On the cardinal characteristics associated with the σ -ideal generated by closed measure zero sets of reals

Miguel A. Cardona

miguel.cardona@ujps.sk

Institute of Mathematics,
Pavol Jozef Šafárik University

Kobe Set Theory Seminar July 13th 2022

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : $\operatorname{add}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}.$

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}$ }.

Covering of \mathcal{I} : $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = X\}.$

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}$ }.

Covering of \mathcal{I} : $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = X\}.$

Uniformity of \mathcal{I} : non(\mathcal{I}) = min{ $|A| : A \subseteq X, A \notin \mathcal{I}$ }.

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}$ }.

Covering of \mathcal{I} : $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = X\}.$

Uniformity of \mathcal{I} : non(\mathcal{I}) = min{ $|A| : A \subseteq X, A \notin \mathcal{I}$ }.

Cofinality of \mathcal{I} : $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \ (\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}.$

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}$ }.

Covering of \mathcal{I} : $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = X\}.$

Uniformity of \mathcal{I} : non(\mathcal{I}) = min{ $|A| : A \subseteq X, A \notin \mathcal{I}$ }.

Cofinality of \mathcal{I} : $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, (\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}.$

Denote by

- \bullet $\,\mathcal{N}$: the $\sigma\text{-ideal}$ of Lebesgue measure zero (null) subsets of the Cantor Space $2^\omega.$
- **2** \mathcal{M} : the σ -ideal of first category (meager) subsets of 2^{ω} .
- **3** \mathcal{E} : the σ -ideal generated by the closed measure zero subsets of 2^{ω} .

Let \mathcal{I} be an <u>ideal</u> of subsets of X such that $\{x\} \in \mathcal{I}$ for all $x \in X$.

Additivity of \mathcal{I} : add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}$ }.

Covering of \mathcal{I} : $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = X\}.$

Uniformity of \mathcal{I} : non(\mathcal{I}) = min{ $|A| : A \subseteq X, A \notin \mathcal{I}$ }.

Cofinality of \mathcal{I} : $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, (\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}.$

Denote by

- $\mathcal N$: the σ -ideal of Lebesgue measure zero (null) subsets of the Cantor Space 2^ω .
- **2** \mathcal{M} : the σ -ideal of first category (meager) subsets of 2^{ω} .
- **3** \mathcal{E} : the σ -ideal generated by the closed measure zero subsets of 2^{ω} .

It is well-known that $\mathcal{E} \subseteq \mathcal{N} \cap \mathcal{M}$. Even more, $\mathcal{E} \subsetneq \mathcal{N} \cap \mathcal{M}$

Provable inequalities

For $f, g \in \omega^{\omega}$ we write

$$f \leqslant^* g \text{ iff } \exists m < \omega \forall n \geqslant m(f(n) \leqslant g(n))$$

For $f, g \in \omega^{\omega}$ we write

$$f \leqslant^* g \text{ iff } \exists m < \omega \forall n \geqslant m(f(n) \leqslant g(n))$$

For $f, g \in \omega^{\omega}$ we write

$$f \leqslant^* g \text{ iff } \exists m < \omega \forall n \geqslant m(f(n) \leqslant g(n))$$

For $f, g \in \omega^{\omega}$ we write

$$f \leqslant^* g \text{ iff } \exists m < \omega \forall n \geqslant m(f(n) \leqslant g(n))$$

- **3** $\mathfrak{c} := 2^{\omega}$.

Cichoń's diagram

Cichoń's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.

Cichoń's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.

Completeness: Bartoszyński, Judah, Miller, Shelah.

In the context of this diagram, a natural question aries:

Is it consistent that all the cardinals in Cichoń's diagram (with the exception of the dependent values $\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{M})$) are pairwise different?

Cichoń's Maximuum

Theorem (Goldstern, Kellner and Shelah [GKS19])

Assume GCH and that

 $\theta_1 < \theta_9 < \theta_1 < \theta_8 < \theta_2 < \theta_7 < \theta_3 < \theta_6 < \theta_4 \leqslant \theta_5 \leqslant \theta_6 \leqslant \theta_7 \leqslant \theta_8 \leqslant \theta_9$ are regular, θ_i strongly compact for i=6,7,8,9. Then there is a ccc poset forcing

Cichoń's Maximuum

Theorem (Brendle, C., and Mejía [BCM21])

Cichoń's maximum modulo three strongly compact cardinals (which improved [GKS19]).

Cichoń's Maximuum

Theorem (Brendle, C., and Mejía [BCM21])

Cichoń's maximum modulo three strongly compact cardinals (which improved [GKS19]).

Theorem (Goldstern, Kellner, Mejía, and Shelah [GKMS21])

No large cardinals are needed for Cichoń's Maximum.

