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1. Relational systems and Tukey order



Relational systems

Definition 1.1

A relational system is a triplet R = (X, Y, R) where X,Y are sets and R
is a relation.




Relational systems

Definition 1.1

A relational system is a triplet R = (X, Y, R) where X,Y are sets and R
is a relation.

Definition 1.2

| A

Let 7 be an ideal on a set X (containing [X]<%0).
Q@ 7 =(Z,7,C) as a relational system.
@ C7:=(X,Z, €), which is a relational system.




Cardinal characteristics associated with relational systems

Definition 1.3

Let R = (X,Y, R) be a relational system.
Q@ BC X is R-bounded if dy € Y Vz € B: zRy.

@ D CY is R-dominating if Vo € X Jy € D: xRy.
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| A\

Fact 1.4

If  is an ideal on a set X then

(a) 6(Z) = add(Z) := min{|F|: F CZ, Uyecr A ¢ L}

(b) 3(Z) =cof(Z) :=min{|F|: FCI, VA€Z IBc F: AC B}.




Cardinal characteristics associated with relational systems

Definition 1.3

Let R = (X,Y, R) be a relational system.
Q@ BC X is R-bounded if dy € Y Vz € B: zRy.

@ D CY is R-dominating if Vo € X Jy € D: xRy.
@ b6(R) :=min{|F|: F C X is R-unbounded}.
Q ?(R) :=min{|D|: D CY is R-dominating}.

Fact 1.4

| \

If T is an ideal on a set X then
(a) 6(Z) = add(Z) := min{|F|: F CZ, Uyecr A ¢ L}

(
(Cz) =non(Z) :=min{|Z|: ZC X, Z ¢ T}.
(Cz) =cov(Z) :=min{|F|: F CZ, Uyuer A =X}




@ N the ideal of measure zero (null) subsets of the Cantor space 2v.

@ M: the ideal of first category (meager) subsets of 2¢.
© When k < |X]| is an infinite cardinal, [X|<" :={A C X : |A4| < k}.




Tukey connections

Definition 1.6

Let R = (X,Y,R) and R’ = (X', Y’ R’) be relational systems.
A pair (F,G) : R — R/ is a Tukey connection from R to R’ if

F: XX, G:Y' -Y, VzeXVyeY': Fx)RYy = zRG().
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Tukey connections

Definition 1.6

Let R = (X,Y,R) and R’ = (X', Y’ R’) be relational systems.
A pair (F,G) : R — R/ is a Tukey connection from R to R’ if

F: XX, G:Y' -Y, VzeXVyeY': Fx)RYy = zRG().

R =<1 R’ (R is Tukey-below R') if 3(F,G) : R — R’ Tukey connection.
~1p R/ (R and R’ are Tukey equivalent) if R <t R’ and R’ <1 R.

R R’

Y

Y/

X——X'



Tukey connections and cardinal characteristics

Q@ R =<1 R’ implies b(R’) < b(R) and d(R) < d(R/).
@ R =1 R’ implies b(R) = b(R/) and d(R) =0




Products of relational systems

Definition 1.8

For each i € I let R; := (X, Y}, R;) be a relational system.
Define [,c; Ri == (ITic; Xi» [Tics Yis R™) where

xRy iff Vi e I: 2 R;y;.




Products of relational systems

Definition 1.8

For each i € I let R; := (X, Y}, R;) be a relational system.
Define [,c; Ri == (ITic; Xi» [Tics Yis R™) where

xRy iff Vi e I: 2 R;y;.

(a) R; <1 Hie[ R;. Y, — EX,‘. ‘_‘QIY.' =Y
(b) b (ITies Ri) = minges b(R;) and o> &y Y Ty

g 7

supie; 9(Rq) <0 ([lie; Ri) < [Tie 2(Ri).-





































































































































































































































Products of relational systems

Definition 1.8

For each i € I let R; := (X, Y}, R;) be a relational system.
Define [,c; Ri == (ITic; Xi» [Tics Yis R™) where

xRy iff Vi e I: 2 R;y;.

(a) Ri jT Hie[ Rz’-
(b) b (Hie] Rl) = minig b(Rl) and
supie; 9(Rq) <0 ([lie; Ri) < [Tie 2(Ri).-

b (Hz’el R) > min;er b(Ry):

If I C Hie] X, and ‘F’ < min;ey b(RZ)

then {z; : * € F'} is bounded by some y; € Y},
so F' is bounded by y := (y; : i € I).



