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History of Cichoń’s maximum

In 2019, Cichoń’s maximum was born in [GKS19] assuming large
cardinals.
More precisely, it was shown that it is consistent modulo four
strongly compact cardinals that all the ten cardinal characteristics
in Cichoń’s diagram are totally distinct in the following order:

add(N )

cov(N )

·

b

non(M)

cov(M)

d

·

non(N )

cof(N )

ℵ1

2ℵ0

In 2022, the large cardinal assumption was eliminated in [GKMS22].
The aim of our study is to add another cardinal characteristic in
Cichoń’s maximum.
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Evasion number e and prediction number pr

Definition
• A pair π = (D, {πn : n ∈ D}) is a predictor:⇔ D ∈ [ω]ω and

each πn is a function πn : ω
n → ω.

• π predicts f ∈ ωω :⇔ ∀∗n ∈ D, f(n) = πn(f↾n).
• f evades π :⇔ π does not predict f .
• pr := min{|Π| : Π ⊆ {predictors}, ∀f, ∃π ∈ Π, π predicts f}.
• e := min{|F | : F ⊆ ωω, ∀predictor π, ∃f ∈ F, f evades π}.

pr and e have the following relations in Cichoń’s diagram:

add(N )

cov(N )

e

pr

·

b

non(M)

cov(M)

d

·

non(N )

cof(N )

ℵ1

2ℵ0
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Main Theorem

The speaker showed e and pr can be added Cichoń’s maximum.

Theorem(Y.)

It is consistent that ℵ1 < add(N ) < cov(N ) < b < e < non(M) <
cov(M) < pr < d < non(N ) < cof(N ) < 2ℵ0 .

add(N )

cov(N )

e

pr

·

b

non(M)

cov(M)

d

·

non(N )

cof(N )

ℵ1

2ℵ0



Backgrounds Construction of Cichoń’s maximum Adding evasion number

1 Backgrounds

2 Construction of Cichoń’s maximum

3 Adding evasion number



Backgrounds Construction of Cichoń’s maximum Adding evasion number

How to construct Cichoń’s maximum

Construction of Cichoń’s maximum consists of two steps.

First Step
Separate the cardinals in the left side in the diagram by fsi of ccc
posets.

add(N )

cov(N )

·

b

non(M)

cov(M)

d

·

non(N )

cof(N )

ℵ1

2ℵ0
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How to construct Cichoń’s maximum

Second Step
Separate the dual numbers in the right side.

add(N )

cov(N )

·

b

non(M)

cov(M)

d

·

non(N )

cof(N )

ℵ1

2ℵ0

• [GKS19]: using large cardinal techniques
• [GKMS22]: using submodel techniques

Both methods are so general that one can separate the right side
without knowing the details of the poset used in First Step well.

For this reason, we focus on First Step in this talk.
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P5 : fsi that separates left side

Poset P5 introduced in [GKS19], which separates the left side is
constructed as follows: For given uncountable regular cardinals
(with some cardinal arithmetics) λ1 < λ2 < λ3 < λ4 < λ5,

P5 := Cλ5∗ fsi of length λ5 of


subforcing of A of size < λ1,

subforcing of B of size < λ2,

subforcing of D of size < λ3 or
subforcing of E of size < λ4

following some bookkeeping function fbk
(Here, the first λ5 Cohen forcing is necessary for Second Step).
A,B,D and E are posets which increase add(N ), cov(N ), b and
non(M) respectively (non(M) = b(ωω, ωω, eventually different)).

Thus, by bookkeeping argument P5 forces that add(N ) ≥ λ1,
cov(N ) ≥ λ2, b ≥ λ3, non(M) ≥ λ4, cov(M) = 2ℵ0 = λ5.
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What P5 keeps small

The property of “x ≤ θ” (θ:regular) is preserved through ccc fsi of:
size < θ, σ-cetered or subforcing of B (for x = add(N ))

size < θ or σ-cetered (for x = cov(N ))

size < θ (for x = b)

size < θ (for x = non(M))

Since D and E are σ-centered, (assuming CH in ground model)
P5 forces add(N ) ≤ λ1, cov(N ) ≤ λ2, non(M) ≤ λ4.
→ Only “b is small” is remained!
Simple iteration does not seem to say more on b and we may need
to choose subforcings of E more carefully to keep b small.

