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Two themes

Projective determinacy is an important axiom used to study
definable sets of reals beyond Borel sets. Consequences:

• Regularity
• Lebesgue measurability of all projective sets

• Nonexistence
• No projective wellordering of the reals
• No selector for equality up to finite error (E0)

• Structure
• Projective uniformisation of all projective relations
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Two themes

Iterated forcing is the main tool used to study the independence of
properties of sets of reals.

Example
The Borel conjecture states that every strong measure 0 set is
countable.

Recall that for any sequence of positive reals ϵn, a strong measure 0
set is covered by a sequence of balls of radii ϵn.

• CH implies that the Borel conjecture fails
• Laver (1976) showed that the Borel conjecture holds a ter
iterating Laver forcing

2



Two themes

We connect these two approaches by studying the

Problem
Which iterated forcings preserve projective determinacy?

Joint work with Jonathan Schilhan (Leeds) and Johannes Schürz
(Vienna).

▶ Jonathan Schilhan, Philipp Schlicht, Johannes Schürz:
The interplay of iterated forcing with determinacy and regularity
33 pages, in preparation
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Test question

Question
Does Cohen forcing preserve analytic determinacy?

We do not know of a direct proof using the definition of analytic
determinacy.
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Determinacy

Fix a subset A of 2ω . In the game G(A), two players I and II alternate
playing moves with values 0 and 1.

I x0 x2 x4 x6 …
II x1 x3 x5 x7 …

II wins the run⇐⇒ x = ⟨xn | n ∈ ω⟩ ∈ A

G(A) is called determined if I or II has a winning strategy.

Theorem (Martin 1975)
All Borel sets are determined.

Projective determinacy (PD) is the statement that all projective sets
are determined.
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What was known

It is easy to destroy determinacy if ω1 can be collapsed. We will thus
assume P is proper.

In fact, we will always assume stronger forms of properness. It is
open whether properness suffices.

It is further natural to assume P is a projective forcing on the reals.
The complexity of the forcing is approximately the same as the level
of projective determinacy.

Theorem (David 1978)
It is consistent that there exists a Σ1

3-definable c.c.c. forcing that
destroys analytic determinacy.
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What was known

Analytic determinacy is closely linked with Σ1
3-absoluteness.

Theorem (Woodin 1982)
Analytic determinacy (actually uniformisation up to meager resp.
null) implies Σ1

3-absoluteness for Cohen and random forcing.

The proofs of preservation of projective determinacy also show
projective absoluteness.

7



What was known

Problem
Does every Borel proper forcing preserve analytic determinacy?

This is really a question of Ikegami (2010). He asked this for
absolutely ∆1

2 proper tree forcings.

Theorem (S. 2014)
Any Σ1

2 absolutely c.c.c. forcing preserves Π1
n-determinacy for each

n ≥ 1.

Theorem (Castiblanco, S. 2020)
Sacks, Mathias, Laver and Silver forcing preserve Π1

n-determinacy for
each n ≥ 1.
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Background

A cardinal κ is measurable if the following equivalent conditions
hold:

• There is a non-principal <κ-complete ultrafilter on κ.
• There is an elementary embedding j : V → N to some transitive
model N with crit(j) = κ.

Theorem (Levy, Solovay 1967)
If κ is measurable and P is a forcing of size |P| < κ, then κ remains
measurable in any P-generic extension V[G] of V.

Proof sketch.
Li t j : V → N to j∗ : V[G] → N[G] by letting j∗(σG) = j(σ)G.

Many variants of this theorem are known, for example for strong,
Woodin, supercompact cardinals.
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Background

Some large cardinal properties of small cardinals are preserved by
sufficiently nice forcings.

