Revisiting the cofinality of the ideal of strong measure zero sets

Diego A. Mejía

diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work (in progress) with Jörg Brendle (Kobe University) and Miguel Cardona (UPJS)

> Kobe Set Theory Seminar July 20th, 2022

Relational systems

Definition 1.1

A relational system is a triplet $\mathbf{R}=\langle X,Y,R\rangle$ where X,Y are sets and R is a relation.

Relational systems

Definition 1.1

A relational system is a triplet $\mathbf{R}=\langle X,Y,R\rangle$ where X,Y are sets and R is a relation.

Definition 1.2

Let \mathcal{I} be an ideal on a set X (containing $[X]^{<\aleph_0}$).

- $\mathbf{C}_{\mathcal{I}} := \langle X, \mathcal{I}, \in \rangle$, which is a relational system.

Definition 1.3

Let $\mathbf{R} = \langle X, Y, R \rangle$ be a relational system.

- $\bullet \ B \subseteq X \text{ is } \mathbf{R}\text{-bounded if } \exists \, y \in Y \,\, \forall \, x \in B \colon xRy.$
- $2 D \subseteq Y \text{ is } \mathbf{R}\text{-dominating if } \forall x \in X \ \exists y \in D \colon xRy.$

Definition 1.3

Let $\mathbf{R} = \langle X, Y, R \rangle$ be a relational system.

- $2 \quad D \subseteq Y \text{ is } \mathbf{R}\text{-dominating if } \forall \, x \in X \,\, \exists \, y \in D \colon xRy.$

Definition 1.3

Let $\mathbf{R} = \langle X, Y, R \rangle$ be a relational system.

- **1** $B \subseteq X$ is **R**-bounded if $\exists y \in Y \ \forall x \in B \colon xRy$.
- ② $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D : xRy$.

Fact 1.4

If \mathcal{I} is an ideal on a set X then

- (a) $\mathfrak{b}(\mathcal{I}) = \operatorname{add}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \ \bigcup_{A \in \mathcal{F}} A \notin \mathcal{I}\}.$
- (b) $\mathfrak{d}(\mathcal{I}) = \operatorname{cof}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \ \forall \ A \in \mathcal{I} \ \exists \ B \in \mathcal{F} \colon A \subseteq B\}.$

Definition 1.3

Let $\mathbf{R} = \langle X, Y, R \rangle$ be a relational system.

- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D : xRy$.

Fact 1.4

If \mathcal{I} is an ideal on a set X then

- (a) $\mathfrak{b}(\mathcal{I}) = \operatorname{add}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup_{A \in \mathcal{F}} A \notin \mathcal{I}\}.$
- (b) $\mathfrak{d}(\mathcal{I}) = \operatorname{cof}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \ \forall A \in \mathcal{I} \ \exists B \in \mathcal{F} : A \subseteq B\}.$
- (c) $\mathfrak{b}(\mathbf{C}_{\mathcal{I}}) = \operatorname{non}(\mathcal{I}) := \min\{|Z| : Z \subseteq X, \ Z \notin \mathcal{I}\}.$
- (d) $\mathfrak{d}(\mathbf{C}_{\mathcal{I}}) = \operatorname{cov}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup_{A \in \mathcal{F}} A = X\}.$

Examples

Example 1.5

- **1** \mathcal{N} : the ideal of measure zero (null) subsets of the Cantor space 2^{ω} .
- \bullet \mathcal{M} : the ideal of first category (meager) subsets of 2^{ω} .

Tukey connections

Definition 1.6

Let $\mathbf{R} = \langle X, Y, R \rangle$ and $\mathbf{R}' = \langle X', Y', R' \rangle$ be relational systems. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a Tukey connection from \mathbf{R} to \mathbf{R}' if

$$F: X \to X', \quad G: Y' \to Y, \quad \forall \, x \in X \,\, \forall \, y' \in Y' \colon F(x)R'y' \Rightarrow xRG(y').$$

Tukey connections

Definition 1.6

Let $\mathbf{R} = \langle X, Y, R \rangle$ and $\mathbf{R}' = \langle X', Y', R' \rangle$ be relational systems.

A pair $(F,G):\mathbf{R} o \mathbf{R}'$ is a Tukey connection from \mathbf{R} to \mathbf{R}' if

$$F: X \to X', \quad G: Y' \to Y, \quad \forall \, x \in X \,\, \forall \, y' \in Y' \colon F(x)R'y' \Rightarrow xRG(y').$$

 $\mathbf{R} \preceq_{\mathbf{T}} \mathbf{R}'$ (\mathbf{R} is Tukey-below \mathbf{R}') if $\exists (F,G): \mathbf{R} \to \mathbf{R}'$ Tukey connection.

