weakly compact, then one
can force with a very homogeneous Souslin tree to produce a
model where λ+ is the least leap. So if λ was inaccessible, it
remains so. Hence, the strength comes from the singularity of λ.

But one can also produce models where the least leap is λ+, and λ

is singular (of any desired cofinality), without assuming any large
cardinals. So the strength also comes from the strength (i.e., from
the assumption that λ is a strong limit cardinal).
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The reversal

Theorem
By Prikry forcing with respect to U over L[U], where U is on κ, one
arrives at a model where κ+ is a singular strong limit cardinal and
κ+ is the least leap.



Next goal: Arrange that ℵω is a strong limit cardinal and ℵω+1 is the
least leap.

Idea: try to use Magidor’s Prikry forcing with interleaved collapses.

Problem: If we collapse between the Prikry points, the Prikry
sequence becomes definable.

Revised idea: modify Magidor’s Prikry forcing with interleaved
collapses, so that the even indexed Prikry points remain cardinals
but the odd indexed ones get collapsed.
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The forcing conditions

M is the forcing notion consisting of conditions of the form

π = 〈〈κi | i < l〉, 〈fi | i < l, i is even〉,A, F〉

with the following properties:

1. 2 ≤ l ∈ ω is an even number, the length of π, denoted lh(π).
2. The sequence 〈κi | i < l〉 is strictly increasing, κ0 = ω, and for
0 < i < l, κi is inaccessible. Note that l− 1, the largest index for
which κi is defined, is odd.

3. For even i with i+ 2 < l,

fi ∈ Col(κ+
i , <κi+2).

4. fl−2 ∈ Col(κl−2, <min(A)).
5. A ∈ U, and for all α ∈ A, α is inaccessible.
6. For i < l, κi < min(A).
7. F is a function with domain [A]2, and if α < β < γ and α, β, γ ∈ A,
then F({α, β}) ∈ Col(α+, <γ).



The ordering

The ordering ofM is defined as follows. Let π be as above, and let

π′ = 〈〈κ′
i | i < l′〉, 〈f′i | i < l′ is even〉,A′, F′〉 ∈ M.

Then π′ ≤ π if:

1. l ≤ l′.
2. For i < l, κi = κ′

i .
3. For l ≤ i < l′, κ′

i ∈ A.
4. For all even i < l, fi ⊆ f′i .
5. For all even i ∈ [l, l′), F(κ′

i , κ
′
i+1) ⊆ f′i .

6. A′ ⊆ A.
7. For all {α, β} ∈ [A′]2, F(α, β) ⊆ F′(α, β).



The cardinals in the extension

ℵ0 ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 · · · ℵ2n ℵ2n+1 · · ·
κ0 κ+

0 κ2 κ+
2 κ4 κ+

4 · · · κ2n κ+
2n · · ·



The construction

• Start in V = L[U], where U is on κ.

• Force withM. Let G be generic. The extension is of the form

L[U][G] = L[U][κ⃗, f⃗]

where κ⃗ is the Příkrý sequence and f⃗ is the sequence of
collapsing functions (where for even n and all ξ ∈ [κ+

n , κn+2),
γ 7→ fn(ξ, γ) is a surjection from κ+

n onto ξ).
We want there to be no leap up to κ = ℵω = supn<ω κn, so we
have to ensure these surjections are ordinal definable. So:

• Force to code f⃗ into the continuum function up high (say, above
ℵω+2). Call the forcing to do this C, and the generic for it H.
Note: the forcing C is not ordinal definable, but it is weakly
homogeneous.
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V[G][H] is our model

• In V[G][H], κ = ℵω is a strong limit cardinal.

• κ⃗ /∈ <κ-HODV[G][H].
• κ⃗ ∈ <κ+-HODV[G][H].
• So κ+ is a leap in V[G][H].
• κ is the least leap in V[G][H].
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Suppose κ⃗ ∈ A = {x | φ(x, ρ)}V[G][H]. Then in V[G], 1C forces φ(ˇ⃗κ, ρ̌).
Let π ∈ G force this. So in V:

π ⊩M “1Ċ ⊩ φ( ˙⃗κ, ρ̌)”.