For this purpose, “ultrafilter method” is invented in [GKS19].
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Ultrafilter limit of E

Let us (re)define the eventually different forcing E.

Definition

E := {(s, k, φ) : s ∈ ω<ω, k < ω, φ : ω → [ω]≤k}
(s′, k′, φ′) ≤ (s, k, φ) :⇔

• s′ ⊇ s, k′ ≥ k, ∀i < ω, φ′(i) ⊇ φ(i)

• ∀i ∈ dom(s′ \ s), s′(i) /∈ φ(i)

For p = (s, k, φ) ∈ E, we call s(p) := s the stem of p and
k(p) := k the width of p.

Though we can forcing-euivalently define E without widths, we
mention the width explicitly to define ultrafilter limit of E by
restricting widths.
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Ultrafilter limit of E

Definition
Let D be an ultrafilter on ω, s ∈ ω<ω and k < ω. For
p̄ = ⟨pm = (s, k, φm) : m < ω⟩ ∈ Eω, define D-limit condition
limD p̄ = (s, k, φ∞) by j ∈ φ∞(i) :⇔ {m < ω : j ∈ φm(i)} ∈ D.

Here is the crucial property which is used when we inductively
construct names of ultrafilter through iteration afterwards.

Crucial Property of Ultrafilter Limit of E
If q ≤ limD p̄, then {m < ω : pm is compatible with q} ∈ D.

Proof. Let q := (s′, k′, φ′) and limD p̄ := (s, k, φ∞).
Since q ≤ limD p̄, ∀i ∈ dom(s′ \ s), s′(i) /∈ φ∞(i) i.e.,
{m : s′(i) ∈ φm(i)} /∈ D. Since D is an ultrafilter,
Ai := {m : s′(i) /∈ φm(i)} is in D for such i. If
m ∈

∩
{Ai : i ∈ dom(s′ \ s)}, then ∀i ∈ dom(s′ \ s), s′(i) /∈ φm(i)

and hence pm is compatible with q. 2
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Current situation

Before applying ultrafilter limit for iteration, let us clarify the
current situation.

• We are constructing the fsi poset P5 = ⟨Pα, Q̇α⟩α<λ5+λ5

which follows bookkeeping function fbk such that
⊩α Q̇α = fbk(α) (so, equivalently, we are defining fbk).

• For each α, it is already determined which kind of poset the
iterand Q̇α is a subforcing of.

• Hence, we can already define S+ as a set of ordinals of
E-position in the iteration. More precisely,
S+ := {λ5 ≤ α < λ5 + λ5 :⊩α Q̇α is a subforcing of E}.
Let S− := (λ5 + λ5) \ S+.

• We already know each fbk(α) for α ∈ S−.
We do not know what fbk(α) is for α ∈ S+ yet.

In the following slides, we will define some notions mentioning P5,
which is supposed to be not defined yet, but it makes sense since
all the definitions are valid as long as fbk satisfies the items above.
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Guardrail

Roughly speaking, in order to define ultrafilter limits pointwisely for
conditions of iteration, we consider ω-sequences of iteration with
common values on S−. For this purpose, we introduce a “guardrail”.

(For some combinatorial reason) let us additionally assume that
λ3 is a successor cardinal of a regular χ with χℵ0 = χ and 2χ = λ5.
Since for α ∈ S− ⊩α |Q̇α| < λ3 = χ+, we can fix a name of
injection ⊩α

˙iα : Q̇α → χ.

Definition
• A “partial guardrail” is a function h defined on a subset of

λ5 + λ5 such that h(α) ∈ χ for α ∈ S− and h(α) ∈ ω<ω × ω
for α ∈ S+ (ω<ω × ω represents stems and widths).

• A “countable guardrail” is a partial guardrail with countable
domain. A “full guardrail” is a partial guardrail with full
domain.
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Guardrail

We will use the following lemma afterwards, which is a consequence
of infinitary combinatorics.