 $R \cong_T R'$ (R and R' are Tukey equivalent) if $R \preceq_T R'$ and $R' \preceq_T R$.

$$\mathbf{R} \qquad \qquad \mathbf{R}'$$

$$Y \longleftarrow G \qquad Y'$$

$$X \longrightarrow X'$$

Tukey connections and cardinal characteristics

Lemma 1.7

- $\ \, \textbf{0} \ \, \mathbf{R} \preceq_T \mathbf{R}' \text{ implies } \mathfrak{b}(\mathbf{R}') \leq \mathfrak{b}(\mathbf{R}) \text{ and } \mathfrak{d}(\mathbf{R}) \leq \mathfrak{d}(\mathbf{R}').$
- $\textbf{2} \ \mathbf{R} \cong_{\mathrm{T}} \mathbf{R}' \text{ implies } \mathfrak{b}(\mathbf{R}) = \mathfrak{b}(\mathbf{R}') \text{ and } \mathfrak{d}(\mathbf{R}) = \mathfrak{d}(\mathbf{R}').$

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_i := \langle X_i, Y_i, R_i \rangle$ be a relational system. Define $\prod_{i \in I} \mathbf{R}_i := \langle \prod_{i \in I} X_i, \prod_{i \in I} Y_i, R^{\Pi} \rangle$ where

 $x R^{\Pi} y$ iff $\forall i \in I : x_i R_i y_i$.

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_i := \langle X_i, Y_i, R_i \rangle$ be a relational system. Define $\prod_{i \in I} \mathbf{R}_i := \langle \prod_{i \in I} X_i, \prod_{i \in I} Y_i, R^{\Pi} \rangle$ where

 $x R^{\Pi} y$ iff $\forall i \in I : x_i R_i y_i$.

Fact 1.9

- (a) $\mathbf{R}_i \preceq_{\mathrm{T}} \prod_{i \in I} \mathbf{R}_i$.
- (b) $\mathfrak{b}\left(\prod_{i\in I}\mathbf{R}_i\right) \stackrel{\blacktriangleleft}{=} \min_{i\in I}\mathfrak{b}(\mathbf{R}_i)$ and $\sup_{i\in I}\mathfrak{d}(\mathbf{R}_i) \leq \mathfrak{d}\left(\prod_{i\in I}\mathbf{R}_i\right) \leq \prod_{i\in I}\mathfrak{d}(R_i).$

 $\chi_i \to \prod_{i \in I} \chi_i \qquad \prod_{i \in I} \gamma_i \to \gamma_i$ $q_i \mapsto \langle \cdots | q_i \rangle \xrightarrow{\gamma} \qquad \overline{\gamma} \mapsto \gamma_i$

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_i := \langle X_i, Y_i, R_i \rangle$ be a relational system. Define $\prod_{i \in I} \mathbf{R}_i := \langle \prod_{i \in I} X_i, \prod_{i \in I} Y_i, R^{\Pi} \rangle$ where

 $x R^{\Pi} y$ iff $\forall i \in I : x_i R_i y_i$.

Fact 1.9

- (a) $\mathbf{R}_i \preceq_{\mathrm{T}} \prod_{i \in I} \mathbf{R}_i$.
- (b) $\mathfrak{b}\left(\prod_{i\in I}\mathbf{R}_i\right) = \min_{i\in I}\mathfrak{b}(\mathbf{R}_i)$ and $\sup_{i\in I}\mathfrak{d}(\mathbf{R}_i) \leq \mathfrak{d}\left(\prod_{i\in I}\mathbf{R}_i\right) \leq \prod_{i\in I}\mathfrak{d}(R_i).$

$$\mathfrak{b}\left(\prod_{i\in I}\mathbf{R}\right)\geq\min_{i\in I}\mathfrak{b}(\mathbf{R}_i)$$
:

If $F \subseteq \prod_{i \in I} X_i$ and $|F| < \min_{i \in I} \mathfrak{b}(\mathbf{R}_i)$ then $\{x_i : x \in F\}$ is bounded by some $y_i \in Y_i$, so F is bounded by $y := \langle y_i : i \in I \rangle$.

When $\mathbf{R}_i = \mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^I := \prod_{i \in I} \mathbf{R}$.

When $\mathbf{R}_i = \mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^I := \prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.

- $\mathbf{2} \ \mathbf{C}_{\mathcal{I}}^{J} \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{I}^{(J)}}.$

So we denote $add(\mathcal{I}^J) := \mathfrak{b}(\mathcal{I}^J) = add(\mathcal{I}^{(J)})$, etc.

When $\mathbf{R}_i = \mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^I := \prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.

