

A Journey guided by the Stars

Part I

Forcing "NS $_{\omega_1}$ is ω_1 -Dense" from Large Cardinals Andreas Lietz

June 12th 2023

Kobe Set Theory Seminar

living.knowledge

Truth in Set Theory

What is true in V?

- ZFC is too weak
- \blacksquare vow extend **naturally** to theory T approximating truth in V.
- How?

Guiding principles:

- (I) Truth in V should be compatible with large cardinals
- (II) Natural questions should be decided by T

Canonical inner models (like Gödels L) are remarkably successful at (II), limited success at (I) (\leadsto Inner Model Theory Program)

Existence of large cardinals good for (I), decides all natural questions of 2nd order number theory, but not much more.

Ω -Logic

Definition (Woodin)

 φ a \in -sentence.

$$\mathsf{ZFC} \models_{\Omega} \varphi \Leftrightarrow \forall \mathsf{ forcings } \mathbb{P} \forall \alpha \in \mathsf{Ord } \left(\mathit{V}_{\alpha}^{\mathbb{P}} \models \mathsf{ZFC} \to \mathit{V}_{\alpha}^{\mathbb{P}} \models \varphi \right)$$

ZFC $\vdash_{\Omega} \varphi$ if \exists universally Baire $A \subseteq \mathbb{R}$ so that \forall strongly A-closed models N have $N \models \varphi$.

Countable transitive $N \models \mathsf{ZFC}$ is strongly A-closed if $\forall \mathsf{generic}$ extensions N[G] of $N: A \cap N[G] \in N[G]$.

Ω -Conjecture (Woodin)

Suppose there are a proper class of Woodin cardinals and φ is a Σ_2 \in -sentence. Then

$$\mathsf{ZFC} \models_{\Omega} \varphi \Leftrightarrow \mathsf{ZFC} \vdash_{\Omega} \varphi.$$

Very open, but maybe we can verify consequences!

Ideals on ω_1

Ideals are "collections of small sets". An ideal on ω_1 is $I \subseteq \mathcal{P}(\omega_1)$ with

- \boxtimes $\varnothing \in I$, $\omega_1 \notin I$
- if $X \subseteq Y \in I$ then $X \in I$
- $X, Y \in I \Rightarrow X \cup Y \in I$

In this talk all ideals will be σ -closed (closed under countable unions) and uniform (contain all countable sets), even normal (Fodor's Lemma holds for I).

• Canonical ideal is the **nonstationary ideal** NS_{ω_1} !

Natural forcing which tries to turn I into maximal ideal: For $A, B \subseteq \omega_1, A \sim_I B \Leftrightarrow A \triangle B \in I$.

- Inclusion on $\mathcal{P}(\omega_1)$ induces partial order on $\mathcal{P}(\omega_1)/\sim_I$.
- Remove minimal element: $\mathbb{P}_I := (\mathcal{P}(\omega_1)/\sim_I) \setminus \{[\varnothing]_I\}.$

If G is \mathbb{P}_I generic then

$$U_G := \{ A \in \mathcal{P}(\omega_1)^V \mid [A]_I \in G \}$$

is a *V*-ultrafilter, if $N \in I$ then $\omega_1 \setminus N \in U_G$.

Precipitous Ideals

Definition

I is **precipitous** if for all generic $G \subseteq \mathbb{P}_I$, $\mathrm{Ult}(V, U_G)$ is wellfounded. Get elementary embedding $j_G \colon V \to \mathrm{Ult}(V, U_G)$ with $\mathrm{crit}(j_G) = \omega_1^V$.

Theorem (Mitchell, 70s)

A Journey guided by the Stars Part I

Suppose κ is measurable. Then in a forcing extension there is a precipitous ideal on ω_1 .

- Idea: Let U witness κ is measurable. Force with $Col(\omega, <\kappa) \leadsto \kappa$ becomes ω_1 in V[G].
- The ideal dual to U generates an ideal I in V[G].
- If H is \mathbb{P}_{I} -generic over V[G] then $j_H \colon V[G] \to \mathsf{Ult}(V[G], U_H)$ lifts $j \colon V \to \mathsf{Ult}(V, U)$, so $\mathsf{Ult}(V[G], U_H)$ is wellfounded.

