Revisiting the cofinality of the ideal of strong measure zero sets

Diego A. Mejía
diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work (in progress) with
Jörg Brendle (Kobe University) and Miguel Cardona (UPJS)
Kobe Set Theory Seminar July 20th, 2022

1. Relational systems and Tukey order

Relational systems

Definition 1.1

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where X, Y are sets and R is a relation.

Relational systems

Definition 1.1

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where X, Y are sets and R is a relation.

Definition 1.2

Let \mathcal{I} be an ideal on a set X (containing $[X]^{<\aleph_{0}}$).
(1) $\mathcal{I}=\langle\mathcal{I}, \mathcal{I}, \subseteq\rangle$ as a relational system.
(2) $\mathrm{C}_{\mathcal{I}}:=\langle X, \mathcal{I}, \in\rangle$, which is a relational system.

Cardinal characteristics associated with relational systems

Definition 1.3

Let $\mathbf{R}=\langle X, Y, R\rangle$ be a relational system.
(1) $B \subseteq X$ is \mathbf{R}-bounded if $\exists y \in Y \forall x \in B: x R y$.
(2) $D \subseteq Y$ is R-dominating if $\forall x \in X \exists y \in D: x R y$.

Cardinal characteristics associated with relational systems

Definition 1.3

Let $\mathbf{R}=\langle X, Y, R\rangle$ be a relational system.
(1) $B \subseteq X$ is \mathbf{R}-bounded if $\exists y \in Y \forall x \in B: x R y$.
(2) $D \subseteq Y$ is \mathbf{R}-dominating if $\forall x \in X \exists y \in D: x R y$.
(3) $\mathfrak{b}(\mathbf{R}):=\min \{|F|: F \subseteq X$ is \mathbf{R}-unbounded $\}$.
(9) $\mathfrak{d}(\mathbf{R}):=\min \{|D|: D \subseteq Y$ is \mathbf{R}-dominating $\}$.

Cardinal characteristics associated with relational systems

Definition 1.3

Let $\mathbf{R}=\langle X, Y, R\rangle$ be a relational system.
(1) $B \subseteq X$ is \mathbf{R}-bounded if $\exists y \in Y \forall x \in B: x R y$.
(2) $D \subseteq Y$ is \mathbf{R}-dominating if $\forall x \in X \exists y \in D: x R y$.
(3) $\mathfrak{b}(\mathbf{R}):=\min \{|F|: F \subseteq X$ is \mathbf{R}-unbounded $\}$.
(9) $\mathfrak{d}(\mathbf{R}):=\min \{|D|: D \subseteq Y$ is \mathbf{R}-dominating $\}$.

Fact 1.4

If \mathcal{I} is an ideal on a set X then
(a) $\mathfrak{b}(\mathcal{I})=\operatorname{add}(\mathcal{I}):=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup_{A \in \mathcal{F}} A \notin \mathcal{I}\right\}$.
(b) $\mathfrak{d}(\mathcal{I})=\operatorname{cof}(\mathcal{I}):=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \forall A \in \mathcal{I} \exists B \in \mathcal{F}: A \subseteq B\}$.

Cardinal characteristics associated with relational systems

Definition 1.3

Let $\mathbf{R}=\langle X, Y, R\rangle$ be a relational system.
(1) $B \subseteq X$ is \mathbf{R}-bounded if $\exists y \in Y \forall x \in B: x R y$.
(2) $D \subseteq Y$ is \mathbf{R}-dominating if $\forall x \in X \exists y \in D: x R y$.
(3) $\mathfrak{b}(\mathbf{R}):=\min \{|F|: F \subseteq X$ is \mathbf{R}-unbounded $\}$.
(9) $\mathfrak{d}(\mathbf{R}):=\min \{|D|: D \subseteq Y$ is \mathbf{R}-dominating $\}$.

