On splitting* game Avoiding head-on battles is sometimes useful

Takashi Yamazoe

Kobe Set Theory Seminar

April 4, 2024

Table

- Overview
- 2 Details
- Fr-limit
- 4 Conclusion and Questions

- Overview
- 2 Details
- Fr-limit
- 4 Conclusion and Questions

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules:

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

(R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

- (R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.
- (R2) Both players have to play 1 infinitely many times.

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

- (R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.
- (R2) Both players have to play 1 infinitely many times.
- (R3) Player II wins if $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

Player I	$x(0) \in 2$	$x(1) \in 2$	• • •
Player II	$y(0) \in 2$	y(1)	$0 \in 2$

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

- (R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.
- (R2) Both players have to play 1 infinitely many times.
- (R3) Player II wins if $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

If either player breaks (R2):

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

- (R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.
- (R2) Both players have to play 1 infinitely many times.
- (R3) Player II wins if $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

If either player breaks (R2):

(B1) When exactly one player breaks (R2), the winner is the other one.

A splitting* game defined in [CGH23] is an infinite game (of length ω) played by Player I and Player II with the following rules: Basic Rules:

- (R1) At each stage $n < \omega$, Player I plays $x(n) \in 2$ and then Player II plays $y(n) \in 2$.
- (R2) Both players have to play 1 infinitely many times.
- (R3) Player II wins if $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

Player I	$x(0) \in 2$		$x(1) \in 2$		
Player II		$y(0) \in 2$		$y(1) \in 2$	

If either player breaks (R2):

- (B1) When exactly one player breaks (R2), the winner is the other one.
- (B2*) When both players break (R2), the winner is Player II.

Overview ○○●

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).(B2*) is replaced by:
(B2**) When both players break (R2), the winner is Player I.

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).(B2*) is replaced by: (B2**) When both players break (R2), the winner is Player I.

Fr-limit

Table: splitting* game.

II	∞	$<\infty$
$\overline{\infty}$	(R3)	II
$<\infty$	I	II

Table: splitting** game.

II I	∞	$<\infty$
$\overline{\infty}$	(R3)	II
$-<\infty$	I	I

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).(B2*) is replaced by: (B2**) When both players break (R2), the winner is Player I.

Table: splitting* game.

(R3)

Table: splitting** game.

II I	∞	$<\infty$
$\overline{\infty}$	(R3)	II
$< \infty$	I	I

 $\mathfrak{s}_{\mathbf{C}}^*$ is the minimum size of $F\subseteq 2^\omega$ such that no single strategy σ of I wins all play $y \in F$ of II in the splitting* games.

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).(B2*) is replaced by:
(B2**) When both players break (R2), the winner is Player I.

Table: splitting* game.

 $\begin{array}{c|cccc} I & \infty & < \infty \\ \hline \infty & (R3) & II \\ \hline < \infty & I & II \\ \hline \end{array}$

Table: splitting** game.

II	∞	$<\infty$
∞	(R3)	II
$<\infty$	I	I

 $\mathfrak{s}_{\mathrm{G}}^*$ is the minimum size of $F\subseteq 2^\omega$ such that no single strategy σ of I wins all play $y\in F$ of II in the splitting* games.

 \mathfrak{s}_{C}^{**} is defined by replacing "splitting*" by "splitting*".

A splitting** game is a variant of a splitting* game: the game follows all the basic rules and (B1).(B2*) is replaced by: (B2**) When both players break (R2), the winner is Player I.

Table: splitting* game.

Table: splitting** game.

	∞	$< \infty$
_	(R3)	II
	I	II

II	∞	$< \infty$
$\overline{\infty}$	(R3)	II
$<\infty$	I	I

 \mathfrak{s}_C^* is the minimum size of $F\subseteq 2^\omega$ such that no single strategy σ of I wins all play $y \in F$ of II in the splitting* games.

 \mathfrak{s}_{C}^{**} is defined by replacing "splitting*" by "splitting**".

Main Theorem

 $\mathfrak{s}_{C}^{*} < \mathfrak{s}_{C}^{**}$ consistently holds.

Details ●00000

- Overview
- 2 Details
- 4 Conclusion and Questions

Let us introduce some notation. Let $x,y\in 2^\omega.$

Overview

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

• $\mathbb{0} \coloneqq \{z \in 2^{\omega} : z(n) = 0 \text{ for all but finitely many } n < \omega\},$ $\mathbb{1} \coloneqq \{z \in 2^{\omega} : z(n) = 1 \text{ for all but finitely many } n < \omega\}.$

Overview

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

- $0 := \{z \in 2^{\omega} : z(n) = 0 \text{ for all but finitely many } n < \omega \},$ $\mathbb{1} := \{z \in 2^{\omega} : z(n) = 1 \text{ for all but finitely many } n < \omega \}.$
- $x \sqsubseteq^s y$ if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for infinitely many $n, m < \omega$, i.e., $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

Overview

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

- $\mathbb{0} \coloneqq \{z \in 2^{\omega} : z(n) = 0 \text{ for all but finitely many } n < \omega\},$ $\mathbb{1} \coloneqq \{z \in 2^{\omega} : z(n) = 1 \text{ for all but finitely many } n < \omega\}.$
- $x \sqsubset^{\mathrm{s}} y$ if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for infinitely many $n, m < \omega$, i.e., $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.
- $y \sqsubseteq^{\mathrm{r}} x$ if $\neg(x \sqsubseteq^{\mathrm{s}} y)$. Note that $y \sqsubseteq^{\mathrm{r}} x$ holds whenever $y \in \mathbb{O}$.

Overview

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

- $\mathbb{0} \coloneqq \{z \in 2^{\omega} : z(n) = 0 \text{ for all but finitely many } n < \omega\},$ $\mathbb{1} \coloneqq \{z \in 2^{\omega} : z(n) = 1 \text{ for all but finitely many } n < \omega\}.$
- $x \sqsubset^{\mathrm{s}} y$ if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for infinitely many $n, m < \omega$, i.e., $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.
- $y \sqsubset^{\mathbf{r}} x$ if $\neg(x \sqsubset^{\mathbf{s}} y)$. Note that $y \sqsubset^{\mathbf{r}} x$ holds whenever $y \in \mathbb{O}$.
- Let $j \in 2$ and $n < \omega$. $y \sqsubset_{j,n}^{\mathbf{r}} x$ if for all $m \ge n$, x(m) = 0 or y(m) = 1 j holds. Note that $\sqsubset^{\mathbf{r}} = \bigcup_{j \in 2} \bigcup_{n < \omega} \sqsubset_{j,n}^{\mathbf{r}}$.

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

- $0 := \{z \in 2^{\omega} : z(n) = 0 \text{ for all but finitely many } n < \omega \},$ $\mathbb{1} := \{z \in 2^{\omega} : z(n) = 1 \text{ for all but finitely many } n < \omega\}.$
- $x \sqsubseteq^s y$ if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for infinitely many $n, m < \omega$, i.e., $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.

- $y \sqsubseteq^{\mathrm{r}} x$ if $\neg (x \sqsubseteq^{\mathrm{s}} y)$. Note that $y \sqsubseteq^{\mathrm{r}} x$ holds whenever $y \in \mathbb{O}$.
- Let $j \in 2$ and $n < \omega$. $y \sqsubset_{i,n}^{r} x$ if for all $m \ge n$, x(m) = 0 or y(m) = 1 - j holds. Note that $\Box^{\mathbf{r}} = \bigcup_{i \in \mathcal{I}} \bigcup_{n < \omega} \Box^{\mathbf{r}}_{i,n}$.
- $u \triangleleft_* x$ if $x \in 2^{\omega} \setminus \mathbb{O}$ and $u \sqsubseteq^{\mathrm{r}} x$.

Overview

Let us introduce some notation. Let $x, y \in 2^{\omega}$.

