
On the cardinal characteristics associated with the σ-ideal
generated by closed measure zero sets of reals

Miguel A. Cardona

miguel.cardona@ujps.sk

Institute of Mathematics,
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Cardinal characteristics of the continuum I

Let I be an ideal of subsets of X such that txu P I for all x P X .

Additivity of I: addpIq “ mint|J | : J Ď I,
Ť

J R Iu.

Covering of I: covpIq “ mint|J | : J Ď I,
Ť

J “ Xu.

Uniformity of I: nonpIq “ mint|A| : A Ď X , A R Iu.

Cofinality of I: cofpIq “ mint|J | :J Ď I, p@A P IqpDB P J qpA Ď Bqu.

Denote by

1 N : the σ-ideal of Lebesgue measure zero (null) subsets of the Cantor
Space 2ω.

2 M : the σ-ideal of first category (meager) subsets of 2ω.

3 E : the σ-ideal generated by the closed measure zero subsets of 2ω.

It is well-known that E Ď N XM. Even more, E Ĺ N XM
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Provable inequalities

b b

b

b b

b

bℵ0

add(I)

cov(I)

non(I)

cof(I)

|X|

2|X|
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Cardinal characteristics of the continuum II

For f , g P ωω we write

f ď˚ g iff Dm ă ω@n ě mpf pnq ď gpnqq

Consider

1 b :“ mint|F | : F Ď ωω and  Dy P ωω @x P F px ď˚ yqu.

2 d :“ mint|D| : D Ď ωω and @x P ωω Dy P D px ď˚ yqu.

3 c :“ 2ω.
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Cichoń’s diagram

ℵ1 addpN q

covpN q

nonpN q

cofpN q

addpMq covpMq

nonpMq cofpMq

b d

c

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.
Completeness: Bartoszyński, Judah, Miller, Shelah.
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Completeness: Bartoszyński, Judah, Miller, Shelah.

Miguel A. Cardona closed measure zero sets
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In the context of this diagram, a natural question aries:

Is it consistent that all the cardinals in Cichoń’s diagram (with the
exception of the dependent values addpMq and cofpMq) are pairwise
different?
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Cichoń’s Maximuum

Theorem (Goldstern, Kellner and Shelah [GKS19])

Assume GCH and that
θ1 ă θ9 ă θ1 ă θ8 ă θ2 ă θ7 ă θ3 ă θ6 ă θ4 ď θ5 ď θ6 ď θ7 ď θ8 ď θ9 are
regular, θi strongly compact for i “ 6, 7, 8, 9. Then there is a ccc poset forcing

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9
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Cichoń’s Maximuum

Theorem (Brendle, C., and Mej́ıa [BCM21])

Cichoń’s maximum modulo three strongly compact cardinals (which improved
[GKS19]).

Theorem (Goldstern, Kellner, Mej́ıa, and Shelah [GKMS21])

No large cardinals are needed for Cichoń’s Maximum.
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Open problem

Question 1

Is it consistent that all the cardinals in Cichoń’s diagram (with the exception of
the dependent values addpMq and cofpMq) are pairwise different where
covpMq ă nonpMq?
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ZFC-results

Theorem (Bartoszyński and Shelah [BS92])

addpEq “ addpMq and cofpEq “ cofpMq.

Theorem ([BS92])

1 maxtcovpMq, covpN qu ď covpEq ď maxtd, covpN qu.
2 mintb, nonpN qu ď nonpEq ď mintnonpMq, nonpN qu.

In particular,

Corollary ([BS92])

1 If d “ covpMq, then covpEq “ maxtcovpMq, covpN qu.
2 If b “ nonpMq, then nonpEq “ mintnonpMq,nonpN qu.
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ZFC-results

For ideals I Ď J define

cofpI,J q “ mint|F | :F Ď J and @A P I DB P FpA Ď Bqu.

Theorem (Brendle [Bre99])

cofpE ,Mq “ maxtd,nonpEqu.

Lemma ([Bre99])

1 cofpEq “ cofpE0, Eq “ cofpE0q.

2 cofpE ,Mq “ cofpE0,Mq.

Here, E0, denotes the ideal of the set with closure Ā of measure zero.
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Motivation

ℵ1 addpEq

covpEq

nonpEq

cofpEq c

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with
E in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely

(A1)E addpEq ă covpEq ă nonpEq ă cofpEq, and

(A2)E addpEq ă nonpEq ă covpEq ă cofpEq.

