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Overview Details Fr-limit Conclusion and Questions

splitting* game

A splitting* game defined in [CGH23] is an infinite game (of length
ω) played by Player I and Player II with the following rules:

Basic Rules:

(R1) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player
II plays y(n) ∈ 2.

(R2) Both players have to play 1 infinitely many times.
(R3) Player II wins if x−1({1}) is split by y−1({1}).

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (R2):
(B1) When exactly one player breaks (R2), the winner is the other

one.
(B2*) When both players break (R2), the winner is Player II.
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splitting** game

A splitting** game is a variant of a splitting* game: the game
follows all the basic rules and (B1).(B2*) is replaced by:

(B2**) When both players break (R2), the winner is Player I.

Table: splitting* game.

II
I ∞ < ∞

∞ (R3) II
< ∞ I II

Table: splitting** game.

II
I ∞ < ∞

∞ (R3) II
< ∞ I I

s∗G is the minimum size of F ⊆ 2ω such that no single strategy σ of
I wins all play y ∈ F of II in the splitting* games.
s∗∗G is defined by replacing “splitting*” by “splitting**”.

Main Theorem
s∗G < s∗∗G consistently holds.
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notation

Let us introduce some notation. Let x, y ∈ 2ω.

• 0 := {z ∈ 2ω : z(n) = 0 for all but finitely many n < ω},
1 := {z ∈ 2ω : z(n) = 1 for all but finitely many n < ω}.

• x <s y if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for
infinitely many n,m < ω, i.e., x−1({1}) is split by y−1({1}).

• y <r x if ¬(x <s y). Note that y <r x holds whenever y ∈ 0.
• Let j ∈ 2 and n < ω. y <r

j,n x if for all m ≥ n, x(m) = 0 or
y(m) = 1− j holds. Note that <r=

∪
j∈2

∪
n<ω <r

j,n.
• y ◁∗ x if x ∈ 2ω \ 0 and y <r x.
• y ◁∗∗ x if y ∈ 0 or y ◁∗ x.

Note that y ◁∗ x [y ◁∗∗ x] iff I wins with the play x against the play
y of II in the splitting* [splitting**] game, respectively.
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notation

• Str denotes the set of all I’s strategies, namely, Str := 2(2
<ω).

For σ ∈ Str, σ ∗ y denotes the play of I according to the
strategy σ and the play y of II, namely, σ ∗ y(n) := σ(y↾n)
for n < ω. y ◁∗ σ if y ◁∗ σ ∗ y and y ◁∗∗ σ if y ◁∗∗ σ ∗ y.

• s∗G := min{|F | : F ⊆ 2ω,¬∃σ ∈ Str ∀y ∈ F y ◁∗ σ},
s∗∗G := min{|F | : F ⊆ 2ω,¬∃σ ∈ Str ∀y ∈ F y ◁∗∗ σ}.

Fact ([CGH23])

s ≤ s∗G ≤ non(M), d, non(N ).
Moreover, {y ∈ 2ω : y ◁∗ σ} is null for any σ ∈ Str.
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Fact ([CGH23])

s ≤ s∗G ≤ non(M), d, non(N ).
Moreover, {y ∈ 2ω : y ◁∗ σ} is null for any σ ∈ Str.

Lemma
s∗G ≤ s∗∗G ≤ non(M), non(N ).

Proof. s∗G ≤ s∗∗G is clear. It suffices to show that for σ ∈ Str,
A := {y ∈ 2ω : y ◁∗∗ σ} ∈ N ∩M. First,
A = {y ∈ 2ω \ 0 : y ◁∗ σ} ∪ 0 is null. For meagerness, we may
assume that σ satisfies for all y ∈ 1, y ◁∗∗ σ (⇔ σ ∗ y /∈ 0), since
we may assume F ⊇ 1 in the definition of s∗∗G . Then,
A ⊆ {y ∈ 2ω : y <r σ} =

∪
j∈2

∪
n<ω{y ∈ 2ω : y <r

j,n σ ∗ y} =∪
j∈2

∪
n<ω

∩
m≥n ({y ∈ 2ω : σ ∗ y(m) = 0} ∪ {y ∈ 2ω : y(m) = j})

is meager. 2

Question
s∗∗G ≤ d?
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P∗ and P∗, which increase s∗G and s∗∗G , respectively

We introduce posets P∗ and P∗∗ which generically add a winning
strategy and hence increases s∗G and s∗∗G , respectively.