Theorem (Foreman 2013)
Generic supercompactness of ω1 is preserved by all proper forcings.
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Sharps

Definition (Silver, folklore)
0# exists if (equivalently) each of the following objects exist:

1. An uncountable set of ordinals which are order-indiscernible
over L.

2. A non-trivial elementary embedding j : L → L.
3. A countable structure (Lα,∈,U) such that

• (Lα,∈) is a model of ZFC− with a largest cardinal κ,
• (Lα,∈,U) |= Σ0-separation + U is a <κ-complete ultrafilter on κ

• All iterated ultrapowers of (Lα,∈,U) are wellfounded.
The least such structure is denoted M#

0 or 0#.

More generally, x# is defined for any real x by replacing L with L[x].

A measurable cardinal implies that x# exists for all reals x.
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Analytic determinacy and sharps

Theorem (Martin 1970, Harrington 1978)
The following conditions are equivalent:

1. x# exists for all reals x
2. Analytic determinacy
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Cohen forcing

Proposition (folklore)
Cohen forcing preserves analytic determinacy.

Proof.
Suppose:

• x# exists for all reals x.

• V[G] is a Cohen extension of V. Let x denote the Cohen real.

• σ is a name for a new real. We can assume σ is a nice name.

The name σ is essentially a real, since Cohen forcing has the c.c.c. Thus σ#

exists. Hence there is a nontrivial elementary embedding j : L[σ] → L[σ].

x is Cohen generic over L[σ], since Cohen forcing has the c.c.c. and
is Σ1

2-definable.

We can li t j to j∗ : L[σ][G] → L[σ][G] as in the Levy-Solovay theorem. Since
the new real σG ∈ L[σ][G], this yields (σG)# in V[x].
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Sacks forcing

Proposition (Castiblanco, S. 2020)
Sacks forcing P preserves analytic determinacy.

Proof sketch.
Again, we obtain a small P-name σ and a nontrivial elementary embedding
j : L[σ] → L[σ].

Force over L[σ] in V with finite subtrees of 2<ω ordered by end ex-
tension.

This adds a perfect tree T such that all its branches are Cohen reals over
L[σ]. This remains true in generic extensions of V.

Force with P below T ∈ P over V. Let x denote the Sacks real.

Then x is Cohen generic over L[σ].

Again, we can li t j to j∗ : L[σ][x] → L[σ][x] and obtain (σx)# in V[x].
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Proper forcing

Definition (Shelah 1980)

1. Suppose that P is a forcing, Ġ is a P-name for the P-generic filter
and M is a model. A condition p is called (M,P)-generic if

q ⊩ “Ġ ∩ N is (P ∩ N)-generic over N”.

2. P is proper if for sufficiently large regular θ, there exists a club of
countable M ≺ Hθ with the following property.

“For every p ∈ P ∩M, there exists some (M,P)-generic q ≤ p.”
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Suslin forcing

Definition (Goldstern 1992)

1. A Suslin forcing is a forcing on the reals with a Σ1
1 definition of ≤.

2. A strongly Suslin forcing is a Suslin forcing with a Σ1
1 definition

of ⊥.

Definition (following Judah, Shelah 1988)
Let P be a forcing on the reals, e.g. a Suslin forcing.

1. A countable transitive model N of a large fragment of ZFC is
called a candidate for P if P ∩ N ∈ N.

2. P is called proper-for-candidates1 if for every candidate N for P
and every p ∈ P ∩ N there exists an (N,P)-generic condition
q ≤ p.

1Originally called proper Suslin forcing
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Capturing

Definition (Castiblanco, S. 2020)
Suppose that P and Q are forcings and Q is amenable to each L(x). We say that P is
captured by Q over L if the following holds for any P-name τ for a real

“ If H is P-generic over V, then τ
H is contained in a Q ∩ L(y)-generic extension of some L(y). ”

Equivalently: For any p ∈ P and any real x, there exists a real y with x ∈ L(y) such that
some q ≤P p forces:

“There exists a Q ∩ L(y)-generic filter g over L(y) with τ ∈ L(y)[g].”