Miguel A. Cardona closed measure zero sets



Motivation

ℵ1 addpEq

covpEq

nonpEq

cofpEq c

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with
E in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely

(A1)E addpEq ă covpEq ă nonpEq ă cofpEq, and

(A2)E addpEq ă nonpEq ă covpEq ă cofpEq.

Miguel A. Cardona closed measure zero sets



Motivation

ℵ1 addpEq

covpEq

nonpEq

cofpEq c

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with
E in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely

(A1)E addpEq ă covpEq ă nonpEq ă cofpEq, and

(A2)E addpEq ă nonpEq ă covpEq ă cofpEq.

Miguel A. Cardona closed measure zero sets



Early work

1 (Mej́ıa 2013) (A1)N is consistent with ZFC.
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Yorioka ideal

Let xσpnq : n ă ωy, σpnq P 2ăω. Denote

rσs8 :“
č

năω

ď

měn

rσpmqs

Let idk : ω Ñ ω be a function such that idk
piq :“ ik .

For f , g : ω Ñ ω define

f ! g if f ˝ idk
ď
˚ g for all k

Definition (Yorioka 2002)

Let f : ω Ñ ω increasing. The Yorioka ideal If is defined by

If :“ tX Ď 2ω : Dσ P p2ăωqωpX Ď rσs8 and htσ " f qu.
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Early work (cont)

1 (Mej́ıa [Mej13]) (A1)N is consistent with ZFC.

2 (C., and Mej́ıa 2019) “(A1)If
for any f above some fixed f ˚” is

consistent with ZFC.

3 (Goldstern, Kellner and Shelah [GKS19]) “(A2)M and (A1)N ” is
consistent with ZFC` large cardinals.

4 (Brendle, C., and Mej́ıa [BCM21]) (A2)M is consistent with ZFC (without
large cardinals).

5 (Brendle, C., and Mej́ıa [BCM21]) “(A1)If
for any f : ω Ñ ω” is

consistent with ZFC.
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Early work (cont)

6 (Brendle 2021 [Bre19] ) (A2)N is consistent with ZFC.

ℵ1 addpN q

covpN q

nonpN q

cofpN q

addpMq covpMq

nonpMq cofpMq

b d

c

λ

ν

κ

The constellation of Cichoń’s diagram forced in [Br21] where ℵ1 ă ν ă κ ă λ
with κ and ν regular.
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Strong measure sets

Given a sequence xσpnq : n ă ωy, σpnq P 2ăω define htσ : ω Ñ ω,
htσpnq :“ |σpnq| for each n ă ω.

Definition

Let X Ď 2ω. Say that X has strong measure zero iff for every f P ωω there is
some σ P p2ăωqω such that

1 htσ “ f , and

2 X Ď
Ť

năωrσpnqs.

Let SN :“ tX Ď 2ω : X has strong measure zerou.
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Early work (cont)

7 (C., Mej́ıa, Rivera-Madrid [CMRM21]) The consistency of a weak version
of (A2)SN ,

addpSN q “ nonpSN q ă covpSN q ă cofpSN q.

8 (C. [Car22b]) The consistency of a weak version of (A1)SN ,

addpSN q “ covpSN q ă nonpSN q ă cofpSN q.

Miguel A. Cardona closed measure zero sets



Early work (cont)

7 (C., Mej́ıa, Rivera-Madrid [CMRM21]) The consistency of a weak version
of (A2)SN ,

addpSN q “ nonpSN q ă covpSN q ă cofpSN q.

8 (C. [Car22b]) The consistency of a weak version of (A1)SN ,

addpSN q “ covpSN q ă nonpSN q ă cofpSN q.

Miguel A. Cardona closed measure zero sets



Open problems

Question 3

Is it consistent that

addpSN q ă mintcovpSN q, nonpSN qu?

Theorem (Brendle, C., and Mej́ıa (Working progress))

It is consistent with ZFC that addpSN q ă mintcovpSN q, nonpSN qu.

Even more,

Theorem (Brendle, C., and Mej́ıa (Working progress))

It is consistent with ZFC that (A1)SN .
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Even more,

Theorem (Brendle, C., and Mej́ıa (Working progress))

It is consistent with ZFC that (A1)SN .
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The result

Theorem (C. [Car22a])

Let θ ď µ ď ν be uncountable regular cardinals and let λ be a cardinal such that
ν ď λ “ λăθ. Then there is a ccc poset forcing

addpEq “ θ ď nonpEq “ µ ď covpEq “ ν ď cofpEq “ λ

Sketch Proof.

