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Let Z be an ideal of subsets of X such that {x} € Z for all x € X.
Additivity of 7t add(Z) = min{|J|: T € Z, | | 7 ¢ 1}.

Covering of 7t cov(Z) =min{|TJ|: T < I, |7 — X}.

Uniformity of 7: non(Z) = min{|A| : AC X, A ¢ T}

Cofinality of 7t cof(Z) = min{|J| : T € Z, VAeI)(1E « 7)(A< B)}.



Cardinal characteristics of the continuum |

Let Z be an ideal of subsets of X such that {x} € Z for all x € X.

s add(Z) = min{|J|: J € Z, }.
s ecov(Z) =min{|J|: J €I, }.
: non(Z) = min{|A| : AC X, }.
s cof(Z) =minf{|T|: T € Z, (VAe I)( (A< B)}.
Denote by
@ |\ : the o-ideal of Lebesgue measure zero (null) subsets of the Cantor
Space 2%.

(2] : the o-ideal of first category (meager) subsets of 2¢.
© ¢ : the o-ideal generated by the closed measure zero subsets of 2.
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Cardinal characteristics of the continuum |

Let Z be an ideal of subsets of X such that {x} € Z for all x € X.

s add(Z) = min{|J|: J € Z, }.
s ecov(Z) =min{|J|: J €I, }.
: non(Z) = min{|A| : AC X, }.
s cof(Z) =minf{|T|: T € Z, (VAe I)( (A< B)}.
Denote by
@ |\ : the o-ideal of Lebesgue measure zero (null) subsets of the Cantor
Space 2%.

(2] : the o-ideal of first category (meager) subsets of 2¢.
© ¢ : the o-ideal generated by the closed measure zero subsets of 2.

It is well-known that £ € A n M. Even more, £ ¢ N n M
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For f, g € w“ we write
f " giff Im < wV¥n = m(f(n) < g(n))
Consider

Q ' :=min{|F|: FSw” and ~Jy e w* Vx € F (x <* y)}.
@ 0 :=min{|D|: DS w” and ¥x e w¥ 3y € D (x <* y)}.



For f, g € w“ we write
f " giff Im < wV¥n = m(f(n) < g(n))

Consider
Q (:=min{|F|: FSw” and ~Fy e w” Vx e F (x <* y)}.
@ 0 :=min{|D|: DS w” and ¥x e w¥ 3y € D (x <* y)}.
Q@ =2,



cov(N) —— non(M) — cof (M) —— cof(N) —— ¢

~ ~ N ~

Ry —— add(NV) —— add(M) —— cov(M) — non(N)



cov(N) —— non(M) — cof (M) —— cof(N) —— ¢

~ ~ N ~

Ry —— add(NV) —— add(M) —— cov(M) — non(N)

Inequalities: Bartoszynski, Fremlin, Miller, Rothberger, Truss.



cov(N) —— non(M) — cof (M) —— cof(N) —— ¢

~ ~ N ~

Ry —— add(NV) —— add(M) —— cov(M) — non(N)

Inequalities: Bartoszynski, Fremlin, Miller, Rothberger, Truss.
Completeness: Bartoszynski, Judah, Miller, Shelah.



In the context of this diagram, a natural question aries:

Is it consistent that all the cardinals in Cichori’s diagram (with the
exception of the dependent values add(M) and cof(M)) are pairwise
different?
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Cichon’'s Maximuum

Theorem (Goldstern, Kellner and Shelah [GKS19])
Assume GCH and that

01 <Oy <01 <0 <0 <07 <03 <0 <04 <05 <O <0; <03 <0bg are
regular, 6; strongly compact for i = 6,7,8,9. Then there is a ccc poset forcing

cov(N) non(M) | cof(M) cof(N)

05 B4 0s | 65
b 0 Ogy
05 0

01 03

Ny

|
[
add(NV) add?/\/_l ) cov(M) non(N)
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Cichort’s maximum modulo three strongly compact cardinals (which improved
[GKS19]).




Cichort’s maximum modulo three strongly compact cardinals (which improved
[GKS19]).

No large cardinals are needed for Cichon’'s Maximum. '







add(€) = add(M) and cof (€) = cof(M).




add(€) = add(M) and cof (€) = cof(M).