Theorem (Magidor, shortly after)

Suppose κ is measurable. Then, in a forcing extension, NS_{ω_1} is precipitous.

Idea: turn the ideal I above into the nonstationary ideal.

Saturated Ideals

Definition

An ideal I on ω_1 is **saturated** if \mathbb{P}_I is ω_2 -cc.

Saturated ideals are precipitous (good exercise!).

Theorem (Kunen, 70s)

Suppose κ is a huge cardinal. Then in a forcing extension there is a saturated ideal on $\omega_1 = \kappa$.

If I is saturated, $j_G: V \to \text{Ult}(V, U_G) = N$ generic ultrapower by I, then in V[G], $N^{< j_G(\omega_1^V)} \subseteq M$ and $j_G(\omega_1^V) = \omega_2^V$.

Kunen's idea: Lifting argument as before. Start with $j: V \to M$ with $M^{j(\kappa)} \subseteq M$ where $\kappa = \operatorname{crit}(j)$. Turn κ into ω_1 , $j(\kappa)$ into ω_2 .

- What about NS_{ω_1} ? Can it be saturated?
- Magidor's argument does not seem to preserve saturation.

NS_{ω_1} **Saturated**

Theorem (Steel-Van Wesep, late 70s)

Assume $V \models AD + AC_{\mathbb{R}} + V = L(\mathcal{P}(\mathbb{R}))$. Then in a forcing extension ZFC + "NS $_{\omega_1}$ is saturated" holds.

Before AD was known to be consistent from large cardinals! Very rough idea: Under AD, NS_{ω_1} is a maximal ideal. Force AC, preserve ω_1 , ω_2 and hope for the best.

Can we force NS_{ω_1} saturated over models of **ZFC**?

Theorem (Foreman-Magidor-Shelah, 80s)

Suppose there is a supercompact cardinal. Then there is a stationary set preserving forcing \mathbb{P} so that $V^{\mathbb{P}} \models \text{``NS}_{\omega_1}$ is saturated".

Big surprise! The generic embeddings do not "come from" earlier embeddings/large cardinals! ω_1 is preserved. Just verify the combinatorial property with famous "sealing forcing".

Sealing Forcing

Definition

Suppose \mathcal{A} is a maximal antichain of stationary subsets of ω_1 , i.e. $\{[S]_{NS_{\omega_1}} \mid S \in \mathcal{A}\}$ is a max. antichain in $\mathbb{P}_{NS_{\omega_1}}$. The sealing forcing $\mathbb{S}_{\mathcal{A}}$ consists of tuples (f,c) so that for some $\alpha < \omega_1$,

- $f: \alpha + 1 \rightarrow \mathcal{A}$ is a function
- $c \subseteq \alpha + 1$ is closed with $\alpha \in c$.

The order is given by end-extension in both arguments.

 $\mathbb{S}_{\mathcal{A}}$ preserves stationary sets and in the extension, $|\mathcal{A}| \leq \omega_1$ (arranged by the fs) and \mathcal{A} is still a maximal antichain (arranged by the c's). Under the forcing axiom MM, this "has already happened".

Theorem (Shelah)

Suppose there is a Woodin cardinal. Then in a stationary set preserving extension, NS_{ω_1} is saturated.

Idea: Can iterate semiproper forcings (\cong "regular" stationary set preserving forcing), but in general not stationary set preserving forcings. Iterate sealing forcings, but only if they happen to be semiproper. The Woodin cardinal makes sure that this happens often enough.

Dense Ideals

Definition

I is ω_1 -dense if \mathbb{P}_I has a dense subset of size ω_1 .

Dense ideals are saturated.

Cannot reasonably strengthen this property: If I, J are ω_1 -dense ideals then $\mathbb{P}_I \cong \mathbb{P}_J$.

Theorem (Woodin, late 70s)

Assume $V \models AD_{\mathbb{R}} + "\Theta"$ is regular". Then in a forcing extension ZFC + CH + "there is a dense ideal on ω_1 " holds.

Theorem (Woodin)

Suppose there is an almost huge cardinal. Then in a forcing extension there is a dense ideal on ω_1 and CH hold.

Similar strategy as Kunen, more efficient argument.

In the above models, NS_{ω_1} is not ω_1 -dense as this implies $\neg CH$ (Shelah, Woodin independently).