Lemma

(Since |λ5| ≤ 2χ and χℵ0 = χ,) ∃{hε : ε < χ} : a family of full
guardrails, ∀countable guardrail h, ∃ε < χ, h ⊆ hε.

Definition

A condition p ∈ P5 follows the full guardrail h, if for all
α ∈ dom(p), Pα forces that:

• for α ∈ S−, i̇α(p(α)) = h(α) , and
• for α ∈ S+, (s(p(α)), k(p(α)) = h(α).
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Guardrail

Lemma

D := {p ∈ P5 : ∃ε < χ, p follows hε} is dense.

Proof.
It is inductively seen that there are densely many p ∈ P5 such that

∃ε < χ,

{
∀α ∈ dom(p) ∩ S−, p↾α ⊩ i̇α(p(α)) = hε(α) and
∀α ∈ dom(p) ∩ S+, p↾α ⊩ (s(p(α)), k(p(α)) = hε(α)

.

Fix such p and hε. For α ∈ dom(p) the followings hold:
• if α ∈ S−,⊩α ∃x ∈ Q̇, i̇α(x) = h(α).

• if α ∈ S+,⊩α ∃x ∈ Q̇,

{
p↾α ∈ Ġα ⇒ x = p(α)

p↾α /∈ Ġα ⇒ x = (h(α), ∅)
.

(By maximal principle,) we can take each Pα-name τα for the
witness. It can be (inductively) seen that if we define p′ by replacing
each p(α) with τα, p′ is identified with p and follows hε. 2
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Ultrafilter limit for iteration

We define ultrafilter limit for ω-sequences of the iteration P5 which
follows a common guardrail (and forms a ∆-system) by taking
ultrafilter limits pointwisely.

Definition

Fix ε < χ, β ≤ λ5 + λ5 and ˙̄D = {Ḋα : α < β} where each Ḋα is
a Pα-name of an ultrafilter on ω.

• p̄ = {pm : m < ω} ∈ (Pβ)
ω is a (countable) ∆-system with

root ∇ following hε :⇔ {dom(pm) : m < ω} is a ∆-system
with root ∇ and every pm follows hε .

• For such p̄, we define the lim ˙̄D
p̄ to be the following function

with domain ∇:
• If α ∈ ∇ ∩ S−, then ⊩α limD̄ p̄(α) := (i̇α)

−1(h(α)) (the
common value of all pm(α)).

• If α ∈ ∇∩ S+, then ⊩α limD̄ p̄(α) := limḊα
{pm(α) : m ∈ ω}.
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Ultrafilter construction

We can inductively construct Pα-names of ultrafilter with some
desirable properties.

Lemma
We can construct by induction on α ≤ λ5 + λ5 the χ-sequences of
Pα-names of an ultrafilter {Ḋε

α : ε < χ} (and fbk(α) for α ∈ S+)
such that for each ε < χ and countable ∆-system
p̄ = {pm : m < ω} ∈ (Pα)

ω following hε, lim{Ḋε
β :β<α} p̄ is in Pα

and forces that {m ∈ ω : pm ∈ Ġα} ∈ Ḋε
α.

Note that the limit condition forces that ultrafilter many pm’s are
in the generic filter, but does not decide which pm is.

The proof is complicated and omitted in this talk, but in the proof
Crucial Property of Ultrafilter Limit on E (and other basic trivial
properties of E) are effectively used.
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Proof that b is small

Theorem([GKS19])

⊩P5 b ≤ λ3. Moreover, P5 forces that for any regular λ3 ≤ κ ≤ λ5

and for any P5-name ḟ of a member of ωω, there exists i < κ, for
all i ≤ α < κ, Cα-real ċα is unbounded from ḟ .