- $\begin{array}{l} \bullet \ \ \mathbb{0} \coloneqq \{z \in 2^\omega : z(n) = 0 \ \text{for all but finitely many } n < \omega \}, \\ \mathbb{1} \coloneqq \{z \in 2^\omega : z(n) = 1 \ \text{for all but finitely many } n < \omega \}. \end{array}$
- $x \sqsubset^{\mathrm{s}} y$ if x(n) = y(n) = 1 and x(m) = 1 and y(m) = 0 for infinitely many $n, m < \omega$, i.e., $x^{-1}(\{1\})$ is split by $y^{-1}(\{1\})$.
- $y \sqsubset^{\mathbf{r}} x$ if $\neg(x \sqsubset^{\mathbf{s}} y)$. Note that $y \sqsubset^{\mathbf{r}} x$ holds whenever $y \in \mathbb{O}$.
- Let $j \in 2$ and $n < \omega$. $y \sqsubset_{j,n}^{\mathrm{r}} x$ if for all $m \ge n$, x(m) = 0 or y(m) = 1 j holds. Note that $\sqsubset^{\mathrm{r}} = \bigcup_{j \in 2} \bigcup_{n < \omega} \sqsubset_{j,n}^{\mathrm{r}}$.
- $y \triangleleft_* x$ if $x \in 2^\omega \setminus \mathbb{O}$ and $y \sqsubseteq^r x$.
- $y \triangleleft_{**} x$ if $y \in \mathbb{O}$ or $y \triangleleft_{*} x$.

Note that $y \triangleleft_* x [y \triangleleft_{**} x]$ iff I wins with the play x against the play y of II in the splitting* [splitting**] game, respectively.

• Str denotes the set of all I's strategies, namely, $\operatorname{Str} := 2^{(2^{<\omega})}$. For $\sigma \in \operatorname{Str}$, $\sigma * y$ denotes the play of I according to the strategy σ and the play y of II, namely, $\sigma * y(n) := \sigma(y {\upharpoonright} n)$ for $n < \omega$. $y \triangleleft_* \sigma$ if $y \triangleleft_* \sigma * y$ and $y \triangleleft_{**} \sigma$ if $y \triangleleft_{**} \sigma * y$.

- Str denotes the set of all I's strategies, namely, $\operatorname{Str} := 2^{(2^{<\omega})}$. For $\sigma \in \operatorname{Str}$, $\sigma * y$ denotes the play of I according to the strategy σ and the play y of II, namely, $\sigma * y(n) := \sigma(y {\upharpoonright} n)$ for $n < \omega$. $y \triangleleft_* \sigma$ if $y \triangleleft_* \sigma * y$ and $y \triangleleft_{**} \sigma$ if $y \triangleleft_{**} \sigma * y$.
- $\mathfrak{s}_{\mathbf{G}}^* := \min\{|F| : F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str} \forall y \in F \ y \triangleleft_* \sigma\}, \\ \mathfrak{s}_{\mathbf{G}}^{**} := \min\{|F| : F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str} \forall y \in F \ y \triangleleft_{**} \sigma\}.$

• Str denotes the set of all I's strategies, namely, $\operatorname{Str} := 2^{(2^{<\omega})}$. For $\sigma \in \operatorname{Str}$, $\sigma * y$ denotes the play of I according to the strategy σ and the play y of II, namely, $\sigma * y(n) := \sigma(y \upharpoonright n)$ for $n < \omega$. $y \triangleleft_* \sigma$ if $y \triangleleft_* \sigma * y$ and $y \triangleleft_{**} \sigma$ if $y \triangleleft_{**} \sigma * y$.

Fr-limit

• $\mathfrak{s}_{\mathbf{G}}^* := \min\{|F| : F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str} \forall y \in F \ y \triangleleft_* \sigma\}, \\ \mathfrak{s}_{\mathbf{G}}^{**} := \min\{|F| : F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str} \forall y \in F \ y \triangleleft_{**} \sigma\}.$

Fact ([CGH23])

 $\mathfrak{s} \leq \mathfrak{s}_G^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str.$

 $\mathfrak{s} \leq \mathfrak{s}_{\mathrm{G}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in \operatorname{Str}$.

Fr-limit

Fact ([CGH23])

$$\mathfrak{s} \leq \mathfrak{s}_{\mathrm{G}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str$.

Lemma

 $\mathfrak{s}_{\mathrm{G}}^* \leq \mathfrak{s}_{\mathrm{G}}^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$

$$\mathfrak{s} \leq \mathfrak{s}_{\mathrm{G}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$$

Details

000000

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in \operatorname{Str}$.

Lemma

$$\mathfrak{s}_G^* \leq \mathfrak{s}_G^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$$

Proof. $\mathfrak{s}_G^* \leq \mathfrak{s}_G^{**}$ is clear.

$$\mathfrak{s} \leq \mathfrak{s}_G^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str$.

Lemma

$$\mathfrak{s}_G^* \leq \mathfrak{s}_G^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$$

Proof. $\mathfrak{s}_{\mathrm{G}}^* \leq \mathfrak{s}_{\mathrm{G}}^{**}$ is clear. It suffices to show that for $\sigma \in \mathrm{Str}$, $A := \{ y \in 2^\omega : y \triangleleft_{**} \sigma \} \in \mathcal{N} \cap \mathcal{M}$.

$$\mathfrak{s} \leq \mathfrak{s}_G^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str.$

Lemma

$$\mathfrak{s}_G^* \leq \mathfrak{s}_G^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$$

Proof. $\mathfrak{s}_{G}^{*} \leq \mathfrak{s}_{G}^{**}$ is clear. It suffices to show that for $\sigma \in \operatorname{Str}$,

$$A := \{ y \in 2^{\omega} : y \triangleleft_{**} \sigma \} \in \mathcal{N} \cap \mathcal{M}. \text{ First,}$$

$$A = \{ y \in 2^{\omega} \setminus \mathbb{0} : y \triangleleft_* \sigma \} \cup \mathbb{0} \text{ is null.}$$

 $\mathfrak{s} \leq \mathfrak{s}_{\mathbf{G}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str$.

Lemma

 $\mathfrak{s}_{\mathbf{G}}^* \leq \mathfrak{s}_{\mathbf{G}}^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$

Proof. $\mathfrak{s}_{C}^{*} \leq \mathfrak{s}_{C}^{**}$ is clear. It suffices to show that for $\sigma \in \operatorname{Str}$, $A := \{ y \in 2^{\omega} : y \triangleleft_{**} \sigma \} \in \mathcal{N} \cap \mathcal{M}$. First, $A = \{y \in 2^{\omega} \setminus \mathbb{0} : y \triangleleft_* \sigma\} \cup \mathbb{0} \text{ is null. For meagerness, we may}$ assume that σ satisfies for all $y \in \mathbb{1}$, $y \triangleleft_{**} \sigma$ ($\Leftrightarrow \sigma * y \notin \mathbb{0}$), since we may assume $F \supseteq \mathbb{1}$ in the definition of $\mathfrak{s}_{\mathbf{C}}^{**}$.

 $\mathfrak{s} \leq \mathfrak{s}_{\mathbb{C}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str$.

Lemma

 $\mathfrak{s}_{C}^{*} \leq \mathfrak{s}_{C}^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$

Proof. $\mathfrak{s}_{\mathbf{G}}^* \leq \mathfrak{s}_{\mathbf{G}}^{**}$ is clear. It suffices to show that for $\sigma \in \operatorname{Str}$, $A := \{ y \in 2^{\omega} : y \triangleleft_{**} \sigma \} \in \mathcal{N} \cap \mathcal{M}$. First, $A = \{y \in 2^{\omega} \setminus \mathbb{O} : y \triangleleft_* \sigma\} \cup \mathbb{O} \text{ is null. For meagerness, we may }$ assume that σ satisfies for all $y \in \mathbb{1}$, $y \triangleleft_{**} \sigma$ ($\Leftrightarrow \sigma * y \notin \mathbb{0}$), since we may assume $F \supseteq 1$ in the definition of \mathfrak{s}_C^{**} . Then, $A \subseteq \{y \in 2^{\omega} : y \sqsubset^{\mathbf{r}} \sigma\} = \bigcup_{i \in 2} \bigcup_{n < \omega} \{y \in 2^{\omega} : y \sqsubset^{\mathbf{r}}_{i,n} \sigma * y\} = 0$ $\bigcup_{j \in 2} \bigcup_{m < \omega} \bigcap_{m > n} (\{ y \in 2^{\omega} : \sigma * y(m) = 0 \} \cup \{ y \in 2^{\omega} : y(m) = j \})$ is meager.