The same makes sense for any operatorM(x) instead of L(x):

Definition
An operator is a functionM that sends each real x to a structureM(x) = (M(x),∈, E)
such that

• x ∈ M(x), M(x) is transitive, M(x) |= ZFC− and M(x) is E-amenable.
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Capturing

All proper-for-candidates Suslin forcings are captured over L. This
includes most classical proper forcings which add a real.

Capturing over L implies preservation of analytic determinacy, for
proper forcings on the reals.
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Iterable structures

One can reformulate the above preservation proofs using iterable
structures (M,∈,U) instead of elementary embeddings
j : L(σ) → L(σ).

The Cohen or Sacks real x over V is generic over some (M0,∈,U). The
iteration li ts step by step to

M0[x] → M1[x] → · · · → Mα[x] → . . .
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Iterable structures

More generally, work with transitive structures (M,∈, E) where

• (M,∈) |= ZFC−

• E is an M-amenable sequence of (partial) extenders

• All extenders in E, except possibly the last one, are elements of M

A extender is a directed system of ultrafilters.

Definition
We call (M,∈, E) n-tall if M has n Woodin cardinals and a measure above
them, witnessed by E.

An operatorM is called n-tall if eachM(x) is n-tall.
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Iterable structures

Why is it not so easy to preserve more complex iterable structures?

An iteration tree on (M,∈, E) is formed along a tree order T such that
an extender can be applied to a different model than the last one.

Definition
(M,∈, E) is called ω1-iterable if there exists a strategy choosing
branches such that all ultrapowers in countable iteration trees on M
using E and its images are wellfounded.
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Small model characterisations

Let Φ(M) be a property of models of the form Lα[X], where X is a set
and α ≤ Ord.

Definition
SΦ states that every real is an element of a transitive class model M
of ZFC− as above with Φ(M).

We call this a small model property.

Example
Let Φ(M) state that ωM

1 is countable in V and M has uncountable
height. SΦ then states that ωV

1 is inaccessible in L(x) for every real x.

Solovay showed this is equivalent to the statement that all Π1
1 sets

have the perfect set property.
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Characterisations of PD

We isolated a notion called stable iterability of an operatorM.

It says essentially that for an iteration tree T on someM(x) of limit
length, one find the right branch inM(T), and any of its generic
extensions by small forcing, in a uniform way.

We derived the following characterisation from well-known results.

Corollary
The following statements are equivalent for any n:

1. Π1
n+1-determinacy.

2. There exists an n-tall stably M-iterable operator M.

• For example, theM#
n -operator from inner model theory is stably

M#
k -iterable for any k ≥ n− 1.
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Preservation of PD

The notion of stable iterability is defined so that one can extend the
operator to generic extensions.

Proposition (Schilhan, Schürz, S.)
Suppose thatM is any stablyM-iterable P-amenable operator and P
is captured overM.

1. In any P-generic extension,M can be extended to an
M∗-iterable operatorM∗.

2. IfM is n-tall, thenM∗ is n-tall.

It follows that any proper-for-candidates Suslin forcing preserves PD
level-by-level.
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Preservation of PD

Corollary
Any Σ1

3 proper-for-candidates forcing preserves Σ1
2-determinacy.

Uses that M#
1 (x) is amenable for Σ1

3 sets.

• This contrasts David’s result that Σ1
3 c.c.c. forcings can destroy

analytic determinacy.
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Axiom A

Lemma (Schilhan, Schürz, S.)
Suppose that ω1 is inaccessible to the reals, P = (P, ≤⃗) satisfies Axiom
A, P is a set of reals and the following conditions hold for any real x:

1. P ∩ L[x] ∈ L[x] satisfies Axiom A in L[x].
2. For countable subsets A ∈ L[x] of P and p ∈ P, the statements

“A is an antichain”

“A is predense below p”

are absolute between L[x] and V.

Then P captures itself.