Powers of relational systems

When R; = R for all i € I, we denote R’ :=[],_, R. J
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Example 1.10

Let Z be an ideal on X.

Q 77 =1 (D) where (/) is the ideal on X generated by [Lic; Ai for
(A;:ieJ)yeT’.

@ Cf =1 Cru).
So we denote add(Z”) := b(Z7) = add(Z()), etc.




Powers of relational systems

When R; = R for all i € I, we denote R’ :=[],_, R. J

Example 1.10

Let Z be an ideal on X.

Q 77 =1 (D) where (/) is the ideal on X generated by [Lic; Ai for
(A;:ieJ)yeT’.

@ Cf =1 Cru).
So we denote add(Z”) := b(Z7) = add(Z()), etc.

add(Z”) = add(Z) and non(Z”) = non(ZT). J




Powers of relational systems

When R; = R for all i € I, we denote R’ :=[[,.; R J

el =

Example 1.10

Let Z be an ideal on X.
Q 77 =21 IV) where Z() is the ideal on X generated by [[,.; A; for
(A;:ieJ)yeT’.
@ Cf =1 Cru).
So we denote add(Z”) := b(Z7) = add(Z()), etc. )
add(Z”) = add(Z) and non(Z”) = non(ZT). J

When S is a directed preorder, denote

bk = b(S7), oL :=a(sh).




2. The ideal of strong measure zero sets and Yorioka

ideals




Strong measure zero sets

Definition 2.1
Q Foro=(0;:i<w)e (2¥)%, define ht,: w — w s.t. hty(7) := |oy|.
@ A set Z C 2% has strong measure zero (in 2¢) if

Vfew’Joe (25¥): f <*ht, and Z C U[U"]
1<w
where [s] :={z € 2¥: s C x} for s € 2<%,

© SN: the collection of strong measure zero subsets of 2¢.




Strong measure zero sets

Definition 2.1
Q Foro=(0;:i<w)e (2¥)%, define ht,: w — w s.t. hty(7) := |oy|.
@ A set Z C 2% has strong measure zero (in 2¢) if

Vfew’Joe (25¥): f <*ht, and Z C U[Ui]
i<w
where [s] :={z €2¥: s Cx} for s € 2<%,

© SN: the collection of strong measure zero subsets of 2¢.

A set Z C 2% has strong measure zero iff

View’3oe (29 f <*ht, and Z C [0]wo

where [0]o 1= {2 € 2¥ : z extends infinitely many o;}.




Yorioka ideals

Definition 2.3

Q@ For xz,y € W,

T <Ly iff Yk <w Img <wVi>my: z(i%) <y().

Q@ W :={f €w¥: fisincreasing}.
Q For f € wlv define the Yorioka ideal

T ={AC2: 35 € (2¥)¥: f < ht, and A C [0]s}.
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A\

Theorem 2.4 (Yorioka 2002)
Each Iy is a o-ideal and SN = (¢ 0 Zs-




Yorioka ideals

Definition 2.3

Q@ For xz,y € W,

T <Ly iff Yk <w Img <wVi>my: z(i%) <y().

Q wlv:={f cw“: fisincreasing}.
Q For f € wlv define the Yorioka ideal

T ={AC2: 35 € (2¥)¥: f < ht, and A C [0]s}.

Theorem 2.4 (Yorioka 2002)
Each Iy is a o-ideal and SN = (¢ 1w Ly

Theorem 2.5 (Kamo & Osuga 2008)
We do not get an ideal when replacing f < ht, by f <* ht,.




© If f <* g then T, C I;.
@ If D C w'™ is a dominating family, then SN = ﬂfeD Zy.




@ If f <* g then I, C T;.
@ If D C w'™ is a dominating family, then SN = Nsep Zs-

v

Definition 2.7

minadd := min add(Zy), supadd = add(1id)

fewtw

supcov := sup cov(Zy),
fewtw

minnon := min non(Zy)
fewtw

supcof := sup cof(Zy).
fewtw












































































Expanded diagram

New arrows: Miller, Yorioka, Kamo, Osuga, Cardona & M., Brendle

COV(SN) o Ol (SN) = cov ( ([supeof]miadd)) — 90

| |

cov(N) — cov(Z,) — supcov AN non(M) — cof (M) —> bupcof —— cof (N)

\

a

add(SN)

R, —— add(N) — minadd ——— add(M) — COV(%W

—
addf) \T\



About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

@ non(SN) = minnon.
Q@ add(M) = min{b, non(SN)}.
Q cof(M) = max{0, supcov}.
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Q@ add(M) = min{b, non(SN)}.
Q cof(M) = max{0, supcov}.