Fact ([CGH23])

 $\mathfrak{s} \leq \mathfrak{s}_{\mathbb{C}}^* \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

Moreover, $\{y \in 2^{\omega} : y \triangleleft_* \sigma\}$ is null for any $\sigma \in Str$.

Lemma

 $\mathfrak{s}_{C}^{*} \leq \mathfrak{s}_{C}^{**} \leq \mathsf{non}(\mathcal{M}), \mathsf{non}(\mathcal{N}).$

Proof. $\mathfrak{s}_{\mathbf{G}}^* \leq \mathfrak{s}_{\mathbf{G}}^{**}$ is clear. It suffices to show that for $\sigma \in \operatorname{Str}$, $A := \{ y \in 2^{\omega} : y \triangleleft_{**} \sigma \} \in \mathcal{N} \cap \mathcal{M}$. First, $A = \{y \in 2^{\omega} \setminus \mathbb{O} : y \triangleleft_* \sigma\} \cup \mathbb{O} \text{ is null. For meagerness, we may }$ assume that σ satisfies for all $y \in \mathbb{1}$, $y \triangleleft_{**} \sigma$ ($\Leftrightarrow \sigma * y \notin \mathbb{0}$), since we may assume $F \supseteq 1$ in the definition of \mathfrak{s}_C^{**} . Then, $A \subseteq \{y \in 2^{\omega} : y \sqsubset^{\mathbf{r}} \sigma\} = \bigcup_{i \in 2} \bigcup_{n < \omega} \{y \in 2^{\omega} : y \sqsubset^{\mathbf{r}}_{i,n} \sigma * y\} = 0$ $\bigcup_{j \in 2} \bigcup_{m < \omega} \bigcap_{m > n} (\{ y \in 2^{\omega} : \sigma * y(m) = 0 \} \cup \{ y \in 2^{\omega} : y(m) = j \})$ is meager.

Question

$$\mathfrak{s}_{\mathrm{C}}^{**} \leq \mathfrak{d}$$
?

We introduce posets \mathbb{P}^* and \mathbb{P}^{**} which generically add a winning strategy and hence increases \mathfrak{s}_G^* and \mathfrak{s}_G^{**} , respectively.

\mathbb{P}^* and \mathbb{P}^* , which increase $\mathfrak{s}_{\mathbf{G}}^*$ and $\mathfrak{s}_{\mathbf{G}}^{**}$, respectively

We introduce posets \mathbb{P}^* and \mathbb{P}^{**} which generically add a winning strategy and hence increases \mathfrak{s}_G^* and \mathfrak{s}_G^{**} , respectively.

Definition

• FinStr := $\bigcup_{n<\omega} 2^{2^{< n}}$.

We introduce posets \mathbb{P}^* and \mathbb{P}^{**} which generically add a winning strategy and hence increases $\mathfrak{s}_{\mathbb{C}}^*$ and $\mathfrak{s}_{\mathbb{C}}^{**}$, respectively.

Definition

- FinStr := $\bigcup_{n<\omega} 2^{2^{< n}}$.
- $\mathbb{P}^{**} := \{(\sigma, F) : \sigma \in \operatorname{FinStr}, F \in [2^{\omega}]^{<\omega}\}.$ $(\sigma', F') \leq (\sigma, F) : \Leftrightarrow \sigma' \supseteq \sigma, F' \supseteq F \text{ and for all } n \in [|\sigma|, |\sigma'|)$ and $y \in F$, $\sigma'(y \upharpoonright n) = 0$ or y(n) = 1 (i.e., $\sigma'(y \upharpoonright n) \leq y(n)$).

\mathbb{P}^* and \mathbb{P}^* , which increase $\mathfrak{s}_{\mathrm{G}}^*$ and $\mathfrak{s}_{\mathrm{G}}^{**}$, respectively

We introduce posets \mathbb{P}^* and \mathbb{P}^{**} which generically add a winning strategy and hence increases \mathfrak{s}_G^* and \mathfrak{s}_G^{**} , respectively.

Definition

- FinStr := $\bigcup_{n<\omega} 2^{2^{< n}}$.
- $\mathbb{P}^{**} := \{(\sigma, F) : \sigma \in \operatorname{FinStr}, F \in [2^{\omega}]^{<\omega}\}.$ $(\sigma', F') \leq (\sigma, F) : \Leftrightarrow \sigma' \supseteq \sigma, F' \supseteq F \text{ and for all } n \in [|\sigma|, |\sigma'|)$ and $y \in F$, $\sigma'(y \upharpoonright n) = 0$ or y(n) = 1 (i.e., $\sigma'(y \upharpoonright n) \leq y(n)$).
- $\mathbb{P}^* := \{(\sigma, F) \in \mathbb{P}^{**} : F \subseteq 2^{\omega} \setminus \mathbb{O}\}$ and the order is defined by restriction.

\mathbb{P}^* and \mathbb{P}^* , which increase $\mathfrak{s}_{\mathbf{C}}^*$ and $\mathfrak{s}_{\mathbf{C}}^{**}$, respectively

We introduce posets \mathbb{P}^* and \mathbb{P}^{**} which generically add a winning strategy and hence increases $\mathfrak{s}_{\mathbf{C}}^*$ and $\mathfrak{s}_{\mathbf{C}}^{**}$, respectively.

Definition

- FinStr := $\bigcup_{n < \omega} 2^{2^{< n}}$.
- $\mathbb{P}^{**} := \{(\sigma, F) : \sigma \in \text{FinStr}, F \in [2^{\omega}]^{<\omega}\}.$ $(\sigma', F') \leq (\sigma, F) : \Leftrightarrow \sigma' \supseteq \sigma, F' \supseteq F$ and for all $n \in [|\sigma|, |\sigma'|]$ and $y \in F$, $\sigma'(y \upharpoonright n) = 0$ or y(n) = 1 (i.e., $\sigma'(y \upharpoonright n) \leq y(n)$).
- $\mathbb{P}^* := \{ (\sigma, F) \in \mathbb{P}^{**} : F \subseteq 2^{\omega} \setminus \mathbb{O} \}$ and the order is defined by restriction.
- For both \mathbb{P}^* and \mathbb{P}^{**} , σ_G denotes the generic strategy $\sigma_G := \bigcup_{(\sigma,F) \in G} \sigma$ for a generic filter G.

1 \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- 2 For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} := \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathrm{r}}$.

Overview

CIIIIIIa

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- 2 For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathbf{r}} \sigma_G$, where $\sqsubseteq_0^{\mathbf{r}} := \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathbf{r}}$.
- **3** For $y \in 2^{\omega} \setminus \mathbb{O}$, $\Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$.

Overview

Lemma

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- **2** For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathbf{r}} \sigma_G$, where $\sqsubseteq_0^{\mathbf{r}} := \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathbf{r}}$.
- $3 \text{ For } y \in 2^{\omega} \setminus \mathbb{O}, \Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G.$

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- **2** For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} \coloneqq \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathrm{r}}$.
- $3 \text{ For } y \in 2^{\omega} \setminus \mathbb{O}, \Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G.$
- $4 \text{ For } y \in 2^{\omega} \setminus \mathbb{O}, \Vdash_{\mathbb{P}^{**}} \sigma_G * y \in 2^{\omega} \setminus \mathbb{O}.$
- **5** For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^*} \sigma_G * y \in 2^{\omega} \setminus \mathbb{O}$.

