Global evasion and prediction associated with ideals

Takashi Yamazoe

Joint work with Aleksander Cieślak, Takehiko Gappo and Arturo Martínez-Celis

December 3

Table

- 1 Blass' global prediction
- 2 On the ideal $Fin \otimes Fin$
- 3 On the ideal \mathcal{ED}
- **4** Question

- 1 Blass' global prediction
- 2 On the ideal $Fin \otimes Fin$

3 On the ideal \mathcal{ED}

4 Question

Question

$\operatorname{non}(M_{\mathscr{I}})$ and $\operatorname{non}(K_{\mathscr{I}})$

Let \mathscr{I} be an ideal on ω . We have been studying the cardinal invariants $non(M_{\mathscr{I}})$ and $non(K_{\mathscr{I}})$ defined as follows:

Definition

• For a function $\phi \colon \omega^{<\omega} \to \mathscr{I}$, let:

$$M_{\phi} \coloneqq \{x \in \omega^{\omega} : \forall^{\infty} n < \omega \ x(n) \in \phi(x {\restriction} n)\}.$$

$$M_{\mathscr{I}}\coloneqq\{A\subseteq\omega^{\omega}:\exists\phi\in\mathscr{I}^{\omega},A\subseteq M_{\phi}\}.$$

• For a function $\phi \colon \omega \to \mathscr{I}$, let:

$$K_{\phi} := \{ x \in \omega^{\omega} : \forall^{\infty} n < \omega \ x(n) \in \phi(n) \}.$$

$$K_{\mathscr{I}} := \{ A \subseteq \omega^{\omega} : \exists \phi \in \mathscr{I}^{\omega}, A \subseteq K_{\phi} \}.$$

 $M_{\mathscr{I}}$ and $K_{\mathscr{I}}$ form σ -ideals. $\operatorname{non}(M_{\mathscr{I}})$ and $\operatorname{non}(K_{\mathscr{I}})$ denotes their uniformities.

Blass' article in Handbook of set theory

These cardinal invariants are formalized in Blass' framework [Bla10] of evasion and prediction.

6. Combinatorial Cardinal Characteristics of the Continuum

Andreas Blass

0	ont	4	

Blass' global prediction

nicents						
	1 Introduction					
	2 Growth of Functions					
	3 Splitting and Homogeneity 402					
	4 Galois-Tukey Connections and Duality $\ \ldots \ \ldots \ 408$					
	5 Category and Measure 417					
	6 Sparse Sets of Integers $\ \ldots \ \ldots \ \ldots \ 425$					
	7 Forcing Axioms					
	8 Almost Disjoint and Independent Families $\ \ldots \ \ 442$					
	9 Filters and Ultrafilters 446					
	10 Evasion and Prediction $\ \ldots \ \ldots \ \ldots \ 458$					
	11 Forcing					

Global Prediction

Blass studied many variants of evasion number ϵ . In this talk, we focus on *global prediction* in his framework.

Definition

Blass' global prediction

- A predictor is a function $\pi: \omega^{<\omega} \to \mathcal{P}(\omega)$.
- A predictor π globally predicts $x \in \omega^{\omega}$ if:

$$\forall^{\infty} n < \omega \ x(n) \in \pi(x \upharpoonright n).$$

- A non-adaptive predictor is a function $\pi: \omega \to \mathcal{P}(\omega)$.
- A non-adaptive predictor π globally predicts $x \in \omega^{\omega}$ if:

$$\forall^{\infty} n < \omega \ x(n) \in \pi(n).$$

"globally" corresponds to " $\forall^{\infty} n < \omega$ ".

Global evasion numbers

Let $\mathscr{F} \subseteq \mathcal{P}(\omega)$ be a family.

Definition

Blass' global prediction

A predictor π is an \mathscr{F} -type if $\operatorname{ran}(\pi) \subseteq \mathscr{F}$. $\mathfrak{e}(\mathsf{global}, \mathsf{adaptive}, \mathscr{F})$ is the least size of $X \subseteq \omega^{\omega}$ such that no single \mathscr{F} -type predictor can globally predict all $x \in X$. Define ε (global, non-adaptive, \mathscr{F}) analogously.

