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1. Relational systems and Tukey order



Relational systems

Definition 1.1

A relational system is a triplet R = 〈X,Y,R〉 where X,Y are sets and R
is a relation.

Definition 1.2

Let I be an ideal on a set X (containing [X]<ℵ0).

1 I = 〈I, I,⊆〉 as a relational system.

2 CI := 〈X, I,∈〉, which is a relational system.
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Cardinal characteristics associated with relational systems

Definition 1.3

Let R = 〈X,Y,R〉 be a relational system.

1 B ⊆ X is R-bounded if ∃ y ∈ Y ∀x ∈ B : xRy.

2 D ⊆ Y is R-dominating if ∀x ∈ X ∃ y ∈ D : xRy.

3 b(R) := min{|F | : F ⊆ X is R-unbounded}.
4 d(R) := min{|D| : D ⊆ Y is R-dominating}.

Fact 1.4

If I is an ideal on a set X then

(a) b(I) = add(I) := min{|F| : F ⊆ I, ⋃A∈F A /∈ I}.
(b) d(I) = cof(I) := min{|F| : F ⊆ I, ∀A ∈ I ∃B ∈ F : A ⊆ B}.
(c) b(CI) = non(I) := min{|Z| : Z ⊆ X, Z /∈ I}.
(d) d(CI) = cov(I) := min{|F| : F ⊆ I, ⋃A∈F A = X}.
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Examples

Example 1.5

1 N : the ideal of measure zero (null) subsets of the Cantor space 2ω.

2 M: the ideal of first category (meager) subsets of 2ω.

3 When κ ≤ |X| is an infinite cardinal, [X]<κ := {A ⊆ X : |A| < κ}.



Tukey connections

Definition 1.6

Let R = 〈X,Y,R〉 and R′ = 〈X ′, Y ′, R′〉 be relational systems.
A pair (F,G) : R→ R′ is a Tukey connection from R to R′ if

F : X → X ′, G : Y ′ → Y, ∀x ∈ X ∀ y′ ∈ Y ′ : F (x)R′y′ ⇒ xRG(y′).

R�T R′ (R is Tukey-below R′) if ∃ (F,G) : R→ R′ Tukey connection.

R∼=T R′ (R and R′ are Tukey equivalent) if R �T R′ and R′ �T R.

R R′

Y Y ′

X X ′
F

G
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Tukey connections and cardinal characteristics

Lemma 1.7

1 R �T R′ implies b(R′) ≤ b(R) and d(R) ≤ d(R′).

2 R ∼=T R′ implies b(R) = b(R′) and d(R) = d(R′).



Products of relational systems

Definition 1.8

For each i ∈ I let Ri := 〈Xi, Yi, Ri〉 be a relational system.
Define

∏
i∈I Ri :=

〈∏
i∈I Xi,

∏
i∈I Yi, R

Π
〉

where

xRΠ y iff ∀ i ∈ I : xiRi yi.

Fact 1.9

(a) Ri �T
∏
i∈I Ri.

(b) b
(∏

i∈I Ri

)
= mini∈I b(Ri) and

supi∈I d(Ri) ≤ d
(∏

i∈I Ri

)
≤∏i∈I d(Ri).

b
(∏

i∈I R
)
≥ mini∈I b(Ri):

If F ⊆∏i∈I Xi and |F | < mini∈I b(Ri)
then {xi : x ∈ F} is bounded by some yi ∈ Yi,
so F is bounded by y := 〈yi : i ∈ I〉.
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Powers of relational systems

When Ri = R for all i ∈ I, we denote RI :=
∏
i∈I R.

Example 1.10

Let I be an ideal on X.

1 IJ ∼=T I(J) where I(J) is the ideal on XJ generated by
∏
i∈J Ai for

〈Ai : i ∈ J〉 ∈ IJ .

2 CJ
I
∼=T CI(J) .

So we denote add(IJ) := b(IJ) = add(I(J)), etc.

add(IJ) = add(I) and non(IJ) = non(I).

Example 1.11

When S is a directed preorder, denote

bIS := b(SI), dIS := d(SI).
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2. The ideal of strong measure zero sets and Yorioka
ideals



Strong measure zero sets

Definition 2.1
1 For σ = 〈σi : i < ω〉 ∈ (2<ω)ω, define htσ : ω → ω s.t. htσ(i) := |σi|.
2 A set Z ⊆ 2ω has strong measure zero (in 2ω) if

∀ f ∈ ωω ∃σ ∈ (2<ω)ω : f ≤∗ htσ and Z ⊆
⋃

i<ω

[σi]

where [s] := {x ∈ 2ω : s ⊆ x} for s ∈ 2<ω.