Proof. If not, ∃κ, ∃p, ∃ḟ , p ⊩ ∀i < κ, i ≤ ∃α < κ, ċα ≤∗ ḟ .
So, ∀i < κ, ∃pi ≤ p, i ≤ ∃βi < κ, ∃ni < ω,
pi ⊩ ni < ∀n < ω, ċβi

(n) ≤ ḟ(n). By extending and thinning, we
may assume that:

• ∀i, βi ∈ dom(pi).
• ∃ε0 < χ, ∀i, pi follows hε0 .
• {pi : i < κ} forms a ∆-system with root ∇.
• ∀i, βi /∈ ∇. Hence all βi are distinct.
• ∃n∗ < ω, ∀i < κ, ni = n∗.
• ∃s ∈ ωω : Cohen condition of length n∗, ∀i, pi(βi) = s.
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Proof of b small

Pick the first ω many pi and for each i < ω define qi ≤ pi by
qi(βi) := s⌢i. Note that {qi : i < ω} forms a ∆-system (with root
∇), following some new countable guardrail and therefore some full
hε1 . Accordingly, the limit condition of {qi : i < ω} forces that
ultrafilter many (in particular, infinitely many) of the qi are in the
generic filter.
But each qi forces that ċβi

(n∗) = i ≤ ḟ(n∗), a contradiction. 2



Backgrounds Construction of Cichoń’s maximum Adding evasion number

1 Backgrounds

2 Construction of Cichoń’s maximum

3 Adding evasion number



Backgrounds Construction of Cichoń’s maximum Adding evasion number

Prediction forcing PR

Definition
The forcing poset PR consists of tuples (d, π, F ) satisfying:

• d ∈ 2<ω.
• π = ⟨πn : n ∈ d−1({1})⟩.
• ∀n ∈ d−1({1}), πn is a finite partial function of ωn → ω.
• F ∈ [ωω]<ω

• ∀f, g ∈ F, f↾ |d| = g↾ |d| implies f = g.
(d′, π′, F ′) ≤ (d, π, F ) :⇔

• d′ ⊇ d.
• ∀n ∈ d−1({1}), π′

n ⊇ πn(as partial functions ωn → ω).
• F ′ ⊇ F .
• ∀n ∈ (d′)−1({1}) \ d−1({1}), ∀f ∈ F, π′

n(f↾n) = f(n).

PR is σ-centered and adds a predicting real (hence increase e).
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P6:fsi that separates left side including e

Let us define fsi poset P6 that separates the left side including e.
(As explained above, once we separates the left side, the dual
numbers in the right side can also be separated almost
automatically by using submodel method introduced in [GKMS22].)
For given uncountable regular cardinals (with some cardinal
arithmetics) λ1 < λ2 < λ3 < λ4 < λ5 < λ6, let P6 :=

Cλ6∗ fsi of length λ6 of



subforcing of A of size < λ1,

subforcing of B of size < λ2,

subforcing of D of size < λ3,

subforcing of PR of size < λ4 or
subforcing of E of size < λ5

following some bookkeeping function fbk. As in the case of P5, P6

forces that add(N ) = λ1, cov(N ) = λ2, b ≥ λ3, e ≥ λ4, non(M) =
λ5, cov(M) = 2ℵ0 = λ6.
→“b is small” and “e is small” are remained.
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Ultrafilter limit of PR

To keep b small, it is desirable if also PR has ultrafilter limit and
hence names of ultrafilter can be constructed in the same way. The
speaker showed this by modifying the proof of separating b < e in
[BS96].
First, we define ultrafilter limit of ωω.

Definition

For ultrafilter D on ω and ω-sequence f̄ = ⟨fm ∈ ωω : m < ω⟩
satisfying that:∀n < ω, ∃!an < ω, {m < ω : fm(n) = an} ∈ D,
define limD f̄ ∈ ωω by limD f̄(n) = an for each n < ω.

Note that limD f̄ ∈ ωω is not always defined.
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Ultrafilter limit of PR

We are ready to define ultrafilter limit of PR.