Open problem

Question 1

Is it consistent that all the cardinals in Cichoń's diagram (with the exception of the dependent values $\operatorname{add}(\mathcal{M})$ and $\operatorname{cof}(\mathcal{M})$) are pairwise different where $\operatorname{cov}(\mathcal{M}) < \operatorname{non}(\mathcal{M})$?

Theorem (Bartoszyński and Shelah [BS92])

 $\operatorname{add}(\mathcal{E})=\operatorname{add}(\mathcal{M}) \text{ and } \operatorname{cof}(\mathcal{E})=\operatorname{cof}(\mathcal{M}).$

Theorem (Bartoszyński and Shelah [BS92])

 $add(\mathcal{E}) = add(\mathcal{M}) \text{ and } cof(\mathcal{E}) = cof(\mathcal{M}).$

Theorem ([BS92])

- $\text{ } \min\{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \leqslant \operatorname{non}(\mathcal{E}) \leqslant \min\{\operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}.$

Theorem (Bartoszyński and Shelah [BS92])

 $add(\mathcal{E}) = add(\mathcal{M}) \text{ and } cof(\mathcal{E}) = cof(\mathcal{M}).$

Theorem ([BS92])

In particular,

Corollary ([BS92])

- 2 If $\mathfrak{b} = \text{non}(\mathcal{M})$, then $\text{non}(\mathcal{E}) = \text{min}\{\text{non}(\mathcal{M}), \text{non}(\mathcal{N})\}$.

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$\mathrm{cof}(\mathcal{I},\mathcal{J})=\min\{|\mathcal{F}|:\mathcal{F}\subseteq\mathcal{J}\ \mathrm{and}\ \forall A\in\mathcal{I}\,\exists B\in\mathcal{F}(A\subseteq B)\}.$$

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$\operatorname{cof}(\mathcal{I},\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \text{ and } \forall A \in \mathcal{I} \exists B \in \mathcal{F}(A \subseteq B)\}.$$

Theorem (Brendle [Bre99])

$$\mathrm{cof}(\mathcal{E},\mathcal{M}) = \mathsf{max}\{\mathfrak{d},\mathrm{non}(\mathcal{E})\}.$$

For ideals $\mathcal{I} \subseteq \mathcal{J}$ define

$$cof(\mathcal{I}, \mathcal{J}) = min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \text{ and } \forall A \in \mathcal{I} \exists B \in \mathcal{F}(A \subseteq B)\}.$$

Theorem (Brendle [Bre99])

 $\operatorname{cof}(\mathcal{E}, \mathcal{M}) = \max\{\mathfrak{d}, \operatorname{non}(\mathcal{E})\}.$

Lemma ([Bre99])

Here, \mathcal{E}_0 , denotes the ideal of the set with closure \bar{A} of measure zero.

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with ${\cal E}$ in the diagram above are pairwise difference?

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with ${\cal E}$ in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely

(A1)
$$_{\mathcal{E}}$$
 add(\mathcal{E}) $< \mathrm{cov}(\mathcal{E}) < \mathrm{non}(\mathcal{E}) < \mathrm{cof}(\mathcal{E})$, and

Motivation

Main problem

Is it consistent that all the four cardinals cardinal characteristics associated with $\mathcal E$ in the diagram above are pairwise difference?

Note that there can be at most two instances of the Main problem, namely

$$(\mathsf{A1})_{\mathcal{E}}\ \mathrm{add}(\mathcal{E}) < \mathrm{cov}(\mathcal{E}) < \mathrm{non}(\mathcal{E}) < \mathrm{cof}(\mathcal{E})\text{, and}$$

$$(\mathsf{A2})_{\mathcal{E}} \ \operatorname{add}(\mathcal{E}) < \operatorname{non}(\mathcal{E}) < \operatorname{cov}(\mathcal{E}) < \operatorname{cof}(\mathcal{E}).$$

Early work

 ${ \P }$ (Mejía 2013) ${ (\mathrm{A1})}_{\mathcal{N}}$ is consistent with ZFC.

• Let $\langle \sigma(\mathbf{n}) : \mathbf{n} < \omega \rangle$, $\sigma(\mathbf{n}) \in 2^{<\omega}$. Denote

$$[\sigma]_{\infty} := \bigcap_{n < \omega} \bigcup_{m \geqslant n} [\sigma(m)]$$

• Let $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$. Denote

$$[\sigma]_{\infty} := \bigcap_{n < \omega} \bigcup_{m \geqslant n} [\sigma(m)]$$

• Let $id^k : \omega \to \omega$ be a function such that $id^k(i) := i^k$.