Use UF-extendable matrix iteration framework from [BCM21] for forcing
covpN q “ nonpMq “ µ, covpMq “ nonpN q “ ν, b “ θ and d “ λ.

Note that addpEq “ θ and cofpEq “ λ (because addpEq “ addpMq and
cofpEq “ cofpMq).

Since E ĎMXN ,

nonpEq ď mintnonpMq, nonpN qu

and
maxtcovpMq, covpN qu ď covpEq.

Then

nonpEq ď µ and covpEq ě ν.
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The result

Theorem (C. [C22])

Let θ ď µ ď ν be uncountable regular cardinals and let λ be a cardinal such that
ν ď λ “ λăθ. Then there is a ccc poset forcing

addpEq “ θ ď nonpEq “ µ ď covpEq “ ν ď cofpEq “ λ

Sketch Proof.

Use UF-extendable matrix iteration framework from [BCM21] for forcing
covpN q “ nonpMq “ µ, covpMq “ nonpN q “ ν, b “ θ and d “ λ.

addpEq “ θ and cofpEq “ λ (because addpEq “ addpMq and
cofpEq “ cofpMq).

nonpEq ď µ and covpEq ě ν.

What about the converse?

µ ď nonpEq and covpEq ď ν.
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How about µ ď nonpEq and covpEq ď ν?

To solve this, we find a lower bound to nonpEq and an upper bound to covpEq.

Given a sequence of non-empty sets b “ xbpnq : n P ωy and h : ω Ñ ω, define

1
ś

b :“
ś

nPω bpnq.

2 Spb, hq :“
ś

nPωrbpnqs
ďhpnq.

For two functions x and ϕ with domain ω, write

x P˚ϕ iff @8n pxpnq P ϕpnqq, which is read ϕ localizes x

Definition

Let b “ xbpnq : n ă ωy be a sequence of non-empty sets and let h P ωω. Define
the cardinals numbers bLc

b,h, dLc
b,h, called localization cardinals, as follows:

bLc
b,h :“ min

!

|F | : F Ď
ź

b,  Dϕ P Spb, hq @x P F px P˚ ϕq
)

,

dLc
b,h :“ min

!

|D| : D Ď Spb, hq, @x P
ź

b Dϕ P D px P˚ ϕq
)
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A variation of bLcb,h and dLcb,h

Definition

Let b be a function with domain ω such that bpiq ‰ H for all i ă ω, and let
h P ωω. Define

S˚pb, hq “
 

ϕ P
ź

năω

Ppbpnqq : @n pϕpnq Ď bpnqq& D8n p|ϕpnq| ď hpnqq
(

.

b
Lc˚

b,h :“ min
!

|F | : F Ď
ź

b,  Dϕ P S˚pb, hq @x P F px P˚ ϕq
)

,

d
Lc˚

b,h :“ min
!

|D| : D Ď S˚pb, hq, @x P
ź

b Dϕ P D px P˚ ϕq
)

.
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A variation of bLcb,h and dLcb,h

Definition

Let b be a function with domain ω such that bpiq ‰ H for all i ă ω, and let
h P ωω. Define

S˚pb, hq “
 

ϕ P
ź

năω

Ppbpnqq : @n pϕpnq Ď bpnqq& D8n p|ϕpnq| ď hpnqq
(

.

b
Lc˚

b,h :“ min
!

|F | : F Ď
ź

b,  Dϕ P S˚pb, hq @x P F px P˚ ϕq
)

,

d
Lc˚

b,h :“ min
!

|D| : D Ď S˚pb, hq, @x P
ź

b Dϕ P D px P˚ ϕq
)

.
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ZFC-results

Lemma

With the notation from the previous definition. If lim supnÑ8
hpnq
|bpnq|

ă 1, then

covpEq ď d
Lc˚

b,h ď dLc
b,h and bLc

b,h ď b
Lc˚

b,h ď nonpEq.
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How to increase bLcb,h?

For b, h P ωω such that @i ă ωpbpiq ą 0q and h going to infinity, the
localization forcing is defined by

LOCb,h :“ tpp, nq : p P Spb, hq, n ă ω and Dm ă ω@i ă ωp|ppiq| ď mqu,

ordered by pp1, n1q ď pp, nq iff n ď n1, p1æn “ p, and @i ă ωpppiq Ď qpiqq.