A\

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber N, posets with length of
uncountable cofinality forces cov(SN) < Nj.




About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

@ non(SN) = minnon.
Q@ add(M) = min{b, non(SN)}.
Q cof(M) = max{0, supcov}.

\

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber N, posets with length of
uncountable cofinality forces cov(SN) < Nj.

Theorem 2.10 (Cardona & M. & Rivera-Madrid 2021)

In Sacks’ model, cov(SN) = .




Theorem 2.11 (Carlson 1993)
add(NV) < add(SN).

Theorem 2.12 (Goldstern, Judah & Shelah 1993)

It is consistent with ZFC that cof(M) < add(SN).




Theorem 2.11 (Carlson 1993)
add(NV) < add(SN).

Theorem 2.12 (Goldstern, Judah & Shelah 1993)
It is consistent with ZFC that cof(M) < add(SN).

Theorem 2.13 (Kamo — proof by Cardona & M. 2019)

add(\V) < minadd < add(SN).




Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)

If minadd = supcof = \ then SN = A\,
In particular add(SN') = X\ and cof(SN) = 0,.




Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)

If minadd = supcof = \ then SN = A\,
In particular add(SN') = X\ and cof(SN) = 0,.

Theorem 2.15 (Yorioka 2002)
ZFC does not prove any relation between cof(SN) and ¢.

CH = ¢ oy (sw)

v Con( cagp(sv) <°)



































































































3. Developments about cof(SN)




Improvements

Definition 3.1 (Cardona 2022)
Let S be a directed preorder with minimal element 7.

For f € w™, A= (A;: i€ S)is an I;-directed system on S if
(I) Vie S: A; € Iy,

(I1) A, is dense Gy,
(I) if i <g j then A; C A, and
(IV) {4;: i€ S}is cofinal in Zy.




Improvements

Definition 3.1 (Cardona 2022)
Let S be a directed preorder with minimal element 7.
For f € w™, A= (A;: i€ S)is an I;-directed system on S if
(I) Vie S: A; € Iy,
(I1) Aj;, is dense G,
(1) if i <g j then A; C A,, and
(IV) {4;: i€ S}is cofinal in Zy.
If {fa: @ < A} is a dominating family on w® then (Afe : o < \) is a

\-dominating directed system on S if each A’ is an Ty, -directed system
on S and

(V) Va < X: Neea A ¢ I,




Lemma 3.2 (Yorioka 2002)

If minadd = supcof = A then there is a \-dominating system on \.
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Lemma 3.3 (Cardona 2022)

If cov(M) =0 =\, D C w'% is dominating and, for each f € D, there is
some L-directed system on S, then there is a \-dominating directed
system on S.




Lemma 3.2 (Yorioka 2002)

If minadd = supcof = A then there is a \-dominating system on \.

Lemma 3.3 (Cardona 2022)

If cov(M) =0 =\, D Cw'™ is dominating and, for each f € D, there is
some L-directed system on S, then there is a \-dominating directed
system on S.

A,

Lemma 3.4 (Cardona 2022)

If there is a A\-dominating directed system on S then SN <t S*. In
particular

b(S) < add(SN) and cof(SN) < 3.




Lemma 3.2 (Yorioka 2002)

If minadd = supcof = A then there is a \-dominating system on \.

Lemma 3.3 (Cardona 2022)

If cov(M) =0 =\, D C w'¥ is dominating and, for each f € D, there is
some L-directed system on S, then there is a \-dominating directed
system on S.

A,

Lemma 3.4 (Cardona 2022)

If there is a A\-dominating directed system on S then SN <t S*. In
particular

b(S) < add(SN) and cof(SN) < 3.

If there is some Z;-directed system on S then 7y <1 S.




Lemma 3.5
SN =1 [I;epZy for any dominating family D C w™,
In particular, minadd < add(SN) and

cof(SN) < HIf <Hc0fo ) =2°,

febD febD

the last equality when |D| = .

