On the cardinal characteristics associated with the σ-ideal generated by closed measure zero sets of reals

Miguel A. Cardona

miguel.cardona@ujps.sk

Institute of Mathematics,
 Pavol Jozef Šafárik University

Kobe Set Theory Seminar July 13th 2022

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}$.

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}$.
Covering of $\mathcal{I}: \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J}=X\}$.

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}$.
Covering of $\mathcal{I}: \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J}=X\}$.
Uniformity of $\mathcal{I}: \operatorname{non}(\mathcal{I})=\min \{|A|: A \subseteq X, A \notin \mathcal{I}\}$.

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}$.
Covering of $\mathcal{I}: \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J}=X\}$.
Uniformity of $\mathcal{I}: \operatorname{non}(\mathcal{I})=\min \{|A|: A \subseteq X, A \notin \mathcal{I}\}$.
Cofinality of $\mathcal{I}: \operatorname{cof}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I},(\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}$.

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \cup \mathcal{J} \notin \mathcal{I}\}$.
Covering of $\mathcal{I}: \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \cup \mathcal{J}=X\}$.
Uniformity of $\mathcal{I}: \operatorname{non}(\mathcal{I})=\min \{|A|: A \subseteq X, A \notin \mathcal{I}\}$.
Cofinality of $\mathcal{I}: \operatorname{cof}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I},(\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}$.
Denote by
(1) \mathcal{N} : the σ-ideal of Lebesgue measure zero (null) subsets of the Cantor Space 2^{ω}.
(2) \mathcal{M} : the σ-ideal of first category (meager) subsets of 2^{ω}.
(3) \mathcal{E} : the σ-ideal generated by the closed measure zero subsets of 2^{ω}.

Cardinal characteristics of the continuum I

Let \mathcal{I} be an ideal of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.
Additivity of $\mathcal{I}: \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \cup \mathcal{J} \notin \mathcal{I}\}$.
Covering of $\mathcal{I}: \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I}, \cup \mathcal{J}=X\}$.
Uniformity of $\mathcal{I}: \operatorname{non}(\mathcal{I})=\min \{|A|: A \subseteq X, A \notin \mathcal{I}\}$.
Cofinality of $\mathcal{I}: \operatorname{cof}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I},(\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}$.
Denote by
(1) \mathcal{N} : the σ-ideal of Lebesgue measure zero (null) subsets of the Cantor Space 2^{ω}.
(2) \mathcal{M} : the σ-ideal of first category (meager) subsets of 2^{ω}.
(3) \mathcal{E} : the σ-ideal generated by the closed measure zero subsets of 2^{ω}.

It is well-known that $\mathcal{E} \subseteq \mathcal{N} \cap \mathcal{M}$. Even more, $\mathcal{E} \subsetneq \mathcal{N} \cap \mathcal{M}$

Provable inequalities

Cardinal characteristics of the continuum II

For $f, g \in \omega^{\omega}$ we write

$$
f \leqslant{ }^{*} g \text { iff } \exists m<\omega \forall n \geqslant m(f(n) \leqslant g(n))
$$

Consider

Cardinal characteristics of the continuum II

For $f, g \in \omega^{\omega}$ we write

$$
f \leqslant * g \text { iff } \exists m<\omega \forall n \geqslant m(f(n) \leqslant g(n))
$$

Consider
(1) $\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ and $\left.\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \leqslant^{*} y\right)\right\}$.

Cardinal characteristics of the continuum II

For $f, g \in \omega^{\omega}$ we write

$$
f \leqslant * g \text { iff } \exists m<\omega \forall n \geqslant m(f(n) \leqslant g(n))
$$

Consider
(1) $\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ and $\left.\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \leqslant^{*} y\right)\right\}$.
(2) $0:=\min \left\{|D|: D \subseteq \omega^{\omega}\right.$ and $\left.\forall x \in \omega^{\omega} \exists y \in D\left(x \leqslant^{*} y\right)\right\}$.

Cardinal characteristics of the continuum II

For $f, g \in \omega^{\omega}$ we write

$$
f \leqslant * g \text { iff } \exists m<\omega \forall n \geqslant m(f(n) \leqslant g(n))
$$

Consider
(1) $\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ and $\left.\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \leqslant^{*} y\right)\right\}$.
(2) $0:=\min \left\{|D|: D \subseteq \omega^{\omega}\right.$ and $\left.\forall x \in \omega^{\omega} \exists y \in D\left(x \leqslant^{*} y\right)\right\}$.
(3) $c:=2^{\omega}$.

Cichoń's diagram

Cichoń's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.

Cichoń's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.
Completeness: Bartoszyński, Judah, Miller, Shelah.