One can now find κ many finite variations of G, all of the form G′,
where G′ results from G by changing its κ⃗ sequence in one odd
coordinate, and G′ also contains a condition like π. In particular,
f⃗G = f⃗G′ , and hence, ĊG = ĊG′ . So φ( ˙⃗κG

′
, ρ) holds in

V[G′][H] = V[G][H]. So κ⃗′ ∈ A, giving card(A) ≥ κ.
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• In V[G][H], κ = ℵω is a strong limit cardinal. ✓
• κ⃗ /∈ <κ-HODV[G][H]. ✓
• κ⃗ ∈ <κ+-HODV[G][H].

• So κ+ is a leap in V[G][H].
• κ is the least leap in V[G][H].

By the Dodd-Jensen Covering Lemma for L[U], since 0† does not exist
in V[G][H], there is a maximal Příkrý sequence C over L[U]. Each Příkrý
sequence is determined by C, a subset of ω and a finite subset of κ.
So in total there are κ Příkrý sequences over L[U], and κ⃗ is one of
them.
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i : β −→ b, we can replace a with ā = i−1[a], a subset of β < κ. Since
i,a ∈ <κ̄-HOD, ā ∈ <κ̄-HOD as well. And ā /∈ HOD, or else a ∈ HOD.
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Magidor still holds ofM: ā ∈ V[⃗f↾j] for some j < ω! So ā ∈ L[U][⃗f↾j],
but f⃗ is definable in V[G][H], and so is U. So ā is in HODV[G][H] after all,
a contradiction.
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So we get the equiconsistency of the following theories over ZFC:

• There is a measurable cardinal.
• There is a singular strong limit cardinal κ such that κ+ is a leap
and the leaps are bounded below κ.

• ℵω is a strong limit cardinal and ℵω+1 is the least leap.

There are lots of open questions in this area. One obvious set of
questions has to do with the cofinality of the singular strong limit
cardinal below which the leaps are bounded and whose successor is
a leap.
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A theorem of Shelah

I am grateful to Moti Gitik for pointing out to me the relevance of the
following theorem:

Theorem (Shelah)
If κ is a singular strong limit cardinal of uncountable cofinality κ̄, M
is an inner model which contains Hκ along with a well-ordering of
it, and cfM(κ) = κ̄, then P(κ) ⊆ M.



Observation

Suppose that κ is a strong limit cardinal. Then Hκ ⊆ <κ-HOD.
Moreover, if κ is singular, then (κ is singular)<κ-HOD iff
cf<κ-HOD(κ) = cf(κ).

Observation

Suppose κ is a strong limit cardinal which is singular in <κ-HOD,
and suppose that the leaps below κ are bounded in κ. Then, in
<κ-HOD, there is a well-ordering of Hκ in order type κ.
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Shelah’s theorem gives:

Corollary
Suppose κ is a singular strong limit cardinal of uncountable
cofinality, below which the leaps are bounded, and such that
(κ is singular)<κ-HOD. Then P(κ) ⊆ <κ-HOD.

Theorem

Suppose κ is a singular strong limit cardinal of uncountable
cofinality below which the leaps are bounded, yet κ+ is a leap. Then
κ is regular in <κ-HOD.

Corollary
Suppose κ is a singular strong limit cardinal of uncountable
cofinality below which the leaps are bounded and such that κ+ is a
leap. Then κ = ℵκ.
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In particular, it cannot be that ℵω1 is a strong limit cardinal and ℵω1+1
is the least leap. This is one more sense in which the result at ℵω is
optimal.

Regarding the consistency strength, all we have at present is a lower
bound.

Corollary
Suppose κ is a singular strong limit cardinal of uncountable
cofinality κ̄ below which the leaps are bounded and such that κ+ is
a leap. Then there is an inner model in which κ is measurable with
o(κ) = κ̄.
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Thank you!