SN — T 1 Tl —SSN
€D ‘:CD
2 b= 2t My O e (h:; =Sy

v
Gyt y S &g, S D B ﬂA;
Le)d





















































































































































































































































































































































































































Lemma 3.5
SN =1 [I;epZy for any dominating family D C w™,
In particular, minadd < add(SN) and

cof(SN) < HIf <Hc0fo ) =2°,

febD febD

the last equality when |D| = .

The existence of an Zy-directed system on S for all f € D implies

SN =r [[ Z =¢ [[ 5 =5".

feD feD




A more direct Tukey-connection

Q@ If X CY and 0 < k then C[X]<n = C[Y]<9.
@ If S is a directed preorder then S < C[a(S)]<b<S>-

AR IR RTES

£¢
S — s) a7 P, ¢
X — ¢ sl x¢ YJK A —_ A O‘lf(r(amm{q[
iy.l" MA}
Ngive <[(3)

°<X€Aﬁ X€V4, ézA






























































































































































































































































































































































































































A more direct Tukey-connection

Q@ If X CY and 0 < k then C[X]<n = C[Y]<9.
@ If S is a directed preorder then S < C[a(S)]<b<S>-

Theorem 3.7 (BCM)
SN =1 (o}

[supcof] <minadd s

in particular

cof(SA) < cov (([Supcof]<minadd>a) .

\

p)

SN4. T 4 T ¢ caddiry 2 T <...-.Au-_c[ .
Suptof

P C
Tged Teen Leap)] Nrfer (ovrey]
b=






















































































































































































































































































































































Lower bounds of cof(SN)

Lemma 3.8 (Cardona 2022)

Asumme that  and X are cardinals such that 0 < k < X\ < non(SN) and
that there is some A-dominating directed system on K X \.

Then \ <1 SN/, in particular add(SN') < X and 2 < cof(SN).




Lower bounds of cof(SN)

Lemma 3.8 (Cardona 2022)

Asumme that  and X are cardinals such that 0 < k < X\ < non(SN) and
that there is some A-dominating directed system on K X \.
Then \ <1 SN/, in particular add(SN') < X and 2 < cof(SN).

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that cov(SN') < non(SN) < cof(SN') and the
continuum ¢ in any position with respect to cof(SN).




Lower bounds of cof(SN)

Lemma 3.8 (Cardona 2022)

Asumme that  and X are cardinals such that 0 < k < X\ < non(SN) and
that there is some A-dominating directed system on K X \.
Then \ <1 SN/, in particular add(SN') < X and 2 < cof(SN).

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that cov(SN') < non(SN) < cof(SN') and the
continuum ¢ in any position with respect to cof(SN).

What is the role of x7? J




Non-directed systems

Definition 3.10

Let I be a set and iy € I. Given f € w', a family Af = (A{c ciel)is
an Zy-system on (I, i) if it satisfies:

() Viel: A ey,
(I

) Af € Zy is dense Gy,
() VieI: Al C Al and
)

(IvV ( : 4 € I) is cofinal in Zy.




Non-directed systems

Definition 3.10

Let I be a set and iy € I. Given f € w', a family Af = (A{c ciel)is
an Zy-system on (I, i) if it satisfies:

() Viel: Al ey,
()} Ag; € Zy is dense Gy,
() VieI: Al C Al and

(V) (A{ : 4 € I) is cofinal in Zy.
If {fa: @ < A} is a dominating family on w' then (Afe: a < \) is a
A-dominating system on (I, i) if each Afe is an Zy,-system on (I, i) and

(V) Va < X: Neeo AR ¢ T,




Existence of systems

An T;-system on (1, 1g) exists iff cof(Zy) < |I|.




Existence of systems

An T;-system on (1, 1g) exists iff cof(Zy) < |I|.

If cov(M) =0 =\, D C w'™ is dominating and supcof < |I|,
then there is a \-dominating system on (1, 1).

Supeaf < ] — VF" 3 /K'F=ZA‘.‘? "€1> awud I(—!y:{um on (I;i°).
Fix 4hataeny 1c|n.(~m;'y

We i‘(?re LA 1ep3ed dow. fronily by cecurgion A (4o get (V))
@g,<l—§ Afz 2+ denge 6s , liAei;SL“s

< )rav(p\)
by «U;nj N ru{.J e b G reals e get pepeel e Fc—'!)*’q
P&SN—‘-IQ’I,{ o Aed o) pE Ty, ad di b

0 Al & 1u,

144

ds
la























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Main Lemma

Definition 3.13

A-DS(I,ip): There is a A-dominating system (A% : o < \) on (I,ip).