Fact 1.4

If \mathcal{I} is an ideal on a set X then
(a) $\mathfrak{b}(\mathcal{I})=\operatorname{add}(\mathcal{I}):=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup_{A \in \mathcal{F}} A \notin \mathcal{I}\right\}$.
(b) $\mathfrak{d}(\mathcal{I})=\operatorname{cof}(\mathcal{I}):=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \forall A \in \mathcal{I} \exists B \in \mathcal{F}: A \subseteq B\}$.
(c) $\mathfrak{b}\left(\mathbf{C}_{\mathcal{I}}\right)=\operatorname{non}(\mathcal{I}):=\min \{|Z|: Z \subseteq X, Z \notin \mathcal{I}\}$.
(d) $\mathfrak{d}\left(\mathbf{C}_{\mathcal{I}}\right)=\operatorname{cov}(\mathcal{I}):=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup_{A \in \mathcal{F}} A=X\right\}$.

Examples

Example 1.5

(1) \mathcal{N} : the ideal of measure zero (null) subsets of the Cantor space 2^{ω}.
(2) \mathcal{M} : the ideal of first category (meager) subsets of 2^{ω}.
(3) When $\kappa \leq|X|$ is an infinite cardinal, $[X]^{<\kappa}:=\{A \subseteq X:|A|<\kappa\}$.

Tukey connections

Definition 1.6

Let $\mathbf{R}=\langle X, Y, R\rangle$ and $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$ be relational systems. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection from \mathbf{R} to \mathbf{R}^{\prime} if
$F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad \forall x \in X \forall y^{\prime} \in Y^{\prime}: F(x) R^{\prime} y^{\prime} \Rightarrow x R G\left(y^{\prime}\right)$.

Tukey connections

Definition 1.6

Let $\mathbf{R}=\langle X, Y, R\rangle$ and $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$ be relational systems. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection from \mathbf{R} to \mathbf{R}^{\prime} if

$$
F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad \forall x \in X \forall y^{\prime} \in Y^{\prime}: F(x) R^{\prime} y^{\prime} \Rightarrow x R G\left(y^{\prime}\right) .
$$

$\mathbf{R} \preceq{ }_{\mathrm{T}} \mathbf{R}^{\prime}\left(\mathbf{R}\right.$ is Tukey-below $\left.\mathbf{R}^{\prime}\right)$ if $\exists(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ Tukey connection. $\mathbf{R} \cong_{\mathrm{T}} \mathbf{R}^{\prime}\left(\mathbf{R}\right.$ and \mathbf{R}^{\prime} are Tukey equivalent) if $\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime}$ and $\mathbf{R}^{\prime} \preceq_{\mathrm{T}} \mathbf{R}$.

$$
\begin{aligned}
& \mathbf{R} \\
& Y \underset{G}{\longleftarrow} Y^{\prime} \\
& X \underset{F}{\longleftrightarrow} X^{\prime}
\end{aligned}
$$

Tukey connections and cardinal characteristics

Lemma 1.7

(1) $\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime}$ implies $\mathfrak{b}\left(\mathbf{R}^{\prime}\right) \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \mathfrak{d}\left(\mathbf{R}^{\prime}\right)$.
(2) $\mathbf{R} \cong_{T} \mathbf{R}^{\prime}$ implies $\mathfrak{b}(\mathbf{R})=\mathfrak{b}\left(\mathbf{R}^{\prime}\right)$ and $\mathfrak{d}(\mathbf{R})=\mathfrak{d}\left(\mathbf{R}^{\prime}\right)$.