Thus,

- $\operatorname{non}(M_{\mathscr{I}}) = \mathfrak{e}(\operatorname{global}, \operatorname{adaptive}, \mathscr{I}).$
- $non(K_{\mathscr{I}}) = \mathfrak{e}(global, non-adaptive, \mathscr{I}).$

If $\mathscr{F} \subset \mathscr{F}'$, then:

$$\begin{array}{c} \mathfrak{e}(\mathsf{global},\mathsf{non\text{-}adaptive},\mathscr{F}) & \longrightarrow \mathfrak{e}(\mathsf{global},\mathsf{adaptive},\mathscr{F}) \\ \downarrow & \downarrow \\ \mathfrak{e}(\mathsf{global},\mathsf{non\text{-}adaptive},\mathscr{F}') & \longrightarrow \mathfrak{e}(\mathsf{global},\mathsf{adaptive},\mathscr{F}') \end{array}$$

Blass' table

Blass' global prediction

00000

Blass summarized evasion numbers for global prediction associated with the six families \mathscr{F} which collects $G \subseteq \omega$ which satisfy each of the following properties (G represents "guess"):

Table 1: Evasion numbers for global prediction

	Non-adaptive	Adaptive
G = 1	2	\aleph_1
G = k	k+1	$\mathfrak{m}(\sigma\text{-}k\text{-linked}) \leq ? \leq \mathbf{add}(\mathcal{L})$
G = f(n)	$\mathbf{add}(\mathcal{L})$	$\mathbf{add}(\mathcal{L})$
$\bigcap G$ finite	b	ь
$\omega - G$ infinite	$\mathbf{non}(\mathcal{B})$	$\mathbf{non}(\mathcal{B})$
$G \subsetneq \omega$	$\mathbf{non}(\mathcal{B})$	$\mathbf{non}(\mathcal{B})$

Fig: Blass' table. $f \in \omega^{\omega}$ tends to infinity.

We deal with ideals \mathscr{I} with $\mathscr{I} \supseteq \operatorname{Fin} = [\omega]^{<\omega}$, so we are in the red zone.

- 1 Blass' global prediction
- $oldsymbol{2}$ On the ideal $\operatorname{Fin} \otimes \operatorname{Fin}$

3 On the ideal $\mathcal{E}\mathcal{D}$

4 Question

Blass' global prediction

adaptive and non-adaptive numbers can be different

One might expect that the adaptive and non-adaptive numbers are the same in the red zone. However,

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

It is consistent that $non(K_{\text{Fin}\otimes\text{Fin}}) < non(M_{\text{Fin}\otimes\text{Fin}})$.

 $\operatorname{Fin} \otimes \operatorname{Fin}$ is the ideal on $\omega \times \omega \cong \omega$ defined as the Fubini product of two Fin's:

$$\operatorname{Fin} \otimes \operatorname{Fin} := \{ A \subseteq \omega \times \omega : \forall^{\infty} n < \omega \mid (A)_n \mid < \omega \},$$

where $(A)_n := \{m < \omega : (n,m) \in A\}$ denotes the *n*-th vertical section of $A \subseteq \omega \times \omega$. Thus for $A \subseteq \omega \times \omega$,

$$A \in \operatorname{Fin} \otimes \operatorname{Fin} \Leftrightarrow \exists k < \omega, \exists h \in \omega^{\omega} \text{ such that }$$

$$A \subseteq \{(a,b) \in \omega \times \omega : a \le k \text{ or } b \le h(a)\}.$$

$\operatorname{non}(K_{\operatorname{Fin}\otimes\operatorname{Fin}})=\mathfrak{b}$

Lemma

 $non(K_{Fin\otimes Fin}) = \mathfrak{b}.$

Proof. It suffices to show non $(K_{\text{Fin}\otimes\text{Fin}}) \leq \mathfrak{b}$. Let $B \subseteq \omega^{\omega}$ be an unbounded family consisting of strictly increasing functions. We shall show $F := \{f \times g : f, g \in B\} \subset (\omega \times \omega)^{\omega}$ is not in $K_{\text{Fin} \otimes \text{Fin}}$. Let $\phi \colon \omega \to \operatorname{Fin} \otimes \operatorname{Fin}$ be arbitrary. For each $n < \omega$, there are $k_n < \omega$ and $h_n \in \omega^{\omega}$ such that $\phi(n) \subset \{(a,b) \in \omega \times \omega : a < k_n \text{ or } b < h_n(a)\}$. Since B is unbounded, there are $f \in B$ and $D \in [\omega]^{\omega}$ such that $k_n < f(n)$ for $n \in D$. For $n < \omega$, put $h(n) := h_n(f(n))$ and $h'(n) := h(d_n)$. where d_n denotes the n-th element of D. Since B is unbounded, there are $g \in B$ and $E \in [\omega]^{\omega}$ such that h'(n) < g(n) for $n \in E$. Then, for any $n \in E$, $g(d_n) \ge g(n) > h'(n) = h(d_n) = h_{d_n}(f(d_n))$. Thus, for all $m \in \{d_n : n \in E\}$, we have $(f(m), g(m)) \notin \phi(m)$, so $F \notin K_{\text{Fin} \otimes \text{Fin}}$.