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- **2** For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} \coloneqq \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathrm{r}}$.
- $3 \text{ For } y \in 2^{\omega} \setminus \mathbb{O}, \Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G.$
- $\textbf{5} \ \, \mathsf{For} \,\, y \in 2^\omega, \, \Vdash_{\mathbb{P}^*} \sigma_G * y \in 2^\omega \setminus \mathbb{0}.$

Proof. The first three items are easy, so we prove the remaining two.

Overview

- \bullet \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- 2 For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} \coloneqq \bigcup_{n < \omega} \sqsubseteq_0^{\mathrm{r}} n$.

Fr-limit

- 3 For $y \in 2^{\omega} \setminus \mathbb{O}$, $\Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$.
- **4** For $y \in 2^{\omega} \setminus \mathbb{O}$, $\Vdash_{\mathbb{P}^{**}} \sigma_G * y \in 2^{\omega} \setminus \mathbb{O}$.
- $\textbf{5} \ \mathsf{For} \ u \in 2^{\omega}. \Vdash_{\mathbb{P}^*} \sigma_C * u \in 2^{\omega} \setminus \mathbb{0}.$

Proof. The first three items are easy, so we prove the remaining two. In both cases, for $y \in 2^{\omega} \setminus \mathbb{O}$ and $m < \omega$, there are densely many (σ, F) satisfying that there is n > m such that y(n) = 1, $y \upharpoonright n \neq z \upharpoonright n$ for all different $z \in F$, $|\sigma| > n$ and $\sigma(y \upharpoonright n) = 1$.

- **1** \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- **2** For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} \coloneqq \bigcup_{n < \omega} \sqsubseteq_{0,n}^{\mathrm{r}}$.
- $\textbf{3} \ \text{For} \ y \in 2^{\omega} \setminus \mathbb{O}, \Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathrm{r}} \sigma_G.$
- $\textbf{5} \ \, \mathsf{For} \,\, y \in 2^\omega \text{, } \Vdash_{\mathbb{P}^*} \sigma_G * y \in 2^\omega \setminus \mathbb{0}.$

Proof. The first three items are easy, so we prove the remaining two. In both cases, for $y\in 2^\omega\setminus \mathbb{O}$ and $m<\omega$, there are densely many (σ,F) satisfying that there is n>m such that y(n)=1, $y\!\upharpoonright n\neq z\!\upharpoonright n$ for all different $z\in F$, $|\sigma|>n$ and $\sigma(y\!\upharpoonright n)=1$. In the case of \mathbb{P}^* , for $y\in \mathbb{O}$ and $m<\omega$ there are densely many (σ,F) satisfying that there is n>m such that $y\!\upharpoonright n\neq z\!\upharpoonright n$ for all $z\in F$, $n<|\sigma|$ and $\sigma(y\!\upharpoonright n)=1$ since $y\notin F$.

- \bullet \mathbb{P}^* and \mathbb{P}^{**} are σ -centered.
- 2 For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \sqsubseteq_0^{\mathrm{r}} \sigma_G$, where $\sqsubseteq_0^{\mathrm{r}} \coloneqq \bigcup_{n < \omega} \sqsubseteq_0^{\mathrm{r}} n$.
- 3 For $y \in 2^{\omega} \setminus \mathbb{O}$, $\Vdash_{\mathbb{P}^*} y \sqsubseteq_0^{\mathbf{r}} \sigma_G$.
- **4** For $y \in 2^{\omega} \setminus \mathbb{O}$, $\Vdash_{\mathbb{P}^{**}} \sigma_G * y \in 2^{\omega} \setminus \mathbb{O}$.
- $\textbf{5} \ \mathsf{For} \ u \in 2^{\omega}. \Vdash_{\mathbb{P}^*} \sigma_C * u \in 2^{\omega} \setminus \mathbb{0}.$

Proof. The first three items are easy, so we prove the remaining two. In both cases, for $y \in 2^{\omega} \setminus \mathbb{O}$ and $m < \omega$, there are densely many (σ, F) satisfying that there is n > m such that y(n) = 1, $y \upharpoonright n \neq z \upharpoonright n$ for all different $z \in F$, $|\sigma| > n$ and $\sigma(y \upharpoonright n) = 1$. In the case of \mathbb{P}^* , for $y \in \mathbb{O}$ and $m < \omega$ there are densely many (σ, F) satisfying that there is n > m such that $y \upharpoonright n \neq z \upharpoonright n$ for all $z \in F$, $n < |\sigma|$ and $\sigma(y \upharpoonright n) = 1$ since $y \notin F$.

Corollary

For $y \in 2^{\omega}$, $\Vdash_{\mathbb{P}^{**}} y \triangleleft_{**} \sigma_G$ and $\Vdash_{\mathbb{P}^*} y \triangleleft_{*} \sigma_G$. Hence, by iteration, \mathbb{P}^* and \mathbb{P}^{**} increases $\mathfrak{s}_{\mathbb{C}}^{*}$ and $\mathfrak{s}_{\mathbb{C}}^{**}$, respectively.

- Overview
- 2 Details
- Fr-limit
- 4 Conclusion and Questions

We showed \mathbb{P}^{**} increases $\mathfrak{s}_G^{**}.$

We showed \mathbb{P}^{**} increases $\mathfrak{s}_G^{**}.$ In fact, \mathbb{P}^{**} does not increase \mathfrak{s}_G^* .

0000000000

We showed \mathbb{P}^{**} increases \mathfrak{s}_G^{**} . In fact, \mathbb{P}^{**} does not increase \mathfrak{s}_G^* . To prove it, we use Fr-limits.

0000000000

We showed \mathbb{P}^{**} increases \mathfrak{s}_{G}^{**} . In fact, \mathbb{P}^{**} does not increase $\mathfrak{s}_{\mathbf{G}}^{*}$. To prove it, we use Fr-limits. We show:

lacktriangle (Key Lemma 1) \mathbb{P}^{**} has Fr-limits, and

0000000000

We showed \mathbb{P}^{**} increases \mathfrak{s}_G^{**} . In fact, \mathbb{P}^{**} does not increase \mathfrak{s}_G^* . To prove it, we use Fr-limits. We show:

- **1** (Key Lemma 1) \mathbb{P}^{**} has Fr-limits, and
- 2 (Key Lemma 2) Fr-limits keep \mathfrak{s}_G^* small.

1 $Q \subseteq \mathbb{P}$ is Fr-linked if there exists a function $\lim : Q^{\omega} \to \mathbb{P}$ such that for any countable sequence $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$, $\lim \bar{q} \Vdash \exists^{\infty} m < \omega \ q_m \in \dot{G}$.

Overview

- **1** $Q \subseteq \mathbb{P}$ is Fr-linked if there exists a function $\lim : Q^{\omega} \to \mathbb{P}$ such that for any countable sequence $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$, $\lim \bar{q} \Vdash \exists^{\infty} m < \omega \ q_m \in G.$
- $Q \subseteq \mathbb{P}$ is ultrafilter-limit-linked if for any non-principal ultrafilter D on $\mathcal{P}(\omega)$, there are a \mathbb{P} -name \dot{D}' of an ultrafilter extending D and $\lim^D: Q^\omega \to \mathbb{P}$ such that for any $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$,

 $\lim^{D} \bar{q} \Vdash \{m < \omega : q_m \in \dot{G}\} \in \dot{D}'.$

Note that any ultrafilter-limit-linked component is Fr-linked.