Definition

• FinStr :=
∪

n<ω 22
<n

.
• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.

(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and for all n ∈ [|σ|, |σ′|)
and y ∈ F , σ′(y↾n) = 0 or y(n) = 1 (i.e., σ′(y↾n) ≤ y(n)).

• P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0} and the order is defined by
restriction.

• For both P∗ and P∗∗, σG denotes the generic strategy
σG :=

∪
(σ,F )∈G σ for a generic filter G.



Overview Details Fr-limit Conclusion and Questions

P∗ and P∗, which increase s∗G and s∗∗G , respectively

We introduce posets P∗ and P∗∗ which generically add a winning
strategy and hence increases s∗G and s∗∗G , respectively.

Definition

• FinStr :=
∪

n<ω 22
<n

.

• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.
(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and for all n ∈ [|σ|, |σ′|)
and y ∈ F , σ′(y↾n) = 0 or y(n) = 1 (i.e., σ′(y↾n) ≤ y(n)).

• P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0} and the order is defined by
restriction.

• For both P∗ and P∗∗, σG denotes the generic strategy
σG :=

∪
(σ,F )∈G σ for a generic filter G.



Overview Details Fr-limit Conclusion and Questions

P∗ and P∗, which increase s∗G and s∗∗G , respectively

We introduce posets P∗ and P∗∗ which generically add a winning
strategy and hence increases s∗G and s∗∗G , respectively.

Definition

• FinStr :=
∪

n<ω 22
<n

.
• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.

(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and for all n ∈ [|σ|, |σ′|)
and y ∈ F , σ′(y↾n) = 0 or y(n) = 1 (i.e., σ′(y↾n) ≤ y(n)).

• P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0} and the order is defined by
restriction.

• For both P∗ and P∗∗, σG denotes the generic strategy
σG :=

∪
(σ,F )∈G σ for a generic filter G.



Overview Details Fr-limit Conclusion and Questions

P∗ and P∗, which increase s∗G and s∗∗G , respectively

We introduce posets P∗ and P∗∗ which generically add a winning
strategy and hence increases s∗G and s∗∗G , respectively.

Definition

• FinStr :=
∪

n<ω 22
<n

.
• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.

(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and for all n ∈ [|σ|, |σ′|)
and y ∈ F , σ′(y↾n) = 0 or y(n) = 1 (i.e., σ′(y↾n) ≤ y(n)).

• P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0} and the order is defined by
restriction.

• For both P∗ and P∗∗, σG denotes the generic strategy
σG :=

∪
(σ,F )∈G σ for a generic filter G.



Overview Details Fr-limit Conclusion and Questions

P∗ and P∗, which increase s∗G and s∗∗G , respectively

We introduce posets P∗ and P∗∗ which generically add a winning
strategy and hence increases s∗G and s∗∗G , respectively.

Definition

• FinStr :=
∪

n<ω 22
<n

.
• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.

(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and for all n ∈ [|σ|, |σ′|)
and y ∈ F , σ′(y↾n) = 0 or y(n) = 1 (i.e., σ′(y↾n) ≤ y(n)).

• P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0} and the order is defined by
restriction.

• For both P∗ and P∗∗, σG denotes the generic strategy
σG :=

∪
(σ,F )∈G σ for a generic filter G.



Overview Details Fr-limit Conclusion and Questions

Lemma
1 P∗ and P∗∗ are σ-centered.

2 For y ∈ 2ω, ⊩P∗∗ y <r
0 σG, where <r

0:=
∪

n<ω <r
0,n.

