Chang models over derived models with supercompact measures, Part II

Takehiko Gappo (https://sites.google.com/view/takehikogappo/home)

TU Wien

Kobe Set Theory Seminar May 22, 2023

Our context

We are interested in the relation between strong form of determinacy and supercompactness of ω_1 .

Conjecture

The following theories are equiconsistent:

- **●** ZFC + there is a Woodin limit of Woodin cardinals.
- **2** $\mathsf{ZF} + \mathsf{AD}_{\mathbb{R}} + \Theta$ is regular $+\omega_1$ is supercompact.

Toward this conjecture, we construct a model called CDM⁺, the Chang model over the derived model with supercompact measures.

- Our assumption is the existence of a hod mouse with some large cardinals, which is known to be consistent relative to a Woodin limit of Woodin cardinals.
- In a collapse extension of the hod mouse, we define a model of $AD_{\mathbb{R}} + \Theta$ is regular that has possibly high degree of supercompactness of ω_1 .

Iteration strategies

A model of set theory is called iterable if one can avoid to reach an ill-founded model during a construction of its iterated ultrapowers. In general, we need to consider non-linear iterations called iteration trees.

An **iteration strategy** Σ is a function such that for any iteration tree \mathcal{T} , $\Sigma(\mathcal{T})$ is a cofinal branch whose direct limit model is well-founded. So \mathcal{M} is iterable if there is an iteration strategy Σ defined on iteration trees on \mathcal{M} .

Basic objects: $\mathcal{V}, \delta, g, \mathcal{P}$ and Σ

Throughout the rest of this talk, we fix the following objects.

- ullet Let ${\cal V}$ be a countable model of ZFC that is a hod mouse.
- ullet δ is a regular limit of Woodin cardinals in ${\cal V}$.
- Let $g \subseteq \operatorname{Col}(\omega, < \delta)$ is \mathcal{V} -generic.
- $\mathcal{P} = \mathcal{V} | (\delta^+)^{\mathcal{V}}$.
- Σ is the iteration strategy for $\mathcal P$ acting on iteration trees in $\mathcal V$ based on $\mathcal P|\delta$ determined by the internal strategy of $\mathcal V$. Actually, Σ can be uniquely extended to an iteration strategy in $\mathcal V[g]$, so we also denote it by Σ .

We work in V[g] throughout this talk.

The internal direct limit system

Remember that $g \subset \operatorname{Col}(\omega, < \delta)$ is the fixed \mathcal{V} -generic and we work in $\mathcal{V}[g]$.

- Let $I_g(\mathcal{P}, \Sigma)$ be the set of a Σ -iterate \mathcal{Q} of \mathcal{P} via \mathcal{T} such that $\pi^{\mathcal{T}}(\delta) = \delta$.
- For $Q \in I^g(\mathcal{P}, \Sigma)$ and $\eta < \delta$, define

$$\mathcal{F}_g(\mathcal{Q}, \eta) = \{\mathcal{R} \mid \mathcal{R} \text{ is a non-dropping } \Sigma_{\mathcal{Q}}\text{-iterates of } \mathcal{Q}$$

$$\text{via } \mathcal{T} \text{ of length} < \delta \text{ such that } \text{crit}(\pi^{\mathcal{T}}) > \eta.\}$$

Here, "non-dropping" means that an iteration map from Q to R exists. Also, $\Sigma_{\mathcal{Q}}$ is the iteration strategy for \mathcal{Q} defined by $\Sigma_{\mathcal{Q}}(\mathcal{U}) = \Sigma(\mathcal{T}^{\frown}\mathcal{U})$.

• For any $\mathcal{Q}, \mathcal{R} \in \mathcal{F}_{\sigma}(\mathcal{P})$, define

$$\mathcal{Q} \preceq \mathcal{R} \iff \mathcal{R} \text{ is a } \Sigma_{\mathcal{Q}}\text{-iterate of } \mathcal{Q}.$$

We assume that a system $(\mathcal{F}_g(\mathcal{Q}, \eta), \preceq)$ is a directed system under iteration maps.