• Let $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$. Denote

$$[\sigma]_{\infty} := \bigcap_{n < \omega} \bigcup_{m \geqslant n} [\sigma(m)]$$

- Let $id^k : \omega \to \omega$ be a function such that $id^k(i) := i^k$.
- For $f, g : \omega \to \omega$ define

$$f \ll g \text{ if } f \circ \text{id}^k \leqslant^* g \text{ for all } k$$

• Let $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$. Denote

$$[\sigma]_{\infty} := \bigcap_{n < \omega} \bigcup_{m \geqslant n} [\sigma(m)]$$

- Let $id^k : \omega \to \omega$ be a function such that $id^k(i) := i^k$.
- For $f, g : \omega \to \omega$ define

$$f \ll g \text{ if } f \circ \text{id}^k \leq^* g \text{ for all } k$$

Definition (Yorioka 2002)

Let $f:\omega\to\omega$ increasing. The *Yorioka ideal* \mathcal{I}_f is defined by

$$\mathcal{I}_f := \{X \subseteq 2^\omega : \exists \sigma \in (2^{<\omega})^\omega (X \subseteq [\sigma]_\infty \text{ and } \operatorname{ht}_\sigma \gg f)\}.$$

Early work (cont)

 \bullet (Mejía [Mej13]) $(\mathrm{A1})_{\mathcal{N}}$ is consistent with ZFC.

Early work (cont)

- (Mejía [Mej13]) $(A1)_{\mathcal{N}}$ is consistent with ZFC.
- **②** (C., and Mejía 2019) " $(A1)_{\mathcal{I}_f}$ for any f above some fixed f^* " is consistent with ZFC.

- (Mejía [Mej13]) $(A1)_N$ is consistent with ZFC.
- **9** (C., and Mejía 2019) " $(A1)_{\mathcal{I}_f}$ for any f above some fixed f^* " is consistent with ZFC.
- $\textbf{ (Goldstern, Kellner and Shelah [GKS19]) "} (A2)_{\mathcal{M}} \text{ and } (A1)_{\mathcal{N}} " \text{ is consistent with ZFC} + \text{large cardinals}.$

- (Mejía [Mej13]) $(A1)_{\mathcal{N}}$ is consistent with ZFC.
- **②** (C., and Mejía 2019) " $(A1)_{\mathcal{I}_f}$ for any f above some fixed f^* " is consistent with ZFC.
- $\textbf{ (Goldstern, Kellner and Shelah [GKS19]) "} (A2)_{\mathcal{M}} \text{ and } (A1)_{\mathcal{N}} " \text{ is consistent with ZFC} + \text{large cardinals}.$
- $\bullet \ \, (\text{Brendle, C., and Mejía [BCM21]}) \ \, (\text{A2})_{\mathcal{M}} \ \, \text{is consistent with ZFC (without large cardinals)}.$

- (Mejía [Mej13]) $(A1)_N$ is consistent with ZFC.
- **②** (C., and Mejía 2019) " $(A1)_{\mathcal{I}_f}$ for any f above some fixed f^* " is consistent with ZFC.
- $\textbf{ (Goldstern, Kellner and Shelah [GKS19]) "} (A2)_{\mathcal{M}} \text{ and } (A1)_{\mathcal{N}} " \text{ is consistent with ZFC} + \text{large cardinals}.$
- (Brendle, C., and Mejía [BCM21]) $(A2)_{\mathcal{M}}$ is consistent with ZFC (without large cardinals).
- **③** (Brendle, C., and Mejía [BCM21]) "(A1) $_{\mathcal{I}_f}$ for any $f: \omega \to \omega$ " is consistent with ZFC.

6 (Brendle 2021 [Bre19]) $(A2)_{\mathcal{N}}$ is consistent with ZFC.

The constellation of Cichoń's diagram forced in [Br21] where $\aleph_1 < \nu < \kappa < \lambda$ with κ and ν regular.

Given a sequence $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$ define $\operatorname{ht}_{\sigma} : \omega \to \omega$, $\operatorname{ht}_{\sigma}(n) := |\sigma(n)|$ for each $n < \omega$.

Definition

Let $X\subseteq 2^\omega$. Say that X has strong measure zero iff for every $f\in\omega^\omega$ there is some $\sigma\in(2^{<\omega})^\omega$ such that

Given a sequence $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$ define $\operatorname{ht}_{\sigma} : \omega \to \omega$, $\operatorname{ht}_{\sigma}(n) := |\sigma(n)|$ for each $n < \omega$.

Definition

Let $X\subseteq 2^\omega$. Say that X has strong measure zero iff for every $f\in\omega^\omega$ there is some $\sigma\in(2^{<\omega})^\omega$ such that

 \bullet ht_{σ} = f, and

Given a sequence $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$ define $\operatorname{ht}_{\sigma} : \omega \to \omega$, $\operatorname{ht}_{\sigma}(n) := |\sigma(n)|$ for each $n < \omega$.