3 For y ∈ 2ω \ 0, ⊩P∗ y <r
0 σG.

4 For y ∈ 2ω \ 0, ⊩P∗∗ σG ∗ y ∈ 2ω \ 0.
5 For y ∈ 2ω, ⊩P∗ σG ∗ y ∈ 2ω \ 0.

Proof. The first three items are easy, so we prove the remaining
two. In both cases, for y ∈ 2ω \ 0 and m < ω, there are densely
many (σ, F ) satisfying that there is n > m such that y(n) = 1,
y↾n ̸= z↾n for all different z ∈ F , |σ| > n and σ(y↾n) = 1.
In the case of P∗, for y ∈ 0 and m < ω there are densely many
(σ, F ) satisfying that there is n > m such that y↾n ̸= z↾n for all
z ∈ F , n < |σ| and σ(y↾n) = 1 since y /∈ F . 2

Corollary
For y ∈ 2ω, ⊩P∗∗ y ◁∗∗ σG and ⊩P∗ y ◁∗ σG. Hence, by iteration, P∗

and P∗∗ increases s∗G and s∗∗G , respectively.
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We showed P∗∗ increases s∗∗G .

In fact, P∗∗ does not increase s∗G.
To prove it, we use Fr-limits.
We show:

1 (Key Lemma 1) P∗∗ has Fr-limits, and
2 (Key Lemma 2) Fr-limits keep s∗G small.



Overview Details Fr-limit Conclusion and Questions

We showed P∗∗ increases s∗∗G .
In fact, P∗∗ does not increase s∗G.

To prove it, we use Fr-limits.
We show:

1 (Key Lemma 1) P∗∗ has Fr-limits, and
2 (Key Lemma 2) Fr-limits keep s∗G small.



Overview Details Fr-limit Conclusion and Questions

We showed P∗∗ increases s∗∗G .
In fact, P∗∗ does not increase s∗G.
To prove it, we use Fr-limits.

We show:
1 (Key Lemma 1) P∗∗ has Fr-limits, and
2 (Key Lemma 2) Fr-limits keep s∗G small.



Overview Details Fr-limit Conclusion and Questions

We showed P∗∗ increases s∗∗G .
In fact, P∗∗ does not increase s∗G.
To prove it, we use Fr-limits.
We show:

1 (Key Lemma 1) P∗∗ has Fr-limits, and

2 (Key Lemma 2) Fr-limits keep s∗G small.



Overview Details Fr-limit Conclusion and Questions

We showed P∗∗ increases s∗∗G .
In fact, P∗∗ does not increase s∗G.
To prove it, we use Fr-limits.
We show:

1 (Key Lemma 1) P∗∗ has Fr-limits, and
2 (Key Lemma 2) Fr-limits keep s∗G small.



Overview Details Fr-limit Conclusion and Questions

Definition
1 Q ⊆ P is Fr-linked if there exists a function lim: Qω → P such

that for any countable sequence q̄ = ⟨qm : m < ω⟩ ∈ Qω,
lim q̄ ⊩ ∃∞m < ω qm ∈ Ġ.

2 Q ⊆ P is ultrafilter-limit-linked if for any non-principal
ultrafilter D on P(ω), there are a P-name Ḋ′ of an ultrafilter
extending D and limD : Qω → P such that for any
q̄ = ⟨qm : m < ω⟩ ∈ Qω,

limD q̄ ⊩ {m < ω : qm ∈ Ġ} ∈ Ḋ′.
Note that any ultrafilter-limit-linked component is Fr-linked.

3 P is σ-Fr-linked (we often say P has Fr-limits, instead) if P is a
union of countably many Fr-linked components.
“σ-ultrafilter-limit-linked” is defined in the same way.

Example
Singletons are ultrafilter-limit-linked and particularly Cohen forcing
C is σ-Fr-linked.
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Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.

For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work.

Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω.

Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

Key Lemma 1: P∗∗ has Fr-limits

Key Lemma 1

Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is ultrafilter-limit-linked
for σ ∈ FinStr and k < ω. In particular, P∗∗ is σ-Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on P(ω) and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)

ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
For P∗, even if all ymi are not in 0, y∞i might be in 0 and hence the
same proof does not work. Also note that y∞i is the topological
D-limit of ⟨ymi : m < ω⟩ in Cantor space 2ω. Every compact
Hausdorff space has D-limits and 2ω is compact, while 2ω \ 0 is not.



Overview Details Fr-limit Conclusion and Questions

σ-Fr-iteration

We consider iterations of σ-Fr-linked forcings (with finite supports):

Definition
• A σ-Fr-iteration is a finite support iteration

Pγ = ⟨(Pξ, Q̇ξ) : ξ < γ⟩ with witnesses ⟨Q̇ξ,n : ξ < γ, n < ω⟩
such that for all ξ < γ, ⟨Q̇ξ,n : n < ω⟩ are Pξ-names satisfying:

⊩Pξ
all Q̇ξ,n ⊆ Q̇ξ are Fr-linked and

∪
n<ω Q̇ξ,n = Q̇ξ.