Precise definition of CDM⁺

For $Q \in I_{\sigma}(\mathcal{P}, \Sigma)$ and $\eta < \delta$, define

$$\mathsf{CDM}^+(\mathcal{Q}, \eta) = \mathit{L}(\mathcal{M}_\infty(\mathcal{Q}, \eta), {}^\omega(\delta_\infty^{\mathcal{Q}, \eta}), \Gamma_g^*, \mathbb{R}_g^*)[\langle \mu_\alpha \mid \alpha < \delta_\infty^{\mathcal{Q}, \eta} \rangle],$$

where $L(\Gamma_{\sigma}^*, \mathbb{R}_{\sigma}^*)$ be the derived model of \mathcal{V} at δ and μ_{α} is the club filter on $\wp_{\omega_1}(\alpha)$.

Main Theorem (G.-Müller-Sargsyan)

In V[g], there are a Σ -iterate Q of P and $\eta < \delta$ such that

$$\mathsf{CDM}^+(\mathcal{Q}, \eta) \models \mathsf{AD}^+ + \mathsf{AD}_{\mathbb{R}} + \Theta \text{ is regular}$$

 $+ \omega_1 \text{ is } < \delta_{\infty}^{\mathcal{Q}, \eta} \text{-supercompact.}$

Furthermore, if δ is a limit of $<\delta$ -strong cardinals of \mathcal{V} , then $\delta^{\mathcal{Q},\eta}_{\sim}>\Theta$.

Regarding determinacy in the derived model, the following are known:

- (Woodin) The derived model of V satisfies AD⁺.
- (Steel) The derived model of a hod mouse satisfies AD_ℝ.
- (G.–Sargsyan) The derived model of a "self-iterable" structure at a regular limit of Woodin cardinals satisfies $AD_{\mathbb{R}} + \Theta$ is regular.

We can show that

$$\mathsf{CDM}^+(\mathcal{Q},\eta)\cap\wp(\mathbb{R})=\Gamma_g^*=\mathit{L}(\Gamma_g^*,\mathbb{R}_g^*)$$

by Sargsyan's proof of the same fact for CDM. So CDM⁺ $(Q, \eta) \models AD^+ + AD_{\mathbb{R}}$. Also, G.–Sargsyan's proof shows that CDM⁺ $(Q, \eta) \models DC + \Theta$ is regular.

To show the "furthermore" part, let $\kappa^{\mathcal{Q},\eta} < \delta$ be the least $< \delta$ -strong cardinal above η in \mathcal{Q} . Then in CDM⁺(\mathcal{Q},η),

$$\Theta = \kappa_{\infty}^{\mathcal{Q},\eta} < \delta_{\infty}^{\mathcal{Q},\eta}.$$

This is not really new. Steel showed it in his book on hod mice.

Outline of our proof

Theorem

Let $Q \in I_{\sigma}^*(\mathcal{P}, \Sigma)$ and $\eta < \delta$ be such that Q is a genericity iterate of \mathcal{P} and (\mathcal{Q}, η) stabilizes δ_{∞} . Then for each $\alpha < \delta_{\infty}^{\mathcal{Q}, \eta}$, $\mu_{\alpha} \cap \mathsf{CDM}^+(\mathcal{Q}, \eta)$ is a supercompact measure on $\wp_{\omega_1}(\alpha)$ in CDM⁺(\mathcal{Q}, η).

- 1 Introduce some terminologies and choose Q and η .
- 2 Reduce Theorem to two main lemmas by taking a "better" iterate \mathcal{R} of \mathcal{Q} and considering $\mathcal{F}_{g}(\mathcal{R}, \eta')$ for some $\eta' > \eta$.
- Show Main Lemma 1. This is easier one and our argument doesn't depend on the choice of \mathcal{R} and η' .
- Show Main Lemma 2, which is the core of our proof. We start with describing how to choose \mathcal{R} and η' .

The following theorem makes an iterable structure with a Woodin cardinal of special interest.

Theorem (Neeman; there is another version due to Woodin)

Let M be a sufficiently iterable structure and let δ be a Woodin cardinal of M that is countable in V. Then for any $x \subseteq \omega$, there is an iterate N of M such that x is generic over N via $\operatorname{Col}(\omega, j(\delta))$, where $j \colon M \to N$ be the iteration map.