Q@ max{cov(M), cov(N)} < cov(€) < max{d, cov(N)}.
@ min{b,non(N)} < non(€) < min{non(M), non(N)}.




add(€) = add(M) and cof (€) = cof(M).

Q@ max{cov(M), cov(N)} < cov(€) < max{d, cov(N)}.
@ min{b,non(N)} < non(€) < min{non(M), non(N)}.

In particular,

Q If 9 = cov(M), then cov(€E) = max{cov(M), cov(N)}.
@ If b = non(M), then non(€) = min{non(M), non(N)}.




For ideals Z < J define
cof(Z,J) = min{|F| : F < J and VAe T3B € F(A< B)}.



For ideals Z < J define
cof(Z,J) = min{|F| : F < J and VAe T3B € F(A< B)}.

cof (€, M) = max{d,non(&)}. '




For ideals Z < J define
cof(Z,J) = min{|F| : F < J and VAe T3B € F(A< B)}.

cof (€, M) = max{d,non(&)}. '

Q cof (&) = cof(&, &) = cof (&).
@ cof(E, M) = cof (&, M).

Here, &, denotes the ideal of the set with closure A of measure zero.



cov (&) > cof (€) > c

Ry > add(£) > non(&)

Is it consistent that all the four cardinals cardinal characteristics associated with
& in the diagram above are pairwise difference?
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Is it consistent that all the four cardinals cardinal characteristics associated with
& in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely
(Al)e add(€) < cov(€) < non(€) < cof(€), and



cov (&) > cof (€) > c

Ry > add(£) > non(&)

Is it consistent that all the four cardinals cardinal characteristics associated with
& in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely
(Al)e add(€) < cov(€) < non(€) < cof(€), and
(A2)s add(€) < non(€) < cov(€) < cof(€).



@ (Mejia 2013) (A1), is consistent with ZFC.
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o Let (o(n) : n < w), o(n) € 2=“. Denote
=) Ulem)]
n<w m=n
o Let id" : w — w be a function such that id*(i) := .

@ For f,g:w — w define

f o gif foid <* g for all k

Let f : w — w increasing. The Yorioka ideal Zy is defined by

Tr = {Xc2:30 € (2=¥)(X S [0]w and hto » f)}.
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@ (C., and Mejia 2019) “(Al),, for any f above some fixed " s
consistent with ZFC.

© (Goldstern, Kellner and Shelah [GKS19]) “(A2),, and (A1), is
consistent with ZFC + large cardinals.
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large cardinals).



Early work (cont)

@ (Mejia [Mej13]) (Al),, is consistent with ZFC.

@ (C., and Mejia 2019) “(A1), for any f above some fixed " s
consistent with ZFC.

© (Goldstern, Kellner and Shelah [GKS19]) “(A2),, and (Al),/" is
consistent with ZFC + large cardinals.

@ (Brendle, C., and Mejia [BCM21]) (A2) ,, is consistent with ZFC (without
large cardinals).

© (Brendle, C., and Mejia [BCM21]) (A1), for any f:w — w" is
consistent with ZFC.
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@ (Brendle 2021 [Brel9] ) (A2),, is consistent with ZFC.

cov(N) ——— non(M)

F

N

K

F

N

» cof (M)

~

Ry — add(N) —

The constellation of Cichon’s diagram forced in [Br21] where 81 < v < x < A
with x and v regular.

7

» cof (N)

v

— add(M) ——— cov(M) ——— non(N)



Given a sequence (o (n) : n < w), o(n) € 2=* define i, 1 w —> w,
ht,(n) := |o(n)| for each n < w.

Let X < 2. Say that X has strong measure zero iff for every f € w® there is
some o € (2“)% such that




Given a sequence (o (n) : n < w), o(n) € 2=* define i, 1 w —> w,
ht,(n) := |o(n)| for each n < w.

Let X < 2. Say that X has strong measure zero iff for every f € w® there is
some o € (2“)% such that

Q@ ht, = f, and




Given a sequence (o (n) : n < w), o(n) € 2=* define i, 1 w —> w,
ht,(n) := |o(n)| for each n < w.

Let X < 2. Say that X has strong measure zero iff for every f € w® there is
some o € (2“)% such that

Q@ ht, = f, and
Q@ XcU,o,lo(n)]




Given a sequence (o (n) : n < w), o(n) € 2=* define i, 1 w —> w,
ht,(n) := |o(n)| for each n < w.