• p ∈ Pγ is determined if for each ξ ∈ dom(p), there is nξ < ω
such that ⊩ξ p(ξ) ∈ Q̇ξ,nξ

.

Lemma
There are densely many determined conditions.

Proof. Induct on ξ. 2
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Overview Details Fr-limit Conclusion and Questions

uniform ∆-system

For σ-Fr-iteration, we can take Fr-limits for “refined” sequences.

Definition

Let δ be a limit ordinal and p̄ = ⟨pm : m < δ⟩ ∈ (Pγ)
δ. p̄ is a

uniform ∆-system if:
1 Each pm is determined witnessed by ⟨nm

ξ : ξ ∈ dom(pm)⟩.
2 {dom(pm) : m < δ} forms a ∆-system with some root ∇.
3 For ξ ∈ ∇, all nm

ξ are the same, i.e., all pm(ξ) are forced to be
in a common Fr-linked component.

4 All | dom(pm)| are the same n′ and
dom(pm) = {ξn,m : n < n′} is the increasing enumeration.

5 There is r′ ⊆ n′ such that n ∈ r′ ⇔ ξn,m ∈ ∇ for n < n′.
6 For n ∈ n′ \ r′, ⟨ξn,m : m < δ⟩ is (strictly) increasing.
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∆-system Lemma also holds for this uniform version:

Lemma
Let δ be uncountable cardinal and {pm : m < δ} ⊆ Pγ be
determined conditions. Then, there exists I ∈ [δ]δ such that
⟨pm : m ∈ I⟩ forms a uniform ∆-system.

For a countable uniform ∆-system, we can take the Fr-limit:

Lemma
For any (countable) uniform ∆-system p̄ = ⟨pm : m < ω⟩ ∈ (Pγ)

ω,
there is lim p̄ ∈ P forcing ∃∞m < ω pm ∈ Ġ.

(lim p̄ is obtained by basically taking limits pointwisely on the root.)
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(lim p̄ is obtained by basically taking limits pointwisely on the root.)



Overview Details Fr-limit Conclusion and Questions

∆-system Lemma also holds for this uniform version:

Lemma
Let δ be uncountable cardinal and {pm : m < δ} ⊆ Pγ be
determined conditions. Then, there exists I ∈ [δ]δ such that
⟨pm : m ∈ I⟩ forms a uniform ∆-system.

For a countable uniform ∆-system, we can take the Fr-limit:

Lemma
For any (countable) uniform ∆-system p̄ = ⟨pm : m < ω⟩ ∈ (Pγ)

ω,
there is lim p̄ ∈ P forcing ∃∞m < ω pm ∈ Ġ.
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s∗,∞G

To show Fr-limits keep s∗G small, we need a characterization of it:

Definition
Str∞ := {σ ∈ Str : for all y ∈ 0 ∪ 1, σ ∗ y ∈ 2ω \ 0},
s∗,∞G := min{|F | : F ⊆ 2ω,¬∃σ ∈ Str∞ ∀y ∈ F y ◁∗ σ}.

Note that for y ∈ 0 ∪ 1, y ◁∗ σ iff σ ∗ y ∈ 2ω \ 0.

Lemma

s∗,∞G = s∗G.

Proof. s∗,∞G ≤ s∗G is clear. To show s∗G ≤ s∗,∞G , let F ⊆ 2ω of size
< s∗G. Since F ′ := F ∪ 0 ∪ 1 has size < s∗G, there is σ ∈ Str
winning all y ∈ F ′. This σ has to be in Str∞. 2
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Key Lemma 2

Let γ be uncountable limit and Pγ = ⟨(Pξ, Q̇ξ) : ξ < γ⟩ be a
σ-Fr-iteration whose first ω1-many iterands are Cohen forcings
C = (2<ω,⊇). Then, P = Pγ forces s∗G = s∗,∞G = ω1, witnessed by
the first ω1-many Cohen reals {ċα ∈ 2ω : α < ω1}.