- ① $\mathcal{I}^J\cong_{\mathrm{T}}\mathcal{I}^{(J)}$ where $\mathcal{I}^{(J)}$ is the ideal on X^J generated by $\prod_{i\in J}A_i$ for $\langle A_i:i\in J\rangle\in\mathcal{I}^J$.

So we denote $add(\mathcal{I}^J) := \mathfrak{b}(\mathcal{I}^J) = add(\mathcal{I}^{(J)})$, etc.

 $add(\mathcal{I}^J) = add(\mathcal{I}) \text{ and } non(\mathcal{I}^J) = non(\mathcal{I}).$

When $\mathbf{R}_i = \mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^I := \prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.

- $\textbf{0} \ \ \mathcal{I}^J \cong_{\mathrm{T}} \mathcal{I}^{(J)} \text{ where } \mathcal{I}^{(J)} \text{ is the ideal on } X^J \text{ generated by } \prod_{i \in J} A_i \text{ for } \langle A_i : i \in J \rangle \in \mathcal{I}^J.$
- ② $\mathbf{C}_{\mathcal{I}}^{J} \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{I}^{(J)}}$. So we denote $\mathrm{add}(\mathcal{I}^{J}) := \mathfrak{b}(\mathcal{I}^{J}) = \mathrm{add}(\mathcal{I}^{(J)})$, etc.

 $\frac{\operatorname{deffote}\,\operatorname{diad}(\mathcal{D}^{-}) = \operatorname{diad}(\mathcal{D}^{-}),\,\,\operatorname{etc.}}{\operatorname{diad}(\mathcal{D}^{-})}$

$$add(\mathcal{I}^J) = add(\mathcal{I}) \text{ and } non(\mathcal{I}^J) = non(\mathcal{I}).$$

Example 1.11

When ${\cal S}$ is a directed preorder, denote

$$\mathfrak{b}_S^I := \mathfrak{b}(S^I), \qquad \mathfrak{d}_S^I := \mathfrak{d}(S^I).$$

2. The ideal of strong measure zero sets and Yorioka ideals

Strong measure zero sets

Definition 2.1

- For $\sigma = \langle \sigma_i : i < \omega \rangle \in (2^{<\omega})^{\omega}$, define $\operatorname{ht}_{\sigma} : \omega \to \omega$ s.t. $\operatorname{ht}_{\sigma}(i) := |\sigma_i|$.
- **2** A set $Z \subseteq 2^{\omega}$ has strong measure zero (in 2^{ω}) if

$$\forall f \in \omega^{\omega} \ \exists \ \sigma \in (2^{<\omega})^{\omega} \colon f \leq^* \mathrm{ht}_{\sigma} \ \mathrm{and} \ Z \subseteq \bigcup_{i < \omega} [\sigma_i]$$

where
$$[s] := \{x \in 2^{\omega} : s \subseteq x\}$$
 for $s \in 2^{<\omega}$.

3 SN: the collection of strong measure zero subsets of 2^{ω} .

Strong measure zero sets

Definition 2.1

- $\bullet \ \, \text{For} \,\, \sigma = \langle \sigma_i : \, i < \omega \rangle \in (2^{<\omega})^\omega \text{, define } \operatorname{ht}_\sigma \colon \omega \to \omega \,\, \text{s.t. } \operatorname{ht}_\sigma(i) := |\sigma_i|.$
- **②** A set $Z \subseteq 2^{\omega}$ has strong measure zero (in 2^{ω}) if

$$\forall f \in \omega^{\omega} \ \exists \ \sigma \in (2^{<\omega})^{\omega} \colon f \leq^* \mathrm{ht}_{\sigma} \ \mathrm{and} \ Z \subseteq \bigcup_{i < \omega} [\sigma_i]$$

where $[s] := \{x \in 2^{\omega} : s \subseteq x\}$ for $s \in 2^{<\omega}$.

3 SN: the collection of strong measure zero subsets of 2^{ω} .

Fact 2.2

A set $Z\subseteq 2^\omega$ has strong measure zero iff

$$\forall f \in \omega^{\omega} \ \exists \, \sigma \in (2^{<\omega})^{\omega} \colon f \leq^* \mathrm{ht}_{\sigma} \ \textit{and} \ Z \subseteq [\sigma]_{\infty}$$

where $[\sigma]_{\infty} := \{x \in 2^{\omega} : x \text{ extends infinitely many } \sigma_i\}.$

Yorioka ideals

Definition 2.3

 $\bullet \quad \text{For } x,y \in \omega^{\omega},$

$$x \ll y \text{ iff } \forall k < \omega \ \exists m_k < \omega \ \forall i \geq m_k \colon x(i^k) \leq y(i).$$