Overview

- **1** $Q \subseteq \mathbb{P}$ is Fr-linked if there exists a function $\lim : Q^{\omega} \to \mathbb{P}$ such that for any countable sequence $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$, $\lim \bar{q} \Vdash \exists^{\infty} m < \omega \ q_m \in G.$
- $Q \subseteq \mathbb{P}$ is ultrafilter-limit-linked if for any non-principal ultrafilter D on $\mathcal{P}(\omega)$, there are a \mathbb{P} -name \dot{D}' of an ultrafilter extending D and $\lim^D: Q^\omega \to \mathbb{P}$ such that for any $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$

$$\lim^{D} \bar{q} \Vdash \{ m < \omega : q_m \in \dot{G} \} \in \dot{D}'.$$

Note that any ultrafilter-limit-linked component is Fr-linked.

3 \mathbb{P} is σ -Fr-linked (we often say \mathbb{P} has Fr-limits, instead) if \mathbb{P} is a union of countably many Fr-linked components. " σ -ultrafilter-limit-linked" is defined in the same way.

Overview

- **1** $Q \subseteq \mathbb{P}$ is Fr-linked if there exists a function $\lim : Q^{\omega} \to \mathbb{P}$ such that for any countable sequence $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$, $\lim \bar{q} \Vdash \exists^{\infty} m < \omega \ q_m \in \dot{G}.$
- $Q \subseteq \mathbb{P}$ is ultrafilter-limit-linked if for any non-principal ultrafilter D on $\mathcal{P}(\omega)$, there are a \mathbb{P} -name \dot{D}' of an ultrafilter extending D and $\lim^D: Q^\omega \to \mathbb{P}$ such that for any $\bar{q} = \langle q_m : m < \omega \rangle \in Q^{\omega}$

$$\lim^{D} \bar{q} \Vdash \{ m < \omega : q_m \in \dot{G} \} \in \dot{D}'.$$

Note that any ultrafilter-limit-linked component is Fr-linked.

- 3 \mathbb{P} is σ -Fr-linked (we often say \mathbb{P} has Fr-limits, instead) if \mathbb{P} is a union of countably many Fr-linked components.
 - " σ -ultrafilter-limit-linked" is defined in the same way.

Example

Singletons are ultrafilter-limit-linked and particularly Cohen forcing \mathbb{C} is σ -Fr-linked.

Key Lemma 1

 $Q_{\sigma,k}\coloneqq\{(\sigma',F)\in\mathbb{P}^{**}:\sigma'=\sigma,|F|\leq k\}$ is ultrafilter-limit-linked for $\sigma\in\operatorname{FinStr}$ and $k<\omega.$ In particular, \mathbb{P}^{**} is $\sigma\operatorname{-Fr-linked}$.

Fr-limit

0000000000

Key Lemma 1: P** has Fr-limits

Key Lemma 1

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Er-limit

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$

Key Lemma 1

Overview

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

Key Lemma 1

 $Q_{\sigma,k} := \{(\sigma',F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \leq k\}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Fr-limit

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

$$y_i^{\infty}(n) = j : \Leftrightarrow \{m < \omega : y_i^m(n) = j\} \in D.$$

Key Lemma 1

Overview

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Er-limit

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

$$y_i^{\infty}(n) = j : \Leftrightarrow \{m < \omega : y_i^m(n) = j\} \in D.$$

 $\lim^D \bar{q} := (\sigma, \{y_i^{\infty} : i < k\})$ does work (details omitted).

Key Lemma 1

Overview

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

$$y_i^{\infty}(n) = j : \Leftrightarrow \{m < \omega : y_i^m(n) = j\} \in D.$$

 $\lim^D \bar{q} := (\sigma, \{y_i^{\infty} : i < k\})$ does work (details omitted).

Remark

For \mathbb{P}^* , even if all y_i^m are not in \mathbb{O} , y_i^{∞} might be in \mathbb{O} and hence the same proof does not work.

Key Lemma 1: P** has Fr-limits

Key Lemma 1

Overview

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Er-limit

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

$$y_i^{\infty}(n) = j : \Leftrightarrow \{m < \omega : y_i^m(n) = j\} \in D.$$

 $\lim^D \bar{q} := (\sigma, \{y_i^{\infty} : i < k\})$ does work (details omitted).

Remark

For \mathbb{P}^* , even if all y_i^m are not in \mathbb{O} , y_i^{∞} might be in \mathbb{O} and hence the same proof does not work. Also note that y_i^{∞} is the topological D-limit of $\langle y_i^m : m < \omega \rangle$ in Cantor space 2^{ω} .

Key Lemma 1

Overview

 $Q_{\sigma,k} := \{ (\sigma', F) \in \mathbb{P}^{**} : \sigma' = \sigma, |F| \le k \}$ is ultrafilter-limit-linked for $\sigma \in \text{FinStr}$ and $k < \omega$. In particular, \mathbb{P}^{**} is σ -Fr-linked.

Sketch of proof. Let D be a non-principal ultrafilter on $\mathcal{P}(\omega)$ and $\bar{q} = \langle q_m := (\sigma, F_m = \{y_i^m : i < k\}) : m < \omega \rangle \in (Q_{\sigma,k})^{\omega}.$ For i < k, define $y_i^{\infty} \in 2^{\omega}$ by for $n < \omega$ and $j \in 2$:

$$y_i^{\infty}(n) = j : \Leftrightarrow \{m < \omega : y_i^m(n) = j\} \in D.$$

 $\lim^D \bar{q} := (\sigma, \{y_i^{\infty} : i < k\})$ does work (details omitted).

Remark

For \mathbb{P}^* , even if all y_i^m are not in \mathbb{O} , y_i^{∞} might be in \mathbb{O} and hence the same proof does not work. Also note that y_i^{∞} is the topological D-limit of $\langle y_i^m : m < \omega \rangle$ in Cantor space 2^{ω} . Every compact Hausdorff space has D-limits and 2^{ω} is compact, while $2^{\omega} \setminus \mathbb{O}$ is not.

σ -Fr-iteration

We consider iterations of σ -Fr-linked forcings (with finite supports):

σ -Fr-iteration

We consider iterations of σ -Fr-linked forcings (with finite supports):

Definition

• A σ -Fr-iteration is a finite support iteration $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\xi}) : \xi < \gamma \rangle$ with witnesses $\langle \dot{Q}_{\xi,n} : \xi < \gamma, n < \omega \rangle$ such that for all $\xi < \gamma$, $\langle \dot{Q}_{\xi,n} : n < \omega \rangle$ are \mathbb{P}_{ξ} -names satisfying:

 $\Vdash_{\mathbb{P}_{\xi}}$ all $\dot{Q}_{\xi,n}\subseteq\dot{\mathbb{Q}}_{\xi}$ are Fr-linked and $\bigcup_{n<\omega}\dot{Q}_{\xi,n}=\dot{\mathbb{Q}}_{\xi}$.

σ -Fr-iteration

We consider iterations of σ -Fr-linked forcings (with finite supports):

Definition

• A σ -Fr-iteration is a finite support iteration $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\xi}) : \xi < \gamma \rangle$ with witnesses $\langle \dot{Q}_{\xi,n} : \xi < \gamma, n < \omega \rangle$ such that for all $\xi < \gamma$, $\langle \dot{Q}_{\xi,n} : n < \omega \rangle$ are \mathbb{P}_{ξ} -names satisfying:

$$\Vdash_{\mathbb{P}_{\xi}}$$
 all $\dot{Q}_{\xi,n}\subseteq\dot{\mathbb{Q}}_{\xi}$ are Fr-linked and $\bigcup_{n<\omega}\dot{Q}_{\xi,n}=\dot{\mathbb{Q}}_{\xi}.$

• $p \in \mathbb{P}_{\gamma}$ is determined if for each $\xi \in \text{dom}(p)$, there is $n_{\xi} < \omega$ such that $\Vdash_{\xi} p(\xi) \in Q_{\xi,n_{\xi}}$.