Definition

Fix k < ω,d, π and {f∗
l ∈ ω|d| : l < k}. For a countable sequence

of conditions p̄ = ⟨pm = (d, π, {fm
l : l < k}) ∈ PR : i < ω⟩ with

∀l < k, fm
l ↾ |d| = f∗

l , define:
• f̄l := ⟨fm

l : m < ω⟩, A := {l < k : limD f̄l exists}, B := k \A.
• F∞ := {limD f̄l : l ∈ A}.
• For l ∈ B,
nl := min{n < ω : ¬∃a < ω, {m < ω : fm

l (n) = a} ∈ D}.
• n∞ := max{nl + 1 : l ∈ B} (if B = ∅, n∞ := |d|).
• d∞ := d ∪ 1[|d|,n

∞) (i.e., adding (n∞ − |d|) many 0′s after d).
• limD p̄ := (d∞, π, F∞).

Note that limD p̄ is always defined and a condition of PR.



Backgrounds Construction of Cichoń’s maximum Adding evasion number

PR has Crusial Property of ultrafilter limit

Remark
For every l ∈ B and a < ω, {m < ω : fm

l (nl) > a} ∈ D.

As in the case of E, ultrafilter limit of PR has the crucial property.

Crucial Property of Ultrafilter Limit of PR
If q ≤ limD p̄, then {m < ω : pm is compatible with q} ∈ D.

Proof.
Let q := (dq, πq, F q). Fix l ∈ A and
n ∈ (dq)−1({1}) \ (d∞)−1({1}). By the definition of limD f̄l,
∃X0 ∈ D, ∀m ∈ X0, f

m
l ↾ (n+ 1) = limD f̄l↾ (n+ 1). Along with

q ≤ limD p̄, ∀m ∈ X0, π
q
n(fm

l ↾n) = limD f̄l(n) = fm
l (n).
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PR has Crusial Property of ultrafilter limit

Unfixing l and n, we get:

∃X1 ∈ D, ∀l ∈ A, ∀n ∈ (dq)−1({1}) \ (d∞)−1({1}), ∀m ∈ X1,

πq
n(f

m
l ↾n) = fm

l (n)
(3.1)

Fix l ∈ B and n ∈ (dq)−1({1}) \ (d∞)−1({1}).
Let mn := max{σ(j) : σ ∈ dom(πq

n), j < n}.
By Remark, ∃X2 ∈ D, ∀m ∈ X2, f

m
l (nl) > mn. Since

nl < n∞ ≤ n, ∀m ∈ X2, f
m
l ↾n /∈ dom(πq

n). Unfixing l and n, we
get:

∃X3 ∈ D, ∀l ∈ B, ∀n ∈ (dq)−1({1}) \ (d∞)−1({1}), ∀m ∈ X3,

fm
l ↾n /∈ dom(πq

n)
(3.2)

We show that for all m ∈ X1 ∩X3, pm and q are compatible.



Backgrounds Construction of Cichoń’s maximum Adding evasion number

PR has Crusial Property of ultrafilter limit

Fix such m and let q′ := (d′, π′, F ′) satisfying:
• F ′ := F q ∪ {fm

l : l < k}.
• d′ is an extension of dq adding enough 0′s after dq to make q′

be a condition.
• ∀n ∈ (dq)−1({1}), π′

n ⊇ πq
n and

∀l ∈ B, ∀n ∈ (dq)−1({1}) \ (d∞)−1({1}), π′
n(f

m
l ↾n) = fm

l (n)
(This can be done by 3.2).

q′ ≤ q trivially holds since (d′)−1({1}) \ (dq)−1({1}) = ∅.
To see q′ ≤ pm, we have to show:

∀l < k, ∀n ∈ (dq)−1({1}) \ (d)−1({1}), π′
n(f

m
l ↾n) = fm

l (n) (3.3)

If l ∈ A, 3.1 implies 3.3, while if l ∈ B, 3.3 holds by the definition
of π′. 2
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P6 forces b is small

By using this Crucial Property, we can also construct P6 which
keeps b small. Define guardrails similarly by letting S+ be a set of
ordinals of PR or E-position in the iteration and fix full guardrails
{hε : ε < χ} such that every countable guardrail can be extended
to some hε.

Lemma(Y.)