3 SN : the collection of strong measure zero subsets of 2ω.

Fact 2.2

A set Z ⊆ 2ω has strong measure zero iff

∀ f ∈ ωω ∃σ ∈ (2<ω)ω : f ≤∗ htσ and Z ⊆ [σ]∞

where [σ]∞ := {x ∈ 2ω : x extends infinitely many σi}.
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Yorioka ideals

Definition 2.3
1 For x, y ∈ ωω,

x� y iff ∀ k < ω ∃mk < ω ∀ i ≥ mk : x(ik) ≤ y(i).

2 ω↑ω := {f ∈ ωω : f is increasing}.
3 For f ∈ ω↑ω define the Yorioka ideal

If := {A ⊆ 2ω : ∃σ ∈ (2<ω)ω : f � htσ and A ⊆ [σ]∞}.

Theorem 2.4 (Yorioka 2002)

Each If is a σ-ideal and SN =
⋂
f∈ω↑ω If .

Theorem 2.5 (Kamo & Osuga 2008)

We do not get an ideal when replacing f � htσ by f ≤∗ htσ.
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Fact 2.6
1 If f ≤∗ g then Ig ⊆ If .

2 If D ⊆ ω↑ω is a dominating family, then SN =
⋂
f∈D If .

Definition 2.7

minadd := min
f∈ω↑ω

add(If ),

supcov := sup
f∈ω↑ω

cov(If ),

minnon := min
f∈ω↑ω

non(If )

supcof := sup
f∈ω↑ω

cof(If ).
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Expanded diagram

New arrows: Miller, Yorioka, Kamo, Osuga, Cardona & M., Brendle

add(M)

b

non(M)

cov(M)

d

cof(M)supcov

minadd

add(If )

cov(Ig)

add(N )

cov(N )

ℵ1 non(SN )

supcof

cof(Ig)

non(If )

cof(N )

non(N )

c

add(SN )

cov(SN ) cof(SN ) cov
((

[supcof]<minadd
)d)

2d

1



About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

1 non(SN ) = minnon.

2 add(M) = min{b, non(SN )}.
3 cof(M) = max{d, supcov}.

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber ℵ1 posets with length of
uncountable cofinality forces cov(SN ) ≤ ℵ1.

Theorem 2.10 (Cardona & M. & Rivera-Madrid 2021)

In Sacks’ model, cov(SN ) = c.
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Theorem 2.11 (Carlson 1993)

add(N ) ≤ add(SN ).

Theorem 2.12 (Goldstern, Judah & Shelah 1993)

It is consistent with ZFC that cof(M) < add(SN ).

Theorem 2.13 (Kamo – proof by Cardona & M. 2019)

add(N ) ≤ minadd ≤ add(SN ).
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Yorioka’s Characterization Theorem

Theorem 2.14 (Yorioka 2022)

If minadd = supcof = λ then SN ∼=T λλ.
In particular add(SN ) = λ and cof(SN ) = dλ.

Theorem 2.15 (Yorioka 2002)

ZFC does not prove any relation between cof(SN ) and c.
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3. Developments about cof(SN )



Improvements

Definition 3.1 (Cardona 2022)

Let S be a directed preorder with minimal element i0.

For f ∈ ω↑ω, Ā = 〈Ai : i ∈ S〉 is an If -directed system on S if

(I) ∀ i ∈ S : Ai ∈ If ,

(II) Ai0 is dense Gδ,

(III) if i ≤S j then Ai ⊆ Aj , and

(IV) {Ai : i ∈ S} is cofinal in If .

If {fα : α < λ} is a dominating family on ωω then 〈Āfα : α < λ〉 is a
λ-dominating directed system on S if each Āfα is an Ifα-directed system
on S and

(V) ∀α < λ :
⋂
ξ<αA

fξ
i0
/∈ Ifα .
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λ-dominating directed system on S if each Āfα is an Ifα-directed system
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Lemma 3.2 (Yorioka 2002)

If minadd = supcof = λ then there is a λ-dominating system on λ.

Lemma 3.3 (Cardona 2022)

If cov(M) = d = λ, D ⊆ ω↑ω is dominating and, for each f ∈ D, there is
some If -directed system on S, then there is a λ-dominating directed
system on S.

Lemma 3.4 (Cardona 2022)

If there is a λ-dominating directed system on S then SN �T Sλ. In
particular

b(S) ≤ add(SN ) and cof(SN ) ≤ dλS .

Point

If there is some If -directed system on S then If �T S.
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Lemma 3.5

SN �T
∏
f∈D If for any dominating family D ⊆ ω↑ω.

In particular, minadd ≤ add(SN ) and

cof(SN ) ≤ d


∏

f∈D
If


 ≤

∏

f∈D
cof(If ) = 2d,

the last equality when |D| = d.