1 LOCb,h is σ-linked (thus ccc).

2 LOCb,h adds a slalom ϕ˚ such that x P˚ ϕ˚ for every x P
ś

b in the

ground model. This forcing increases bLc
b,h.

Point

LOCb,h has UF-limits.

The key point is to iterate, in addition: LOCb,h to increase bLc
b,h. Hence,

nonpEq “ µ and covpEq “ ν.
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The result

Theorem (C. [Car22a])

Let θ0 ď θ ď µ ď ν be uncountable regular cardinals and let λ be a cardinal such
that ν ď λ “ λăθ. Then there is a ccc poset forcing

ℵ1 addpN q

covpN q

nonpN q

cofpN q

addpMq covpMq

nonpMq cofpMq

b d

c

θ0

θ

µ

ν

λ

and addpEq “ θ, nonpEq “ µ, covpEq “ ν, and cofpEq “ λ.
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Open problems

Question 4

Are each one the following statements consistent with ZFC?

ℵ1 ă addpN q ă b ă covpN q ă nonpEq ă nonpMq ă covpMq

ă covpEq “ nonpN q “ d “ c. (1)

ℵ1 ă addpN q ă b ă nonpEq ă covpN q ă nonpMq ă covpMq

ă covpEq “ nonpN q “ d “ c. (2)

ℵ1 ă addpN q ă covpN q ă b ă nonpEq ă nonpMq ă covpMq

ă covpEq “ nonpN q “ d “ c. (3)
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In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely
additive measures) along a FS (finite support) iteration to force

ℵ1 ă addpN q ă b ă covpN q ă nonpMq ă covpMq “ c.

One natural approach to solve (1) and (2) would be using FAMS along a
matrix iteration.

The main problem with this approach is that we do not know how to preserve
nonpEq in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random
forcing preserve nonpEq small. Hence,

It is consistent with ZFC

b “ nonpEq ă covpN q “ nonpMq “ covpMq “ nonpN q ă covpEq “ d

Also we may ask:

Question 5

Does eventually different real forcing preserve nonpEq small?
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forcing preserve nonpEq small. Hence,

It is consistent with ZFC

b “ nonpEq ă covpN q “ nonpMq “ covpMq “ nonpN q ă covpEq “ d

Also we may ask:

Question 5

Does eventually different real forcing preserve nonpEq small?

Miguel A. Cardona closed measure zero sets



Open problems

One positive answer to Question 4 along with the method of submodels
of [GKMS21] would help solving:

Question 6

Is it consistent with ZFC

ℵ1 ă addpN q ă b ă covpN q ă nonpEq ă nonpMq ă covpMq

ă covpEq ă d ă nonpN q ă cofpN q ă c?

Question 7

Is it consistent with ZFC

ℵ1 ă addpN q ă covpN q ă b ă nonpEq ă nonpMq ă covpMq

ă covpEq ă nonpN q ă d ă cofpN q ă c?
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ă covpEq ă nonpN q ă d ă cofpN q ă c?
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Open problems

Question 8

1 (A1)E .

2 (A1)M.

3 (A2)SN .

4 (A2)If
for any f P ωω.

FS iterations of ccc forcings will not work to solve Question 8 because any such
iteration forces nonpMq ď covpMq.
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Open problems

Question 8

1 (A1)E .

2 (A1)M.

3 (A2)SN .

4 (A2)If
for any f P ωω.

Roughly speaking, there are two approaches it could be used to solve these
problems.

Creature forcing method based on the notion of decisiveness (Kellner and
Shelah [KS09, KS12]).

Shattered iteration ([Bre19]).
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Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])

Under CH, if λ1 ď λ3 ď λ4 and λ2 ď λ3 are infinite cardinals such that λℵ0
i “ λi

for i P t1, 2, 3, 4u, then there is some proper ωω-bounding poset with ℵ2-cc forcing

b b b b b

b b

b b b b b

λ1

λ2

λ3 λ4

ℵ1

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

The constellation of Cichoń’s diagram forced in [FGKS17], [GK21] (Goldstern
and Klausner 2021).

The main problem with this approach is that it is restricted to ωω-bounding
forcings.
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Univ. Carolin. 60 (2019), no. 1, 61–95.

Diego Alejandro Mej́ıa, Matrix iterations and Cichon’s diagram, Arch.
Math. Logic 52 (2013), no. 3-4, 261–278. MR 3047455

Miguel A. Cardona closed measure zero sets


