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w) played by Player I and Player IT with the following rules:
Basic Rules:

(R1) At each stage n < w, Player | plays z(n) € 2 and then Player
IT plays y(n) € 2.

(R2) Both players have to play 1 infinitely many times.

(R3) Player IT wins if z71({1}) is split by y~1({1}).

Player I | z(0) € 2 x(1) €2
Player 11 | y(0) € 2 y(l) €2
If either player breaks (R2):

(B1) When exactly one player breaks (R2), the winner is the other
one.

(B2*) When both players break (R2), the winner is Player II.
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splitting** game

A splitting** game is a variant of a splitting* game: the game
follows all the basic rules and (B1).(B2*) is replaced by:

(B2**) When both players break (R2), the winner is Player I.

Table: splitting* game. Table: splitting** game.

I I
I 00 < 0 I 00 < 0
00 (R3) II 00 (R3) 11
< 00 1 11 < 0 I 1

s¢ is the minimum size of F' C 2% such that no single strategy o of
I wins all play y € F of II in the splitting* games.
s¢ is defined by replacing “splitting*" by “splitting**".
Main Theorem

s¢; < ¢ consistently holds.
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Let us introduce some notation. Let x,y € 2¢.

® 0:={z€2¥:2(n)=0 for all but finitely many n < w},
1:={z€2¥:z(n) =1 for all but finitely many n < w}.
x P yifz(n) =y(n)=1and xz(m) =1 and y(m) =0 for
infinitely many n,m < w, i.e., z71({1}) is split by y~1({1}).

y C" x if =(x ° y). Note that y " = holds whenever y € 0.

Let j € 2and n <w. y T}, x if for all m > n, a:(m)zOOr
y(m) =1 — j holds. Note thatE—U]e2Un<w

e yrifre2Y\0andyC" .

¢ ydurzifyecOory<,x

Note that y <, = [y < x| iff I wins with the play = against the play
y of II in the splitting* [splitting**] game, respectively.
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(2<%)

e Str denotes the set of all I's strategies, namely, Str := 2
For o € Str, o * y denotes the play of I according to the
strategy o and the play y of II, namely, o x y(n) = o(y[n)
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® s¢ =min{|F|: F C2¥ -Jo € StrVy € F y<, 0},
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s <07




Details
[e]e]ele] o)

P* and P, which increase s¢, and s{", respectively

We introduce posets P* and P** which generically add a winning
strategy and hence increases s¢;, and s, respectively.



Details
[e]e]ele] o)

P* and P, which increase s¢, and s{", respectively
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¢ FinStr .=

o<n
n<w 2 :
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P* and P, which increase s¢, and s{", respectively

We introduce posets P* and P** which generically add a winning
strategy and hence increases s¢, and s, respectively.

* FinStr =], 2>

o P** :={(0,F): 0 € FinStr, F € [2¥]<*¥}.
(o', F") < (0,F):< 0’ 20,F' D F and for all n € [|o],|0])
andy e F, o'(y[n) =0o0ry(n) =1 (ie., o'(yIn) <yn)).
o P*:={(0,F) € P*: F C 2%\ 0} and the order is defined by
restriction.
® For both P* and P**, o denotes the generic strategy
0G = U(¢,r)eq 0 for a generic filter G.
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Proof. The first three items are easy, so we prove the remaining
two.
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@® For y € 2, IFpsx y Cf oG, where Cfi= U, <, C0.n-
© Fory € 2\ 0, IFp- y C 0¢-

@ Fory €29\ 0, lkpsx og xy € 2¢\ 0.

@ Fory e 2 Ikps ogxy € 2\ 0.

Proof. The first three items are easy, so we prove the remaining
two. In both cases, for y € 2¢ \ 0 and m < w, there are densely
many (o, F) satisfying that there is n > m such that y(n) =1,
yln # z[n for all different z € F, |o| > n and o(y[n) = 1.

In the case of P*, for y € 0 and m < w there are densely many

(o, F') satisfying that there is n > m such that y[n # z[ n for all
z€F,n<|o|and o(yln) =1sincey ¢ F. O

For y € 2, IFps+ y <4x o and IFp« y <, 0. Hence, by iteration, P*
and P** increases 55 and s&, respectively.
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We showed P** increases s¢;".
In fact, P** does not increase s¢;.
To prove it, we use Fr-limits.
We show:
® (Key Lemma 1) P** has Fr-limits, and

® (Key Lemma 2) Fr-limits keep s¢, small.



Fr-limit
[ee] lelelelelele]e]e]

Definition

@ Q C Pis Fr-linked if there exists a function lim: Q* — P such
that for any countable sequence ¢ = (qm‘: m < w) € QY,
limqglF3*°m < w ¢y € G.
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Definition

@ Q C Pis Fr-linked if there exists a function lim: Q* — P such
that for any countable sequence ¢ = (¢, : m < w) € Q¥,
lim g I+ 3%°m < w ¢ € G.
® Q C P is ultrafilter-limit-linked if for any non-principal
ultrafilter D on P(w), there are a P-name D’ of an ultrafilter
extending D and lim”: Q¥ — P such that for any
q=(gm:m <w) € Q~,
im? gIF {m <w:qgn € G} e D
Note that any ultrafilter-limit-linked component is Fr-linked.
© P is o-Fr-linked (we often say P has Fr-limits, instead) if P is a
union of countably many Fr-linked components.
“o-ultrafilter-limit-linked” is defined in the same way.