- $\ \, \mathbf{2} \ \, \omega^{\uparrow\omega}:=\{f\in\omega^\omega:\, f \,\, \text{is increasing}\}.$
- **3** For $f \in \omega^{\uparrow \omega}$ define the Yorioka ideal

$$\mathcal{I}_f := \{ A \subseteq 2^\omega : \exists \, \sigma \in (2^{<\omega})^\omega \colon f \ll \operatorname{ht}_\sigma \text{ and } A \subseteq [\sigma]_\infty \}.$$

Yorioka ideals

Definition 2.3

 $\bullet \quad \text{For } x,y \in \omega^{\omega},$

$$x \ll y \text{ iff } \forall k < \omega \ \exists m_k < \omega \ \forall i \geq m_k \colon x(i^k) \leq y(i).$$

- $\ \, \textbf{2} \ \, \omega^{\uparrow\omega}:=\{f\in\omega^\omega:\,f\text{ is increasing}\}.$
- **3** For $f \in \omega^{\uparrow \omega}$ define the Yorioka ideal

$$\mathcal{I}_f := \{ A \subseteq 2^\omega : \exists \, \sigma \in (2^{<\omega})^\omega \colon f \ll \operatorname{ht}_\sigma \text{ and } A \subseteq [\sigma]_\infty \}.$$

Theorem 2.4 (Yorioka 2002)

Each \mathcal{I}_f is a σ -ideal and $\mathcal{SN} = \bigcap_{f \in \omega^{\uparrow \omega}} \mathcal{I}_f$.

Yorioka ideals

Definition 2.3

• For $x, y \in \omega^{\omega}$,

$$x \ll y \text{ iff } \forall k < \omega \ \exists m_k < \omega \ \forall i \geq m_k \colon x(i^k) \leq y(i).$$

- $\ \, \textbf{2} \ \, \omega^{\uparrow\omega}:=\{f\in\omega^\omega:\,f\text{ is increasing}\}.$
- 3 For $f \in \omega^{\uparrow \omega}$ define the Yorioka ideal

$$\mathcal{I}_f := \{ A \subseteq 2^\omega : \exists \, \sigma \in (2^{<\omega})^\omega \colon f \ll \operatorname{ht}_\sigma \text{ and } A \subseteq [\sigma]_\infty \}.$$

Theorem 2.4 (Yorioka 2002)

Each \mathcal{I}_f is a σ -ideal and $\mathcal{SN} = \bigcap_{f \in \omega^{\uparrow \omega}} \mathcal{I}_f$.

Theorem 2.5 (Kamo & Osuga 2008)

We do not get an ideal when replacing $f \ll \operatorname{ht}_{\sigma}$ by $f \leq^* \operatorname{ht}_{\sigma}$.

Fact 2.6

- If $f \leq^* g$ then $\mathcal{I}_g \subseteq \mathcal{I}_f$.
- ② If $D \subseteq \omega^{\uparrow \omega}$ is a dominating family, then $\mathcal{SN} = \bigcap_{f \in D} \mathcal{I}_f$.

Fact 2.6

- If $f \leq^* g$ then $\mathcal{I}_g \subseteq \mathcal{I}_f$.
- 2 If $D \subseteq \omega^{\uparrow \omega}$ is a dominating family, then $SN = \bigcap_{f \in D} \mathcal{I}_f$.

$$\operatorname{supcov} := \sup_{f \in \omega^{\uparrow \omega}} \operatorname{cov}(\mathcal{I}_f),$$

$$\min_{f \in \omega^{\uparrow \omega}} \min_{f \in \omega^{\uparrow \omega}} \operatorname{non}(\mathcal{I}_f)$$

supadd = add (Iid)

$$\operatorname{minadd} := \min_{f \in \omega^{\uparrow \omega}} \operatorname{add}(\mathcal{I}_f),$$

 $supcof := sup cof(\mathcal{I}_f).$ $f \in \omega^{\uparrow \omega}$

Expanded diagram

New arrows: Miller, Yorioka, Kamo, Osuga, Cardona & M., Brendle

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

- $2 \operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{non}(\mathcal{SN})\}.$

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

- $\mathbf{0}$ non (\mathcal{SN}) = minnon.

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber \aleph_1 posets with length of uncountable cofinality forces $cov(\mathcal{SN}) \leq \aleph_1$.

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

- $\mathbf{0}$ non (\mathcal{SN}) = minnon.

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber \aleph_1 posets with length of uncountable cofinality forces $cov(\mathcal{SN}) \leq \aleph_1$.

Theorem 2.10 (Cardona & M. & Rivera-Madrid 2021)

In Sacks' model, $cov(SN) = \mathfrak{c}$.