Let X < 2. Say that X has strong measure zero iff for every f € w® there is
some o € (2“)% such that

Q@ ht, = f, and
Q@ XcU,o,lo(n)]

Let 5\ :={X € 2¥: X has strong measure zero}.



@ (C., Mejia, Rivera-Madrid [CMRM21]) The consistency of a weak version
of (A2)gn

add(SN) = non(SN) < cov(SN) < cof (SN).



@ (C., Mejia, Rivera-Madrid [CMRM21]) The consistency of a weak version
of (A2)gn

add(SN) = non(SN) < cov(SN) < cof (SN).
@ (C. [Car22b]) The consistency of a weak version of (Al)g
add(SN) = cov(SN) < non(SN) < cof(SN).






It is consistent with ZFC that add(SA) < min{cov(SN), non(SN)}. I




Is it consistent that

add(SN) < min{cov(SN), non(SN)}?

It is consistent with ZFC that add(SAN) < min{cov(SN), non(SN)}.

Even more,

It is consistent with ZFC that (Al)g,,.
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v < A= A=% Then there is a ccc poset forcing
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Let 6 < p < v be uncountable regular cardinals and let A be a cardinal such that
v < A= A=% Then there is a ccc poset forcing

add(€) =0 <non(€) = p < cov(€) =v < cof(€) =

Sketch Proof.

@ Use UF-extendable matrix iteration framework from [BCM21] for forcing
cov(N) = non(M) =y, cov(M) =non(N) =v, b=0and 0 = A\
@ Note that add(€) = 0 and cof(£) = A (because add(€) = add(M) and
cof(€) = cof(M)).
Since EC M n N,

non(€) < min{non(M), non(N)}

and
max{cov(M), cov(N)} < cov(&).



The result

Theorem (C. [Car22a])

Let 6 < i < v be uncountable regular cardinals and let A be a cardinal such that
v < A= A% Then there is a ccc poset forcing

add(€) =0 < non(€) = pu < cov(€) =v < cof (&) = A

Sketch Proof.

@ Use UF-extendable matrix iteration framework from [BCM21] for forcing
cov(N) = non(M) = p, cov(M) =non(N) =v, b =60 and 0 = \.
@ Note that add(€) = 0 and cof(£) = X\ (because add(€) = add(M) and
cof (€) = cof(M)).
Since EC Mn N,

non(€) < min{non(M), non(N)}

and
max{cov(M), cov(N)} < cov(E).
Then

@ non(&) < p and cov(&) = v.

Miguel A. Cardona closed measure zero sets



Let 8 < p < v be uncountable regular cardinals and let A be a cardinal such that
v < A= A% Then there is a ccc poset forcing

add(£) = 0 < non(€) = u < cov(€) = v < cof (€) =

Sketch Proof.
@ Use UF-extendable matrix iteration framework from [BCM21] for forcing
cov(N) = non(M) = p, cov(M) =non(N) =v, b =0 and 0 = \.
e add(€) = 0 and cof(€) = A (because add(£) = add(M) and
cof (€) = cof(M)).
@ non(€) < p and cov(€) = v.

What about the converse?
# < non(€) and cov(€) < v. J




To solve this, we find a lower bound to non(€) and an upper bound to cov(€).



To solve this, we find a lower bound to non(€) and an upper bound to cov(€).

Given a sequence of non-empty sets b = (b(n) : n € w) and h: w — w, define
0 l_.[ b:= Hnew b(")
© S(b, h) := [T ,e, [b(m)]="".



To solve this, we find a lower bound to non(€) and an upper bound to cov(£).

Given a sequence of non-empty sets b = (b(n) : n € w) and h: w — w, define
0 H b:= Hnew b(")
© S(b, h) := [T ,e, [b(m)]="".

For two functions x and ¢ with domain w, write

x " iff V°n (x(n) € p(n)), which is read ¢_localizes x



How about 4 < non(€) and cov(€) < v7?

To solve this, we find a lower bound to non(€) and an upper bound to cov(E).

Given a sequence of non-empty sets b = (b(n) : n € w) and h: w — w, define
° H b = Hnew b(n)
@ S(b,h) := [ e, [b(m]="".