In the context of this diagram, a natural question aries:
Is it consistent that all the cardinals in Cichon's diagram (with the exception of the dependent values $\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{M}))$ are pairwise different?

Cichoń's Maximuum

Theorem (Goldstern, Kellner and Shelah [GKS19])

Assume GCH and that
$\theta_{1}<\theta_{9}<\theta_{1}<\theta_{8}<\theta_{2}<\theta_{7}<\theta_{3}<\theta_{6}<\theta_{4} \leqslant \theta_{5} \leqslant \theta_{6} \leqslant \theta_{7} \leqslant \theta_{8} \leqslant \theta_{9}$ are regular, θ_{i} strongly compact for $i=6,7,8,9$. Then there is a ccc poset forcing

Cichoń's Maximuum

Theorem (Brendle, C., and Mejía [BCM21])
Cichoń's maximum modulo three strongly compact cardinals (which improved [GKS19]).

Cichoń's Maximuum

Theorem (Brendle, C., and Mejía [BCM21])
Cichoń's maximum modulo three strongly compact cardinals (which improved [GKS19]).

Theorem (Goldstern, Kellner, Mejía, and Shelah [GKMS21])
No large cardinals are needed for Cichoń's Maximum.

Open problem

Question 1

Is it consistent that all the cardinals in Cichon's diagram (with the exception of the dependent values $\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{M})$) are pairwise different where $\operatorname{cov}(\mathcal{M})<\operatorname{non}(\mathcal{M})$?

ZFC-results

Theorem (Bartoszyński and Shelah [BS92])
 $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M})$.

ZFC-results

Theorem (Bartoszyński and Shelah [BS92])
 $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M})$.

Theorem ([BS92])

(1) $\max \{\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})\} \leqslant \operatorname{cov}(\mathcal{E}) \leqslant \max \{\mathcal{O}, \operatorname{cov}(\mathcal{N})\}$.
(2) $\min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \leqslant \operatorname{non}(\mathcal{E}) \leqslant \min \{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}$.

ZFC-results

Theorem (Bartoszyński and Shelah [BS92])
 $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M})$.

Theorem ([BS92])

(1) $\max \{\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})\} \leqslant \operatorname{cov}(\mathcal{E}) \leqslant \max \{\mathcal{O}, \operatorname{cov}(\mathcal{N})\}$.
(2) $\min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \leqslant \operatorname{non}(\mathcal{E}) \leqslant \min \{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}$.

In particular,

Corollary ([BS92])

(1) If $\mathfrak{d}=\operatorname{cov}(\mathcal{M})$, then $\operatorname{cov}(\mathcal{E})=\max \{\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})\}$.
(2) If $\mathfrak{b}=\operatorname{non}(\mathcal{M})$, then $\operatorname{non}(\mathcal{E})=\min \{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}$.

ZFC-results

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$
\operatorname{cof}(\mathcal{I}, \mathcal{J})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{J} \text { and } \forall A \in \mathcal{I} \exists B \in \mathcal{F}(A \subseteq B)\} .
$$

ZFC-results

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$
\operatorname{cof}(\mathcal{I}, \mathcal{J})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{J} \text { and } \forall A \in \mathcal{I} \exists B \in \mathcal{F}(A \subseteq B)\}
$$

Theorem (Brendle [Bre99])

$\operatorname{cof}(\mathcal{E}, \mathcal{M})=\max \{\mathfrak{d}, \operatorname{non}(\mathcal{E})\}$.

ZFC-results

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$
\operatorname{cof}(\mathcal{I}, \mathcal{J})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{J} \text { and } \forall A \in \mathcal{I} \exists B \in \mathcal{F}(A \subseteq B)\} .
$$

Theorem (Brendle [Bre99])

$\operatorname{cof}(\mathcal{E}, \mathcal{M})=\max \{\mathfrak{d}, \operatorname{non}(\mathcal{E})\}$.

Lemma ([Bre99])

(1) $\operatorname{cof}(\mathcal{E})=\operatorname{cof}\left(\mathcal{E}_{0}, \mathcal{E}\right)=\operatorname{cof}\left(\mathcal{E}_{0}\right)$.
(2) $\operatorname{cof}(\mathcal{E}, \mathcal{M})=\operatorname{cof}\left(\mathcal{E}_{0}, \mathcal{M}\right)$.

Here, \mathcal{E}_{0}, denotes the ideal of the set with closure \bar{A} of measure zero.

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with \mathcal{E} in the diagram above are pairwise difference?