Given 1. and 2. for all transitive models M instead of L[x], P is
proper-for-candidates.
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Axiom A

Proof.
Let Ġ be a P-name for the P-generic filter and τ ∈ Hω1 a name for a real, coded by a
real x. We claim that

D = {q ∈ P : ∃p ≥ q q ⊩P Ġ ∩ L[x, p] is P-generic over L[x, p]}

is dense.

Fix p ∈ P. Let ⟨An | n ∈ ω⟩ enumerate all maximal antichains A ∈ L[x, p] of P∩ L[x, p] in
L[x, p].

• Using Axiom A in L[x, p], construct a fusion sequence ⟨pn | n ∈ ω⟩ below p with
pn ∈ L[x, p] such that L[x, p] ⊨ {p′ ∈ An : p′ ∥ pn} is countable.

• Using Axiom A in V, find a condition q ∈ P with q ≤ pn for all n ∈ ω.

To see that q is as required, let A ∈ L[x, p] be a maximal antichain in P ∩ L[x, p]. Then
A = An for some n ∈ ω.

Then {p′ ∈ An : p′ ∥ pn} is maximal below pn in V by the absoluteness assumption.

Since q ≤P pn , q ⊩P Ġ ∩ An ̸= ∅.
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Background

Suppose that P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of
proper-for-candidates strongly Suslin forcings of countable length α.

Suppose that M is a transitive model containing P.

• Judah and Shelah defined a procedure to map a P-generic filter G over
V to a filter GM on PM.

Theorem (Judah, Shelah 1988)
GM is PM-generic over M.

• Similar results (Judah, Shelah and Goldstern) for iterations of
uncountable length

• Their main application: force the Borel conjecture over Solovay’s model
while preserving the Baire property for projective sets.

• Technique used in work of Goldstern, Kellner and others

The proof works for models L[x] if ω1 is inaccessible to the reals.
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Background

Suppose that P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of
proper-for-candidates strongly Suslin forcings of length ≥ω2.

Problem
Does every real in a P-generic extension V[G] have a nice name
σ = {(ň,p) | p ∈ An} such that for each n ∈ ω,∪

p∈An

supp(pn)

is countable?

The following arguments find a way around this.

29



Results

Theorem (Schilhan, Schürz, S.)
Suppose that ω1 is inaccessible in L(x) for every real x. Suppose that
P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of proper-for-candidates Suslin
forcings such that for every α < κ,

⊩Pα Ṗα is proper-for-candidates in every small generic extension of any
L(x).

Then P is captured over L by a countable support iteration Q of proper-for-candidates
Suslin forcings of countable length.

Example
If P is an iteration of Sacks forcing, then Q is an iteration of Sacks forcing as well.

• Therefore, every real in V[G] is contained in a generic extension of some L(x).
• The above li ting argument shows that ∀x x# exists is preserved.

Corollary (Schilhan, Schürz, S.)
The combination of the Borel conjecture and analytic determinacy is consistent, if
latter is consistent.
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Proof sketch

Let

• p ∈ P, τ a P-name for a real and Ñ ≺ Hθ countable with p,P, τ ∈ Ñ.
• col : Ñ → N be the Mostowski collapse and α := col(κ).
• y a real coding N.

In N, col(P) is a countable support iteration R = Rα = ⟨Rβ , Ṙβ : β < α⟩ of
Suslin forcings.

Pcol−1(β) ∈ V

Pcol−1(β) ∈ Ñ

Qβ ∈ L(y)

Rβ ∈ N

col−1

iβ

jβ

id
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Proof sketch

For each β ≤ α, we define

• a countable support iteration of Suslin forcings Qβ = ⟨Qξ, Q̇ξ : ξ < β⟩ in L(y),
• a map iβ : Rβ → Qβ in L(y) and
• a map jβ : Qβ → Pcol−1(β) in V.