Theorem 2.11 (Carlson 1993)

 $add(\mathcal{N}) \leq add(\mathcal{S}\mathcal{N}).$

Theorem 2.12 (Goldstern, Judah & Shelah 1993)

It is consistent with ZFC that $cof(\mathcal{M}) < add(\mathcal{SN})$.

Theorem 2.11 (Carlson 1993)

Theorem 2.12 (Goldstern, Judah & Shelah 1993)

Theorem 2.13 (Kamo – proof by Cardona & M. 2019)

It is consistent with ZFC that $cof(\mathcal{M}) < add(\mathcal{SN})$.

 $add(\mathcal{N}) \leq minadd \leq add(\mathcal{SN}).$

 $add(\mathcal{N}) \leq add(\mathcal{S}\mathcal{N}).$

Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)

If minadd = supcof = λ then $SN \cong_T \lambda^{\lambda}$. In particular $add(SN) = \lambda$ and $cof(SN) = \mathfrak{d}_{\lambda}$.

Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)

If minadd = supcof =
$$\lambda$$
 then $\mathcal{SN} \cong_{\mathrm{T}} \lambda^{\lambda}$.
In particular $\mathrm{add}(\mathcal{SN}) = \lambda$ and $\mathrm{cof}(\mathcal{SN}) = \mathfrak{d}_{\lambda}$.

Theorem 2.15 (Yorioka 2002)

 ${\rm ZFC}$ does not prove any relation between ${\rm cof}(\mathcal{SN})$ and $\mathfrak{c}.$

$$^{\star} (on(cot(2N)< c)$$

$$(H \rightarrow c < cot(2N)$$

3. Developments about $\mathrm{cof}(\mathcal{SN})$

Improvements

Definition 3.1 (Cardona 2022)

Let S be a directed preorder with minimal element i_0 .

For $f \in \omega^{\uparrow \omega}$, $\bar{A} = \langle A_i : i \in S \rangle$ is an \mathcal{I}_f -directed system on S if

- (I) $\forall i \in S : A_i \in \mathcal{I}_f$,
- (II) A_{i_0} is dense G_{δ} ,
- (III) if $i \leq_S j$ then $A_i \subseteq A_j$, and
- (IV) $\{A_i: i \in S\}$ is cofinal in \mathcal{I}_f .

Improvements

Definition 3.1 (Cardona 2022)

Let S be a directed preorder with minimal element i_0 .

For $f \in \omega^{\uparrow \omega}$, $\bar{A} = \langle A_i : i \in S \rangle$ is an \mathcal{I}_f -directed system on S if

- (I) $\forall i \in S : A_i \in \mathcal{I}_f$,
- (II) A_{i_0} is dense G_{δ} ,
- (III) if $i \leq_S j$ then $A_i \subseteq A_j$, and
- (IV) $\{A_i: i \in S\}$ is cofinal in \mathcal{I}_f .
- If $\{f_\alpha: \alpha < \lambda\}$ is a dominating family on ω^ω then $\langle \bar{A}^{f_\alpha}: \alpha < \lambda \rangle$ is a λ -dominating directed system on S if each \bar{A}^{f_α} is an \mathcal{I}_{f_α} -directed system on S and
 - (V) $\forall \alpha < \lambda : \bigcap_{\xi < \alpha} A_{i_0}^{f_{\xi}} \notin \mathcal{I}_{f_{\alpha}}$.

If $minadd = supcof = \lambda$ then there is a λ -dominating system on λ .

If $minadd = supcof = \lambda$ then there is a λ -dominating system on λ .

Lemma 3.3 (Cardona 2022)

If $\mathrm{cov}(\mathcal{M})=\mathfrak{d}=\lambda$, $D\subseteq\omega^{\uparrow\omega}$ is dominating and, for each $f\in D$, there is some \mathcal{I}_f -directed system on S, then there is a λ -dominating directed system on S.

If $minadd = supcof = \lambda$ then there is a λ -dominating system on λ .

Lemma 3.3 (Cardona 2022)

If $\operatorname{cov}(\mathcal{M}) = \mathfrak{d} = \lambda$, $D \subseteq \omega^{\uparrow \omega}$ is dominating and, for each $f \in D$, there is some \mathcal{I}_f -directed system on S, then there is a λ -dominating directed system on S.

Lemma 3.4 (Cardona 2022)

If there is a λ -dominating directed system on S then $\mathcal{SN} \preceq_T S^{\lambda}$. In particular $\mathfrak{b}(S) < \operatorname{add}(\mathcal{SN})$ and $\operatorname{cof}(\mathcal{SN}) < \mathfrak{d}_S^{\lambda}$.

If $minadd = supcof = \lambda$ then there is a λ -dominating system on λ .