NS_{ω_1} ω_1 -**Dense**

Theorem (Woodin)

Assume $L(\mathbb{R}) \models \mathsf{AD}$. Then in a forcing extension of $L(\mathbb{R})$, ZFC + "NS $_{\omega_1}$ is ω_1 -dense" holds. In fact, if there are a proper class of Woodin cardinals then "NS $_{\omega_1}$ is ω_1 -dense" is Ω -consistent, i.e. ZFC $\not\vdash_{\Omega} \neg$ ("NS $_{\omega_1}$ is ω_1 -dense").

- Under Ω -conjecture and large cardinals, this implies that "NS $_{\omega_1}$ is ω_1 -dense" is Ω -satisfiable, i.e. holds in a forcing extension.
- So far, Woodin's method of forcing with \mathbb{Q}_{\max} over determinacy models was the only known way to produce models of "NS $_{\omega_1}$ is ω_1 -dense".

NS_{ω_1} ω_1 -Dense from Large Cardinals?

Question (Woodin, late 90's)

Assume some large cardinal. Is there a stationary set preserving forcing ${\mathbb P}$ so that

$$V^{\mathbb{P}} \models$$
 "NS $_{\omega_1}$ is ω_1 -dense"?

The Ω -conjecture alone does not answer this question.

Theorem (L.)

Suppose there is an inaccessible cardinal κ which is a limit of $<\kappa$ -supercompact cardinals. Then there is a stationary set preserving forcing $\mathbb P$ with

$$V^{\mathbb{P}} \models \text{``NS}_{\omega_1} \text{ is } \omega_1\text{-dense"}.$$

Theorem (Asperó-Schindler)

 $MM^{++} \Rightarrow (*).$

MM⁺⁺ is a very strong forcing axiom.

(*) states that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{max} -extension of a determinacy model.

Vague Conjecture

For any wellbehaved \mathbb{P}_{max} -variation \mathbb{V}_{max} there is a forcing axiom which is

- (i) consistent from large cardinals and
- (ii) implies \mathbb{V}_{max} -(*).

Theorem (Asperó-Schindler)

 $MM^{++} \Rightarrow (*).$

MM⁺⁺ is a very strong forcing axiom.

(*) states that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{\max} -extension of a determinacy model.

Vague Conjecture

For any wellbehaved $\mathbb{P}_{\text{max}}\text{-variation }\mathbb{V}_{\text{max}}$ there is a forcing axiom which is

- (i) consistent from large cardinals and
- (ii) implies \mathbb{V}_{max} -(*).

Theorem (Asperó-Schindler)

 $MM^{++} \Rightarrow (*).$

MM⁺⁺ is a very strong forcing axiom.

(*) states that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{\max} -extension of a determinacy model.

Vague Conjecture

For any wellbehaved $\mathbb{P}_{\text{max}}\text{-variation }\mathbb{V}_{\text{max}}$ there is a forcing axiom which is

- (i) consistent from large cardinals and
- (ii) implies \mathbb{V}_{max} -(*).

Theorem (Asperó-Schindler)

 $MM^{++} \Rightarrow (*).$

MM⁺⁺ is a very strong forcing axiom.

(*) states that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{\max} -extension of a determinacy model.

Vague Conjecture

For any wellbehaved $\mathbb{P}_{\text{max}}\text{-variation }\mathbb{V}_{\text{max}}$ there is a forcing axiom which is

- (i) consistent from large cardinals and
- (ii) implies \mathbb{V}_{max} -(*).

The Strategy

- Looking for forcing axiom QM which implies NS_{ω_1} is ω_1 -dense.
- NS_{ω_1} is ω_1 -dense $\Leftrightarrow \exists \pi \colon Col(\omega, \omega_1) \to \mathbb{P}_{NS_{\omega_1}}$ dense embedding.

Lemma (Tennenbaum (?))

If \mathbb{P} is a forcing of size ω_1 which collapses ω_1 then there is a dense embedding $\pi \colon \mathsf{Col}(\omega, \omega_1) \to \mathbb{P}$.