σ -Fr-iteration

We consider iterations of σ -Fr-linked forcings (with finite supports):

Definition

• A σ -Fr-iteration is a finite support iteration $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\xi}) : \xi < \gamma \rangle$ with witnesses $\langle \dot{Q}_{\xi,n} : \xi < \gamma, n < \omega \rangle$ such that for all $\xi < \gamma$, $\langle \dot{Q}_{\xi,n} : n < \omega \rangle$ are \mathbb{P}_{ξ} -names satisfying:

$$\Vdash_{\mathbb{P}_\xi} \ \text{all} \ \dot{Q}_{\xi,n} \subseteq \dot{\mathbb{Q}}_\xi \ \text{are Fr-linked and} \ \textstyle\bigcup_{n<\omega} \dot{Q}_{\xi,n} = \dot{\mathbb{Q}}_\xi.$$

• $p \in \mathbb{P}_{\gamma}$ is determined if for each $\xi \in \text{dom}(p)$, there is $n_{\xi} < \omega$ such that $\Vdash_{\mathcal{E}} p(\xi) \in Q_{\mathcal{E},n_{\mathcal{E}}}$.

Lemma

There are densely many determined conditions.

Proof. Induct on ξ .

For $\sigma\text{-Fr-iteration}$, we can take Fr-limits for "refined" sequences.

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

Let δ be a limit ordinal and $\bar{p} = \langle p_m : m < \delta \rangle \in (\mathbb{P}_{\gamma})^{\delta}$. \bar{p} is a uniform Δ -system if:

1 Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

- **1** Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.
- **2** $\{dom(p_m): m < \delta\}$ forms a Δ -system with some root ∇ .

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

- **1** Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.
- **2** $\{\mathrm{dom}(p_m): m < \delta\}$ forms a Δ -system with some root ∇ .
- 3 For $\xi \in \nabla$, all n_{ξ}^m are the same, i.e., all $p_m(\xi)$ are forced to be in a common Fr-linked component.

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

- **1** Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.
- **2** $\{dom(p_m): m < \delta\}$ forms a Δ -system with some root ∇ .
- 3 For $\xi \in \nabla$, all n_{ξ}^m are the same, i.e., all $p_m(\xi)$ are forced to be in a common Fr-linked component.
- 4 All $|\operatorname{dom}(p_m)|$ are the same n' and $\operatorname{dom}(p_m) = \{\xi_{n,m} : n < n'\}$ is the increasing enumeration.

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

- **1** Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.
- **2** $\{dom(p_m): m < \delta\}$ forms a Δ -system with some root ∇ .
- 3 For $\xi \in \nabla$, all n_{ξ}^m are the same, i.e., all $p_m(\xi)$ are forced to be in a common Fr-linked component.
- 4 All $|\operatorname{dom}(p_m)|$ are the same n' and $\operatorname{dom}(p_m) = \{\xi_{n,m} : n < n'\}$ is the increasing enumeration.
- **5** There is $r' \subseteq n'$ such that $n \in r' \Leftrightarrow \xi_{n,m} \in \nabla$ for n < n'.

Overview

For σ -Fr-iteration, we can take Fr-limits for "refined" sequences.

Definition

- **1** Each p_m is determined witnessed by $\langle n_{\xi}^m : \xi \in \text{dom}(p_m) \rangle$.
- **2** $\{dom(p_m): m < \delta\}$ forms a Δ -system with some root ∇ .
- 3 For $\xi \in \nabla$, all n_{ξ}^m are the same, i.e., all $p_m(\xi)$ are forced to be in a common Fr-linked component.
- 4 All $|\operatorname{dom}(p_m)|$ are the same n' and $\operatorname{dom}(p_m) = \{\xi_{n,m} : n < n'\}$ is the increasing enumeration.
- **5** There is $r' \subseteq n'$ such that $n \in r' \Leftrightarrow \xi_{n,m} \in \nabla$ for n < n'.
- **6** For $n \in n' \setminus r'$, $\langle \xi_{n,m} : m < \delta \rangle$ is (strictly) increasing.

 Δ -system Lemma also holds for this uniform version:

 Δ -system Lemma also holds for this uniform version:

Lemma

Let δ be uncountable cardinal and $\{p_m: m<\delta\}\subseteq \mathbb{P}_\gamma$ be determined conditions. Then, there exists $I\in [\delta]^\delta$ such that $\langle p_m: m\in I\rangle$ forms a uniform Δ -system.

Lemma

Let δ be uncountable cardinal and $\{p_m: m<\delta\}\subseteq \mathbb{P}_\gamma$ be determined conditions. Then, there exists $I\in [\delta]^\delta$ such that $\langle p_m: m\in I\rangle$ forms a uniform Δ -system.

For a countable uniform Δ -system, we can take the Fr-limit:

Lemma

For any (countable) uniform Δ -system $\bar{p}=\langle p_m:m<\omega\rangle\in(\mathbb{P}_\gamma)^\omega$, there is $\lim\bar{p}\in\mathbb{P}$ forcing $\exists^\infty m<\omega$ $p_m\in\dot{G}$.

 $(\lim \bar{p}$ is obtained by basically taking limits pointwisely on the root.)

$$\mathfrak{s}_{\mathrm{G}}^{*, \infty}$$

To show Fr-limits keep \mathfrak{s}_G^* small, we need a characterization of it:

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty}$$

To show Fr-limits keep \mathfrak{s}_G^* small, we need a characterization of it:

Definition

 $\begin{array}{l} \operatorname{Str}_{\infty} \coloneqq \{\sigma \in \operatorname{Str}: \text{ for all } y \in \mathbb{0} \cup \mathbb{1}, \sigma * y \in 2^{\omega} \setminus \mathbb{0}\}, \\ \mathfrak{s}_{G}^{*,\infty} \coloneqq \min\{|F|: F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str}_{\infty} \forall y \in F \ y \triangleleft_{*} \sigma\}. \end{array}$

To show Fr-limits keep $\mathfrak{s}_{\mathbf{G}}^*$ small, we need a characterization of it:

Definition

 $\begin{array}{l} \operatorname{Str}_{\infty} \coloneqq \{\sigma \in \operatorname{Str}: \text{ for all } y \in \mathbb{0} \cup \mathbb{1}, \sigma * y \in 2^{\omega} \setminus \mathbb{0}\}, \\ \mathfrak{s}_{G}^{*,\infty} \coloneqq \min\{|F|: F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str}_{\infty} \ \forall y \in F \ y \triangleleft_{*} \sigma\}. \end{array}$

Note that for $y \in \mathbb{O} \cup \mathbb{1}$, $y \triangleleft_* \sigma$ iff $\sigma * y \in 2^{\omega} \setminus \mathbb{O}$.

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty}$$

To show Fr-limits keep \mathfrak{s}_G^* small, we need a characterization of it:

Definition

 $\begin{array}{l} \operatorname{Str}_{\infty} \coloneqq \{\sigma \in \operatorname{Str}: \text{ for all } y \in \mathbb{0} \cup \mathbb{1}, \sigma * y \in 2^{\omega} \setminus \mathbb{0}\}, \\ \mathfrak{s}_{G}^{*,\infty} \coloneqq \min\{|F|: F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str}_{\infty} \ \forall y \in F \ y \triangleleft_{*} \sigma\}. \end{array}$

Note that for $y \in \mathbb{O} \cup \mathbb{1}$, $y \triangleleft_* \sigma$ iff $\sigma * y \in 2^{\omega} \setminus \mathbb{O}$.

Lemma

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty} = \mathfrak{s}_{\mathrm{G}}^*.$$

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty}$$

To show Fr-limits keep \mathfrak{s}_G^* small, we need a characterization of it:

Definition

 $\begin{array}{l} \operatorname{Str}_{\infty} \coloneqq \{\sigma \in \operatorname{Str}: \text{ for all } y \in \mathbb{0} \cup \mathbb{1}, \sigma * y \in 2^{\omega} \setminus \mathbb{0}\}, \\ \mathfrak{s}_{G}^{*,\infty} \coloneqq \min\{|F|: F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str}_{\infty} \ \forall y \in F \ y \triangleleft_{*} \sigma\}. \end{array}$

Note that for $y \in \mathbb{O} \cup \mathbb{1}$, $y \triangleleft_* \sigma$ iff $\sigma * y \in 2^{\omega} \setminus \mathbb{O}$.