Lemma 3.3 (Cardona 2022)

If $\operatorname{cov}(\mathcal{M}) = \mathfrak{d} = \lambda$, $D \subseteq \omega^{\uparrow \omega}$ is dominating and, for each $f \in D$, there is some \mathcal{I}_f -directed system on S, then there is a λ -dominating directed system on S.

Lemma 3.4 (Cardona 2022)

If there is a λ -dominating directed system on S then $\mathcal{SN} \preceq_T S^{\lambda}$. In particular

$$\mathfrak{b}(S) \leq \operatorname{add}(\mathcal{SN})$$
 and $\operatorname{cof}(\mathcal{SN}) \leq \mathfrak{d}_S^{\lambda}$.

Point

If there is some \mathcal{I}_f -directed system on S then $\mathcal{I}_f \preceq_{\mathrm{T}} S$.

Lemma 3.5

$$\mathcal{SN} \preceq_{\mathrm{T}} \prod_{f \in D} \mathcal{I}_f$$
 for any dominating family $D \subseteq \omega^{\uparrow \omega}$.

In particular, minadd $\leq \operatorname{add}(\mathcal{SN})$ and

$$\operatorname{cof}(\mathcal{SN}) \leq \mathfrak{d}\left(\prod_{f \in D} \mathcal{I}_f\right) \leq \prod_{f \in D} \operatorname{cof}(\mathcal{I}_f) = 2^{\mathfrak{d}},$$

the last equality when $|D| = \mathfrak{d}$.

$$\langle ..., s | ... \rangle \subset_{\underline{A}} \langle ... \forall t | v \rangle \Rightarrow S \in \bigcup_{t \in D} \forall t$$

$$S \longmapsto \langle ..., s | v \rangle \mapsto \bigcup_{t \in D} \forall t \in \bigcup_{t \in$$

Lemma 3.5

 $SN \preceq_{\mathrm{T}} \prod_{f \in D} \mathcal{I}_f$ for any dominating family $D \subseteq \omega^{\uparrow \omega}$.

In particular, minadd
$$\leq \operatorname{add}(\mathcal{SN})$$
 and
$$\operatorname{cof}(\mathcal{SN}) \leq \mathfrak{d}\left(\prod_{f \in D} \mathcal{I}_f\right) \leq \prod_{f \in D} \operatorname{cof}(\mathcal{I}_f) = 2^{\mathfrak{d}},$$

the last equality when $|D| = \mathfrak{d}$.

The existence of an
$$\mathcal{I}_f$$
-directed system on S for all $f \in D$ implies

$$\mathcal{S}\mathcal{N} \preceq_{\mathrm{T}} \prod \mathcal{I}_f \preceq_{\mathrm{T}} \prod S = S^D.$$

A more direct Tukey-connection

Fact 3.6

- **1** If $X \subseteq Y$ and $\theta \le \kappa$ then $\mathbf{C}_{[X]^{\le \kappa}} \preceq_{\mathrm{T}} \mathbf{C}_{[Y]^{\le \theta}}$.
- $\textbf{ 2} \ \ \textit{If} \ S \ \textit{is a directed preorder then} \ S \preceq_T \mathbf{C}_{[\mathfrak{d}(S)]^{<\mathfrak{b}(S)}}.$

A more direct Tukey-connection

Fact 3.6

- If $X \subseteq Y$ and $\theta \le \kappa$ then $\mathbf{C}_{[X]^{\le \kappa}} \preceq_{\mathrm{T}} \mathbf{C}_{[Y]^{\le \theta}}$.
- ② If S is a directed preorder then $S \preceq_T \mathbf{C}_{[\mathfrak{d}(S)] < \mathfrak{b}(S)}$.

Theorem 3.7 (BCM)

$$\mathcal{SN} \preceq_{\mathrm{T}} \mathbf{C}^{\mathfrak{d}}_{[\mathrm{supcof}]^{< \mathrm{minadd}}}$$
 , in particular

$$\operatorname{cof}(\mathcal{SN}) \leq \operatorname{cov}\left(\left([\operatorname{supcof}]^{<\operatorname{minadd}}\right)^{\mathfrak{d}}\right).$$

Lower bounds of $cof(\mathcal{SN})$

Lemma 3.8 (Cardona 2022)

Assumme that κ and λ are cardinals such that $0 < \kappa \le \lambda \le \mathrm{non}(\mathcal{SN})$ and that there is some λ -dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{SN}$, in particular $\mathrm{add}(\mathcal{SN}) \le \lambda$ and $\mathfrak{d}_{\lambda} \le \mathrm{cof}(\mathcal{SN})$.