On $\overline{\mathrm{non}(M_{\mathrm{Fin}\otimes\mathrm{Fin}})}$

Let us move on to $non(M_{Fin\otimes Fin})$.

It turns out that $\text{non}(M_{\text{Fin}\otimes \text{Fin}})$ has a connection with the notion of constant prediction, introduced by Kamo ([Kam00], [Kam01]).

Definition

Let $2 \le k < \omega$. A predictor $\pi \colon \omega^{<\omega} \to \mathcal{P}(\omega)$ k-constantly predicts $f \in \omega^{\omega}$ if:

$$\forall^{\infty} i < \omega \,\exists j \in [i, i+k) \, (f(j) \in \pi(f \restriction j)).$$

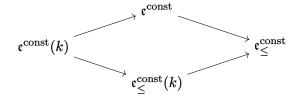
 π constantly predicts $f \in \omega^{\omega}$ if π k-constantly predicts f for some k. Define the evasion number $\mathfrak{e}((k ext{-})\text{constant}, \text{adaptive}, \mathscr{F})$ of the \mathscr{F} -type $(k ext{-})\text{constant}$ prediction analogously.

Constant evasion numbers

Blass' global prediction

Define the following notation for typical constant evasion numbers:

- $e^{\text{const}}(k) := e(k\text{-constant}, \text{adaptive}, \text{Singletons}).$
- $e^{\text{const}} := e(\text{constant}, \text{adaptive}, \text{Singletons}).$
- $\mathfrak{e}^{\mathrm{const}}_{<}(k) \coloneqq \mathfrak{e}(k\text{-constant}, \mathrm{adaptive}, \mathrm{Fin}).$
- $e^{const} := e(constant, adaptive, Fin)$.



In the cases of Singletons- and Fin- type predictions, we often use predictors π with $ran(\pi) \in \omega$ and instead of " \in " in the definition of " $f(i) \in \pi(f \mid i)$ ", we use "=" and "<", respectively.

$$\operatorname{non}(M_{\operatorname{Fin}\otimes\operatorname{Fin}})=\mathfrak{e}^{\operatorname{const}}_{<}(2)$$

We show $\operatorname{non}(M_{\operatorname{Fin}\otimes\operatorname{Fin}})=\mathfrak{e}^{\operatorname{const}}_{\leq}(2).$ To see this, we introduce the weak version of constant prediction as follows:

Definition

Let $2 \leq k < \omega$. A predictor $\pi \colon \omega^{<\omega} \to \mathcal{P}(\omega)$ weakly k-constantly predicts $f \in \omega^{\omega}$ if:

$$\forall^{\infty} m < \omega \, \exists j \in [mk, mk + k) \, (f(j) \in \pi(f \restriction j)).$$

Define the evasion number $\mathfrak{e}(\text{weakly }k\text{-constant},\text{adaptive},\mathscr{F})$ of the \mathscr{F} -type weakly k-constant prediction analogously.

Put $\mathfrak{e}^{\mathrm{wconst}}_{\leq}(k) \coloneqq \mathfrak{e}(\mathrm{weakly}\ k\text{-constant},\mathrm{adaptive},\mathrm{Fin})$. Clearly $\mathfrak{e}^{\mathrm{const}}_{\leq}(k) \leq \mathfrak{e}^{\mathrm{wconst}}_{\leq}(k)$.

$$\mathfrak{e}^{\text{wconst}}_{\leq}(k) = \mathfrak{e}^{\text{const}}_{\leq}(k)$$

Lemma

$$\mathfrak{e}^{\text{wconst}}_{\leq}(k) = \mathfrak{e}^{\text{const}}_{\leq}(k).$$

Proof. It suffices to prove $\mathfrak{e}^{\mathrm{wconst}}_{\leq}(k) \leq \mathfrak{e}^{\mathrm{const}}_{\leq}(k)$. Let $F \subseteq \omega^{\omega}$ of size $< \mathfrak{e}^{\mathrm{wconst}}_{\leq}(k)$. For $f \in \omega^{\omega}$ and l < k, define the l-shift $f^l \in \omega^{\omega}$ of f by:

$$f^{l}(n) = \begin{cases} 0 & \text{if } n < l \\ f(n-l) & \text{if } n \ge l \end{cases}$$