Using this, one can show that for any $\mathcal{P}^* \in \mathcal{F}_g(\mathcal{P}, \eta)$ and $\eta' \in (\eta, \delta)$, there is $\mathcal{Q} \in I^g(\mathcal{P}, \Sigma)$ such that \mathcal{Q} is an iterate of \mathcal{P}^* ,

- $\mathbb{R}^{\mathcal{P}[g]} = \mathbb{R}^{\mathcal{Q}[h]}$ for some $h \subseteq \operatorname{Col}(\omega, < \delta)$ in $\mathcal{V}[g]$, and
- $\operatorname{crit}(\pi_{\mathcal{P}^*,\mathcal{Q}}) > \eta'$, where $\pi_{\mathcal{P}^*,\mathcal{Q}} \colon \mathcal{P}^* \to \mathcal{Q}$ is the iteration map.

Such a Q is called a **genericity iterate** of P above η .

 $\mathcal Q$ is obtained by making initial segments of $\mathcal P$ generic using Woodin cardinals above η' . The length of the iteration tree from $\mathcal P$ to $\mathcal Q$ is δ , but the iteration map does not move δ .

Lemma

Let Q be a genericity iterate of P above η and let $h \subseteq \operatorname{Col}(\omega, < \delta)$ such that $\mathbb{R}^{\mathcal{P}[g]} = \mathbb{R}^{\mathcal{Q}[h]}$. Then

$$\mathcal{M}_{\infty}(\mathcal{P},\eta) = \left(\mathcal{M}_{\infty}(\mathcal{Q},\eta)\right)^{\mathcal{V}_{\mathcal{Q}}[h]}$$

and
$$\pi_{\mathcal{P},\infty}^{\mathcal{P},\eta}=\pi_{\mathcal{Q},\infty}^{\mathcal{Q},\eta}\circ\pi_{\mathcal{P},\mathcal{Q}}.$$
 Furthermore, $\mathsf{CDM}^+(\mathcal{P},\eta)=(\mathsf{CDM}^+(\mathcal{Q},\eta))^{\mathcal{V}_{\mathcal{Q}}[h]}.$

When applying the \mathcal{P} -to- \mathcal{Q} iteration tree to \mathcal{V} , its last model is denoted by $\mathcal{V}_{\mathcal{Q}}$. Then $\pi_{\mathcal{V},\mathcal{V}_{\mathcal{O}}}$ extends $\pi_{\mathcal{P},\mathcal{O}}$.

Stabilizing δ_{∞} : how to choose \mathcal{Q} and η

If $\eta < \eta' < \delta$ then $\delta_{\infty}^{\mathcal{Q},\eta} \geq \delta_{\infty}^{\mathcal{Q},\eta'}$ because $\mathcal{F}_{g}(\mathcal{Q},\eta')$ is a subsystem of $\mathcal{F}_{g}(\mathcal{Q},\eta)$.

Lemma

There is a genericity iterate Q of P and an ordinal $\eta < \delta$ such that for any genericity iterate \mathcal{R} of \mathcal{Q} above η and any ordinal $\eta' \in [\eta, \delta)$, $\delta_{\infty}^{\mathcal{Q}, \eta} = \delta_{\infty}^{\mathcal{R}, \eta'}$.

This lemma immediately follows from another fact on genericity iterates: a genericity iterate of a genericity iterate of Q is a genericity iterate of Q.

Proof. Suppose not. Then one can inductively find $\langle \mathcal{Q}_n, \eta_n \mid n < \omega \rangle$ such that for any $n < \omega$, Q_{n+1} is a genericity iterate of Q_n , $\eta_n < \eta_{n+1}$, and $\delta_{\infty}^{\mathcal{Q}_n,\eta_n} > \delta_{\infty}^{\mathcal{Q}_{n+1},\eta_{n+1}}$. This is a contradiction as we have found a decreasing infinite sequence of ordinals.

We say (Q, η) stabilizes δ_{∞} if it satisfies the conclusion of the lemma.

Reducing Theorem to two Main Lemmas

$\mathsf{Theorem}$

Let $Q \in I_{\sigma}^*(\mathcal{P}, \Sigma)$ and $\eta < \delta$ be such that Q is a genericity iterate of \mathcal{P} and (\mathcal{Q}, η) stabilizes δ_{∞} . Then for each $\alpha < \delta_{\infty}^{\mathcal{Q}, \eta}$, $\mu_{\alpha} \cap \mathsf{CDM}^+(\mathcal{Q}, \eta)$ is a supercompact measure on $\wp_{\omega_1}(\alpha)$ in CDM⁺(\mathcal{Q}, η).