We can construct by induction on α ≤ λ6 + λ6 the χ-sequences of
Pα-names of an ultrafilter {Ḋε

α : ε < χ} such that for each ε < χ
and countable ∆-system p̄ = {pm : m < ω} ∈ Pω

α following hε,
lim{Ḋε

β :β<α} p̄ is in Pα and forces that {m ∈ ω : pm ∈ Gα} ∈ Ḋε
α.

Hence P6 keeps b small.

Collorary(Y.)

P6 forces b ≤ λ3.
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E vs PR on ultrafilter limits

To keep e small, a simple ultrafilter limit argument as above does
not work since PR itself has ultrafilter limit and increase e.
However, ultrafilter limit seems to be a strong tool.
Thus, let us see the gap between ultrafilter limits of E and PR.

Gap between E and PR
There is a gap between ultrafilter limits of E and PR as follows:
E If p̄ is an ω-sequence with common s and k, the limit

condition also has same s and k.
PR If p̄ is an ω-sequence with common d, π, k and

{f∗
l ∈ ω|d| : l < k}, the limit condition does not have same d

in general (d∞ might get longer by adding 0’s after d ).

We focus on the gap.
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e-guardrail

Let us additionally assume that λ4 is a successor cardinal of a
regular θ with θℵ0 = θ and 2θ = λ6.

Define new guardrails by letting S+ be a set of ordinals of
E-position in the iteration and fixing Pα-names of injection
⊩α j̇α → θ for α ∈ S−.

We call these new guardrails e-guardrails and the old ones
b-guardrails.

Fix full e-guardrails {gξ : ξ < θ} such that every countable
e-guardrail can be extended to some gξ. For β ≤ λ6 + λ6,
˙̄E = {Ėα : α < β} where each Ėα is a Pα-name of an ultrafilter on
ω and ∆-system p̄ with root ∇ following some gξ, we define the
lim ˙̄E

p̄ in the same way.
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Reconstruction of P6

By redefining fbk, we can reconstruct P6 to satisfy ultrafilter limit
properties on e-guardrails, keeping those on b-guardrails.

Lemma

In addition to the properties of Ḋ’s, we can also construct by
induction on α ≤ λ6 + λ6 the θ-sequences of Pα-names of an
ultrafilter {Ėξ

α : ξ < θ} (and fbk(α) for α ∈ S+) such that for each
ξ < χ and countable ∆-system p̄ = {pm : m < ω} ∈ (Pα)

ω

following hξ, lim{Ėξ
β :β<α} p̄ is in Pα and forces that

{m ∈ ω : pm ∈ Ġα} ∈ Ėξ
α.
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Strategy for proving e is small

Let “ limξ” be short for “lim{Ėξ
α:α<λ6+λ6}”. The following Lemma

holds only for e-guardrails, not for b-guardrails.

Lemma
For countable ∆-system p̄ following gξ, limξ p̄ also follows gξ.

Hence, we can consider “limit of limit”.
The following property holds since limit condition forces that
ultrafilter many conditions are in the generic filter.

Limit Preservation Property

Let p̄ = {pm : m < ω} be a countable ∆-system following gξ and φ
be a P6-forcing formula without parameter m.
If ∀m < ω, pm ⊩ φ, then limξ p̄ ⊩ φ.

Hence, the strategy is to take many limits including limits of limits,
preserving desirable formulas (details below).
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Proof that e is small

Theorem(Y.)

⊩P6 e ≤ λ4. Moreover, P6 forces that for any regular λ4 ≤ κ ≤ λ6

and for any P6-name π̇ of a predictor, there exists i < κ, for all
i ≤ α < κ, Cα-real ċα evades from π̇.

Proof.
If not, ∃κ, ∃p, ∃π̇ = (Ḋ, ⟨π̇k : k ∈ Ḋ⟩),
p ⊩ ∀i < κ, i ≤ ∃α < κ, ċα is predicted by π̇. So, ∀i < κ, ∃pi ≤
p, i ≤ ∃βi < κ, ∃ni < ω, pi ⊩ ni < ∀k ∈ Ḋ, ċβi

(k) ≤ π̇k(ċβi
↾ k).

