

A Journey guided by the Stars Part II

Forcing "NS $_{\omega_1}$ is ω_1 -dense" from Large Cardinals Andreas Lietz

June 19th

Kobe Set Theory Seminar

Recap, Dense Ideals

An ideal I on ω_1 is a collection of "small subsets" of ω_1 .

- \boxtimes $\varnothing \in I$, $\omega_1 \notin I$.
- $X \subseteq Y \in I \Rightarrow X \in I$
- in this talk: if $X_n \in I$ for $n < \omega$ then $\bigcup_{n < \omega} X_n \in I$
- in this talk: all countable subsets of ω_1 are in I and I is normal.

I induces equivalence relation on $\mathcal{P}(\omega_1)$, $X \sim_I Y$ if $X \triangle Y \in I$. $\mathbb{P}_I = (\mathcal{P}(\omega_1)/\sim_I)^+$ with order induced by \subseteq .

 ω_1 -dense \Rightarrow saturated \Rightarrow precipitous.

Definition

An ideal I on ω_1 is ω_1 -dense if \mathbb{P}_I has a dense subset of size ω_1 .

Special focus on NS_{ω_1} , the nonstationary ideal on ω_1 . NS_{ω_1} is ω_1 -dense if $\exists \langle S_i \mid i < \omega_1 \rangle$ sequence of stationary sets so that for all stationary $T \subseteq \omega_1$, $\exists i < \omega \exists C \subseteq \omega_1$ club $S_i \cap C \subseteq T$.

Recap, Woodin's Results

Theorem (Woodin, late 70s)

Assume $V \models \mathsf{ZF} + \mathsf{AD}_{\mathbb{R}} + ``\Theta'$ is regular". Then in a forcing extension $\mathsf{ZFC} + \mathsf{CH} + ``there is a dense ideal on <math>\omega_1$ " holds.

Theorem (Woodin)

Suppose there is an almost huge cardinal. Then in a forcing extension there is a dense ideal on ω_1 and CH hold.

Theorem (Woodin)

Assume $L(\mathbb{R}) \models \mathsf{AD}$. Then in a forcing extension of $L(\mathbb{R})$, ZFC + "NS $_{\omega_1}$ is ω_1 -dense" holds. In fact, if there are a proper class of Woodin cardinals then "NS $_{\omega_1}$ is ω_1 -dense" is Ω -consistent, i.e. ZFC $\not\vdash_{\Omega} \neg ($ "NS $_{\omega_1}$ is ω_1 -dense").

The Ω -Conjecture suggests that "NS $_{\omega_1}$ is ω_1 -dense" can be forced from large cardinals.

Recap, Main Result

Question (Woodin, late 90's)

Assume some large cardinal. Is there a stationary set preserving partial order ${\mathbb P}$ so that

$$V^{\mathbb{P}} \models$$
 "NS $_{\omega_1}$ is ω_1 -dense" ?

Theorem (L.)

Suppose there is an inaccessible cardinal κ which is a limit of $<\kappa$ -supercompact cardinals. Then there is a stationary set preserving forcing $\mathbb P$ with

$$V^{\mathbb{P}} \models \text{``NS}_{\omega_1} \text{ is } \omega_1\text{-dense''}.$$

Recap, Strategy

Idea: By Asperó-Schindler $MM^{++} \Rightarrow (*)$ suggests to solve for x:

$$\frac{\mathsf{MM}^{++}}{(*)} = \frac{x}{\mathbb{Q}_{\mathsf{max}^{-}}(*)}$$

Theorem (L.)

There is a forcing axiom QM so that

- QM can be forced by stationary set preserving forcing from a supercompact limit of supercompact cardinals.
- **QM** implies \mathbb{Q}_{\max} -(*) (in particular "NS $_{\omega_1}$ is ω_1 -dense").

Recap, QM

 NS_{ω_1} is ω_1 -dense $\Leftrightarrow \exists \pi \colon \mathsf{Col}(\omega, \omega_1) \to \mathbb{P}_{\mathsf{NS}_{\omega_1}}$ dense embedding.

Definition

Suppose $\mathbb B$ is a forcing of size $\leqslant \omega_1$. $\diamondsuit(\mathbb B)$ holds if there is an embedding $\pi \colon \mathbb B \to \mathcal P(\omega_1) \backslash \mathsf{NS}_{\omega_1}$ so that $\forall p \in \mathbb B$ there are stationarily many countable $X < H_{\omega_2}$ with

$$p \in \{q \in \mathbb{B} \cap X \mid \omega_1 \cap X \in \pi(q)\}$$
 is a filter generic over X .

$$\diamondsuit(\omega_1^{<\omega})$$
 is $\diamondsuit(\mathsf{Col}(\omega,\omega_1))$.