Main Lemma

Definition 3.13

A-DS(I,ip): There is a A-dominating system (A% : o < \) on (I,ip).

Main Lemma 3.14
Under \-DS(1, 1), for any (Co : o« < \) satisfying

Co CZ,, and Z |Ce| < non(SN) for all o < A,
(<a

there is some K € SN such that K ¢ C for all C € |J,Ca.

By recutsion on 4e N odigue AT {Xé‘- ce @AS s f"“"“5~









































































































































































































isl(rl’ Fue CEf, );c.=cu%.xﬁE: f<d, E€ 8,1
f\

Site < (Z |€() < o (SIr) = miten
<4

Bc€LZd, .
Bot ﬂA c NA 14, -
1o ’Q (,(s)¢ Lo m ()fllﬁg

6(1)

axeﬂ,\
— 14

d
RYRRETVI 2 SR AG.L(.‘)

S\L€ Lwoy (5N> ~ -

=X aex, ceg g s ﬂAal)eSl\F

XeekVC qor Ce€y - kﬁc_








































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Cov(m)=3=\ € on (gN)

(

*=BStHtr implies A < cof(SN).
If in addition cf(non(SN')) = cf(\) then non(SN') < cof(SN).

Let aCL'- .g()g < SN

. €J.:Z(CJ-; , Z 1 "',;L()&fh'ah(jl\/'),
fed



















































































































































































































































A\-DS(I,i¢) implies A < cof(SN).
If in addition cf(non(SN')) = cf(\) then non(SN') < cof(SN).

Corollary 3.16
If o < cof(SN) then cov(M) < cof(SN).

(ases: . coulm)=2 =) — X< cof (SN)
3.1

cov(my<cd .+ by VS Cof(sv)-












































































































































































































A\-DS(I,i¢) implies A < cof(SN).
If in addition cf(non(SN')) = cf(\) then non(SN') < cof(SN).

Corollary 3.16
If o < cof(SN) then cov(M) < cof(SN).

Is b < cof(SN)? Is cof(N) < cof(SN)?

Question (Yorioka 2002)
Is Ny < cof(SN)?




Under \-DS(1,0), if non(SN) = supcof = p and cf(p) = X then
A\ <1 SN. In particular

add(SN) < X and 0, < cof(SN).




Under \-DS(1,0), if non(SN) = supcof = p and cf(p) = X then
A\ <1 SN. In particular

add(SN) < X and 0, < cof(SN).

Yorioka's Characterization Theorem follows. J

Mruminaldz ’UPw‘F — (ov(h):)-— uow (Sn) =€ur£af :)\ rtsu(n.
>/ ? * Al X
A =T SN éT ([ﬂ‘r('{_]<winJJ = CCA7<) ='T>\

. SMQT )\A



























































































































































































































































































































































































































Under \-DS(1,0), if non(SN) = supcof = p and cf(p) = X then
A\ <1 SN. In particular

add(SN) < X and 0, < cof(SN).

Yorioka's Characterization Theorem follows. J

Corollary 3.18
After adding \-many Cohen reals with \ > Xy regular, cof(SN') = 0,.




More about add(SN)

Question (Cardona & M. & Rivera-Madrid)
Is it consistent that add(SN') < min{cov(SN),non(SN)}?

Can the four cardinal characteristics associated with SA/ be pairwise
different?




Positive answer (BCM)

We can force:

cov(SN) A cof (SN') — cov®([supcof] <minadd) ——; 90
1 - [ T
(23 03 05
‘\
cov(N) supecov ————1s non(M) —— cof (M) supcof —— cof (N) ¢
0y b ? cof(Z,)
04
add(SN) _
R, — add(N) — minadd —————+ add(M) — (O\(MV — non(SN) — non(Zy) — non(N)




More questions

Is minadd = add(N)? Is supcof = cof(N')?

Is it consistent with ZFC that add(N) < add(SN) < b7
Or even add(N) < b < add(SN)?

add (N): cof ()= A = N cop (M)

@ cou(N)= (o{(”):) = X< Cog (SMY ?





















































































































































































































	Relational systems and Tukey order
	The ideal of strong measure zero sets and Yorioka ideals
	Developments about cof(SN)