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with \mathcal{E} in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely $(\mathrm{A} 1)_{\mathcal{E}} \operatorname{add}(\mathcal{E})<\operatorname{cov}(\mathcal{E})<\operatorname{non}(\mathcal{E})<\operatorname{cof}(\mathcal{E})$, and

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with \mathcal{E} in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely $(\mathrm{A} 1)_{\mathcal{E}} \operatorname{add}(\mathcal{E})<\operatorname{cov}(\mathcal{E})<\operatorname{non}(\mathcal{E})<\operatorname{cof}(\mathcal{E})$, and $(\mathrm{A} 2)_{\mathcal{E}} \operatorname{add}(\mathcal{E})<\operatorname{non}(\mathcal{E})<\operatorname{cov}(\mathcal{E})<\operatorname{cof}(\mathcal{E})$.

Early work

© (Mejía 2013) $(\mathrm{A} 1)_{\mathcal{N}}$ is consistent with ZFC .

Yorioka ideal

- Let $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}$. Denote

$$
[\sigma]_{\infty}:=\bigcap_{n<\omega} \bigcup_{m \geqslant n}[\sigma(m)]
$$

Yorioka ideal

- Let $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}$. Denote

$$
[\sigma]_{\infty}:=\bigcap_{n<\omega} \bigcup_{m \geqslant n}[\sigma(m)]
$$

- Let $\mathrm{id}^{k}: \omega \rightarrow \omega$ be a function such that $\mathrm{id}^{k}(i):=i^{k}$.

Yorioka ideal

- Let $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}$. Denote

$$
[\sigma]_{\infty}:=\bigcap_{n<\omega} \bigcup_{m \geqslant n}[\sigma(m)]
$$

- Let $\mathrm{id}^{k}: \omega \rightarrow \omega$ be a function such that $\mathrm{id}^{k}(i):=i^{k}$.
- For $f, g: \omega \rightarrow \omega$ define

$$
f \ll g \text { if } f \circ \mathrm{id}^{k} \leqslant * g \text { for all } k
$$

Yorioka ideal

- Let $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}$. Denote

$$
[\sigma]_{\infty}:=\bigcap_{n<\omega} \bigcup_{m \geqslant n}[\sigma(m)]
$$

- Let $\mathrm{id}^{k}: \omega \rightarrow \omega$ be a function such that $\mathrm{id}^{k}(i):=i^{k}$.
- For $f, g: \omega \rightarrow \omega$ define

$$
f \ll g \text { if } f \circ \mathrm{id}^{k} \leqslant * g \text { for all } k
$$

Definition (Yorioka 2002)

Let $f: \omega \rightarrow \omega$ increasing. The Yorioka ideal \mathcal{I}_{f} is defined by

$$
\mathcal{I}_{f}:=\left\{X \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}\left(X \subseteq[\sigma]_{\infty} \text { and } \mathrm{ht}_{\sigma} \gg f\right)\right\} .
$$

Early work (cont)

© (Mejía [Mej13]) $(\mathrm{A} 1)_{\mathcal{N}}$ is consistent with ZFC.

Early work (cont)

© (Mejía [Mej13]) $(\mathrm{A} 1)_{\mathcal{N}}$ is consistent with ZFC.
(2) (C., and Mejía 2019) "(A1 $)_{\mathcal{I}_{f}}$ for any f above some fixed $f^{* "}$ is consistent with ZFC.

Early work (cont)

© (Mejía [Mej13]) (A1) $)_{\mathcal{N}}$ is consistent with ZFC.
(2) (C., and Mejía 2019) "(A1 $)_{\mathcal{I}_{f}}$ for any f above some fixed $f^{* "}$ is consistent with ZFC.
© (Goldstern, Kellner and Shelah [GKS19]) " $(\mathrm{A} 2)_{\mathcal{M}}$ and $(\mathrm{A} 1)_{\mathcal{N}}$ " is consistent with ZFC + large cardinals.

Early work (cont)

© (Mejía [Mej13]) (A1) $\mathcal{N}_{\mathcal{N}}$ is consistent with ZFC.
(3) (C., and Mejía 2019) "(A1) $)_{\mathcal{I}_{f}}$ for any f above some fixed $f^{* "}$ is consistent with ZFC.
© (Goldstern, Kellner and Shelah [GKS19]) " $(\mathrm{A} 2)_{\mathcal{M}}$ and $(\mathrm{A} 1)_{\mathcal{N}}$ " is consistent with ZFC + large cardinals.

- (Brendle, C., and Mejía [BCM21]) (A2) $\mathcal{M}_{\mathcal{M}}$ is consistent with ZFC (without large cardinals).

Early work (cont)

© (Mejía [Mej13]) (A1) $\mathcal{N}_{\mathcal{N}}$ is consistent with ZFC.
(3) (C., and Mejía 2019) "(A1) $)_{\mathcal{I}_{f}}$ for any f above some fixed $f^{* "}$ is consistent with ZFC.
© (Goldstern, Kellner and Shelah [GKS19]) " $(\mathrm{A} 2)_{\mathcal{M}}$ and $(\mathrm{A} 1)_{\mathcal{N}}$ " is consistent with ZFC + large cardinals.