Definition

QM holds if $\exists \pi$ witnessing $\Diamond(\omega_1^{<\omega})$ and $\mathsf{FA}_{\omega_1}(\{\mathbb{P} \mid \mathbb{P} \text{ preserves } \pi\})$ holds, i.e. whenever $V^{\mathbb{P}} \models \text{``}\pi$ witnesses $\Diamond(\omega_1^{<\omega})$ " and $\langle D_i \mid i < \omega_1 \rangle$ are dense subsets of \mathbb{P} , there is a \mathbb{P} -filter meeting all D_i .

Recap, *Q*-Iterations

Definition

Suppose π witnesses $\lozenge(\omega_1^{<\omega})$. A Q-iteration is a nice iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leqslant \gamma, \beta < \gamma \rangle$ of π -preserving forcing so that

■ For $\alpha < \gamma$ successor

$$V^{\mathbb{P}_{\alpha}} \models \text{``}\dot{\mathbb{Q}}_{\alpha}$$
 forces SRP and that $\text{ran}(\pi)$ is dense for old sets"

■ For $\alpha < \gamma$ limit no further requirement on $\dot{\mathbb{Q}}_{\alpha}$.

Work-Life-Balance Theorem (L.)

Q-iterations preserve π .

Today's Goal

Lemma

Suppose π witnesses $\Diamond(\mathbb{B})$ and there is a supercompact cardinal. Then SRP holds in an π -preserving extension.

Lemma

Suppose π witnesses $\diamondsuit(\omega_1^{<\omega})$ and there are two Woodin cardinals with a measurable above. The there is an π -preserving forcing $\mathbb P$ which makes " π dense for old sets".

π -Stationary Sets

Proposition (Folklore)

Suppose $S \subseteq \omega_1$. The following are equivalent:

- 1. S is stationary.
- 2. For any club $C \subseteq [H_{\omega_2}]^{\omega}$, there is $X < H_{\omega_2}$ with $X \in C$ and $X \cap \omega_1 \in S$.

Definition

Suppose π witnesses $\diamondsuit(\mathbb{B})$. A countable $X < H_{\theta}$ is π -slim if $\{q \in \mathbb{B} \mid \omega_1 \cap X \in \pi(q)\}$ is a filter generic over X. A subset $S \subseteq \omega_1$ is π -stationary if for any club $\mathcal{C} \subset [H_{\omega_2}]^{\omega}$ there is a π -slim $X < H_{\omega_2}$ with $X \in \mathcal{C}$ and $\omega_1 \cap X \in S$.

 NS_{π} is the ideal of π -nonstationary sets.

♦-Forcing

σ -Closed Forcing preserves π

Proposition

Suppose π witnesses $\Diamond(\mathbb{B})$. Every σ -closed forcing preserves π .

Proof.

Suppose θ is sufficiently large, regular. Let $X < H_{\theta}$ be π -slim, i.e. countable and

$$g := \{ p \in \mathbb{B} \cap X \mid \delta^X \in \pi(p) \}$$
 is a filter and generic over X .

Suppose $\mathbb{B}, \mathbb{P} \in X$ and $p \in \mathbb{P} \cap X$. We will find $q \leq p$ so that

$$q \Vdash \text{``}\check{X} \sqsubseteq \check{X}[\dot{G}] \land \check{X}[\dot{G}] \text{ is } \pi\text{-slim''}.$$

Let $\rho: M_X \to X$ be the anticollapse. Let $\bar{g} = \rho^{-1}[g]$. Then \bar{g} is generic over M_X . If $a \in X$ then $\bar{a} = \rho^{-1}(a)$.

σ -Closed Forcing preserves π

Proof (continued).

Let $\langle q_n \mid n < \omega \rangle$ be a descending sequence in $\bar{\mathbb{B}}$ with

- $\rho(q_0) = p$ and
- for any dense $D \subseteq \bar{\mathbb{B}}$ with $D \in M_X[\bar{g}]$, have some $q_n \in D$.

As \mathbb{P} is σ -closed, can find some $q \leqslant \rho(q_n)$, all $n < \omega$.

Now suppose G is \mathbb{P} -generic with $q \in G$. Then $\overline{G} = \rho^{-1}[G]$ is generic over $M_X[\overline{g}]$, in particular over M_X . So $X[G] \cap V = X$.

By the product lemma, \bar{g} is generic over $M_X[\bar{G}] = M_{X[G]}$. Hence g is generic over X[G], so X[G] is π -slim.