We say that a Pcol−1(β)-generic filter G over V is

• (L(y),Qβ)-generic if j−1
β (G) is a Qβ-generic filter over L(y)

• (N,Rβ)-generic whenever i−1
β (j−1

β (G)) is an Rβ-generic filter over N.

Similarly, we say that a Qβ-generic filter H over L(y) is

• (N,Rβ)-generic whenever i−1
β (H) is an Rβ-generic filter over N.

We will ensure that for each β ≤ α:

1. iξ(r ↾ ξ) = iβ(r) ↾ ξ for every ξ < β, r ∈ Rβ ,
2. jξ(q ↾ ξ) = jβ(q) ↾ col−1(ξ) for every ξ < β, q ∈ Qβ .
3. iβ(r0) ≤Qβ

iβ(r1) if r0 ≤Rβ r1 for all r0, r1 ∈ Rβ ,
4. jβ(q0) ≤Pcol−1(β)

jβ(q1) if q0 ≤Qβ
q1 for all q0, q1 ∈ Qβ ,

5. for any Pcol−1(β)-generic G over V such that G is (L(y),Qβ)-generic and (N,Rβ)-generic, for
every r ∈ Rβ :

col−1(r) ∈ G ⇔ jα(iα(r)) ∈ G
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Proof sketch

Remark
How do we get the forcings Q̇α right? Suppose that

• G is Pπ(β)-generic over V,

• G is (M(y),Qβ)-generic and

• G is (N,Rβ)-generic.

By 5., for any Rβ-name for a real ẋ ∈ N,

ẋi
−1
β

(j−1
β

(G))
= ẋcol(G) = col−1(ẋ)G.

Claim
For every q ∈ Q there exists some p ≤P j(q) in P such that

p ⊩P “Ġ is Q-generic over L(y)”.

• The proof is similar to the preservation of properness.
• Use this to show that in L(y), Q is an iteration of proper-for-candidates forcings.

Similar arguments show that j−1
α [G] is Q-generic over L(y) as required. 33



Results

We further obtained general results about not adding new classes to
thin equivalence relations, building on work of Hjorth.

• The proofs use transitivity of the relation.
• Relaxing this requirement leads to thin graphs.

Theorem (Schilhan, Schürz, S.)
Suppose that analytic determinacy holds and G is an absolutely ∆1

3
thin graph. A ter forcing with a countable support iteration of Sacks
forcing, any new real has an edge to some ground model real.
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Regularity properties

Theorem (follows from Pawlikowski 1986, Judah, Shelah 1989)

1. Cohen forcing preserves the statement: all ∆1
2 sets have the Baire

property.

2. Random forcing preserves the statement: all ∆1
2 sets are Lebesgue

measurable.

Theorem (Judah, Shelah 1988, Goldstern, Shelah 1992)
Over Solovay models, countable support iterations of Suslin
proper-for-candidates forcings preserve the property of Baire of all
projective sets.
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Results

Theorem (Schilhan, Schürz, S.)
If P satisfies a uniform version of capturing for Cohen forcing, then P
preserves the statement:

Every ∆1
2 set has the Baire property.

For example: any countable support product or iteration of Sacks
forcing works.
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Future directions

It is natural to aim for similar preservation results for stronger
determinacy principles.

Question
Does the above class of forcings preserve determinacy in L(R)?

We would like to see that simple definability of the forcings is
necessary.

Question
Can Mathias forcing with an ultrafilter destroy analytic determinacy?
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Future directions

Ishiu (2005) proved that <ω1-proper is equivalent to Axiom A.

Question
Is there a similar result for the analogue for <ω1-proper for
proper-for-candidates?

The fine line between proper and proper-for-candidates deserves to
be better understood.

Question
Does proper imply proper-for-candidates for Borel forcings,
assuming analytic or projective determinacy?

This is closely related to a question of Ikegami (2010) on preservation
of analytic determinacy by simply definable proper forcings.
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