Lower bounds of $cof(\mathcal{SN})$

Lemma 3.8 (Cardona 2022)

Asumme that κ and λ are cardinals such that $0 < \kappa \le \lambda \le \mathrm{non}(\mathcal{SN})$ and that there is some λ -dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{SN}$, in particular $\mathrm{add}(\mathcal{SN}) \le \lambda$ and $\mathfrak{d}_{\lambda} \le \mathrm{cof}(\mathcal{SN})$.

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that $cov(\mathcal{SN}) < non(\mathcal{SN}) < cof(\mathcal{SN})$ and the continuum c in any position with respect to $cof(\mathcal{SN})$.

Lower bounds of cof(SN)

Lemma 3.8 (Cardona 2022)

Assumme that κ and λ are cardinals such that $0 < \kappa \le \lambda \le \mathrm{non}(\mathcal{SN})$ and that there is some λ -dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{SN}$, in particular $\mathrm{add}(\mathcal{SN}) \le \lambda$ and $\mathfrak{d}_{\lambda} \le \mathrm{cof}(\mathcal{SN})$.

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that $cov(\mathcal{SN}) < non(\mathcal{SN}) < cof(\mathcal{SN})$ and the continuum $\mathfrak c$ in any position with respect to $cof(\mathcal{SN})$.

What is the role of κ ?

Non-directed systems

Definition 3.10

Let I be a set and $i_0 \in I$. Given $f \in \omega^{\uparrow \omega}$, a family $A^f = \langle A_i^f : i \in I \rangle$ is an \mathcal{I}_f -system on (I, i_0) if it satisfies:

- (I) $\forall i \in I : A_i^f \in \mathcal{I}_f$,
- (II) $A_{i_0}^f \in \mathcal{I}_f$ is dense G_{δ} ,
- (III) $\forall i \in I : A_{i_0}^f \subseteq A_i^f$, and
- (IV) $\langle A_i^f : i \in I \rangle$ is cofinal in \mathcal{I}_f .

Non-directed systems

Definition 3.10

Let I be a set and $i_0 \in I$. Given $f \in \omega^{\uparrow \omega}$, a family $A^f = \langle A_i^f : i \in I \rangle$ is an \mathcal{I}_f -system on (I, i_0) if it satisfies:

- (I) $\forall i \in I : A_i^f \in \mathcal{I}_f$,
- (II) $A_{i_0}^f \in \mathcal{I}_f$ is dense G_δ ,
- (III) $\forall i \in I : A_{i_0}^f \subseteq A_i^f$, and
- (IV) $\langle A_i^f : i \in I \rangle$ is cofinal in \mathcal{I}_f .

If $\{f_\alpha: \alpha<\lambda\}$ is a dominating family on $\omega^{\uparrow\omega}$ then $\langle \bar{A}^{f_\alpha}: \alpha<\lambda\rangle$ is a λ -dominating system on (I,i_0) if each \bar{A}^{f_α} is an \mathcal{I}_{f_α} -system on (I,i_0) and

(V)
$$\forall \alpha < \lambda : \bigcap_{\xi < \alpha} A_{i_0}^{f_{\xi}} \notin \mathcal{I}_{f_{\alpha}}$$
.

Existence of systems

Remark 3.11

An \mathcal{I}_f -system on (I, i_0) exists iff $\operatorname{cof}(\mathcal{I}_f) \leq |I|$.

Existence of systems

Remark 3.11

An \mathcal{I}_f -system on (I, i_0) exists iff $cof(\mathcal{I}_f) \leq |I|$.

Lemma 3.12

If $\operatorname{cov}(\mathcal{M}) = \mathfrak{d} = \lambda$, $D \subseteq \omega^{\uparrow \omega}$ is dominating and $\operatorname{supcof} \leq |I|$, then there is a λ -dominating system on (I, i_0) .

Main Lemma

Definition 3.13

 λ -DS (I, i_0) : There is a λ -dominating system $\langle \bar{A}^{d_{\alpha}} : \alpha < \lambda \rangle$ on (I, i_0) .

Main Lemma

Definition 3.13

 λ -DS (I, i_0) : There is a λ -dominating system $\langle \bar{A}^{d_{\alpha}} : \alpha < \lambda \rangle$ on (I, i_0) .

Main Lemma 3.14

Under λ -DS (I, i_0) , for any $\langle \mathcal{C}_{\alpha} : \alpha < \lambda \rangle$ satisfying

$$\mathcal{C}_{\alpha} \subseteq \mathcal{I}_{d_{\alpha}}$$
 and $\sum_{\xi < \alpha} |\mathcal{C}_{\xi}| < \operatorname{non}(\mathcal{SN})$ for all $\alpha < \lambda$,

there is some $K \in \mathcal{SN}$ such that $K \nsubseteq C$ for all $C \in \bigcup_{\alpha < \lambda} \mathcal{C}_{\alpha}$.