Isolating the properties of q leads to π -semiproper forcing.

π -Semiproper Forcing

Definition

Suppose π witnesses $\diamondsuit(\mathbb{B})$. A forcing \mathbb{P} is π -semiproper if for all large enough regular θ and all π -slim $X < H_{\theta}$ with $\mathbb{P} \in X$: If $p \in \mathbb{P} \cap X$ then there is $q \leqslant p$ with

$$q \Vdash ``\check{X} \sqsubseteq \check{X}[\dot{G}] \land \check{X}[\dot{G}] \text{ is } \check{\pi}\text{-slim}".$$

Have σ -closed $\Rightarrow \pi$ -semiproper $\Rightarrow \pi$ -preserving.

Theorem (L.)

Nice iterations of π -semiproper forcing are π -semiproper.

Forcing SRP

Suppose π witnesses $\diamondsuit(\mathbb{B})$.

- There is a standard forcing to force "an instance of SRP".
- The same argument which shows this is semiproper shows it is π -semiproper.
- Iterating these up to a supercompact gives SRP.

In fact can get a forcing axiom this way:

Definition

 $\mathsf{MM}(\pi)$ is $\mathsf{FA}_{\omega_1}(\{\mathbb{P} \mid \mathbb{P} \text{ is } \pi\text{-semiproper}\}).$

Corollary

Suppose there is a supercompact cardinal. Then $MM(\pi)$ holds in a forcing extension by π -semiproper forcing.

Unintended Consequences

The iteration theorem for π -semiproper forcing generates known iteration theorems.

If $\mathbb{B} = \{0\}$ is the trivial forcing and $\pi(0) = \omega_1$, then get:

Theorem (Miyamoto)

Nice iterations of semiproper forcing are semiproper.

If \mathbb{B} is a Suslin tree then (with a small trick) get:

Theorem (Miyamoto)

Suppose T is a Suslin tree. Then nice iterations of semiproper T-preserving forcings preserve T.

Generic Iterations

Definition

Suppose

- *M* is a countable transitive model of (sufficiently much of) ZFC.
- $M \models$ "I is an ideal on ω_1 "

A generic iteration of (M, I) is a sequence $\langle (M_{\alpha}, I_{\alpha}), \mu_{\alpha,\beta} \mid \alpha \leq \beta \leq \gamma \rangle$ with

- $(M_0, I_0) = (M, I)$
- lacksquare $\mu_{\alpha,\alpha+1}:M_{\alpha} o M_{\alpha+1}$ is a generic ultrapower of M_{α} w.r.t I_{α}
- If $\alpha \in \text{Lim}$ then

$$\langle M_{\alpha}, \mu_{\beta,\alpha} \mid \beta < \alpha \rangle = \underline{\lim} \langle M_{\beta}, M_{\beta,\xi} \mid \beta \leqslant \xi < \alpha \rangle$$

(M, I) is generically iterable if all (countable) generic iterations of (M, I) produce wellfounded models.

$\mathbb{P}_{\mathsf{max}}$ -Variations

Assume \mathbb{V}_{max} is a \mathbb{P}_{max} -variation say

- Conditions are of the form p = (M, I, a)
- \blacksquare (M, I) is generically iterable.
- $a \in M$ has some first order property in (M, I).

and $q=(N,J,b)<_{\mathbb{V}_{\max}}(M,I,a)=p$ if $p\in N$ is countable in N and there is a generic iteration (map)

$$j: p \to p^* = (M^*, I^*, a^*)$$

in q, so that some first order formula is absolute between $(M^*; \in, I^*, a^*)$ and $(N; \in, J, b)$, e.g.:

- $\bullet \omega_1^{M*} = \omega_1^N$
- $a^* = b$
- Maybe $I^* = J \cap M^*$

Also assume $\mathbb{V}_{\text{max}}, \leqslant_{\mathbb{V}_{\text{max}}}$ are projective.

(*)-Forcing

Assume that

- NS_{ω_1} is saturated.
- lacksquare $\mathcal{H}=(H_{\omega_2}, \operatorname{NS}_{\omega_1}, A)$ is "almost a \mathbb{V}_{\max} -condition", i.e.

$$V^{\mathsf{Col}(\omega,2^{\omega_1})} \models \mathcal{H} \in \mathbb{V}_{\mathsf{max}}$$

lacksquare $D \in L(\mathbb{R})$ is dense in $\mathbb{V}_{\mathsf{max}}$ and universally Baire.

Let $g = \{p \in \mathbb{V}_{\max} \mid V^{\operatorname{Col}(\omega, 2^{\omega_1})} \models \mathcal{H} <_{\mathbb{V}_{\max}} p\}$. Goal: Show that g witnesses \mathbb{V}_{\max} -(*) from appropriate forcing axiom.