Definition

Let $X\subseteq 2^\omega$. Say that X has strong measure zero iff for every $f\in\omega^\omega$ there is some $\sigma\in(2^{<\omega})^\omega$ such that

- \bullet ht_{σ} = f, and
- $X \subseteq \bigcup_{n < \omega} [\sigma(n)].$

Given a sequence $\langle \sigma(n) : n < \omega \rangle$, $\sigma(n) \in 2^{<\omega}$ define $\operatorname{ht}_{\sigma} : \omega \to \omega$, $\operatorname{ht}_{\sigma}(n) := |\sigma(n)|$ for each $n < \omega$.

Definition

Let $X\subseteq 2^\omega$. Say that X has strong measure zero iff for every $f\in\omega^\omega$ there is some $\sigma\in(2^{<\omega})^\omega$ such that

- \bullet ht_{σ} = f, and
- $X \subseteq \bigcup_{n < \omega} [\sigma(n)].$

Let $SN := \{X \subseteq 2^{\omega} : X \text{ has strong measure zero}\}.$

② (C., Mejía, Rivera-Madrid [CMRM21]) The consistency of a weak version of $(A2)_{\mathcal{SN}}$,

$$\operatorname{add}(\mathcal{SN}) = \operatorname{non}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN}).$$

(C., Mejía, Rivera-Madrid [CMRM21]) The consistency of a weak version of $(A2)_{\mathcal{SN}}$,

$$\mathrm{add}(\mathcal{SN}) = \mathrm{non}(\mathcal{SN}) < \mathrm{cov}(\mathcal{SN}) < \mathrm{cof}(\mathcal{SN}).$$

 $\qquad \text{(C. [Car22b]) The consistency of a weak version of } (A1)_{\mathcal{SN}},$

$$\operatorname{add}(\mathcal{SN}) = \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN}).$$

Question 3

Is it consistent that

$$\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}?$$

Question 3

Is it consistent that

$$\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}?$$

Theorem (Brendle, C., and Mejía (Working progress))

It is consistent with ZFC that $\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}.$

Question 3

Is it consistent that

$$\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}?$$

Theorem (Brendle, C., and Mejía (Working progress))

It is consistent with ZFC that $\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}.$

Even more,

Theorem (Brendle, C., and Mejía (Working progress))

It is consistent with ZFC that $(A1)_{\mathcal{SN}}$.

Theorem (C. [Car22a])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Theorem (C. [Car22a])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Sketch Proof.

• Use UF-extendable matrix iteration framework from [BCM21] for forcing $cov(\mathcal{N}) = non(\mathcal{M}) = \mu, \ cov(\mathcal{M}) = non(\mathcal{N}) = \nu, \ \mathfrak{b} = \theta \ \text{and} \ \mathfrak{d} = \lambda.$

Theorem (C. [Car22a])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $cov(\mathcal{N}) = non(\mathcal{M}) = \mu$, $cov(\mathcal{M}) = non(\mathcal{N}) = \nu$, $\mathfrak{b} = \theta$ and $\mathfrak{d} = \lambda$.
- Note that $add(\mathcal{E}) = \theta$ and $cof(\mathcal{E}) = \lambda$ (because $add(\mathcal{E}) = add(\mathcal{M})$ and $cof(\mathcal{E}) = cof(\mathcal{M})$).

Theorem (C. [Car22a])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $cov(\mathcal{N}) = non(\mathcal{M}) = \mu$, $cov(\mathcal{M}) = non(\mathcal{N}) = \nu$, $\mathfrak{b} = \theta$ and $\mathfrak{d} = \lambda$.
- Note that $add(\mathcal{E}) = \theta$ and $cof(\mathcal{E}) = \lambda$ (because $add(\mathcal{E}) = add(\mathcal{M})$ and $cof(\mathcal{E}) = cof(\mathcal{M})$).

Since $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N}$,

$$non(\mathcal{E}) \leq min\{non(\mathcal{M}), non(\mathcal{N})\}\$$

and

$$\max\{\operatorname{cov}(\mathcal{M}),\,\operatorname{cov}(\mathcal{N})\}\leqslant\operatorname{cov}(\mathcal{E}).$$

Theorem (C. [Car22a])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $cov(\mathcal{N}) = non(\mathcal{M}) = \mu$, $cov(\mathcal{M}) = non(\mathcal{N}) = \nu$, $\mathfrak{b} = \theta$ and $\mathfrak{d} = \lambda$.
- Note that $add(\mathcal{E}) = \theta$ and $cof(\mathcal{E}) = \lambda$ (because $add(\mathcal{E}) = add(\mathcal{M})$ and $cof(\mathcal{E}) = cof(\mathcal{M})$).