The existence of an If -directed system on S for all f ∈ D implies

SN �T

∏

f∈D
If �T

∏

f∈D
S = SD.
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A more direct Tukey-connection

Fact 3.6
1 If X ⊆ Y and θ ≤ κ then C[X]<κ �T C[Y ]<θ .

2 If S is a directed preorder then S �T C[d(S)]<b(S) .

Theorem 3.7 (BCM)

SN �T Cd
[supcof]<minadd , in particular

cof(SN ) ≤ cov

((
[supcof]<minadd

)d)
.






























































































































































































































































































































































































































A more direct Tukey-connection

Fact 3.6
1 If X ⊆ Y and θ ≤ κ then C[X]<κ �T C[Y ]<θ .

2 If S is a directed preorder then S �T C[d(S)]<b(S) .

Theorem 3.7 (BCM)

SN �T Cd
[supcof]<minadd , in particular

cof(SN ) ≤ cov

((
[supcof]<minadd

)d)
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Lower bounds of cof(SN )

Lemma 3.8 (Cardona 2022)

Asumme that κ and λ are cardinals such that 0 < κ ≤ λ ≤ non(SN ) and
that there is some λ-dominating directed system on κ× λ.
Then λλ �T SN , in particular add(SN ) ≤ λ and dλ ≤ cof(SN ).

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that cov(SN ) < non(SN ) < cof(SN ) and the
continuum c in any position with respect to cof(SN ).

What is the role of κ?
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Non-directed systems

Definition 3.10

Let I be a set and i0 ∈ I. Given f ∈ ω↑ω, a family Af = 〈Afi : i ∈ I〉 is
an If -system on (I, i0) if it satisfies:

(I) ∀ i ∈ I : Afi ∈ If ,

(II) Afi0 ∈ If is dense Gδ,

(III) ∀ i ∈ I : Afi0 ⊆ A
f
i , and

(IV) 〈Afi : i ∈ I〉 is cofinal in If .

If {fα : α < λ} is a dominating family on ω↑ω then 〈Āfα : α < λ〉 is a
λ-dominating system on (I, i0) if each Āfα is an Ifα-system on (I, i0) and

(V) ∀α < λ :
⋂
ξ<αA

fξ
i0
/∈ Ifα .
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Existence of systems

Remark 3.11

An If -system on (I, i0) exists iff cof(If ) ≤ |I|.

Lemma 3.12

If cov(M) = d = λ, D ⊆ ω↑ω is dominating and supcof ≤ |I|,
then there is a λ-dominating system on (I, i0).
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Main Lemma

Definition 3.13

λ-DS(I, i0): There is a λ-dominating system 〈Ādα : α < λ〉 on (I, i0).

Main Lemma 3.14

Under λ-DS(I, i0), for any 〈Cα : α < λ〉 satisfying

Cα ⊆ Idα and
∑

ξ<α

|Cξ| < non(SN ) for all α < λ,

there is some K ∈ SN such that K * C for all C ∈ ⋃α<λ Cα.
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Results

Theorem 3.15

λ-DS(I, i0) implies λ < cof(SN ).

If in addition cf(non(SN )) = cf(λ) then non(SN ) < cof(SN ).

Corollary 3.16

If d ≤ cof(SN ) then cov(M) < cof(SN ).

Question

Is b ≤ cof(SN )? Is cof(N ) ≤ cof(SN )?

Question (Yorioka 2002)

Is ℵ1 < cof(SN )?
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Theorem 3.17

Under λ-DS(µ, 0), if non(SN ) = supcof = µ and cf(µ) = λ then
λλ �T SN . In particular

add(SN ) ≤ λ and dλ ≤ cof(SN ).

Yorioka’s Characterization Theorem follows.

Corollary 3.18

After adding λ-many Cohen reals with λ ≥ ℵ1 regular, cof(SN ) = dλ.
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Theorem 3.17

Under λ-DS(µ, 0), if non(SN ) = supcof = µ and cf(µ) = λ then
λλ �T SN . In particular
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More about add(SN )

Question (Cardona & M. & Rivera-Madrid)

Is it consistent that add(SN ) < min{cov(SN ), non(SN )}?
Can the four cardinal characteristics associated with SN be pairwise
different?



Positive answer (BCM)

We can force:

add(M)

b

non(M)

cov(M)

d

cof(M)supcov

minaddadd(N )

cov(N )

ℵ1 non(SN )

supcof

cof(Ig)

non(If )

cof(N )

non(N )

c

add(SN )

cov(SN ) cof(SN ) covd([supcof]<minadd) 2d

θ1

θ2 θ3

θ4

θ5

λ

ν = dλ

1



More questions

Question

Is minadd = add(N )? Is supcof = cof(N )?

Question

Is it consistent with ZFC that add(N ) < add(SN ) < b?
Or even add(N ) < b < add(SN )?
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