Singletons are ultrafilter-limit-linked and particularly Cohen forcing
C is o-Fr-linked.
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Key Lemma 1: P** has Fr-limits

Qo ={(0',F) € P** : 0/ = 0,|F| < k} is ultrafilter-limit-linked
for o € FinStr and k < w. In particular, P** is o-Fr-linked.
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Key Lemma 1: P** has Fr-limits

Qo ={(0',F) € P** : 0/ = 0,|F| < k} is ultrafilter-limit-linked
for o € FinStr and k < w. In particular, P** is o-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(w) and
§=(gm = (0, Fpn={y" i <k}):m<w) € (Qpr)’.
For i < k, define yf° € 2% by for n <w and j € 2:

yiP(n)=j7:{m<w:y"(n)=j} € D.
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Key Lemma 1: P** has Fr-limits

Qo ={(0',F) € P** : 0/ = 0,|F| < k} is ultrafilter-limit-linked
for o € FinStr and k < w. In particular, P** is o-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(w) and
§=(gm = (0, Fpn={y" i <k}):m<w) € (Qpr)’.
For i < k, define yf° € 2% by for n <w and j € 2:

yio(n) =j e {m<w:yl(n) =jr € D.
lim? g == (o, {y> : i < k}) does work (details omitted). O

For IP*, even if all y/™ are not in 0, y° might be in @ and hence the
same proof does not work. Also note that y° is the topological
D-limit of (y" : m < w) in Cantor space 2*. Every compact
Hausdorff space has D-limits and 2 is compact, while 2\ 0 is not.
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We consider iterations of o-Fr-linked forcings (with finite supports):
® A o-Fr-iteration is a finite support iteration

P, = (Pe,Q¢) : € <) with witnesses (Qem : € <7,m < w)
such that for all £ <7, (Q¢n : n < w) are Pe-names satisfying:

IFp, all Q&n C Qg are Fr-linked and J, ., Qg,n = Qg.
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o-Fr-iteration

We consider iterations of o-Fr-linked forcings (with finite supports):
® A o-Fr-iteration is a finite support iteration

P, = (Pe,Q¢) : € <) with witnesses (Qem : € <7,m < w)
such that for all £ <7, (Q¢n : n < w) are Pe-names satisfying:

IFp, all Q&n C Qg are Fr-linked and J, ., Qg,n = Qg.

® p € P, is determined if for each ¢ € dom(p), there is ng <w
such that k¢ p(§) € Q¢n,-

v

There are densely many determined conditions.

Proof. Induct on &. O




Fr-limit
0O0000e00000

uniform A-system

For o-Fr-iteration, we can take Fr-limits for “refined” sequences.



Fr-limit

[e]e]e]e]e] lelelelele)

uniform A-system

For o-Fr-iteration, we can take Fr-limits for “refined” sequences.

Let & be a limit ordinal and p = (p,,, : m < ¢) € (IPA,)‘? pis a
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uniform A-system

For o-Fr-iteration, we can take Fr-limits for “refined” sequences.

Let & be a limit ordinal and p = (pp, : m < &) € (P,)°. pis a
uniform A-system if:

@ Each py,, is determined witnessed by (ng" : § € dom(py)).
® {dom(p,,) : m < §} forms a A-system with some root V.

© For £ €V, all nf" are the same, i.e., all py,,(§) are forced to be
in a common Fr-linked component.

@ All |dom(p,,)| are the same n’ and
dom(py,) = {&nm : n < n'} is the increasing enumeration.

@ Thereis 7’ C n’ such that n € ' & &, € V for n < n'.

@ Fornen' \ v/, (§ym : m < 0) is (strictly) increasing.
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Let § be uncountable cardinal and {p,, : m < 0} C P, be
determined conditions. Then, there exists I € [6]° such that
(pm : m € I) forms a uniform A-system.
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A-system Lemma also holds for this uniform version:

Let § be uncountable cardinal and {p,, : m < 0} C P, be
determined conditions. Then, there exists I € [6]° such that
(pm : m € I) forms a uniform A-system.

For a countable uniform A-system, we can take the Fr-limit:

For any (countable) uniform A-system p = (py, : m < w) € (P,)~,
there is lim p € P forcing 3°m < w p, € G.

(lim p is obtained by basically taking limits pointwisely on the root.)
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Definition
Stroo :=={o € Str: forally e 0U1,0*y € 2¥\ 0},
s :=min{|F|: F C2¥ =30 € Strog Vy € F y <y 0}.

Note that for y € 0U 1, y <, o iff o xy € 29\ 0.

*

*700 —
5G - sG.