For $t \in \omega^{<\omega}$, define t^l analogously (so $\mathrm{dom}(t^l) = l + |t|$). Let $F' := \{f^l : f \in F, l < k\}$. Since F' has size $< \mathfrak{e}^{\mathrm{wconst}}_{\leq}(k)$, there is $\pi' : \omega^{<\omega} \to \mathrm{Fin}$ which weakly k-constant predicts f^l for all $f \in F$ and l < k. Define $\pi : \omega^{<\omega} \to \mathrm{Fin}$ by $\pi(t) = \bigcup \{\pi'(t^l) : l < k\}$. Then it is routine to see that π k-constantly predicts all $f \in F$.

$\mathfrak{e}^{\mathrm{wconst}}_{\leq}(2) \leq \mathrm{non}(M_{\mathrm{Fin}\otimes\mathrm{Fin}}).$

Proof. Let $F\subseteq (\omega\times\omega)^\omega$ be of size $<\mathfrak{e}^{\mathrm{wconst}}_{\le}(2)$. For $(f,g)\in F$, $f*g\in\omega^\omega$ is given by f*g(2n)=f(n) and f*g(2n+1)=g(n). Put $F^*=\{f*g:(f,g)\in F\}\subseteq\omega^\omega$. Since F^* has size $<\mathfrak{e}^{\mathrm{wconst}}_{\le}(2)$, there is a predictor $\pi\colon\omega^{<\omega}\to\omega$ which weakly 2-constantly predicts all f*g (in the sense of \le). Thus, we have

$$\forall (f,g) \in F \ \forall^{\infty} n < \omega \ \text{either} \ \begin{cases} f(n) \leq \pi((f*g) \upharpoonright 2n), & \text{or} \\ g(n) \leq \pi((f*g) \upharpoonright 2n+1). \end{cases}$$

For $(u,v)\in (\omega\times\omega)^{<\omega}$, let $\sigma(u,v):=\pi(u*v)$ and $s(u,v)(a):=\pi((u*v)^\frown a)$ for $a\in\omega$, where $u*v\in\omega^{<\omega}$ is defined analogously. Again for $(u,v)\in (\omega\times\omega)^{<\omega}$, let $\phi(u,v)=\{(a,b)\in\omega\times\omega: a\leq\sigma(u,v) \text{ or } b\leq s(u,v)(a)\}$. Note $\phi(u,v)\in\operatorname{Fin}\otimes\operatorname{Fin}$. Then it is routine to check $F\subseteq M_\phi$.

Lemma

Blass' global prediction

$$\operatorname{non}(M_{\operatorname{Fin}\otimes\operatorname{Fin}}) \leq \mathfrak{e}^{\operatorname{wconst}}_{\leq}(2).$$

Proof. Basically do the opposite argument. Let $F \subseteq \omega^{\omega}$ be of size $< \text{non}(M_{\text{Fin} \otimes \text{Fin}})$. For each $f \in F$, define $f_{\text{even}}, f_{\text{odd}} \in \omega^{\omega}$ by $f_{\text{even}}(n) = f(2n)$ and $f_{\text{odd}}(n) = f(2n+1)$. Put $F_* = \{\langle f_{\text{even}}, f_{\text{odd}} \rangle : f \in F\}$. Since F_* has size $< \text{non}(M_{\text{Fin} \otimes \text{Fin}})$, there is $\phi \colon \omega^{<\omega} \to \operatorname{Fin} \otimes \operatorname{Fin}$ such that $F_* \subset M_{\phi}$. Take $\sigma \colon (\omega \times \omega)^{<\omega} \to \omega$ and $s \colon (\omega \times \omega)^{<\omega} \to \omega^{\omega}$ such that $\phi(u,v) \subset \{(a,b) \in \omega \times \omega : a < \sigma(u,v) \text{ or } b < s(u,v)(a)\}.$ Now define $\pi : \omega^{<\omega} \to \omega$ by

$$\pi(t) = \sigma(t_{\mathrm{even}}, t_{\mathrm{odd}})$$
 $\pi(t \land (n)) = s(t_{\mathrm{even}}, t_{\mathrm{odd}})(n)$

for all $t \in \omega^{\omega}$ of even length and all $n < \omega$, where $t_{\text{even}}, t_{\text{odd}} \in \omega^{<\omega}$ are defined analogously. Then it is easy to see that π weakly 2-constantly predicts all $f \in F$ (in the sense of \leq).