- To force a forcing axiom, usually have "countable support style" iteration \mathbb{P} of length large κ of forcings of size $<\kappa$. $\Rightarrow \mathbb{P}$ is κ -cc.
- \Rightarrow version of π above should exist in intermediate extension along iteration to force QM. Version of π means

$$\pi' \colon \mathsf{Col}(\omega, \omega_1) \to \mathcal{P}(\omega_1) \backslash \mathsf{NS}_{\omega_1} \text{ with } \forall p \in \mathsf{Col}(\omega, \omega_1) \ [\pi'(p)]_{\mathsf{NS}_{\omega_1}} = \pi(p).$$

■ This suggests we should isolate properties of π' , first force π' to exist and then iterate forcing preserving these properties of π' .

Definition (Woodin)

 $\diamondsuit(\omega_1^{<\omega})$ holds if there is an embedding $\pi\colon \mathrm{Col}(\omega,\omega_1) \to \mathcal{P}(\omega_1) \backslash \mathrm{NS}_{\omega_1}$ so that $\forall p \in \mathrm{Col}(\omega,\omega_1)$ there are stationarily many countable $X < H_{\omega_2}$ with

$$p \in \{q \in Col(\omega, \omega_1) \cap X \mid \omega_1 \cap X \in \pi(q)\}\$$
 is a filter generic over X .

Lemma

 $\textit{Suppose} \ [\cdot]_{\text{NS}_{\omega_1}} \circ \pi \colon \text{Col}(\omega,\omega_1) \to \mathbb{P}_{\text{NS}_{\omega_1}} \ \textit{is a dense embedding}. \ \textit{Then} \ \pi \ \textit{witnesses} \ \diamondsuit(\omega_1^{<\omega}).$

Proof Sketch.

Let $p \in \operatorname{Col}(\omega, \omega_1)$, $X < H_{\omega_2}$ countable so that $\omega_1 \cap X =: \delta^X \in \pi(p)$. Let $A \subseteq \operatorname{Col}(\omega, \omega_1)$, $A \in X$, be a maximal antichain. $\Rightarrow \mathcal{A} := [\cdot]_{\operatorname{NS}_{\omega_1}} \circ \pi[A] \subseteq \mathbb{P}_{\operatorname{NS}_{\omega_1}}$ is a max. antichain, thus $\triangle \mathcal{A}$ contains a club $C \in X$, so $\delta^X \in C$. It follows that there is $g \in X \cap A$ with $\delta^X \in \pi(g)$.

Q-Maximum

If π will eventually witness "NS $_{\omega_1}$ is ω_1 -dense", we need to preserve the fact that π witnesses $\diamondsuit(\omega_1^{<\omega})$ along the iteration. This suggests the following forcing axiom:

Definition

QM holds if $\exists \pi$ witnessing $\Diamond(\omega_1^{<\omega})$ and $\mathsf{FA}_{\omega_1}(\{\mathbb{P} \mid \mathbb{P} \text{ preserves } \pi\})$ holds, i.e. whenever $V^{\mathbb{P}} \models \text{``}\pi$ witnesses $\Diamond(\omega_1^{<\omega})$ " and $\langle D_i \mid i < \omega_1 \rangle$ are dense subsets of \mathbb{P} , there is a \mathbb{P} -filter meeting all D_i .

If π witnesses QM then $[\cdot]_{NS_{\omega_1}} \circ \pi$ is a dense embedding, so NS_{ω_1} is ω_1 -dense. Why?. If $S \subseteq \omega_1$ is stationary, no point in $ran([\cdot]_{NS_{\omega_1}} \circ \pi)$ is below $[S]_{NS_{\omega_1}}$, then $CS(\omega_1 \setminus S)$ (club shooting through $\omega_1 \setminus S$) preserves π . But if $FA_{\omega_1}(\{\mathbb{P}\})$ holds, then \mathbb{P} must preserve stationary sets, contradiction

Theorem (L.)

Assume a supercompact limit of supercompact cardinals. Then QM holds in a stationary set preserving forcing extension.

QM implies \mathbb{Q}_{max} -(*).

Two Problematic Examples

Problem: To force QM, need to iterate π -preserving forcing, these can kill stationary sets. Want to preserve π , in particular ω_1 .