(*)-Forcing

Asperó-Schindler constructed a forcing $\mathbb P$ so that in $V^{\mathbb P}$ the following picture exists:

- $\qquad \qquad \mu_{0,\omega_1^{\mathit{N}}} \text{ witnesses } q_0 <_{\mathbb{V}_{\max}} p_0 \text{ and } \mu_{0,\omega_1} = \sigma_{0,\omega_1}(\mu_{0,\omega_1^{\mathit{N}}}).$
- The top iteration $q_0 \to q_{\omega_1}$ is *correct* in $V^{\mathbb{P}}$, i.e. $I^* = (NS_{\omega_1})^{V^{\mathbb{P}}} \cap N^*$.

Definition

A generic iteration $\langle (M_{\alpha},I_{\alpha}),\mu_{\alpha,\beta}\mid \alpha\leqslant\beta\leqslant\omega_{1}\rangle$ is a \diamond -iteration if: For any sequence $\langle D_{i}\mid i<\omega_{1}\rangle$ of dense subsets of $(\mathbb{P}_{l_{\omega_{1}}})^{M_{\omega_{1}}}$ and any $S\in I_{\omega_{1}}^{+}\cap M_{\omega_{1}}$ have

$$\{\alpha \in S \mid \forall i < \alpha \ G_{\alpha} \cap \mu_{\alpha,\omega_1}^{-1}[D_i] \neq \emptyset\} \in \mathsf{NS}_{\omega_1}^+$$

where G_{α} is the $\mathbb{P}_{I_{\alpha}}$ -generic filter over M_{α} used in this iteration.

Theorem (L.)

Can modify Asperó-Schindler's \mathbb{P} to $\mathbb{P}_{\diamondsuit}$ so that in $V^{\mathbb{P}_{\diamondsuit}}$ the same picture as before exists and top iteration $q_0 \to q_{\omega_1}$ is a \diamondsuit -iteration in $V^{\mathbb{P}_{\diamondsuit}}$.

Lemma

Suppose
$$\langle (M_{\alpha}, (NS_{\omega_1})^{M_{\alpha}}), \mu_{\alpha,\beta} \mid \alpha \leqslant \beta \leqslant \omega_1 \rangle$$
 is a \diamond -iteration. If

$$M_{\omega_1} \models$$
 " π witnesses $\diamondsuit(\omega_1^{<\omega})$ and $[\cdot]_{NS_{\omega_1}} \circ \pi$ is a complete embedding (say π witnesses $\diamondsuit^+(\omega_1^{<\omega})$)" then $(NS_{\omega_1})^{M_{\omega_1}} = NS_{\pi} \cap M_{\omega_1}$. In particular π witnesses $\diamondsuit(\omega_1^{<\omega})$.

Proof.

- Let $S \in (NS_{\omega_1}^+)^{M_{\omega_1}}$. Have to show that S is π -stationary.
- Let $\mathcal{C} \subseteq [H_{\omega_2}]^{\omega}$ club. Find $\langle X_i \mid i < \omega_1 \rangle$ continuous increasing sequence of countable elementary substructures of H_{ω_2} , all in \mathcal{C} .
- Let $\langle D_i \mid i < \omega_1 \rangle$ enumerate all dense subsets of $Col(\omega, \omega_1)$ appearing in the X_i .
- By assumption, $\hat{\pi} := [\cdot]_{\mathsf{NS}_{\omega_1}^{\mathcal{M}_{\omega_1}}} \circ \pi : \mathsf{Col}(\omega, \omega_1) \to ((\mathcal{P}(\omega_1)^{\mathcal{M}_{\omega_1}}/\mathsf{NS}_{\omega_1})^+)^{\mathcal{M}_{\omega_1}}$ is a complete embedding.

Proof continued.

- $E_i = \hat{\pi}[D_i] \downarrow$ is dense.
- $\blacksquare \Rightarrow T = \{\alpha \in S \mid \forall i < \alpha \ G_{\alpha} \cap \mu_{\alpha,\omega_1}^{-1}[E_i] \neq \emptyset\} \in NS_{\omega_1}^+$
- Find $\alpha \in T$ with
 - $\omega_1^{M_\alpha} = \alpha = \omega_1 \cap X_\alpha$
 - lacksquare $\langle D_i \mid i < \alpha \rangle$ enumerates all dense subsets of $\operatorname{Col}(\omega, \omega_1)$ in X_{α}
 - $\pi = \mu_{\alpha,\omega_1}(\bar{\pi})$, some $\bar{\pi} \in M_{\alpha}$.
- For $p \in \text{Col}(\omega, \omega_1^{M_\alpha})$, have $\omega_1^{M_\alpha} \in \pi(p)$ iff $[\bar{\pi}(p)]_{NS_{\alpha\alpha}^{M_\alpha}} \in G_\alpha$ (generic used in step α of iteration).
- Hence $\{p \in Col(\omega, \omega_1) \cap X_\alpha \mid \alpha \in \pi(p)\}$ meets all D_i with $i < \alpha$, so is generic over X_α .