Proof. Let $A \subseteq \wp_{\omega_1}(\alpha)$ be such that $A \in CDM^+(\mathcal{Q}, \eta)$. Then we will choose some genericity iterate \mathcal{R} of \mathcal{Q} and $\eta' \in (\eta, \delta)$ such that (\mathcal{R}, η) "stabilizing parameters in the definition of A."

For any $\mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta')$. let

$$\sigma_{\mathcal{R}^*} = \operatorname{ran}(\pi_{\mathcal{R}^*,\infty}^{\mathcal{R},\eta'}) \cap \alpha \in \wp_{\omega_1}(\alpha).$$

Here, note that $\alpha < \delta_{\infty}^{\mathcal{R},\eta'} = \delta_{\infty}^{\mathcal{Q},\eta}$. Also, note that for any $\xi < \delta$, $\mathcal{R}|\xi$ is countable in $\mathcal{V}[g]$, where $g \subset \operatorname{Col}(\omega, < \delta)$.

Remember that $A \subseteq \wp_{\omega_1}(\alpha)$ be such that $A \in CDM^+(\mathcal{Q}, \eta)$ and we took some \mathcal{R} and η' . For any $\mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta')$, let $\sigma_{\mathcal{R}^*} = \operatorname{ran}(\pi_{\mathcal{R}^*, \sigma'}^{\mathcal{R}, \eta'}) \cap \alpha \in \wp_{\omega_1}(\alpha)$.

Main Lemma 1

If $\alpha \in [\delta, \delta_{\infty}^{\mathcal{Q}, \eta})$, then the set

$$\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^*, \infty}^{\mathcal{R}, \eta'})\}$$

contains a club subset of $\wp_{\omega_1}(\alpha)$.

Main Lemma 2

- If $\sigma_{\mathcal{R}} \in A$, then $\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^* \sim}^{\mathcal{R}, \eta'})\} \subseteq A$
- \bullet If $\sigma_{\mathcal{R}} \notin A$, then $\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^* \infty}^{\mathcal{R}, \eta'})\} \subseteq \wp_{\omega_1}(\alpha) \setminus A$.

These lemmas imply that $\mu_{\alpha} \cap \mathsf{CDM}^+(\mathcal{R}, \eta)$ is an ultrafilter in $\mathsf{CDM}^+(\mathcal{Q}, \eta)$. Its countably completeness, fineness and normality easily follows as the club filter μ_{α} has these properties.

Catching elements in \mathcal{M}_{∞}

We frequently use the following simple argument: let $\alpha \in \mathcal{M}_{\infty}(\mathcal{Q}, \eta)$. Then there is a $\mathcal{Q}^* \in \mathcal{F}_h(\mathcal{Q}, \eta)$ catching α , i.e., $\alpha \in \operatorname{ran}(\pi_{\mathcal{Q}^*}^{\mathcal{Q}, \eta})$.

• If Q^* catches α , then its iterates also catch α . In particular, one can find an iterate \mathcal{R} of \mathcal{Q}^* such that \mathcal{R} is a genericity iterate of \mathcal{Q} catching α .

Main proof, part II 0000000

• Since $\mathcal{F}_h(\mathcal{Q}, \eta)$ is countably closed, for any countable $\sigma \subseteq \mathcal{M}_{\infty}(\mathcal{Q}, \eta)$, there is a $\mathcal{Q}^* \in \mathcal{F}_h(\mathcal{Q}, \eta)$ such that $\sigma \subseteq \operatorname{ran}(\pi_{\mathcal{Q}^*}^{\mathcal{Q}, \eta})$.

Main Lemma 1: Finding a club set

Main Lemma 1

If $\alpha \in [\delta, \delta_{\infty}^{\mathcal{Q}, \eta})$, then the set

$$\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^*, \infty}^{\mathcal{R}, \eta'})\}$$

Main proof, part II

contains a club subset of $\wp_{\omega_1}(\alpha)$.