On the ideal $\mathcal{E}\mathcal{D}$

Thus we obtain
$$\operatorname{non}(M_{\operatorname{Fin}\otimes\operatorname{Fin}})=\mathfrak{e}^{\operatorname{wconst}}_{\leq}(2)=\mathfrak{e}^{\operatorname{const}}_{\leq}(2).$$

Brendle [Bre03] showed the consistency of $\mathfrak{e}^{\mathrm{const}} > \mathfrak{b}$, but essentially proved more:

Theorem ([Bre03])

Given $\kappa < \lambda = \lambda^{<\kappa}$ regular uncountable, there is a poset forcing $\mathfrak{b} = \kappa$ and $\mathfrak{e}^{\mathrm{const}}(2) = \lambda = \mathfrak{c}$.

By $\mathfrak{e}^{\mathrm{const}}(2) \leq \mathfrak{e}^{\mathrm{const}}_{\leq}(2)$ and $\mathrm{non}(K_{\mathrm{Fin}\otimes\mathrm{Fin}}) = \mathfrak{b}$, we have:

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

Given $\kappa < \lambda$ as above, there is a poset forcing $\operatorname{non}(K_{\operatorname{Fin}\otimes\operatorname{Fin}}) = \kappa < \operatorname{non}(M_{\operatorname{Fin}\otimes\operatorname{Fin}}) = \lambda = \mathfrak{c}.$

- 1 Blass' global prediction
- 2 On the ideal $Fin \otimes Fin$

3 On the ideal \mathcal{ED}

4 Question

Eventually different ideal \mathcal{ED}

How much can we extend this result of the adaptive/non-adaptive gap in global prediction? Take a look at the eventually different ideal \mathcal{ED} :

Definition

 \mathcal{ED} is the ideal on $\omega \times \omega \cong \omega$ given by:

$$\mathcal{ED} := \{ A \subseteq \omega \times \omega : \exists l < \omega \ \forall^{\infty} n < \omega \ | (A)_n | \le l \}.$$

Thus for $A \subseteq \omega \times \omega$,

$$A \in \mathcal{ED} \Leftrightarrow \exists k, l < \omega, \exists h \colon \omega \to [\omega]^{\leq l}$$
 such that

$$A\subseteq\{(a,b)\in\omega\times\omega:a\leq k\text{ or }b\in h(a)\}.$$

 $\mathcal{ED} \subseteq \operatorname{Fin} \otimes \operatorname{Fin}$, so $\mathfrak{b} \leq \operatorname{non}(K_{\mathcal{ED}}) \leq \operatorname{non}(K_{\operatorname{Fin} \otimes \operatorname{Fin}}) = \mathfrak{b}$, i.e., $\operatorname{non}(K_{\mathcal{ED}}) = \mathfrak{b}$.

Lemma

$$\mathfrak{e}^{\mathrm{const}}(2) \leq \mathrm{non}(M_{\mathcal{ED}}).$$

Proof. The proof is basically the same as $e_{\lt}^{\text{wconst}}(2) \leq \text{non}(M_{\text{Fin}\otimes\text{Fin}})$. Let $F \subseteq (\omega \times \omega)^{\omega}$ of size $< e^{\text{const}}(2)$. $\overline{\operatorname{Put}} F^* := \{f * g : (f,g) \in F\} \subseteq \omega^{\omega}$. Since F^* has size $< \mathfrak{e}^{\mathrm{const}}(2)$, there is a predictor $\pi \colon \omega^{<\omega} \to \omega$ which 2-constantly predicts all f * g (in the sense of =). In particular,

$$\forall (f,g) \in F \ \forall^{\infty} n < \omega \ \text{either} \ \begin{cases} f(n) = \pi((f*g) \upharpoonright 2n), & \text{or} \\ g(n) = \pi((f*g) \upharpoonright 2n + 1). \end{cases}$$

Define $\sigma : (\omega \times \omega)^{<\omega} \to \omega$ by $\sigma(u,v) := \pi(u*v)$. For $(u,v) \in (\omega \times \omega)^{<\omega}$, let $\sigma(u,v) := \pi(u * v)$ and $s(u,v)(a) := \pi((u*v)^a)$ for $a \in \omega$. Again for $(u,v) \in (\omega \times \omega)^{<\omega}$, let $\phi(u,v) := \{(a,b) \in \omega \times \omega : a \leq \sigma(u,v) \text{ or } b = s(u,v)(a)\}$. Note $\phi(u,v) \in \mathcal{ED}$. Then it is routine to check $(f,g) \in M_{\phi}$ for all $(f,q)\in F$.