Since $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N}$,

$$non(\mathcal{E}) \leq min\{non(\mathcal{M}), non(\mathcal{N})\}\$$

and

$$\max\{\operatorname{cov}(\mathcal{M}),\,\operatorname{cov}(\mathcal{N})\}\leqslant\operatorname{cov}(\mathcal{E}).$$

Then

• $non(\mathcal{E}) \leq \mu \text{ and } cov(\mathcal{E}) \geq \nu$.

Theorem (C. [C22])

Let $\theta\leqslant\mu\leqslant\nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu\leqslant\lambda=\lambda^{<\theta}$. Then there is a ccc poset forcing

$$add(\mathcal{E}) = \theta \leqslant non(\mathcal{E}) = \mu \leqslant cov(\mathcal{E}) = \nu \leqslant cof(\mathcal{E}) = \lambda$$

Sketch Proof.

- Use UF-extendable matrix iteration framework from [BCM21] for forcing $\operatorname{cov}(\mathcal{N}) = \operatorname{non}(\mathcal{M}) = \mu, \ \operatorname{cov}(\mathcal{M}) = \operatorname{non}(\mathcal{N}) = \nu, \ \mathfrak{b} = \theta \ \text{and} \ \mathfrak{d} = \lambda.$
- $add(\mathcal{E}) = \theta$ and $cof(\mathcal{E}) = \lambda$ (because $add(\mathcal{E}) = add(\mathcal{M})$ and $cof(\mathcal{E}) = cof(\mathcal{M})$).
- $non(\mathcal{E}) \leqslant \mu \text{ and } cov(\mathcal{E}) \geqslant \nu.$

What about the converse?

 $\mu \leqslant \text{non}(\mathcal{E}) \text{ and } \text{cov}(\mathcal{E}) \leqslant \nu.$

To solve this, we find a lower bound to $\mathrm{non}(\mathcal{E})$ and an upper bound to $\mathrm{cov}(\mathcal{E}).$

To solve this, we find a lower bound to $\mathrm{non}(\mathcal{E})$ and an upper bound to $\mathrm{cov}(\mathcal{E}).$

Given a sequence of non-empty sets $b = \langle b(n) : n \in \omega \rangle$ and $h : \omega \to \omega$, define

To solve this, we find a lower bound to $non(\mathcal{E})$ and an upper bound to $cov(\mathcal{E})$.

Given a sequence of non-empty sets $b = \langle b(n) : n \in \omega \rangle$ and $h: \omega \to \omega$, define

For two functions x and φ with domain ω , write

$$x \in {}^*\varphi$$
 iff $\forall^{\infty} n(x(n) \in \varphi(n))$, which is read φ localizes x

To solve this, we find a lower bound to $non(\mathcal{E})$ and an upper bound to $cov(\mathcal{E})$.

Given a sequence of non-empty sets $b = \langle b(n) : n \in \omega \rangle$ and $h: \omega \to \omega$, define

$$\mathcal{S}(b,h) := \prod_{n \in \omega} [b(n)]^{\leqslant h(n)}.$$

For two functions x and φ with domain ω , write

$$x \in {}^*\varphi$$
 iff $\forall^{\infty} n(x(n) \in \varphi(n))$, which is read φ localizes x

Definition

Let $b=\langle b(n):n<\omega\rangle$ be a sequence of non-empty sets and let $h\in\omega^\omega$. Define the cardinals numbers $\mathfrak{b}^{\mathrm{Lc}}_{b,h}$, $\mathfrak{d}^{\mathrm{Lc}}_{b,h}$, called *localization cardinals*, as follows:

$$\begin{split} \mathfrak{b}_{b,h}^{\mathrm{Lc}} &:= \min \Big\{ |F|: \ F \subseteq \prod b, \ \neg \exists \varphi \in \mathcal{S}(b,h) \ \forall x \in F \ (x \in^* \varphi) \Big\}, \\ \mathfrak{d}_{b,h}^{\mathrm{Lc}} &:= \min \Big\{ |D|: \ D \subseteq \mathcal{S}(b,h), \ \forall x \in \prod b \ \exists \varphi \in D \ (x \in^* \varphi) \Big\} \end{split}$$

A variation of $\mathfrak{b}^{\mathrm{Lc}}_{b,h}$ and $\mathfrak{d}^{\mathrm{Lc}}_{b,h}$

Definition

Let b be a function with domain ω such that $b(i) \neq \emptyset$ for all $i < \omega$, and let $h \in \omega^{\omega}$. Define

$$\mathcal{S}_{*}(b,h) = \big\{ \varphi \in \prod_{n < \omega} \mathcal{P}(b(n)) : \forall n \, (\varphi(n) \subseteq b(n)) \, \& \, \exists^{\infty} n \, (|\varphi(n)| \leqslant h(n)) \big\}.$$