Proof. Fix a bijection $f: \delta \to \wp_{\omega_1}(\alpha)$ (in $\mathcal{V}[g]$). We inductively define $\mathcal{R}_{\xi} \in \mathcal{F}_k(\mathcal{R}, \eta')$ for $\xi < \delta$ as follows:

- Let $\mathcal{R}_0 \in \mathcal{F}_k(\mathcal{R}, \eta')$ be any \mathcal{R}^* with $\alpha \in \operatorname{ran}(\pi_{\mathcal{R}^*}^{\mathcal{R}, \eta'})$.
- **2** For each $\xi < \delta$, let $\mathcal{R}_{\xi+1} \in \mathcal{F}_k(\mathcal{R}, \eta')$ be an iterate of \mathcal{R}_{ξ} such that $f(\xi) \subseteq \operatorname{ran}(\pi_{\mathcal{P}^*}^{\mathcal{R},\eta'}).$
- **3** For each limit ordinal $\lambda < \delta$, let \mathcal{R}_{λ} be the direct limit of \mathcal{R}_{β} 's.

By the construction, $\alpha \in \operatorname{ran}(\pi_{\mathcal{R}_{\epsilon},\infty}^{\mathcal{R},\eta'})$ for any $\xi < \delta$ and $\{\sigma_{\mathcal{R}_{\xi}} \mid \xi < \delta\}$ is a closed unbounded subset of $\wp_{\omega_1}(\alpha)$.

Stabilizing parameters: how to choose \mathcal{R}

For any $\mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta')$, let $\sigma_{\mathcal{R}^*} = \operatorname{ran}(\pi_{\mathcal{R}^* \cap \Omega}^{\mathcal{R}, \eta'}) \cap \alpha \in \wp_{\omega_1}(\alpha)$.

Main Lemma 2

- If $\sigma_{\mathcal{R}} \in A$, then $\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^*}^{\mathcal{R}, \eta'})\} \subseteq A$
- \bullet If $\sigma_{\mathcal{R}} \notin A$, then $\{\sigma_{\mathcal{R}^*} \mid \mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta') \land \alpha \in \operatorname{ran}(\pi_{\mathcal{R}^* \circ \alpha}^{\mathcal{R}, \eta'})\} \subseteq \wp_{\omega_1}(\alpha) \setminus A$.

Main proof, part II

We only prove (1). Let $\alpha < \delta_{\infty}^{\mathcal{Q},\eta}$ and let $A \subseteq \wp_{\omega_1}(\alpha)$ in CDM⁺(\mathcal{Q},η). Then for some formula ϕ in the language for CDM⁺(Q, η) and for some ordinal γ ,

$$A = \{ \sigma \in \wp_{\omega_1}(\alpha) \mid \mathsf{CDM}^+(\mathcal{Q}, \eta) | \gamma \models \phi(\sigma, Y, Z, x, \vec{\beta}) \},$$

where $Y = \langle Y(i) \mid i < \omega \rangle \in {}^{\omega} \xi$ for some $\xi < \delta_{\infty}^{\mathcal{Q}, \eta}, Z \in \Gamma_{\sigma}^*, x \in \mathbb{R}_{\sigma}^*$, and $\vec{\beta} \in {}^{<\omega}\gamma$.

Then we can take a genericity iterate \mathcal{R} of \mathcal{Q} above η such that

$$\{\alpha, \vec{\beta}, \gamma\} \cup \operatorname{ran}(Y) \subseteq \operatorname{ran}(\pi_{\mathcal{V}_{\mathcal{R}}, \infty}^{\mathcal{R}, \eta}).$$

Whenever S is a genericity iterate of \mathcal{R} above η , $\pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}((\alpha,\vec{\beta},\gamma)) = (\alpha,\vec{\beta},\gamma)$ and $\pi_{\mathcal{V}_{\mathcal{P}},\mathcal{V}_{\mathcal{S}}}(Y(i)) = Y(i)$ for any $i < \omega$.