For two functions x and ¢ with domain w, write

x <@ iff Y¥n (x(n) € p(n)), which is read ¢_localizes x

Definition

Let b = (b(n) : n < w) be a sequence of non-empty sets and let h € w*. Define
the cardinals numbers blg,c,,, Df;fh, called localization cardinals, as follows:

bb% - min{|F|: Fc[]b —3peS(b h)vxeF(xe* cp)},

055, : min{|D\ : Dc S(b,h), Vxe Hbﬂgpe D(xe* <p)}
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Let b be a function with domain w such that b(/) # ¢ for all i < w, and let
h e w”. Define

«(b,h) = {p e [ P(b(n) : ¥n (p(n) € b(n) &3 (lp(n)] < h(n))}.

n<w




Let b be a function with domain w such that b(/) # ¢ for all i < w, and let
h e w”. Define

«(b,h) = {p e [ P(b(n) : ¥n (p(n) € b(n) &3 (lp(n)] < h(n))}.

n<w

bi’;* = min{|F| :Fc Hb, —3p e Sy(b, h)Vx e F (x e* <p)},

D[[,';* = min{|D| : D < Sy(b,h), Vxe HbEI(pE D(xe* <p)}



h(n)

With the notation from the previous definition. If limsup,_, IbEn)I < 1, then

I i
cov(€) <0, ¢ < 5% and by, < by < non(€).




For b, h € w*” such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by



For b, h € w*” such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC,  :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},

ordered by (p',n") < (p,n) iff n< n', p'tn=p, and Vi < w(p(i) < q(i)).



For b, h € w*” such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC,  :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},

ordered by (p',n") < (p,n) iff n< n', p'tn=p, and Vi < w(p(i) < q(i)).
@ LOC, j, is o-linked (thus ccc).



For b, h € w*” such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC,  :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},
ordered by (p',n") < (p,n) iff n< n', p'tn=p, and Vi < w(p(i) < q(i)).
@ LOC, j, is o-linked (thus ccc).

@ LOC, , adds a slalom ¢* such that x €* ™ for every x € [ b in the
ground model. This forcing increases b,[,‘ﬁ,.



For b, h € w*” such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC,  :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},

ordered by (p',n") < (p,n) iff n< n', p'tn=p, and Vi < w(p(i) < q(i)).
@ LOC, j, is o-linked (thus ccc).
@ LOC, , adds a slalom ¢* such that x €* ™ for every x € [ b in the
ground model. This forcing increases b,[,‘ﬁ,.

Point
LOC, , has UF-limits. J




How to increase blgch?

For b, h € w® such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC, , :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},

ordered by (p’,n’) < (p,n) iff n< i, p'In=p, and Vi < w(p(i) < q(i)).
@ LOC,  is o-linked (thus ccc).

Q@ LOC, ;, adds a slalom ¢™ such that x €* ©* for every x € [] b in the
ground model. This forcing increases blgﬁ,.

Point
LOC, , has UF-limits.

The key point is to iterate, in addition: LOC, , to increase b{;fh.
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How to increase blgch?

For b, h € w® such that Vi < w(b(i) > 0) and h going to infinity, the
localization forcing is defined by

LOC, , :={(p,n) : pe S(b, h),n <w and Im < wVi < w(|p(i)| < m)},

ordered by (p’,n’) < (p,n) iff n< i, p'In=p, and Vi < w(p(i) < q(i)).
@ LOC,  is o-linked (thus ccc).

Q@ LOC, ;, adds a slalom ¢™ such that x €* ©* for every x € [] b in the
ground model. This forcing increases blgﬁ,.

Point
LOC, , has UF-limits.

The key point is to iterate, in addition: LOC, , to increase b{;fh. Hence,

e non(€) = p and cov(€) = v.
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Let 6y < 6 < i < v be uncountable regular cardinals and let A be a cardinal such
that v < A = A=Y, Then there is a ccc poset forcing

cov(N) ——— non(M) ——+— cof (M) 5 cof (N) > C
w
A
b —> 0
0% p &~
0
v
Ry —— add(N) ——— add(M) ——— cov(M) ——— non(N)

and add(€) = 0, non(€) = p, cov(€) = v, and cof (€) = A.