By extending and thinning, we may assume:
• ∀i, βi ∈ dom(pi).
• ∃e− guardrail gξ0 , ∀i, pi follows gξ0 .
• {pi : i < κ} forms a ∆-system with root ∇.
• ∀i, βi /∈ ∇. Hence all βi are distinct.
• ∃n∗ < ω, ∀i < κ, ni = n∗.
• ∃s ∈ ωω : Cohen condition of length n∗, ∀i, pi(βi) = s.
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Proof that e is small

Pick the first ω many pi and fix n < ω.

Strategy
Formula φ we will preserve is:

1 “a specific point is not a predicting point.” or
2 “for some i < ω, ċβi

is predicted by π̇ above n∗ and the initial
segment of ċβi

is a specific form.”
Take many limits (including limits of limits) preserving such φ’s to
make the eventual limit qn force that [n∗, n∗ + n) ∩ Ḋ = ∅ .
Unfix n and the limit condition of qn’s forces that for infinitely
many n, [n∗, n∗ + n) ∩ Ḋ = ∅, a contradiction.

Fix bijection i : ωn → ω. For each σ ∈ ωn, define qσ ≤ pi(σ) by
qσ(βi(σ)) := s⌢σ.
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Proof that e is small

Fix τ ∈ ωn−1. Note that {qτ⌢m : m < ω} forms a ∆-system with
root ∇, following some new countable e-guardrail and therefore
some full gξτ , which coincides with gξ0 on ∇. Let
q∞τ := limξτ {qτ⌢m : m < ω}. Since q∞τ follows gξτ and
dom(q∞τ ) = ∇, q∞τ also follows gξ0 . Each qτ⌢m forces that:

• ċβi(τ⌢m)
↾ (n∗ + n) = s⌢τ⌢m.

• n∗ < ∀k ∈ Ḋ, ċβi(τ⌢m)
(k) = π̇k(ċβi(τ⌢m)

↾ k).
Since q∞τ ⊩ ∃Ėξτ -many m, qτ⌢m ∈ Ġ and by Limit Preservation
Property, q∞τ forces that:

• n∗ + n− 1 /∈ Ḋ.

• ∃i < ω,

{
ċβi

↾ (n∗ + n− 1) = s⌢τ and
n∗ < ∀k ∈ Ḋ, ċβi

(k) = π̇k(ċβi
↾ k).
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Proof that e is small

Unfix τ and fix ρ ∈ ωn−2.
Since {q∞ρ⌢m : m < ω} forms a ∆-system with root ∇ following
gξ0 , we can define q∞ρ := limξ0{q∞ρ⌢m : m < ω}. Note that q∞ρ
follows gξ0 and dom(q∞ρ ) = ∇. Each q∞ρ⌢m forces that:

• n∗ + n− 1 /∈ Ḋ.

• ∃i < ω,

{
ċβi

↾ (n∗ + n− 1) = s⌢ρ⌢m and
n∗ < ∀k ∈ Ḋ, ċβi

(k) = π̇k(ċβi
↾ k).

Since q∞ρ ⊩ ∃Ėξρ-many m, q∞ρ⌢m ∈ Ġ and by Limit Preservation
Property, q∞ρ forces that:

• n∗ + n− 1 /∈ Ḋ.
• n∗ + n− 2 /∈ Ḋ.

• ∃i < ω,

{
ċβi

↾ (n∗ + n− 2) = s⌢ρ and
n∗ < ∀k ∈ Ḋ, ċβi

(k) = π̇k(ċβi
↾ k).
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Proof that e is small

Continuing this way, we eventually get qn := q∞∅ with the following
properties:

• dom(qn) = ∇ and qn follows gξ0 .
• qn ⊩ [n∗, n∗ + n) ∩ Ḋ = ∅.

Unfix n and let q∞ := limξ0{qn : n < ω}. q∞ forces that
for infinitely many n, [n∗, n∗ + n) ∩ Ḋ = ∅ , a contradiction. 2

Theorem(Y.)

It is consistent that ℵ1 < add(N ) < cov(N ) < b < e < non(M) <
cov(M) < pr < d < non(N ) < cof(N ) < 2ℵ0 .
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