Main proof, part II 00000000

Proof. Let $\alpha_{\mathcal{R}} < \delta$ be such that $\alpha = \pi_{\mathcal{V}_{\mathcal{R}},\infty}^{\mathcal{R},\eta}(\alpha_{\mathcal{R}})$. Then we have

$$\pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}(\alpha) = \pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}(\pi_{\mathcal{V}_{\mathcal{R}},\infty}^{\mathcal{R},\eta}(\alpha_{\mathcal{R}}))$$
$$= \pi_{\mathcal{V}_{\mathcal{S}},\infty}^{\mathcal{R},\eta}(\pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}(\alpha_{\mathcal{R}}))$$
$$= \pi_{\mathcal{V}_{\mathcal{R}},\infty}^{\mathcal{R},\eta}(\alpha_{\mathcal{R}}) = \alpha.$$

The second equation follows from the elementarity of $\pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}$ and the third equation holds since $\pi_{\mathcal{V}_{\mathcal{R}},\infty}^{\mathcal{R},\eta} = \pi_{\mathcal{V}_{\mathcal{S}},\infty}^{\mathcal{S},\eta} \circ \pi_{\mathcal{V}_{\mathcal{R}},\mathcal{V}_{\mathcal{S}}}$.

Replacing parameters with reals: how to choose η'

Let $k \subseteq \operatorname{Col}(\omega, < \delta)$ be \mathcal{R} -generic such that $\mathbb{R}^{\mathcal{P}[g]} = \mathbb{R}^{\mathcal{R}[k]}$. We code the parameters Y and Z by reals y and z respectively as follows.

• Let $\xi_Y < \delta$ be such that $Y \subseteq \pi_{\mathcal{R}, \infty}^{\mathcal{R}, \eta}[\xi_Y]$. Let $y \in \mathbb{R}_k^*$ code a function $f_{v}:\omega\to\xi_{Y}$ such that for any $i\in\omega$,

$$Y(i) = \pi_{\mathcal{R},\infty}^{\mathcal{R},\eta}(f_{y}(i)).$$

Main proof, part II

• Note that $\{\operatorname{Code}(\Sigma_{\mathcal{D}|\mathcal{E}}^g) \mid \xi < \delta\}$ is Wadge cofinal in Γ_g^* (Standard fact). So we may assume that $Z = \operatorname{Code}(\Sigma_{\mathcal{P}|\xi_{\mathcal{Z}}}^{g})$ for some $\xi_{\mathcal{Z}} < \delta$. Let $z \in \mathbb{R}_{k}^{*}$ be a real coding $\pi_{\mathcal{P},\mathcal{R}} \upharpoonright \mathcal{P}|\xi_Z \colon \mathcal{P}|\xi_Z \to \mathcal{R}|\pi_{\mathcal{P},\mathcal{R}}(\xi_Z)$. Then Z can be defined from z as the code of $\pi_{\mathcal{P},\mathcal{R}}$ -pullback of the strategy for $\mathcal{R}|_{\pi_{\mathcal{P},\mathcal{R}}}(\xi_{\mathsf{Z}})$ determined by the strategy predicate of \mathcal{R} .

Now choose any $\eta' \in [\max\{\eta, \xi_Y, \pi_{\mathcal{Q}, \mathcal{R}}(\xi_Z)\}, \delta)$ be such that $x, y, z \in \mathcal{R}[h \upharpoonright \eta']$.

Recall that

$$A = \{ \sigma \in \wp_{\omega_1}(\alpha) \mid \mathsf{CDM}^+(\mathcal{Q}, \eta) | \gamma \models \phi(\sigma, Y, Z, x, \vec{\beta}) \},$$

Main proof, part II

and for any $\mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta')$, let

$$\sigma_{\mathcal{R}^*} = \operatorname{ran}(\pi_{\mathcal{R}^*,\infty}^{\mathcal{R},\eta'}) \cap \alpha \in \wp_{\omega_1}(\alpha).$$

Suppose that $\sigma_{\mathcal{R}} \in A$. Then

$$\mathcal{V}_{\mathcal{R}}[x,y,z] \models \phi^*(\operatorname{ran}(\pi_{\mathcal{R}^*,\infty}^{\mathcal{R},\eta'}) \cap \alpha, x, y, z, \eta, \delta, \vec{\beta}, \gamma),$$

where ϕ^* is defined as follows:

- v codes a function $f: \omega \to \xi$ for some $\xi < \delta$, and
- z codes an elementary embedding $\pi: \mathcal{M} \to \mathcal{N}$, where \mathcal{N} is an initial segment of \mathcal{R} , and
- letting $Y = \langle \pi_{\mathcal{R},\infty}^{\mathcal{R},\eta}(f(i)) \mid i \in \omega \rangle$ and Z be the code of the π -pullback of the strategy for \mathcal{N} determined by the strategy predicate of \mathcal{R} , the maximal element of $\operatorname{Col}(\omega, <\delta)$ forces $\operatorname{CDM}^+(\mathcal{R}, \eta)|_{\gamma} \models \phi(u, Y, Z, x, \vec{\beta})$.