- (Brendle, C., and Mejía [BCM21]) (A2) $\mathcal{M}^{\text {M }}$ is consistent with ZFC (without large cardinals).
- (Brendle, C., and Mejía [BCM21]) "(A1) $)_{\mathcal{I}_{f}}$ for any $f: \omega \rightarrow \omega$ " is consistent with ZFC.

Early work (cont)

- (Brendle 2021 [Bre19]) $(\mathrm{A} 2)_{\mathcal{N}}$ is consistent with ZFC.

The constellation of Cichoń's diagram forced in [Br21] where $\aleph_{1}<\nu<\kappa<\lambda$ with κ and ν regular.

Strong measure sets

Given a sequence $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}{\text { define } h t_{\sigma}}: \omega \rightarrow \omega$, $\mathrm{ht}_{\sigma}(n):=|\sigma(n)|$ for each $n<\omega$.

Definition

Let $X \subseteq 2^{\omega}$. Say that X has strong measure zero iff for every $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ such that

Strong measure sets

Given a sequence $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}{\text { define } h t_{\sigma}}: \omega \rightarrow \omega$, $\mathrm{ht}_{\sigma}(n):=|\sigma(n)|$ for each $n<\omega$.

Definition

Let $X \subseteq 2^{\omega}$. Say that X has strong measure zero iff for every $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ such that
(1) $\mathrm{ht}_{\sigma}=f$, and

Strong measure sets

Given a sequence $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}{\text { define } h t_{\sigma}}: \omega \rightarrow \omega$, $\mathrm{ht}_{\sigma}(n):=|\sigma(n)|$ for each $n<\omega$.

Definition

Let $X \subseteq 2^{\omega}$. Say that X has strong measure zero iff for every $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ such that
(1) $\mathrm{ht}_{\sigma}=f$, and
(2) $X \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Strong measure sets

Given a sequence $\langle\sigma(n): n<\omega\rangle, \sigma(n) \in 2^{<\omega}$ define $^{h t_{\sigma}}: \omega \rightarrow \omega$, ht $_{\sigma}(n):=|\sigma(n)|$ for each $n<\omega$.

Definition

Let $X \subseteq 2^{\omega}$. Say that X has strong measure zero iff for every $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ such that
(1) $\mathrm{ht}_{\sigma}=f$, and
(3) $X \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Let $\mathcal{S N}:=\left\{X \subseteq 2^{\omega}: X\right.$ has strong measure zero $\}$.

Early work (cont)

- (C., Mejía, Rivera-Madrid [CMRM21]) The consistency of a weak version of (A2 $)_{\mathcal{S N}}$,

$$
\operatorname{add}(\mathcal{S N})=\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N}) .
$$

Early work (cont)

(3) (C., Mejía, Rivera-Madrid [CMRM21]) The consistency of a weak version of $(\mathrm{A} 2)_{\mathcal{S N}}$,

$$
\operatorname{add}(\mathcal{S N})=\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})
$$

8 (C. [Car22b]) The consistency of a weak version of $(\mathrm{A} 1)_{\mathcal{S N}}$,

$$
\operatorname{add}(\mathcal{S N})=\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})
$$

Open problems

Question 3

Is it consistent that

$$
\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\} ?
$$

Open problems

Question 3

Is it consistent that

$$
\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\} ?
$$

Theorem (Brendle, C., and Mejía (Working progress))
It is consistent with ZFC that $\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\}$.

Open problems

Question 3

Is it consistent that

$$
\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\} ?
$$

Theorem (Brendle, C., and Mejía (Working progress))
It is consistent with ZFC that $\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\}$.
Even more,
Theorem (Brendle, C., and Mejía (Working progress))
It is consistent with ZFC that $(\mathrm{A} 1)_{\mathcal{S N}}$.

The result

Theorem (C. [Car22a])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

The result

Theorem (C. [Car22a])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\mu, \operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})=\nu, \mathfrak{b}=\theta$ and $\mathfrak{d}=\lambda$.

The result

Theorem (C. [Car22a])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\mu, \operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})=\nu, \mathfrak{b}=\theta$ and $\mathfrak{d}=\lambda$.
- Note that $\operatorname{add}(\mathcal{E})=\theta$ and $\operatorname{cof}(\mathcal{E})=\lambda($ because $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M}))$.