A variation of $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$ and $\mathfrak{d}_{b,h}^{\mathrm{Lc}}$

Definition

Let b be a function with domain ω such that $b(i) \neq \emptyset$ for all $i < \omega$, and let $h \in \omega^{\omega}$. Define

$$\mathcal{S}_{*}(b,h) = \big\{ \varphi \in \prod_{n < \omega} \mathcal{P}(b(n)) : \forall n \, (\varphi(n) \subseteq b(n)) \, \& \, \exists^{\infty} \, n \, (|\varphi(n)| \leqslant h(n)) \big\}.$$

$$\begin{split} \mathfrak{b}_{b,h}^{\mathrm{Lc}_{*}} &:= \min \Big\{ |F|: \ F \subseteq \prod b, \ \neg \exists \varphi \in \mathcal{S}_{*}(b,h) \ \forall x \in F \ (x \in^{*} \varphi) \Big\}, \\ \mathfrak{d}_{b,h}^{\mathrm{Lc}_{*}} &:= \min \Big\{ |D|: \ D \subseteq \mathcal{S}_{*}(b,h), \ \forall x \in \prod b \ \exists \varphi \in D \ (x \in^{*} \varphi) \Big\}. \end{split}$$

ZFC-results

Lemma

With the notation from the previous definition. If $\limsup_{n\to\infty}\frac{h(n)}{|b(n)|}<1$, then $\mathrm{cov}(\mathcal{E})\leqslant \mathfrak{d}^{\mathrm{Lc}*}_{b,h}\leqslant \mathfrak{d}^{\mathrm{Lc}}_{b,h}\leqslant \mathrm{non}(\mathcal{E}).$

For $b,h\in\omega^\omega$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

For $b,h\in\omega^\omega$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{ (p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega(|p(i)| \leq m) \},$$
 ordered by $(p',n') \leq (p,n)$ iff $n \leq n'$, $p' \upharpoonright n = p$, and $\forall i < \omega(p(i) \subseteq q(i))$.

For $b,h\in\omega^\omega$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{ (p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega (|p(i)| \leqslant m) \},$$
 ordered by $(p',n') \leqslant (p,n)$ iff $n \leqslant n'$, $p' \upharpoonright n = p$, and $\forall i < \omega (p(i) \subseteq q(i))$.

1 $\mathbb{LOC}_{b,h}$ is σ -linked (thus ccc).

For $b,h\in\omega^\omega$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{ (p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega (|p(i)| \leq m) \},$$

ordered by
$$(p', n') \leq (p, n)$$
 iff $n \leq n'$, $p' \upharpoonright n = p$, and $\forall i < \omega(p(i) \subseteq q(i))$.

- **1** $\mathbb{LOC}_{b,h}$ is σ -linked (thus ccc).
- **②** $\mathbb{LOC}_{b,h}$ adds a slalom φ^* such that $x \in {}^*\varphi^*$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$.

For $b,h\in\omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{(p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega (|p(i)| \leqslant m)\},$$

ordered by
$$(p', n') \leq (p, n)$$
 iff $n \leq n'$, $p' \upharpoonright n = p$, and $\forall i < \omega(p(i) \subseteq q(i))$.

- **1** $\mathbb{LOC}_{b,h}$ is σ -linked (thus ccc).
- **②** $\mathbb{LOC}_{b,h}$ adds a slalom φ^* such that $x \in {}^*\varphi^*$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$.

Point

 $\mathbb{LOC}_{b,h}$ has UF-limits.

For $b,h\in\omega^\omega$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{(p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega (|p(i)| \leqslant m)\},$$

 $\underline{\text{ordered}} \text{ by } (p',n') \leqslant (p,n) \text{ iff } n \leqslant n', \ p' \! \upharpoonright \! n = p, \text{ and } \forall i < \omega(p(i) \subseteq q(i)).$

- **1** $\mathbb{LOC}_{b,h}$ is σ -linked (thus ccc).
- **②** $\mathbb{LOC}_{b,h}$ adds a slalom φ^* such that $x \in {}^*\varphi^*$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$.

Point

 $\mathbb{LOC}_{b,h}$ has UF-limits.

The key point is to iterate, in addition: $\mathbb{LOC}_{b,h}$ to increase $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$.