Let $\mathcal{R}^* \in \mathcal{F}_k(\mathcal{R}, \eta')$ such that $\alpha \in \operatorname{ran}(\pi_{\mathcal{R}^* \infty}^{\mathcal{R}, \eta'})$. We want to show $\sigma_{\mathcal{R}^*} \in A$.

Since $\alpha < \delta_{\infty}^{\mathcal{Q},\eta} = \delta_{\infty}^{\mathcal{R},\eta'}$, we have $\alpha_{\mathcal{R}^*} := (\pi_{\mathcal{R}^*}^{\mathcal{R},\eta'})^{-1}(\alpha) < \delta$. Then there is an iterate S of \mathbb{R}^* such that it is a genericity iterate of \mathbb{R} with $\operatorname{crit}(\pi_{\mathbb{R}^*,S}) > \alpha_{\mathbb{R}^*}$.

Main proof, part II

The elementarity of $\pi^+_{\mathcal{V}_{\mathcal{P}},\mathcal{V}_{\mathcal{S}}}: \mathcal{V}_{\mathcal{R}}[x,y,z] \to \mathcal{V}_{\mathcal{S}}[x,y,z]$, which is the canonical liftup of $\pi_{\mathcal{V}_{\mathcal{P}},\mathcal{V}_{\mathcal{S}}}$, implies that

$$\mathcal{V}_{\mathcal{S}}[x, y, z] \models \phi^*(\operatorname{ran}(\pi_{\mathcal{S}, \infty}^{\mathcal{S}, \eta'}) \cap \alpha, x, y, z, \eta, \delta, \vec{\beta}, \gamma).$$

Unraveling the definition of ϕ^* , we get $\sigma_S \in A$.

Main proof, part II 0000000

Because crit $(\pi_{\mathcal{R}^*,\mathcal{S}}) > \alpha_{\mathcal{R}^*}$ and $\pi_{\mathcal{R}^*,\infty}^{\mathcal{R},\eta'} = \pi_{\mathcal{S},\infty}^{\mathcal{S},\eta'} \circ \pi_{\mathcal{R}^*,\mathcal{S}}$, we have

$$\sigma_{\mathcal{R}^*} = \pi_{\mathcal{R}^*,\infty}^{\mathcal{R},\eta'}[\alpha_{\mathcal{R}^*}] = \pi_{\mathcal{S},\infty}^{\mathcal{S},\eta'}[\alpha_{\mathcal{S}}] = \sigma_{\mathcal{S}}.$$

It follows that $\sigma_{\mathcal{R}^*} \in A$. This completes the proof of Main Lemma 2.

Another related result

Steel independently constructed CDM with supercompactness measures assuming that δ is a measurable Woodin (which is not known to be consistent). Adapting G.-Sargsyan's proof of CM \models AD⁺, he showed that

$$\mathsf{CM}^+ \models \mathsf{AD}^+ + \omega_1$$
 is supercompact.

Questions and future works

It seems that there is plenty of room for research on Chang-type models of determinacy.

- How does stronger large cardinal property (e.g., a Woodin limit of Woodin cardinals) in a hod mouse affect the property of CDM or its variants?
- Find other definable objects that can be added to CDM.
- Analyze the internal theory of Chang-type models in more detail. \rightsquigarrow new consistency results via the \mathbb{P}_{\max} forcing.

I believe that Chang-type models, or more generally, determinacy models satisfying $V \neq L(\wp(\mathbb{R}))$ will play critical roles in inner model theory.

Main references

Grigor Sargsyan, Covering with Chang models over derived models, Adv. Math. 384 (2021), Paper No. 107717, 21.

Takehiko Gappo & Grigor Sargsyan, Determinacy in the Chang model, available at https://arxiv.org/abs/2302.06487.

Takehiko Gappo, Sandra Müller & Grigor Sargsyan, Chang models over derived models with supercompact measures, in preparation.