The result

Theorem (C. [Car22a])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\mu, \operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})=\nu, \mathfrak{b}=\theta$ and $\mathfrak{d}=\lambda$.
- Note that $\operatorname{add}(\mathcal{E})=\theta$ and $\operatorname{cof}(\mathcal{E})=\lambda(b e c a u s e \operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M}))$.
Since $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N}$,

$$
\operatorname{non}(\mathcal{E}) \leqslant \min \{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}
$$

and

$$
\max \{\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})\} \leqslant \operatorname{cov}(\mathcal{E})
$$

The result

Theorem (C. [Car22a])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\mu, \operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})=\nu, \mathfrak{b}=\theta$ and $\mathfrak{d}=\lambda$.
- Note that $\operatorname{add}(\mathcal{E})=\theta$ and $\operatorname{cof}(\mathcal{E})=\lambda(b e c a u s e \operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M}))$.
Since $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N}$,

$$
\operatorname{non}(\mathcal{E}) \leqslant \min \{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}
$$

and

$$
\max \{\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})\} \leqslant \operatorname{cov}(\mathcal{E})
$$

Then

- $\operatorname{non}(\mathcal{E}) \leqslant \mu$ and $\operatorname{cov}(\mathcal{E}) \geqslant \nu$.

The result

Theorem (C. [C22])

Let $\theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$
\operatorname{add}(\mathcal{E})=\theta \leqslant \operatorname{non}(\mathcal{E})=\mu \leqslant \operatorname{cov}(\mathcal{E})=\nu \leqslant \operatorname{cof}(\mathcal{E})=\lambda
$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\mu, \operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})=\nu, \mathfrak{b}=\theta$ and $\mathfrak{d}=\lambda$.
- $\operatorname{add}(\mathcal{E})=\theta$ and $\operatorname{cof}(\mathcal{E})=\lambda($ because $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M}))$.
- $\operatorname{non}(\mathcal{E}) \leqslant \mu$ and $\operatorname{cov}(\mathcal{E}) \geqslant \nu$.

What about the converse?
$\mu \leqslant \operatorname{non}(\mathcal{E})$ and $\operatorname{cov}(\mathcal{E}) \leqslant \nu$.

How about $\mu \leqslant \operatorname{non}(\mathcal{E})$ and $\operatorname{cov}(\mathcal{E}) \leqslant \nu$?

To solve this, we find a lower bound to $\operatorname{non}(\mathcal{E})$ and an upper bound to $\operatorname{cov}(\mathcal{E})$.

How about $\mu \leqslant \operatorname{non}(\mathcal{E})$ and $\operatorname{cov}(\mathcal{E}) \leqslant \nu$?

To solve this, we find a lower bound to $\operatorname{non}(\mathcal{E})$ and an upper bound to $\operatorname{cov}(\mathcal{E})$.
Given a sequence of non-empty sets $b=\langle b(n): n \in \omega\rangle$ and $h: \omega \rightarrow \omega$, define
(1) $\Pi b:=\prod_{n \in \omega} b(n)$.
(2) $\mathcal{S}(b, h):=\prod_{n \in \omega}[b(n)]^{\leqslant h(n)}$.

How about $\mu \leqslant \operatorname{non}(\mathcal{E})$ and $\operatorname{cov}(\mathcal{E}) \leqslant \nu$?

To solve this, we find a lower bound to $\operatorname{non}(\mathcal{E})$ and an upper bound to $\operatorname{cov}(\mathcal{E})$.
Given a sequence of non-empty sets $b=\langle b(n): n \in \omega\rangle$ and $h: \omega \rightarrow \omega$, define
(1) $\Pi b:=\prod_{n \in \omega} b(n)$.
(2) $\mathcal{S}(b, h):=\prod_{n \in \omega}[b(n)]^{\leqslant h(n)}$.

For two functions x and φ with domain ω, write

$$
x \in^{*} \varphi \text { iff } \forall^{\infty} n(x(n) \in \varphi(n)) \text {, which is read } \varphi \underline{\text { localizes } x}
$$

How about $\mu \leqslant \operatorname{non}(\mathcal{E})$ and $\operatorname{cov}(\mathcal{E}) \leqslant \nu$?

To solve this, we find a lower bound to $\operatorname{non}(\mathcal{E})$ and an upper bound to $\operatorname{cov}(\mathcal{E})$.
Given a sequence of non-empty sets $b=\langle b(n): n \in \omega\rangle$ and $h: \omega \rightarrow \omega$, define
(1) $\prod b:=\prod_{n \in \omega} b(n)$.
(2) $\mathcal{S}(b, h):=\prod_{n \in \omega}[b(n)]^{\leqslant h(n)}$.