- 1st example: Let $\langle S_n \mid n < \omega \rangle$ partition of ω_1 into stationary sets. Iterate of length ω , kill S_n in step n with CS($\omega_1 \backslash S_n$). In the limit, ω_1 must be collapsed. Solution: Don't kill old stationary sets.
- 2nd example (Shelah): First force a function $g_0: \omega_1 \to \omega_1$ above all canonical functions. Then force some g_1 above all canonical functions, but below g_0 . Continue like this, get

canonical funcitions
$$< g_n < g_{n-1} < \cdots < g_1 < g_0 \mod \mathsf{NS}_{\omega_1}$$

at stage n. These forcings preserve stationary sets, but not all are semiproper. In the limit ω_1 is collapsed (as there is no infinite decreasing sequence of such functions). Solution: Mostly use forcings with good "regularity properties".

Q-Iterations

Definition

Suppose π witnesses $\lozenge(\omega_1^{<\omega})$. A Q-iteration is a nice iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leqslant \gamma, \beta < \gamma \rangle$ of π -preserving forcing so that

For $\alpha < \gamma$ successor

$$V^{\mathbb{P}_{\alpha}}\models ``\dot{\mathbb{Q}}_{\alpha}$$
 forces SRP and that $\operatorname{ran}(\pi)$ is dense for old sets"

■ For $\alpha < \gamma$ limit no further requirement on $\dot{\mathbb{Q}}_{\alpha}$.

Work-Life-Balance Theorem (L.)

Q-iterations preserve π .

This is a "cheapo iteration theorem", but good enough to force QM.

Forcing QM

To force QM, need to do three things:

- 1. Prove the Work-Life-Balance theorem.
- 2. Assuming a supercompact cardinal, find a π -preserving forcing which forces SRP.
- 3. Assuming Woodin cardinals, find a π -preserving forcing which makes $ran(\pi)$ "dense for old sets". This is analog of Sealing forcing!

Plan: 1. today, 2. - 3. next week.

A Crash Course on Iteration Theorems

Iteration theorems state that some class of forcings is closed under iterations with a specific support. For example, countable support iterations of σ -closed forcings are σ -closed. Similar for proper forcings. Proofs tend to have certain form: Let $\mathbb{P} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_m \mid n \leqslant \omega, m < \omega \rangle$ iteration of length $\omega, X < H_\theta$ countable with $\mathbb{P} \in X$

The Killing Stationary Sets Obstacle

Suppose at some step of this argument, have

- 1. $X < H_{\theta}, q \in \mathbb{Q}$
- 2. $S \subseteq \omega_1$ is stationary, but $q \Vdash_{\mathbb{Q}} \check{S} \in NS_{\omega_1}$ and
- 3. $\delta^X \in S$.

Then there is no way to continue!

Proof.

Suppose $G \subseteq \mathbb{Q}$ is generic. Then there is a club $C \in X[G]$ disjoint from S. Have $\delta^{X[G]} \in C$, but then $\delta^{X[G]} \notin S$. It follows that $\delta^{X[G]} \neq \delta^X$.

Definition

I an ideal on ω_1 . Say that *X* respects *I* if $\delta^X \notin S$ whenever $S \in I \cap X$.

At all costs, must maintain that X respects $\mathit{I}_{q}^{\mathbb{Q}} := \{S \subseteq \omega_{1} \mid q \Vdash_{\mathbb{Q}} \check{S} \in \mathsf{NS}_{\omega_{1}}\}.$

Respectful Forcing

Suppose we have iteration $\mathbb{P}=\langle \mathbb{P}_n, \dot{\mathbb{Q}}_m \mid n \leqslant \omega, m < \omega \rangle$ of π -preserving forcing and $p \in \mathbb{P}$. Must start with $X < H_\theta$ which respects $f_{p(0)}^{\mathbb{Q}_0}$.

After first step, hopefully have $X \subseteq X[G_1]$. But now need that $X[G_1]$ respects $\int_{p(1)^{G_1}}^{\dot{\mathbb{Q}}^{G_1}}$. How can we arrange this?

Definition

Suppose $\mathbb Q$ is ω_1 -preserving forcing. $\mathbb Q$ is **respectful** if: Whenever

- $Y < H_{\lambda}$ countable, $\mathbb{Q} \in Y$, $q \in \mathbb{Q} \cap Y$
- $\dot{I} \in Y$ is a \mathbb{Q} -name for an ideal on ω_1 .