By recursion on LCA, define G: A → I and {X c: CE BA} as follows.

 $B_{c} \in Z_{d_{\perp}}$

But
$$\bigcap_{s \in A} A_{s}^{d_{s}} \subseteq \bigcap_{s \in A} A_{G(s)}^{d_{s}} \notin \mathbb{Z}_{d_{A}} : \bigcap_{s \in A} A_{G(s)}^{d_{s}} \notin \mathbb{B}_{c}$$

$$\exists X_{c}^{\prime} \in \bigcap_{1 \leq a} \Lambda_{G(1)}^{\prime} \setminus B_{c}$$

$$\forall X_{E}^{\prime} : \{ \leq a, E \in b_{1} \} \subseteq A_{G(a)}^{\prime}$$
Size $\leq \log_{1}(\leq N)$

Results

$$(ov(M)=3=\lambda \leq non(SN)$$

Theorem 3.15

$$\lambda$$
-DS (I, i_0) implies $\lambda < \operatorname{cof}(\mathcal{SN})$.

If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{SN})) = \operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$.

Results

Theorem 3.15

 λ -DS (I, i_0) implies $\lambda < cof(SN)$.

If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{SN})) = \operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$.

Corollary 3.16

If $\mathfrak{d} \leq \mathrm{cof}(\mathcal{SN})$ then $\mathrm{cov}(\mathcal{M}) < \mathrm{cof}(\mathcal{SN}).$

(ase 5:
$$cov(M) = \partial = \lambda$$
 3.15 $\lambda < cof(SN)$

· cov(n)<3 .. by 0 ≤ cop (su).

Results

Theorem 3.15

 λ -DS (I, i_0) implies $\lambda < \operatorname{cof}(\mathcal{SN})$.

If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{SN})) = \operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$.

Corollary 3.16

If $\mathfrak{d} \leq \operatorname{cof}(\mathcal{SN})$ then $\operatorname{cov}(\mathcal{M}) < \operatorname{cof}(\mathcal{SN})$.

Question

Is $\mathfrak{b} \leq \operatorname{cof}(\mathcal{SN})$? Is $\operatorname{cof}(\mathcal{N}) \leq \operatorname{cof}(\mathcal{SN})$?

Question (Yorioka 2002)

Is $\aleph_1 < \operatorname{cof}(\mathcal{SN})$?

Theorem 3.17

Under λ -DS(μ , 0), if $\mathrm{non}(\mathcal{SN}) = \mathrm{supcof} = \mu$ and $\mathrm{cf}(\mu) = \lambda$ then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{SN}$. In particular

 $add(\mathcal{SN}) \leq \lambda \text{ and } \mathfrak{d}_{\lambda} \leq cof(\mathcal{SN}).$

Theorem 3.17

Under λ -DS(μ , 0), if non(SN) = supcof = μ and cf(μ) = λ then $\lambda^{\lambda} \prec_{\mathrm{T}} \mathcal{SN}$. In particular

 $add(\mathcal{SN}) < \lambda \text{ and } \mathfrak{d}_{\lambda} < cof(\mathcal{SN}).$

Yorioka's Characterization Theorem follows.

Theorem 3.17

Under λ -DS(μ , 0), if $\mathrm{non}(\mathcal{SN}) = \mathrm{supcof} = \mu$ and $\mathrm{cf}(\mu) = \lambda$ then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{SN}$. In particular

 $\operatorname{add}(\mathcal{SN}) \leq \lambda \text{ and } \mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{SN}).$

Yorioka's Characterization Theorem follows.

Corollary 3.18

After adding λ -many Cohen reals with $\lambda \geq \aleph_1$ regular, $\operatorname{cof}(\mathcal{SN}) = \mathfrak{d}_{\lambda}$.

More about add(SN)

Question (Cardona & M. & Rivera-Madrid)

Is it consistent that $\operatorname{add}(\mathcal{SN}) < \min\{\operatorname{cov}(\mathcal{SN}), \operatorname{non}(\mathcal{SN})\}?$

Can the four cardinal characteristics associated with $\mathcal{S}\mathcal{N}$ be pairwise different?

Positive answer (BCM)

We can force:

More questions

Question

Is minadd = add(\mathcal{N})? Is supcof = cof(\mathcal{N})?

Question

Is it consistent with ZFC that $add(\mathcal{N}) < add(\mathcal{SN}) < \mathfrak{b}$? Or even $add(\mathcal{N}) < \mathfrak{b} < add(\mathcal{SN})$?

$$add(N) = cot(N) = y \rightarrow y < cot(ZM)$$