For two functions x and φ with domain ω, write

$$
x \in^{*} \varphi \text { iff } \forall^{\infty} n(x(n) \in \varphi(n)) \text {, which is read } \varphi \text { localizes } x
$$

Definition

Let $b=\langle b(n): n<\omega\rangle$ be a sequence of non-empty sets and let $h \in \omega^{\omega}$. Define the cardinals numbers $\mathfrak{b}_{b, h}^{\mathrm{Lc}}, \mathfrak{d}_{b, h}^{\mathrm{Lc}}$, called localization cardinals, as follows:

$$
\begin{aligned}
& \mathfrak{b}_{b, h}^{\mathrm{Lc}}:=\min \left\{|F|: F \subseteq \prod b, \neg \exists \varphi \in \mathcal{S}(b, h) \forall x \in F\left(x \in^{*} \varphi\right)\right\}, \\
& \mathfrak{d}_{b, h}^{\mathrm{Lc}}:=\min \left\{|D|: D \subseteq \mathcal{S}(b, h), \forall x \in \prod b \exists \varphi \in D\left(x \in^{*} \varphi\right)\right\}
\end{aligned}
$$

A variation of $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$ and $\mathfrak{d}_{b, h}^{\mathrm{Lc}}$

Definition

Let b be a function with domain ω such that $b(i) \neq \varnothing$ for all $i<\omega$, and let $h \in \omega^{\omega}$. Define

$$
\mathcal{S}_{*}(b, h)=\left\{\varphi \in \prod_{n<\omega} \mathcal{P}(b(n)): \forall n(\varphi(n) \subseteq b(n)) \& \exists^{\infty} n(|\varphi(n)| \leqslant h(n))\right\} .
$$

A variation of $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$ and $\mathfrak{d}_{b, h}^{\mathrm{Lc}}$

Definition

Let b be a function with domain ω such that $b(i) \neq \varnothing$ for all $i<\omega$, and let $h \in \omega^{\omega}$. Define

$$
\mathcal{S}_{*}(b, h)=\left\{\varphi \in \prod_{n<\omega} \mathcal{P}(b(n)): \forall n(\varphi(n) \subseteq b(n)) \& \exists^{\infty} n(|\varphi(n)| \leqslant h(n))\right\} .
$$

$$
\begin{aligned}
& \mathfrak{b}_{b, h}^{\mathrm{Lc} *}:=\min \left\{|F|: F \subseteq \prod b, \neg \exists \varphi \in \mathcal{S}_{*}(b, h) \forall x \in F\left(x \in^{*} \varphi\right)\right\}, \\
& \mathfrak{d}_{b, h}^{\mathrm{Lc} *}:=\min \left\{|D|: D \subseteq \mathcal{S}_{*}(b, h), \forall x \in \prod b \exists \varphi \in D\left(x \in^{*} \varphi\right)\right\} .
\end{aligned}
$$

ZFC-results

Lemma

With the notation from the previous definition. If $\lim \sup _{n \rightarrow \infty} \frac{h(n)}{|b(n)|}<1$, then $\operatorname{cov}(\mathcal{E}) \leqslant \mathfrak{d}_{b, h}^{\mathrm{Lc} *} \leqslant \mathfrak{d}_{b, h}^{\mathrm{Lc}}$ and $\mathfrak{b}_{b, h}^{\mathrm{Lc}} \leqslant \mathfrak{b}_{b, h}^{\mathrm{LC} *} \leqslant \operatorname{non}(\mathcal{E})$.

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L} \mathbb{O} C_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\},
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L O C}_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\}
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.
(1) $\mathbb{L} \mathbb{O} \mathbb{C}_{b, h}$ is σ-linked (thus ccc).

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L O C}_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\}
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.
(1) $\mathbb{L O C} C_{b, h}$ is σ-linked (thus ccc).
(2) $\mathbb{L O C} \mathbb{C}_{b, h}$ adds a slalom φ^{*} such that $x \in^{*} \varphi^{*}$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$.

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L O C}_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\}
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.
(1) $\mathbb{L O C} C_{b, h}$ is σ-linked (thus ccc).
(2) $\mathbb{L O C} \mathbb{C}_{b, h}$ adds a slalom φ^{*} such that $x \in^{*} \varphi^{*}$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$.

Point

$\mathbb{L O C} C_{b, h}$ has UF-limits.

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L O C}_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\}
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.
(1) $\mathbb{L O C} C_{b, h}$ is σ-linked (thus ccc).
(2) $\mathbb{L O C} \mathbb{C}_{b, h}$ adds a slalom φ^{*} such that $x \in^{*} \varphi^{*}$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$.

Point
 $\mathbb{L} \mathbb{O} \mathbb{C}_{b, h}$ has UF-limits.

The key point is to iterate, in addition: $\mathbb{L O C} \mathbb{C}_{b, h}$ to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$.

How to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$?