For $b,h\in\omega^{\omega}$ such that $\forall i<\omega(b(i)>0)$ and h going to infinity, the localization forcing is defined by

$$\mathbb{LOC}_{b,h} := \{(p,n) : p \in \mathcal{S}(b,h), n < \omega \text{ and } \exists m < \omega \forall i < \omega (|p(i)| \leqslant m)\},$$

 $\underline{\text{ordered}} \text{ by } (p',n') \leqslant (p,n) \text{ iff } n \leqslant n', \ p' \! \upharpoonright \! n = p, \text{ and } \forall i < \omega(p(i) \subseteq q(i)).$

- **1** $\mathbb{LOC}_{b,h}$ is σ -linked (thus ccc).
- **②** $\mathbb{LOC}_{b,h}$ adds a slalom φ^* such that $x \in {}^*\varphi^*$ for every $x \in \prod b$ in the ground model. This forcing increases $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$.

Point

 $\mathbb{LOC}_{b,h}$ has UF-limits.

The key point is to iterate, in addition: $\mathbb{LOC}_{b,h}$ to increase $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$. Hence,

•
$$non(\mathcal{E}) = \mu$$
 and $cov(\mathcal{E}) = \nu$.

Theorem (C. [Car22a])

Let $\theta_0 \leqslant \theta \leqslant \mu \leqslant \nu$ be uncountable regular cardinals and let λ be a cardinal such that $\nu \leqslant \lambda = \lambda^{<\theta}$. Then there is a ccc poset forcing

and $add(\mathcal{E}) = \theta$, $non(\mathcal{E}) = \mu$, $cov(\mathcal{E}) = \nu$, and $cof(\mathcal{E}) = \lambda$.

Question 4

Are each one the following statements consistent with ZFC?

$$\begin{split} \aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{E}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) \\ < \operatorname{cov}(\mathcal{E}) = \operatorname{non}(\mathcal{N}) = \mathfrak{d} = \mathfrak{c}. \end{split} \tag{1}$$

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{non}(\mathcal{E}) < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$$

$$< \operatorname{cov}(\mathcal{E}) = \operatorname{non}(\mathcal{N}) = \mathfrak{d} = \mathfrak{c}. \quad \text{(2)}$$

$$\begin{split} \aleph_1 < \operatorname{add}(\mathcal{N}) < \operatorname{cov}(\mathcal{N}) < \mathfrak{b} < \operatorname{non}(\mathcal{E}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) \\ < \operatorname{cov}(\mathcal{E}) = \operatorname{non}(\mathcal{N}) = \mathfrak{d} = \mathfrak{c}. \end{split} \tag{3}$$

In [KST19] (Kellner, Shelah, and Tănasiei), it was constructed FAMS (finitely additive measures) along a FS (finite support) iteration to force

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\mathrm{non}(\mathcal{E})$ in this context.

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\mathrm{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve $\mathrm{non}(\mathcal{E})$ small.

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\mathrm{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve $\mathrm{non}(\mathcal{E})$ small. Hence,

It is consistent with ZFC

$$\mathfrak{b} = \mathrm{non}(\mathcal{E}) < \mathrm{cov}(\mathcal{N}) = \mathrm{non}(\mathcal{M}) = \mathrm{cov}(\mathcal{M}) = \mathrm{non}(\mathcal{N}) < \mathrm{cov}(\mathcal{E}) = \mathfrak{d}$$

$$\aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) = \mathfrak{c}.$$

One natural approach to solve (1) and (2) would be using FAMS along a matrix iteration.

The main problem with this approach is that we do not know how to preserve $\mathrm{non}(\mathcal{E})$ in this context.

On the other hand, it is known by Bartoszyński and Shelah [BS92] that random forcing preserve $\mathrm{non}(\mathcal{E})$ small. Hence,

It is consistent with ZFC

$$\mathfrak{b} = \mathrm{non}(\mathcal{E}) < \mathrm{cov}(\mathcal{N}) = \mathrm{non}(\mathcal{M}) = \mathrm{cov}(\mathcal{M}) = \mathrm{non}(\mathcal{N}) < \mathrm{cov}(\mathcal{E}) = \mathfrak{d}$$

Also we may ask:

Question 5

Does eventually different real forcing preserve $non(\mathcal{E})$ small?

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

Question 6

Is it consistent with ZFC

$$\begin{split} \aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{E}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) \\ < \operatorname{cov}(\mathcal{E}) < \mathfrak{d} < \operatorname{non}(\mathcal{N}) < \operatorname{cof}(\mathcal{N}) < \mathfrak{c}? \end{split}$$

One positive answer to Question 4 along with the method of submodels of [GKMS21] would help solving:

Question 6

Is it consistent with ZFC

$$\begin{split} \aleph_1 < \operatorname{add}(\mathcal{N}) < \mathfrak{b} < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{E}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) \\ < \operatorname{cov}(\mathcal{E}) < \mathfrak{d} < \operatorname{non}(\mathcal{N}) < \operatorname{cof}(\mathcal{N}) < \mathfrak{c} \end{split}$$