Proof. If not, there are p ∈ Pγ and a Pγ-name σ̇ ∈ (Str∞)V
P

such
that for all α < ω1, p ⊩ ċα ◁∗ σ̇, particularly p ⊩ ċα <r σ̇. Since
<r=

∪
j∈2

∪
n<ω <r

j,n, for α < ω1 we obtain pα ≤ p, jα ∈ 2 and
nα < ω such that pα ⊩ ċα <r

jα,nα
σ̇. By extending and thinning,

we may assume there is I ∈ [ω1]
ω1 such that for α ∈ I,

1 α ∈ dom(pα).
2 {pα : α ∈ I} forms a uniform ∆-system with root ∇.
3 All jα are equal to j and all nα are equal to n∗.
4 All pα(α) are the same Cohen condition s ∈ 2<ω.
5 |s| = n∗. (By increasing n∗ or extending s.)
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Proof. If not, there are p ∈ Pγ and a Pγ-name σ̇ ∈ (Str∞)V
P

such
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Overview Details Fr-limit Conclusion and Questions

In particular, we have that:

For each α ∈ I, pα forces ċα↾n∗ = s and ċα <r
j,n∗ σ̇. (3.1)

Pick some countable {α0 < α1 < · · · } ∈ [I \ ∇]ω. For m < ω,
Define qm ≤ pαm by extending the αm-th position to
qm(αm) := s⌢⟨j · · · j⟩m ∈ 2n

∗+m, where ⟨j · · · j⟩m denotes the
sequence of length m whose values are all j. By (3.1), for all
m < ω we have:

qm ⊩ for all n < m, σ̇(s⌢⟨j · · · j⟩n) = 0. (3.2)

Since αm /∈ ∇, q̄ := ⟨qm : m < ω⟩ also forms a uniform ∆-system
(with root ∇) and hence we can take the limit q∞ := lim q̄. Let
y := s⌢jj · · · ∈ 0 ∪ 1. Since q∞ ⊩ ∃∞m < ω qm ∈ Ġ and by
(3.2), we have:

q∞ ⊩ σ̇ ∗ y ∈ 0, (3.3)

which contradicts σ̇ ∈ Str∞.
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(3.2), we have:

q∞ ⊩ σ̇ ∗ y ∈ 0, (3.3)

which contradicts σ̇ ∈ Str∞.



Overview Details Fr-limit Conclusion and Questions

In particular, we have that:

For each α ∈ I, pα forces ċα↾n∗ = s and ċα <r
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j,n∗ σ̇. (3.1)

Pick some countable {α0 < α1 < · · · } ∈ [I \ ∇]ω. For m < ω,
Define qm ≤ pαm by extending the αm-th position to
qm(αm) := s⌢⟨j · · · j⟩m ∈ 2n

∗+m, where ⟨j · · · j⟩m denotes the
sequence of length m whose values are all j. By (3.1), for all
m < ω we have:

qm ⊩ for all n < m, σ̇(s⌢⟨j · · · j⟩n) = 0. (3.2)

Since αm /∈ ∇, q̄ := ⟨qm : m < ω⟩ also forms a uniform ∆-system
(with root ∇) and hence we can take the limit q∞ := lim q̄. Let
y := s⌢jj · · · ∈ 0 ∪ 1. Since q∞ ⊩ ∃∞m < ω qm ∈ Ġ and by
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Con(s∗G < s∗∗G )

Corollary

Let λ > ω1 be uncountable regular with λℵ0 = λ and
P = ⟨(Pξ, Q̇ξ) : ξ < λ⟩ be a finite support iteration whose first
ω1-many iterands are Cohen forcings and the remaining iterands are
P∗∗. Then, ⊩P ω1 = s∗G < s∗∗G = 2ℵ0 = λ.

In fact, given uncountable regular κ < λ, κ = s∗G < s∗∗G = λ is
consistent.
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Conclusion and Questions

Conclusion:

• We introduced a new number s∗∗G by slightly changing the
definition of s∗G.

• We showed that Fr-limits can control s∗G and as an application
proved s∗G < s∗∗G consistently holds.

Detailed Questions
1 (Repeated) s∗∗G ≤ d?
2 By modifying the proof of Key Lemma 2 can we show the fact

“Fr-limits keeps s∗G small” inductively?

Rough Question
Can the whole argument be applied to other cardinal invariants?
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