Lemma

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty} = \mathfrak{s}_{\mathrm{G}}^{*}$$
.

Proof. $\mathfrak{s}_G^{*,\infty} \leq \mathfrak{s}_G^*$ is clear.

Overview

To show Fr-limits keep $\mathfrak{s}_{\mathbb{C}}^*$ small, we need a characterization of it:

Definition

 $\operatorname{Str}_{\infty} := \{ \sigma \in \operatorname{Str} : \text{ for all } y \in \mathbb{O} \cup \mathbb{1}, \sigma * y \in 2^{\omega} \setminus \mathbb{O} \},$ $\mathfrak{s}_{C}^{*,\infty} := \min\{|F| : F \subseteq 2^{\omega}, \neg \exists \sigma \in \operatorname{Str}_{\infty} \forall y \in F \ y \triangleleft_{*} \sigma\}.$

Note that for $y \in \mathbb{O} \cup \mathbb{1}$, $y \triangleleft_* \sigma$ iff $\sigma * y \in 2^{\omega} \setminus \mathbb{O}$.

Lemma

$$\mathfrak{s}_{\mathrm{G}}^{*,\infty} = \mathfrak{s}_{\mathrm{G}}^*$$

Proof. $\mathfrak{s}_{\mathbf{C}}^{*,\infty} \leq \mathfrak{s}_{\mathbf{C}}^{*}$ is clear. To show $\mathfrak{s}_{\mathbf{C}}^{*} \leq \mathfrak{s}_{\mathbf{C}}^{*,\infty}$, let $F \subseteq 2^{\omega}$ of size $\langle \mathfrak{s}_C^*$. Since $F' := F \cup \mathbb{O} \cup \mathbb{1}$ has size $\langle \mathfrak{s}_C^*$, there is $\sigma \in \operatorname{Str}$ winning all $y \in F'$. This σ has to be in Str_{∞} .

Key Lemma 2: Fr-limits keep \mathfrak{s}_G^* small

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{C}^{*}=\mathfrak{s}_{C}^{*,\infty}=\omega_{1}$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{C}^{*}=\mathfrak{s}_{C}^{*,\infty}=\omega_{1}$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$.

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi},\dot{\mathbb{Q}}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C} = (2^{<\omega}, \supseteq)$. Then, $\mathbb{P} = \mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{\mathrm{G}}^* = \mathfrak{s}_{\mathrm{G}}^{*,\infty} = \omega_1$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\operatorname{r}} \dot{\sigma}$. Since $\sqsubseteq^{\operatorname{r}} = \bigcup_{j \in 2} \bigcup_{n < \omega} \sqsubseteq_{j,n}^{\operatorname{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubseteq_{j_{\alpha},n_{\alpha}}^{\operatorname{r}} \dot{\sigma}$.

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{C}^{*}=\mathfrak{s}_{C}^{*,\infty}=\omega_{1}$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha},n_{\alpha}}^{\mathbf{r}} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{C}^{*}=\mathfrak{s}_{C}^{*,\infty}=\omega_{1}$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Er-limit

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$, $\alpha \in \text{dom}(p_{\alpha}).$

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{\mathbb{C}}^*=\mathfrak{s}_{\mathbb{C}}^{*,\infty}=\omega_1$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

- $\alpha \in \text{dom}(p_{\alpha}).$
- **2** $\{p_{\alpha} : \alpha \in I\}$ forms a uniform Δ -system with root ∇ .

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{C}^{*}=\mathfrak{s}_{C}^{*,\infty}=\omega_{1}$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

- $\alpha \in \text{dom}(p_{\alpha}).$
- **2** $\{p_{\alpha} : \alpha \in I\}$ forms a uniform Δ -system with root ∇ .
- 3 All j_{α} are equal to j and all n_{α} are equal to n^* .

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{\mathbb{C}}^*=\mathfrak{s}_{\mathbb{C}}^{*,\infty}=\omega_1$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubseteq^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

- $\alpha \in \text{dom}(p_{\alpha}).$
- **2** $\{p_{\alpha} : \alpha \in I\}$ forms a uniform Δ -system with root ∇ .
- 3 All j_{α} are equal to j and all n_{α} are equal to n^* .
- 4 All $p_{\alpha}(\alpha)$ are the same Cohen condition $s \in 2^{<\omega}$.

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{\mathbb{C}}^*=\mathfrak{s}_{\mathbb{C}}^{*,\infty}=\omega_1$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubset^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

- $\alpha \in \text{dom}(p_{\alpha}).$
- **2** $\{p_{\alpha} : \alpha \in I\}$ forms a uniform Δ -system with root ∇ .
- 3 All j_{α} are equal to j and all n_{α} are equal to n^* .
- 4 All $p_{\alpha}(\alpha)$ are the same Cohen condition $s \in 2^{<\omega}$.
- **5** $|s| = n^*$. (By increasing n^* or extending s.)

Key Lemma 2

Overview

Let γ be uncountable limit and $\mathbb{P}_{\gamma} = \langle (\mathbb{P}_{\xi}, \mathbb{Q}_{\xi}) : \xi < \gamma \rangle$ be a σ -Fr-iteration whose first ω_1 -many iterands are Cohen forcings $\mathbb{C}=(2^{<\omega},\supseteq)$. Then, $\mathbb{P}=\mathbb{P}_{\gamma}$ forces $\mathfrak{s}_{\mathbb{C}}^*=\mathfrak{s}_{\mathbb{C}}^{*,\infty}=\omega_1$, witnessed by the first ω_1 -many Cohen reals $\{\dot{c}_{\alpha} \in 2^{\omega} : \alpha < \omega_1\}$.

Proof. If not, there are $p \in \mathbb{P}_{\gamma}$ and a \mathbb{P}_{γ} -name $\dot{\sigma} \in (\operatorname{Str}_{\infty})^{V^{\mathbb{P}}}$ such that for all $\alpha < \omega_1$, $p \Vdash \dot{c}_{\alpha} \triangleleft_* \dot{\sigma}$, particularly $p \Vdash \dot{c}_{\alpha} \sqsubset^{\mathrm{r}} \dot{\sigma}$. Since $\sqsubseteq^{\mathbf{r}} = \bigcup_{i \in 2} \bigcup_{n < \omega} \sqsubseteq_{i,n}^{\mathbf{r}}$, for $\alpha < \omega_1$ we obtain $p_{\alpha} \leq p$, $j_{\alpha} \in 2$ and $n_{\alpha} < \omega$ such that $p_{\alpha} \Vdash \dot{c}_{\alpha} \sqsubset_{j_{\alpha}, n_{\alpha}}^{r} \dot{\sigma}$. By extending and thinning, we may assume there is $I \in [\omega_1]^{\omega_1}$ such that for $\alpha \in I$,

- $\alpha \in \text{dom}(p_{\alpha}).$
- **2** $\{p_{\alpha} : \alpha \in I\}$ forms a uniform Δ -system with root ∇ .
- 3 All j_{α} are equal to j and all n_{α} are equal to n^* .
- 4 All $p_{\alpha}(\alpha)$ are the same Cohen condition $s \in 2^{<\omega}$.
- **5** $|s| = n^*$. (By increasing n^* or extending s.)

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{i,n^*}^{r} \dot{\sigma}$. (3.1)

Fr-limit 0000000000

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{\mathbf{r}} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots\} \in [I \setminus \nabla]^{\omega}$.

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{r} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j.

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{\mathrm{r}} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m<\omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\frown}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{\mathrm{r}} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots\} \in [I \setminus \nabla]^\omega$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^\frown \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m < \omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\widehat{}}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Since $\alpha_m \notin \nabla$, $\bar{q} := \langle q_m : m < \omega \rangle$ also forms a uniform Δ -system (with root ∇) and hence we can take the limit $q^{\infty} := \lim \bar{q}$.