Question 7

Is it consistent with ZFC

$$\begin{split} \aleph_1 < \operatorname{add}(\mathcal{N}) < \operatorname{cov}(\mathcal{N}) < \mathfrak{b} < \operatorname{non}(\mathcal{E}) < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) \\ < \operatorname{cov}(\mathcal{E}) < \operatorname{non}(\mathcal{N}) < \mathfrak{d} < \operatorname{cof}(\mathcal{N}) < \mathfrak{c} \end{split}$$

Question 8

- $\bullet \ (A1)_{\mathcal{E}}.$
- **2** $(A1)_{\mathcal{M}}$.
- $(A2)_{SN}$.

Question 8

- $\bullet \ (A1)_{\mathcal{E}}.$
- **2** (A1)_M.
- \bullet (A2)_{SN}.

FS iterations of ccc forcings will not work to solve Question 8 because any such iteration forces $\operatorname{non}(\mathcal{M}) \leqslant \operatorname{cov}(\mathcal{M})$.

Question 8

- **2** $(A1)_{\mathcal{M}}$.

Roughly speaking, there are two approaches it could be used to solve these problems.

- Creature forcing method based on the notion of decisiveness (Kellner and Shelah [KS09, KS12]).
- Shattered iteration ([Bre19]).

Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])

Under CH, if $\lambda_1 \leqslant \lambda_3 \leqslant \lambda_4$ and $\lambda_2 \leqslant \lambda_3$ are infinite cardinals such that $\lambda_i^{\aleph_0} = \lambda_i$ for $i \in \{1, 2, 3, 4\}$, then there is some proper ω^{ω} -bounding poset with \aleph_2 -cc forcing

The constellation of Cichoń's diagram forced in [FGKS17], [GK21] (Goldstern and Klausner 2021).

Example

Theorem (Fischer, Goldstern, Kellner, and Shelah [FGKS17])

Under CH, if $\lambda_1 \leqslant \lambda_3 \leqslant \lambda_4$ and $\lambda_2 \leqslant \lambda_3$ are infinite cardinals such that $\lambda_i^{\aleph_0} = \lambda_i$ for $i \in \{1, 2, 3, 4\}$, then there is some proper ω^{ω} -bounding poset with \aleph_2 -cc forcing

The constellation of Cichoń's diagram forced in [FGKS17], [GK21] (Goldstern and Klausner 2021).

The main problem with this approach is that it is restricted to $\omega^\omega\text{-bounding}$ forcings.

References I

Jörg Brendle, Between p-points and nowhere dense ultrafilters, Israel Journal of Mathematics 113 (1999), no. 1, 205–230.

_____, Forcing and cardinal invariants, parts 1 and 2, tutorial at advanced class, Young Set Theory Workshop, 2019.

Tomek Bartoszynski and Saharon Shelah, *Closed measure zero sets*, Annals of Pure and Applied Logic **58** (1992), no. 2, 93–110.

Miguel A. Cardona, A friendly iteration forcing that the four cardinal characteristics of \mathcal{E} can be pairwise different, 2022.

______, On cardinal characteristics associated with the strong measure zero ideal, Fundam. Math. **257** (2022), 289–304.

Miguel A. Cardona, Diego A. Mejía, and Ismael E. Rivera-Madrid, *The covering number of the strong measure zero ideal can be above almost everything else*, Arch. Math. Logic (2021).

References II

Martin Goldstern and Lukas Daniel Klausner, *Cichoń's Diagram and Localisation Cardinals*, Arch. Math. Logic **60** (2021), no. 3–4, 343–411, DOI: S00153-020-00746-3, arXiv: 1808.01921 [math.LO].

Martin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah, *Cichoń's maximum without large cardinals*, J. Eur. Math. Soc. (JEMS) (2021).

Martin Goldstern, Jakob Kellner, and Saharon Shelah, *Cichoń's maximum*, Ann. of Math. **190** (2019), no. 1, 113–143.

Jakob Kellner and Saharon Shelah, *Decisive Creatures and Large Continuum*, J. Symb. Log. **74** (2009), no. 1, 73–104.

______, Creature Forcing and Large Continuum: The Joy of Halving, Arch. Math. Logic **51** (2012), no. 1–2, 49–70.

References III

Jakob Kellner, Saharon Shelah, and Anda Tănasie, *Another ordering of the ten cardinal characteristics in Cichoń's diagram*, Comment. Math. Univ. Carolin. **60** (2019), no. 1, 61–95.

Diego Alejandro Mejía, *Matrix iterations and Cichon's diagram*, Arch. Math. Logic **52** (2013), no. 3-4, 261–278. MR 3047455