For $b, h \in \omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$
\mathbb{L O C}_{b, h}:=\{(p, n): p \in \mathcal{S}(b, h), n<\omega \text { and } \exists m<\omega \forall i<\omega(|p(i)| \leqslant m)\}
$$

ordered by $\left(p^{\prime}, n^{\prime}\right) \leqslant(p, n)$ iff $n \leqslant n^{\prime}, p^{\prime} \upharpoonright n=p$, and $\forall i<\omega(p(i) \subseteq q(i))$.
(1) $\mathbb{L O C} C_{b, h}$ is σ-linked (thus ccc).
(2) $\mathbb{L O C} \mathbb{C}_{b, h}$ adds a slalom φ^{*} such that $x \in^{*} \varphi^{*}$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$.

Point

$\mathbb{L} \mathbb{C} \mathbb{C}_{b, h}$ has UF-limits.
The key point is to iterate, in addition: $\mathbb{L O} \mathbb{C}_{b, h}$ to increase $\mathfrak{b}_{b, h}^{\mathrm{Lc}}$. Hence, - $\operatorname{non}(\mathcal{E})=\mu$ and $\operatorname{cov}(\mathcal{E})=\nu$.

The result

Theorem (C. [Car22a])

Let $\theta_{0} \leqslant \theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

and $\operatorname{add}(\mathcal{E})=\theta, \operatorname{non}(\mathcal{E})=\mu, \operatorname{cov}(\mathcal{E})=\nu$, and $\operatorname{cof}(\mathcal{E})=\lambda$.

Open problems

Question 4

Are each one the following statements consistent with ZFC?

$$
\begin{align*}
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{E})< \operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})=\operatorname{non}(\mathcal{N})=\mathfrak{d}=\mathfrak{c} \tag{1}\\
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{non}(\mathcal{E})<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})=\operatorname{non}(\mathcal{N})=\mathfrak{d}=\mathfrak{c} \tag{2}\\
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\operatorname{cov}(\mathcal{N})<\mathfrak{b}<\operatorname{non}(\mathcal{E})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})=\operatorname{non}(\mathcal{N})=\mathfrak{d}=\mathfrak{c} \tag{3}
\end{align*}
$$

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\operatorname{non}(\mathcal{E})$ in this context.

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\operatorname{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve non (\mathcal{E}) small.

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\operatorname{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve $\operatorname{non}(\mathcal{E})$ small. Hence,

It is consistent with ZFC

$$
\mathfrak{b}=\operatorname{non}(\mathcal{E})<\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})<\operatorname{cov}(\mathcal{E})=\mathfrak{d}
$$

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$
\aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})=\mathfrak{c} .
$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\operatorname{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve non (\mathcal{E}) small. Hence,

It is consistent with ZFC

$$
\mathfrak{b}=\operatorname{non}(\mathcal{E})<\operatorname{cov}(\mathcal{N})=\operatorname{non}(\mathcal{M})=\operatorname{cov}(\mathcal{M})=\operatorname{non}(\mathcal{N})<\operatorname{cov}(\mathcal{E})=\mathfrak{d}
$$

Also we may ask:

Question 5

Does eventually different real forcing preserve non (\mathcal{E}) small?

Open problems

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

Open problems

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

Question 6
Is it consistent with ZFC

$$
\begin{aligned}
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{E})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})<\mathfrak{d}<\operatorname{non}(\mathcal{N})<\operatorname{cof}(\mathcal{N})<\mathfrak{c} ?
\end{aligned}
$$

Open problems

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

Question 6

Is it consistent with ZFC

$$
\begin{aligned}
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{E})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})<\mathfrak{d}<\operatorname{non}(\mathcal{N})<\operatorname{cof}(\mathcal{N})<\mathfrak{c} ?
\end{aligned}
$$

Question 7

Is it consistent with ZFC

$$
\begin{aligned}
& \aleph_{1}<\operatorname{add}(\mathcal{N})<\operatorname{cov}(\mathcal{N})<\mathfrak{b}<\operatorname{non}(\mathcal{E})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M}) \\
&<\operatorname{cov}(\mathcal{E})<\operatorname{non}(\mathcal{N})<\mathfrak{d}<\operatorname{cof}(\mathcal{N})<\mathfrak{c} ?
\end{aligned}
$$

Open problems

Question 8

(1) $(\mathrm{A} 1)_{\mathcal{E}}$.
(2) $(\mathrm{A} 1)_{\mathcal{M}}$.

- $(\mathrm{A} 2)_{\mathcal{S N}}$.
(1) (A2) \mathcal{I}_{f} for any $f \in \omega^{\omega}$.

Open problems

Question 8

(1) $(\mathrm{A} 1)_{\mathcal{E}}$.
(2) $(\mathrm{A} 1)_{\mathcal{M}}$.
(3) $(\mathrm{A} 2)_{\mathcal{S N}}$.
(9) $(\mathrm{A} 2)_{\mathcal{I}_{f}}$ for any $f \in \omega^{\omega}$.