$$\max\{\mathfrak{b}, \mathfrak{e}^{\mathrm{const}}(2)\} < \mathrm{non}(M_{\mathcal{ED}})$$

We know $\mathfrak{b}, \mathfrak{e}^{\mathrm{const}}(2) \leq \mathrm{non}(M_{\mathcal{ED}})$. However,

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

It is consistent that $\max\{\mathfrak{b}, \mathfrak{e}^{\mathrm{const}}(2)\} < \mathrm{non}(M_{\mathcal{ED}}).$

Roughly speaking, the result suggests that the $\mathcal{E}\mathcal{D}$ -type prediction is not just a mixture of domination and constant prediction.

Poset $\mathbb{P}^{\mathcal{ED}}$

We introduce the poset $\mathbb{P}^{\mathcal{ED}}$ defined as follows:

Conditions are $p = (\sigma^p, s^p, n^p, F^p)$ such that:

- $\sigma^p : \{(u,v) : u,v \in \omega^{< n^p}\} \to \omega$ finite partial function.
- $s^p : \{(u \cap a, v) : u, v \in \omega^{< n^p}, a \in \omega\} \to \omega$ finite partial function.
- $n^p \in \omega$.
- $F^p \subseteq \omega^\omega$ finite.

The order $q \leq p$ is given by:

- $\sigma^q \supseteq \sigma^p$, $s^q \supseteq s^p$, $n^q \ge n^p$ and $F^q \supseteq F^p$.
- $\forall i \in [n^p, n^q) \, \forall x, y \in F^p$, either:
 - $(x \upharpoonright i, y \upharpoonright i) \in \text{dom}(\sigma^q)$ and $x(i) \le \sigma^q(x \upharpoonright i, y \upharpoonright i)$, or
 - $(x \upharpoonright (i+1), y \upharpoonright i) \in \text{dom}(s^q) \text{ and } y(i) = s^q(x \upharpoonright (i+1), y \upharpoonright i).$

Let G be a generic filter. In V[G], $\phi_G : (\omega \times \omega)^{<\omega} \to \mathcal{ED}$ is given by: $\phi_G(u,v) := \bigcup_{p \in G} \{(a,b) \in \omega \times \omega : a \leq \sigma^p(u,v) \text{ or } b = s^p(u^{\frown}a,b)\}.$

We see basic some properties of $\mathbb{P}^{\mathcal{ED}}$. Recall the definition:

Conditions $p = (\sigma^p, s^p, n^p, F^p)$ are such that:

- $\sigma^p : \{(u,v) : u,v \in \omega^{< n^p}\} \to \omega$ finite partial function.
- $s^p: \{(u \cap a, v) : u, v \in \omega^{< n^p}, a \in \omega\} \to \omega$ finite partial function.
- $n^p \in \omega$.
- $F^p \subseteq \omega^{\omega}$ finite.

 $q \leq p$ if:

- $\sigma^q \supseteq \sigma^p$, $s^q \supseteq s^p$, $n^q \ge n^p$ and $F^q \supseteq F^p$.
- $\forall i \in [n^p, n^q) \, \forall x, y \in F^p$, either:
 - $(x \upharpoonright i, y \upharpoonright i) \in \text{dom}(\sigma^q)$ and $x(i) \leq \sigma^q(x \upharpoonright i, y \upharpoonright i)$, or
 - $(x \upharpoonright (i+1), y \upharpoonright i) \in \text{dom}(s^q)$ and $y(i) = s^q(x \upharpoonright (i+1), y \upharpoonright i)$.

Lemma

Fix σ, s, n as above. Then, $Q_{\sigma,s,n} \coloneqq \{p : \sigma^p = \sigma, s^p = s, n^p = n\}$ is centered. In particular, $\mathbb{P}^{\mathcal{ED}}$ is σ -centered.

- $\sigma^p: \{(u,v): u,v \in \omega^{< n^p}\} \to \omega$ finite partial function.
- $s^p: \{(u \cap a, v) : u, v \in \omega^{\leq n^p}, a \in \omega\} \to \omega$ finite partial function.
- $n^p \in \omega$.
- $F^p \subset \omega^\omega$ finite.