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{r} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m<\omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\widehat{}}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Since $\alpha_m \notin \nabla$, $\bar{q} := \langle q_m : m < \omega \rangle$ also forms a uniform Δ -system (with root ∇) and hence we can take the limit $q^{\infty} := \lim \bar{q}$. Let $y := s^{\frown} jj \cdots \in \mathbb{0} \cup \mathbb{1}$.

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{r} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m<\omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\hat{}}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Since $\alpha_m \notin \nabla$, $\bar{q} := \langle q_m : m < \omega \rangle$ also forms a uniform Δ -system (with root ∇) and hence we can take the limit $q^{\infty} := \lim \bar{q}$. Let $y := s^{\widehat{}} jj \cdots \in \mathbb{O} \cup \mathbb{I}$. Since $q^{\infty} \Vdash \exists^{\infty} m < \omega \ q_m \in G$ and by (3.2), we have:

In particular, we have that:

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{\mathbf{r}} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m<\omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\widehat{}}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Since $\alpha_m \notin \nabla$, $\bar{q} := \langle q_m : m < \omega \rangle$ also forms a uniform Δ -system (with root ∇) and hence we can take the limit $q^{\infty} := \lim \bar{q}$. Let $y := s^{\widehat{}} jj \cdots \in \mathbb{O} \cup \mathbb{I}$. Since $q^{\infty} \Vdash \exists^{\infty} m < \omega \ q_m \in G$ and by (3.2), we have:

$$q^{\infty} \Vdash \dot{\sigma} * y \in \mathbb{0}, \tag{3.3}$$

In particular, we have that:

Overview

For each
$$\alpha \in I, p_{\alpha}$$
 forces $\dot{c}_{\alpha} \upharpoonright n^* = s$ and $\dot{c}_{\alpha} \sqsubset_{j,n^*}^{\mathbf{r}} \dot{\sigma}$. (3.1)

Pick some countable $\{\alpha_0 < \alpha_1 < \cdots \} \in [I \setminus \nabla]^{\omega}$. For $m < \omega$, Define $q_m \leq p_{\alpha_m}$ by extending the α_m -th position to $q_m(\alpha_m) := s^{\widehat{}} \langle j \cdots j \rangle^m \in 2^{n^*+m}$, where $\langle j \cdots j \rangle^m$ denotes the sequence of length m whose values are all j. By (3.1), for all $m<\omega$ we have:

$$q_m \Vdash \text{ for all } n < m, \ \dot{\sigma}(s^{\widehat{}}\langle j \cdots j \rangle^n) = 0.$$
 (3.2)

Since $\alpha_m \notin \nabla$, $\bar{q} := \langle q_m : m < \omega \rangle$ also forms a uniform Δ -system (with root ∇) and hence we can take the limit $q^{\infty} := \lim \bar{q}$. Let $y := s^{\widehat{}} jj \cdots \in \mathbb{O} \cup \mathbb{I}$. Since $q^{\infty} \Vdash \exists^{\infty} m < \omega \ q_m \in G$ and by (3.2), we have:

$$q^{\infty} \Vdash \dot{\sigma} * y \in \mathbb{0}, \tag{3.3}$$

which contradicts $\dot{\sigma} \in \operatorname{Str}_{\infty}$.

Overview

Corollary

Let $\lambda>\omega_1$ be uncountable regular with $\lambda^{\aleph_0}=\lambda$ and $\mathbb{P}=\langle(\mathbb{P}_\xi,\dot{\mathbb{Q}}_\xi):\xi<\lambda\rangle$ be a finite support iteration whose first ω_1 -many iterands are Cohen forcings and the remaining iterands are \mathbb{P}^{**} . Then, $\Vdash_{\mathbb{P}}\omega_1=\mathfrak{s}_G^*<\mathfrak{s}_G^{**}=2^{\aleph_0}=\lambda$.

In fact, given uncountable regular $\kappa < \lambda$, $\kappa = \mathfrak{s}_G^* < \mathfrak{s}_G^{**} = \lambda$ is consistent.

- Overview
- 2 Details
- Fr-limit
- 4 Conclusion and Questions

Conclusion:

Conclusion:

• We introduced a new number \mathfrak{s}_G^{**} by slightly changing the definition of $\mathfrak{s}_G^*.$

Conclusion:

- We introduced a new number \mathfrak{s}_G^{**} by slightly changing the definition of \mathfrak{s}_G^* .
- We showed that Fr-limits can control \mathfrak{s}_G^* and as an application proved $\mathfrak{s}_G^* < \mathfrak{s}_G^{**}$ consistently holds.

Conclusion:

- We introduced a new number $\mathfrak{s}_{\mathrm{G}}^{**}$ by slightly changing the definition of $\mathfrak{s}_{\mathbf{C}}^*$.
- We showed that Fr-limits can control $\mathfrak{s}_{\mathrm{C}}^*$ and as an application proved $\mathfrak{s}_{\rm G}^* < \mathfrak{s}_{\rm G}^{**}$ consistently holds.

Fr-limit

Detailed Questions

(Repeated) $\mathfrak{s}_{G}^{**} \leq \mathfrak{d}$?

Conclusion:

- We introduced a new number $\mathfrak{s}_{\mathbf{G}}^{**}$ by slightly changing the definition of $\mathfrak{s}_{\mathbf{C}}^*$.
- We showed that Fr-limits can control $\mathfrak{s}_{\mathrm{C}}^*$ and as an application proved $\mathfrak{s}_{\mathrm{C}}^* < \mathfrak{s}_{\mathrm{C}}^{**}$ consistently holds.

Detailed Questions

- (Repeated) $\mathfrak{s}_{G}^{**} \leq \mathfrak{d}$?
- 2 By modifying the proof of Key Lemma 2 can we show the fact "Fr-limits keeps $\mathfrak{s}_{\mathbb{C}}^*$ small" inductively?

Conclusion:

- We introduced a new number $\mathfrak{s}_{\mathbf{G}}^{**}$ by slightly changing the definition of $\mathfrak{s}_{\mathbf{C}}^*$.
- We showed that Fr-limits can control $\mathfrak{s}_{\mathrm{C}}^*$ and as an application proved $\mathfrak{s}_{\mathrm{C}}^* < \mathfrak{s}_{\mathrm{C}}^{**}$ consistently holds.

Detailed Questions

- (Repeated) $\mathfrak{s}_{G}^{**} \leq \mathfrak{d}$?
- 2 By modifying the proof of Key Lemma 2 can we show the fact "Fr-limits keeps $\mathfrak{s}_{\mathbb{C}}^*$ small" inductively?

Conclusion and Questions

Conclusion:

Overview

- We introduced a new number \mathfrak{s}_G^{**} by slightly changing the definition of \mathfrak{s}_G^* .
- We showed that Fr-limits can control \mathfrak{s}_G^* and as an application proved $\mathfrak{s}_G^* < \mathfrak{s}_G^{**}$ consistently holds.

Detailed Questions

- 2 By modifying the proof of Key Lemma 2 can we show the fact "Fr-limits keeps \mathfrak{s}_G^* small" inductively?

Rough Question

Can the whole argument be applied to other cardinal invariants?

References I

[BCM21] Jörg Brendle, Miguel A. Cardona, and Diego A. Mejía. Filter-linkedness and its effect on preservation of cardinal characteristics. Annals of Pure and Applied Logic, 172(1):Paper No. 102856, 30, 2021.

Fr-limit

- [CGH23] Jorge Antonio Cruz Chapital, Tatsuya Goto and Yusuke Hayashi. Game-theoretic variants of cardinal invariants. Preprint, arXiv:2308.12136v2, 2022.
- [Mej19] Diego A. Mejía Matrix iterations with vertical support restrictions. In InProceedings of the 14th and 15th Asian Logic Conferences, pages 213 - 248. World Sci. Publ., Hackensack, NJ. 2019.