*,00 *
Proof. 557 < s¢, is clear.
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To show Fr-limits keep s¢, small, we need a characterization of it:

Definition

Stroo :={0 € Str: forally €c0U 1,0y € 2¥\ 0},
s :=min{|F|: F C2¥ =30 € Strog Vy € F y <y 0}.

Note that for y € 0U 1, y <, o iff o xy € 29\ 0.

*,00 %

Proof. 55> < s¢, is clear. To show s{, < 5™, let F' C 2% of size
< 8. Since F' := FUOQU 1 has size < s, there is o € Str

winning all y € F’. This o has to be in Str.. |
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Key Lemma 2: Fr-limits keep s¢, small

Let v be uncountable limit and P, = ((P¢, Q) : € < 7) be a
o-Fr-iteration whose first wi-many iterands are Cohen forcings

C = (2<¥,D). Then, P =P, forces s{, = 5800 = wq, witnessed by
the first wi-many Cohen reals {¢, € 2¥ : o < w1 }.
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Let v be uncountable limit and P, = ((P¢, Q) : € < 7) be a
o-Fr-iteration whose first wi-many iterands are Cohen forcings

C = (2<¥,D). Then, P =P, forces s{, = ﬁa’oo = wy, witnessed by
the first wi-many Cohen reals {¢, € 2¥ : o < wy }.

Proof. If not, there are p € P, and a P.-name & € (Stro.)"" such
that for all @ < wq, plF ¢ <4 &, particularly p IF ¢, CF 6.
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ne < w such that p, IF ¢, & 0.
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no < w such that p, IF ¢o T, . By extending and thinning,

we may assume there is I € [w1]*! such that for a € 1T,
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we may assume there is I € [w1]*! such that for a € 1T,
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o-Fr-iteration whose first wi-many iterands are Cohen forcings
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the first wi-many Cohen reals {¢, € 2¥ : o < wy }.
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ne < w such that p, IF ¢, 5 ¢. By extending and thinning,

JosMa

we may assume there is I € [w1]*! such that for a € 1T,
® o € dom(py).
® {p, : a € I} forms a uniform A-system with root V.
® All j, are equal to j and all n,, are equal to n*.
O® All p,(«a) are the same Cohen condition s € 2<%,
@ |s| = n*. (By increasing n* or extending s.)
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we may assume there is I € [w1]*! such that for a € 1T,
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® {p, : a € I} forms a uniform A-system with root V.
® All j, are equal to j and all n,, are equal to n*.
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@ |s| = n*. (By increasing n* or extending s.)



Fr-limit
00000000080

In particular, we have that:

For each o € I, p,, forces ¢o[n* = s and ¢, Cine O (3.1)



Fr-limit
00000000080

In particular, we have that:

For each o € I, p,, forces ¢o[n* = s and ¢, Cine O (3.1)

Pick some countable {ag < oy <---} € [T\ V]¥.
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Gm(am) = 875 ---§)™ € 27" +™ where (j---j)™ denotes the
sequence of length m whose values are all 5.
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gm Ik foralln<m, (s (j---7)") =0. (3.2)



Fr-limit
00000000080

In particular, we have that:

For each o € I, p,, forces ¢o[n* = s and ¢, Cine O (3.1)

Pick some countable {op < oy < ---} € [T\ V]*. For m < w,
Define ¢, < pa,, by extending the ay,-th position to

Gm(am) = 875 ---§)™ € 27" +™ where (j---j)™ denotes the
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m < w we have:
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Since auy, € V, §:= (¢m : m < w) also forms a uniform A-system
(with root V) and hence we can take the limit ¢* = limg.
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sequence of length m whose values are all j. By (3.1), for all
m < w we have:
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Since auy, € V, §:= (¢m : m < w) also forms a uniform A-system
(with root V) and hence we can take the limit ¢* :=1limg. Let
yi=s"jj---€0UL
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(3.2), we have:

¢ IFoxy €0, (3.3)
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sequence of length m whose values are all j. By (3.1), for all
m < w we have:

gm Ik foralln<m, (s (j---7)") =0. (3.2)

Since auy, € V, §:= (¢m : m < w) also forms a uniform A-system
(with root V) and hence we can take the limit ¢ = 1limg. Let
y:=s"4jj---€0UIL. Since ¢ IF I°m < w ¢, € G and by
(3.2), we have:

¢ IFoxy €0, (3.3)

which contradicts ¢ € Stra.
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Con(sg, < 8§)

Let A > w; be uncountable regular with AX0 = \ and
P= ((Pg,@g) : £ < A\) be a finite support iteration whose first
wi-many iterands are Cohen forcings and the remaining iterands are
P**. Then, IFp wy = 5§, < 55 = 2% = \.

In fact, given uncountable regular k < A\, K = s¢, <55 = X is
consistent.
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Conclusion:
® We introduced a new number s& by slightly changing the
definition of s¢,.
® We showed that Fr-limits can control s¢, and as an application
proved s¢, < s5¢i consistently holds.

Detailed Questions

© (Repeated) si <07
® By modifying the proof of Key Lemma 2 can we show the fact
“Fr-limits keeps s¢, small” inductively?

Rough Question
Can the whole argument be applied to other cardinal invariants?
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