 $q \leq p$ if:

- $\sigma^q \supseteq \sigma^p$, $s^q \supseteq s^p$, $n^q \ge n^p$ and $F^q \supseteq F^p$.
- $\forall i \in [n^p, n^q) \forall x, y \in \overline{F}^p$, either:
 - $(x \upharpoonright i, y \upharpoonright i) \in \text{dom}(\sigma^q)$ and $x(i) \le \sigma^q(x \upharpoonright i, y \upharpoonright i)$, or
 - $(x \upharpoonright (i+1), y \upharpoonright i) \in \text{dom}(s^q) \text{ and } y(i) = s^q(x \upharpoonright (i+1), y \upharpoonright i).$

$$\phi_G(u,v)\coloneqq \bigcup_{p\in G}\{(a,b)\in\omega\times\omega: a\leq\sigma^p(u,v) \text{ or } b=s^p(u^\frown a,b)\}.$$

Lemma

- For $n<\omega$, $\{p:n_p\geq n\}$ is dense. Thus ϕ_G has a valid definition.
- For $f, g \in \omega^{\omega}$, $\{p : f, g \in F^p\}$ is dense. Thus $\mathbb{P}^{\mathcal{ED}} \Vdash \forall (f, g) \in (\omega \times \omega)^{\omega} \cap V$, $(f, g) \in M_{\phi_G}$.

Thus the iteration of $\mathbb{P}^{\mathcal{ED}}$ increases $\text{non}(M_{\mathcal{ED}})$.

Question

Fr-linkedness to keep b small

To see that $\mathbb{P}^{\mathcal{ED}}$ keep \mathfrak{b} small, we use Fr-linkedness:

Definition

Let $\mathbb P$ be a poset. $Q\subseteq \mathbb P$ is Fr-linked if for any countable sequence $\bar q=\langle q_m:m<\omega\rangle\in Q^\omega$, there is $q^\infty\in\mathbb P$ such that:

$$q^{\infty} \Vdash \exists^{\infty} m < \omega \ q_m \in \dot{G}.$$

 \mathbb{P} is σ -Fr-linked if \mathbb{P} is a union countably many Fr-linked components.

Fact ([Mej19])

Any σ -Fr-linked forcing $\mathbb P$ is " ω^ω -good". I.e., given a $\mathbb P$ -name $\dot h$ of a member of ω^ω , there is a countable set $H\subseteq\omega^\omega$ such that if $f\in\omega^\omega$ is unbounded from any $h\in H$, then $\Vdash_{\mathbb P} f$ is unbounded from $\dot h$.

It is known that ω^{ω} -goodness is preserved through finite support iterations and ω^{ω} -good posets keep $\mathfrak b$ small.

Recall the definition of $\mathbb{P}^{\mathcal{ED}}$:

Conditions $p = (\sigma^p, s^p, n^p, F^p)$ are such that:

- $\sigma^p: \{(u,v): u,v \in \omega^{< n^p}\} \to \omega$ finite partial function.
- $s^p: \{(u \cap a, v) : u, v \in \omega^{< n^p}, a \in \omega\} \to \omega$ finite partial function.
- $n^p \in \omega$.
- $F^p \subset \omega^\omega$ finite.

 $q \leq p$ if:

- $\sigma^q \supset \sigma^p$, $s^q \supset s^p$, $n^q > n^p$ and $F^q \supset F^p$.
- $\forall i \in [n^p, n^q) \, \forall x, y \in F^p$, either:
 - $(x \upharpoonright i, y \upharpoonright i) \in \text{dom}(\sigma^q)$ and $x(i) < \sigma^q(x \upharpoonright i, y \upharpoonright i)$, or
 - $(x \upharpoonright (i+1), y \upharpoonright i) \in \text{dom}(s^q)$ and $y(i) = s^q(x \upharpoonright (i+1), y \upharpoonright i)$.

Lemma

Fix σ, s, n as above. Let $L < \omega$ and $\bar{x}^* = \{x_l^* : l < L\} \subseteq \omega^n$ such that all x_i^* are pairwise different. Then,

 $Q_{\sigma,s,n,\bar{x}^*} := \{p : \sigma^p = \sigma, s^p = s, n^p = n, \{x \mid n : x \in F^p\} = \bar{x}^*\}$ is Fr-linked. In particular, $\mathbb{P}^{\mathcal{ED}}$ is σ -Fr-linked.

Proof. Omitted.

Constant prediction on 2^{ω}

To see that $\mathbb{P}^{\mathcal{E}\mathcal{D}}$ keep $\mathfrak{e}^{\mathrm{const}}(2)$ small, we consider constant predictions on 2^{ω} instead of ω^{ω} .