Then one of the following:

1. There is $r \leqslant q$ and r forces

$$Y \sqsubseteq Y[G] \land Y[G]$$
 respects \dot{I}^G

2. Or: Y does **not** respect $\dot{I}^q := \{S \subseteq \omega_1 \mid q \Vdash \check{S} \in \dot{I}\}.$

The Role of SRP

Lemma

Assume SRP. Then all ω_1 -preserving forcings are respectful.

Proof.

Let \mathbb{Q} be ω_1 -preserving, $Y < H_{\lambda}$, $q \in \mathbb{Q} \cap Y$, $\dot{I} \in Y$ as in definition. Have to show:

- Either there is $r \leq q$ forcing $Y \sqsubseteq Y[G]$ respects \dot{I}^G
- lacksquare or Y does not respect I^q .

Let $\mu = (2^{|Q|})^+ \in Y$ and $S = \{Z < H_\mu \mid \nexists r \leqslant q \text{ forcing "} Z \sqsubseteq Z[G] \text{ respects } \dot{I}^{G"}\} \in Y$.

By SRP, can find continuous increasing $\vec{Z} = \langle Z_{\alpha} \mid \alpha < \omega_1 \rangle \in Y$ s.t.:

- \mathbb{Q} , q, $l \in Z_0$
- $Z_{\alpha} < H_{\mu}$
- Either $Z_{\alpha} \in \mathcal{S}$ or there is no $Z_{\alpha} \sqsubseteq Z$ with $Z \in \mathcal{S}$.

The Role of SRP

Proof (Continued).

Let $G \subseteq \mathbb{Q}$ generic, $q \in G$. Let $S = \{\alpha < \omega_1 \mid Z_\alpha \in S\}$.

Claim: $S \in I := \dot{I}^G$

Proof. Suppose otherwise, $S \in I^+$. $\langle Z_{\alpha}[G] \mid \alpha < \omega_1 \rangle$ is continuous increasing sequence of elementary substructures of $H^{V[G]}_{\mu}$. Find club $C \subseteq \omega_1$ with $\alpha = \delta^{Z_{\alpha}} = \delta^{Z_{\alpha}[G]}$. For any $\alpha \in S \cap C$, can find $T_{\alpha} \in I \cap Z_{\alpha}[G]$ with $\alpha = \delta^{Z_{\alpha}[G]} \in T_{\alpha}$. By normality of I, there is $S_0 \subseteq S \cap C$ in I^+ and I so that $I_{\alpha} = I$ for $I \in S_0$. But then $I_{\alpha} \subseteq I$ contradicting $I \in I$.

Case 1: $\delta^Y \in S$. As $S \in P^q \cap Y$, Y does not respect P^q . Case 2: $\delta^Y \notin S$. As $Z_{\delta^Y} \sqsubseteq Y \cap H_\mu$, $Y \cap H_\mu \notin S$. Thus there is $r \leqslant q$ forcing $Y \sqsubseteq Y[G]$ and Y[G] respects P^G .

In L, Add($\omega_1, 1$) is *not* respectful.

Proof of Work-Life-Balance Theorem

Work-Life-Balance Theorem (L.)

Q-iterations preserve π .

Proof Sketch.

We will sketch that a Q-iteration $\mathbb{P} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_m \mid n \leq \omega, m < \omega \rangle$ of length ω does not collapse ω_1 . Start with $p \in \mathbb{P}$ and countable $X < H_\theta$ that respects $I_{p(0)}^{Q_0}$.

- We are in good case of respectfulness, so find $q \upharpoonright 1 \leqslant p \upharpoonright 1$ which forces $X \sqsubseteq X[G_1]$ respects $f_{p(1)}^{\hat{\mathbb{Q}}_1}$ (actually a slightly larger ideal).
- As no old stationary sets are killed, stay in the good case for the next instance.
- Continue building q step by step.
- In the end, let G be \mathbb{P} -generic, $q \in G$. Have $X \sqsubseteq X[G_1] \sqsubseteq X[G_2] \sqsubseteq X[G_3] \sqsubseteq \dots$
- If we are careful, arrange along the side that $X[G] \cap V = \bigcup_{n < \omega} X[G_n] \cap V$.
- This gives $X[G_n] \subseteq X[G]$ for all n, so ω_1 is not collapsed.

Thank you for listening!

To be continued...