Open problems

Are each one the following statements consistent with ZFC?
N1 < add(N) < b < cov(N) < non(€) < non(M) < cov(M)
<cov(€f) =non(N) =0 =c. (1)

N; < add(WNV) < b < non(€) < cov(N) < non(M) < cov(M)
<cov(f) =non(N) =0 =c. (2)

N; < add(WNV) < cov(N) < b < non(€) < non(M) < cov(M)
<cov(E) =non(N) =0=c. (3)
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In [KST19] (Kellner, Shelah, and T&nasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

Ry < add(N) < b < cov(N) < non(M) < cov(M) = c.
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In [KST19] (Kellner, Shelah, and T&nasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

Ry < add(N) < b < cov(N) < non(M) < cov(M) = c.

One natural approach to solve (1) and (2) would be using FAMS along a
matrix iteration.
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In [KST19] (Kellner, Shelah, and T3nasiei), it was constructed FAMS (finitely
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matrix iteration.



In [KST19] (Kellner, Shelah, and T&nasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

Ry < add(N) < b < cov(N) < non(M) < cov(M) = c.

One natural approach to solve (1) and (2) would be using FAMS along a
matrix iteration.

The main problem with this approach is that we do not know how to preserve
non(€) in this context. J

On the other hand, it is known by Bartoszyriski and Shelah [BS92] that random
forcing preserve non(&) small.
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In [KST19] (Kellner, Shelah, and T&nasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

Ry < add(N) < b < cov(N) < non(M) < cov(M) = c.

One natural approach to solve (1) and (2) would be using FAMS along a
matrix iteration.

The main problem with this approach is that we do not know how to preserve
non(€) in this context. J

On the other hand, it is known by Bartoszyriski and Shelah [BS92] that random
forcing preserve non(&) small. Hence,

It is consistent with ZFC
b = non(€) < cov(N) = non(M) = cov(M) = non(N) < cov(€) =0 J
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In [KST19] (Kellner, Shelah, and T3nasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

Ry < add(N) < b < cov(N) < non(M) < cov(M) = c.

One natural approach to solve (1) and (2) would be using FAMS along a
matrix iteration.

The main problem with this approach is that we do not know how to preserve
non(€) in this context. J

On the other hand, it is known by Bartoszyriski and Shelah [BS92] that random
forcing preserve non(&) small. Hence,

It is consistent with ZFC
b = non(€) < cov(N) = non(M) = cov(M) = non(N) < cov(€) =0 J

Also we may ask:

Does eventually different real forcing preserve non(&) small?
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One positive answer to Question 4 along with the method of submodels
of [GKMS21] would help solving:




One positive answer to Question 4 along with the method of submodels
of [GKMS21] would help solving:

Is it consistent with ZFC

Ry < add(N) < b < cov(N) < non(€) < non(M) < cov(M)
< cov(€) <0 <non(N) < cof(N) < ¢?




Open problems

One positive answer to Question 4 along with the method of submodels
of [GKMS21] would help solving:

V.

Is it consistent with ZFC

R; < add(N) < b < cov(N) < non(€) < non(M) < cov(M)
< cov(€) <0 <non(N) < cof(N) < ¢?

v

Is it consistent with ZFC

R; < add(N) < cov(N) < b < non(€) < non(M) < cov(M)
< cov(€) < non(N) <0 < cof(N) < ¢?

o
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Open problems

0 (A2),

. for any f € w®.

Roughly speaking, there are two approaches it could be used to solve these
problems.

@ Creature forcing method based on the notion of decisiveness (Kellner and
Shelah [KS09, KS12]).

@ Shattered iteration ([Brel9]).
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Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])

Under CH, if &1 < A3 < \s and \» < A3 are infinite cardinals such that A0 = \;
for i € {1,2,3,4}, then there is some proper w*-bounding poset with R»-cc forcing

cov(N) cof(N)
oc
A3 A4
A2
Ao add(N) non(N)

The constellation of Cichon’s diagram forced in [FGKS17], [GK21] (Goldstern

and Klausner 2021).

closed measure zero sets




Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])

Under CH, if &1 < A3 < \s and \» < A3 are infinite cardinals such that A0 = \;
for i € {1,2,3,4}, then there is some proper w*-bounding poset with R»-cc forcing

cov(N) non(M) A cof(M) cof(N) o
————— t
| A3 A4
Ny b 0
| Ao
N, ‘o
add(N) add(M) cov(M) non(N)

The constellation of Cichon's diagram forced in [FGKS17], [GK21] (Goldstern
and Klausner 2021).

The main problem with this approach is that it is restricted to w*”-bounding
forcings.
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