Let $\mathfrak{e}_2^{\mathrm{const}}$ (and $\mathfrak{e}_2^{\mathrm{const}}(k)$) denote the (k-)constant evasion number (in the sense of "=") with respect to 2^{ω} . Note $\mathfrak{e}_2^{\mathrm{const}} \geq \mathfrak{e}^{\mathrm{const}}$ and $\mathfrak{e}_2^{\mathrm{const}}(k) \geq \mathfrak{e}^{\mathrm{const}}(k)$.

Brendle and Shelah [BS03] showed that σ -2 k -linked posets does not increase $\mathfrak{e}_2^{\mathrm{const}}(k)$ (in the sense of "goodness"):

Lemma ([BS03])

Let $2 \leq k < \omega$ and $\mathbb P$ be a σ - 2^k -linked poset. Then given a $\mathbb P$ -name $\dot\pi$ of a predictor (in 2^ω), there is a countable set Π of predictors such that if $x \in 2^\omega$ is not k-constantly predicted by any $\pi \in \Pi$, $\Vdash_{\mathbb P} x$ is not k-constantly predicted by $\dot\pi$.

$\max\{\mathfrak{b},\mathfrak{e}^{\mathrm{const}}(2)\} < \mathrm{non}(M_{\mathcal{ED}})$

Now we show the consistency of $\max\{\mathfrak{b},\mathfrak{e}^{\mathrm{const}}(2)\}<\mathrm{non}(M_{\mathcal{ED}}).$

Theorem

Assume CH and let \mathbb{P} be a finite support iteration of $\mathbb{P}^{\mathcal{ED}}$ of length ω_2 . Then,

$$\Vdash_{\mathbb{P}} \mathfrak{b} = \mathfrak{e}^{\text{const}}(2) = \mathfrak{e}_2^{\text{const}}(2) = \omega_1 < \text{non}(M_{\mathcal{ED}}) = \mathfrak{c} = \omega_2.$$

Sketch of Proof.

- Why $non(M_{\mathcal{ED}})$ is large: Because $\mathbb{P}^{\mathcal{ED}}$ increases $non(M_{\mathcal{ED}})$.
- Why $\mathfrak b$ is small: Because $\mathbb P^{\mathcal{ED}}$ is σ -Fr-linked and σ -Fr-linked posets keep $\mathfrak b$ small.
- Why ε₂^{const}(2) is small: Because P^{εD} is σ-centered and σ-4-linked posets keep ε₂^{const}(2) small.

This result can be generalized as follows:

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

Given $\kappa < \lambda = \lambda^{<\kappa}$ regular uncountable, there is a poset forcing $\mathfrak{b} = \mathfrak{e}^{\mathrm{const}}(2) = \mathfrak{e}_2^{\mathrm{const}} = \kappa$ and $\mathrm{non}(M_{\mathcal{ED}}) = \lambda = \mathfrak{c}$.

2 On the ideal $Fin \otimes Fin$

3 On the ideal \mathcal{ED}

4 Question

Question

We have seen that $non(K_{\mathscr{I}}) < non(M_{\mathscr{I}})$ is consistent when $\mathscr{I} = \operatorname{Fin} \otimes \operatorname{Fin}, \mathcal{ED}$.

Question

What other ideal \mathscr{I} has the consistency of $\operatorname{non}(K_{\mathscr{I}}) < \operatorname{non}(M_{\mathscr{I}})$?

References I

[Bla10] Andreas Blass.

Combinatorial cardinal characteristics of the continuum.

In Handbook of set theory, pages 395–489. Springer, 2010.

[Bre03] Jörg Brendle.

Evasion and prediction III. Constant prediction and dominating reals.

Journal of the Mathematical Society of Japan, 55(1):101–115, 2003.

[BS03] Jörg Brendle and Saharon Shelah.

Evasion and prediction IV. Strong forms of constant prediction.

Archive for Mathematical Logic, 42(4):349-360, 2003.

References II

[Kam00] Shizuo Kamo.

Cardinal invariants associated with predictors.

In Logic Colloquium '98 (Prague), volume 13 of Lect. Notes Log., pages 280–295. Assoc. Symbol. Logic, Urbana, IL, 2000.

[Kam01] Shizuo Kamo.

Cardinal invariants associated with predictors II.

Journal of the Mathematical Society of Japan, 53(1):35–57, 2001.

[Mej19] Diego A. Mejía.

Matrix iterations with vertical support restrictions.

In *Proceedings of the 14th and 15th Asian Logic Conferences*, pages 213–248. World Sci. Publ., Hackensack, NJ, 2019.