This suggests taking \mathbb{V}_{max} conditions are of the form (M, I, π) and

$$M \models$$
 " π witnesses $\diamondsuit^+(\omega_1^{<\omega})$ "

Definition

 \mathbb{Q}_{\max}^- -conditions are of the form $(M, NS_{\omega_1}^M, \pi)$ with:

- \blacksquare $(M, NS_{\omega_1}^M)$ is generically iterable.
- \blacksquare $M \models$ " π witnesses $\diamondsuit^+(\omega_1^{<\omega})$ "

 $q=(\mathit{N}, \mathit{NS}^{\mathit{N}}_{\omega_1}, \pi) <_{\mathbb{Q}^-_{\max}} (\mathit{M}, \mathit{NS}^{\mathit{M}}_{\omega_1}, \mu) = p \text{ iff } p \in \mathit{N} \text{ is countable in } \mathit{N} \text{ and there is a generic iteration (map)}$

$$j: p \to p^* = (M^*, NS_{\omega_1}^{M^*}, \mu^*)$$

such that:

- $\mu^* = \pi$
- $\blacksquare \pi$ is dense for sets in M^* : If $S \in \mathcal{P}(\omega_1)^{M^*} \setminus NS_{\omega_1}^N$ then have

$$\pi(p) \subseteq S \mod NS_{\omega_1}^N$$

for some $p \in Col(\omega, \omega_1)^N$.

Do not need whole $\mathbb{P}_{max}\text{-machinery/theory.}$ Only crucial property of \mathbb{Q}_{max}^- for us is:

Lemma

Assume there is a Woodin cardinal and a measurable above. Then $\mathbb{Q}_{\max}^- \neq \emptyset$ and for all $p \in \mathbb{Q}_{\max}^-$ there is $q \in \mathbb{Q}_{\max}^-$ with q < p.

Assume NS_{ω_1} is saturated and $\mathcal{H}=(H_{\omega_2},NS_{\omega_1},\pi)$ is almost in \mathbb{Q}^-_{\max} . In $V^{\mathbb{P}_{\diamondsuit}}$:

- The top iteration $q_0 \to q_{\omega_1}$ is a \diamondsuit -iteration in $V^{\mathbb{P}}$.
- $\Rightarrow \pi = \nu^*$ still witnesses $\diamondsuit(\omega_1^{<\omega})$ in $V^{\mathbb{P}_\diamondsuit}$.

By definition of order of \mathbb{Q}_{\max}^- , \mathbb{P}_{\Diamond} makes π "dense for old sets".

Proposition

Under $AD^{L(\mathbb{R})}$, \mathbb{Q}_{max} and \mathbb{Q}_{max}^- are forcing equivalent.

Corollary

If NS_{ω_1} is saturated and π witnesses $\diamondsuit^+(\omega_1^{<\omega}) + \varepsilon$, then \mathbb{P}_\diamondsuit for $\mathbb{V}_{\max} = \mathbb{Q}_{\max}^-$ preserves π and makes π "dense for old sets".

This assumption can be forced by π -semiproper forcing assuming a Woodin cardinal. (Similar to forcing "NS $_{\omega_1}$ is saturated" from a Woodin cardinal, but turn π into a complete embedding simultaneously).

The Missing Forcing

Theorem (Woodin)

Let M be the least inner model with a proper class of Woodin cardinals and an inaccessible limit of Woodin cardinals.

- 1. " NS_{ω_1} is ω_1 -dense" holds in a forcing extension of M.
- 2. "NS $_{\omega_1}$ is ω_1 -dense" does not hold in any ω_1 -preserving forcing extension of M.

How does a forcing witnessing 1. look like explicitly?

Open Questions

Question

Can the large cardinal assumptions of the main theorems be reduced?

Question

Does $(\dagger) \Rightarrow (\ddagger)$?

Question

Does "NS $_{\omega_1}$ is saturated" imply \neg CH?

Question

Does the existence of some large cardinal imply the existence of a precipitous ideal on ω_1 ?

Thank you for listening!