FS iterations of ccc forcings will not work to solve Question 8 because any such iteration forces $\operatorname{non}(\mathcal{M}) \leqslant \operatorname{cov}(\mathcal{M})$.

Open problems

Question 8

(1) $(\mathrm{A} 1)_{\mathcal{E}}$.
(2) $(\mathrm{A} 1)_{\mathcal{M}}$.
(3) $(\mathrm{A} 2)_{\mathcal{S N}}$.
(4) $(\mathrm{A} 2)_{\mathcal{I}_{f}}$ for any $f \in \omega^{\omega}$.

Roughly speaking, there are two approaches it could be used to solve these problems.

- Creature forcing method based on the notion of decisiveness (Kellner and Shelah [KS09, KS12]).
- Shattered iteration ([Bre19]).

Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])
Under CH , if $\lambda_{1} \leqslant \lambda_{3} \leqslant \lambda_{4}$ and $\lambda_{2} \leqslant \lambda_{3}$ are infinite cardinals such that $\lambda_{i}^{\aleph_{0}}=\lambda_{i}$ for $i \in\{1,2,3,4\}$, then there is some proper ω^{ω}-bounding poset with \aleph_{2}-cc forcing

The constellation of Cichon's diagram forced in [FGKS17], [GK21] (Goldstern and Klausner 2021).

Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])
Under CH , if $\lambda_{1} \leqslant \lambda_{3} \leqslant \lambda_{4}$ and $\lambda_{2} \leqslant \lambda_{3}$ are infinite cardinals such that $\lambda_{i}^{\aleph_{0}}=\lambda_{i}$ for $i \in\{1,2,3,4\}$, then there is some proper ω^{ω}-bounding poset with \aleph_{2}-cc forcing

The constellation of Cichon's diagram forced in [FGKS17], [GK21] (Goldstern and Klausner 2021).

The main problem with this approach is that it is restricted to ω^{ω}-bounding forcings.

References I

R Jörg Brendle，Miguel A．Cardona，and Diego A．Mejía，Filter－linkedness and its effect on preservation of cardinal characteristics，Ann．Pure Appl． Logic 172 （2021），no．1，102856．MR 4121954

Jörg Brendle，Between p－points and nowhere dense ultrafilters，Israel Journal of Mathematics 113 （1999），no．1，205－230．
围 \qquad ，Forcing and cardinal invariants，parts 1 and 2，tutorial at advanced class，Young Set Theory Workshop， 2019.

Tomek Bartoszynski and Saharon Shelah，Closed measure zero sets， Annals of Pure and Applied Logic 58 （1992），no．2，93－110．

Miguel A．Cardona，A friendly iteration forcing that the four cardinal characteristics of \mathcal{E} can be pairwise different， 2022.
星 \qquad On cardinal characteristics associated with the strong measure zero ideal，Fundam．Math． 257 （2022），289－304．
宣
Miguel A．Cardona，Diego A．Mejía，and Ismael E．Rivera－Madrid，The covering number of the strong measure zero ideal can be above almost everything else，Arch．Math．Logic（2021）．

References II

A Arthur Fischer, Martin Goldstern, Jakob Kellner, and Saharon Shelah, Creature Forcing and Five Cardinal Characteristics in Cichoń's Diagram, Arch. Math. Logic 56 (2017), no. 7-8, 1045-1103.
园
Martin Goldstern and Lukas Daniel Klausner, Cichoń's Diagram and Localisation Cardinals, Arch. Math. Logic 60 (2021), no. 3-4, 343-411, DOI: S00153-020-00746-3, arXiv: 1808.01921 [math.LO].
. Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah, Cichon's maximum without large cardinals, J. Eur. Math. Soc. (JEMS) (2021).
T- Martin Goldstern, Jakob Kellner, and Saharon Shelah, Cichoń's maximum, Ann. of Math. 190 (2019), no. 1, 113-143.

- Jakob Kellner and Saharon Shelah, Decisive Creatures and Large Continuum, J. Symb. Log. 74 (2009), no. 1, 73-104.
國
, Creature Forcing and Large Continuum: The Joy of Halving, Arch. Math. Logic 51 (2012), no. 1-2, 49-70.

References III

㵢
Jakob Kellner, Saharon Shelah, and Anda Tănasie, Another ordering of the ten cardinal characteristics in Cichoń's diagram, Comment. Math. Univ. Carolin. 60 (2019), no. 1, 61-95.
R
Diego Alejandro Mejía, Matrix iterations and Cichon's diagram, Arch. Math. Logic 52 (2013), no. 3-4, 261-278. MR 3047455