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_{i}:=\left\langle X_{i}, Y_{i}, R_{i}\right\rangle$ be a relational system.
Define $\prod_{i \in I} \mathbf{R}_{i}:=\left\langle\prod_{i \in I} X_{i}, \prod_{i \in I} Y_{i}, R^{\Pi}\right\rangle$ where

$$
x R^{\Pi} y \text { iff } \forall i \in I: x_{i} R_{i} y_{i} .
$$

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_{i}:=\left\langle X_{i}, Y_{i}, R_{i}\right\rangle$ be a relational system.
Define $\prod_{i \in I} \mathbf{R}_{i}:=\left\langle\prod_{i \in I} X_{i}, \prod_{i \in I} Y_{i}, R^{\Pi}\right\rangle$ where

$$
x R^{\Pi} y \text { iff } \forall i \in I: x_{i} R_{i} y_{i} .
$$

Fact 1.9

(a) $\mathbf{R}_{i} \preceq_{\mathrm{T}} \prod_{i \in I} \mathbf{R}_{i}$.
(b) $\mathfrak{b}\left(\prod_{i \in I} \mathbf{R}_{i}\right) \stackrel{ }{=} \min _{i \in I} \mathfrak{b}\left(\mathbf{R}_{i}\right)$ and

$$
\sup _{i \in I} \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mathfrak{d}\left(\prod_{i \in I} \mathbf{R}_{i}\right) \leq \prod_{i \in I} \mathfrak{d}\left(R_{i}\right)
$$

$$
\begin{array}{ll}
x_{i} \rightarrow \prod_{i \in I} x_{i} \\
a_{i} \mapsto\langle\cdots, ~ & \prod_{i \in I} y_{i} \rightarrow y_{i} \\
i & \cdots\rangle \\
\bar{y} \mapsto \lambda^{i}
\end{array}
$$

Products of relational systems

Definition 1.8

For each $i \in I$ let $\mathbf{R}_{i}:=\left\langle X_{i}, Y_{i}, R_{i}\right\rangle$ be a relational system.
Define $\prod_{i \in I} \mathbf{R}_{i}:=\left\langle\prod_{i \in I} X_{i}, \prod_{i \in I} Y_{i}, R^{\Pi}\right\rangle$ where

$$
x R^{\Pi} y \text { iff } \forall i \in I: x_{i} R_{i} y_{i} .
$$

Fact 1.9

(a) $\mathbf{R}_{i} \preceq_{\mathrm{T}} \prod_{i \in I} \mathbf{R}_{i}$.
(b) $\mathfrak{b}\left(\prod_{i \in I} \mathbf{R}_{i}\right)=\min _{i \in I} \mathfrak{b}\left(\mathbf{R}_{i}\right)$ and

$$
\sup _{i \in I} \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mathfrak{d}\left(\prod_{i \in I} \mathbf{R}_{i}\right) \leq \prod_{i \in I} \mathfrak{d}\left(R_{i}\right)
$$

$\mathfrak{b}\left(\prod_{i \in I} \mathbf{R}\right) \geq \min _{i \in I} \mathfrak{b}\left(\mathbf{R}_{i}\right):$
If $F \subseteq \prod_{i \in I} X_{i}$ and $|F|<\min _{i \in I} \mathfrak{b}\left(\mathbf{R}_{i}\right)$
then $\left\{x_{i}: x \in F\right\}$ is bounded by some $y_{i} \in Y_{i}$,
so F is bounded by $y:=\left\langle y_{i}: i \in I\right\rangle$.

Powers of relational systems

When $\mathbf{R}_{i}=\mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^{I}:=\prod_{i \in I} \mathbf{R}$.

Powers of relational systems

When $\mathbf{R}_{i}=\mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^{I}:=\prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.
(1) $\mathcal{I}^{J} \cong_{\mathrm{T}} \mathcal{I}^{(J)}$ where $\mathcal{I}^{(J)}$ is the ideal on X^{J} generated by $\prod_{i \in J} A_{i}$ for $\left\langle A_{i}: i \in J\right\rangle \in \mathcal{I}^{J}$.
(2) $\mathbf{C}_{\mathcal{I}}^{J} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{I}^{(J)}}$.

So we denote $\operatorname{add}\left(\mathcal{I}^{J}\right):=\mathfrak{b}\left(\mathcal{I}^{J}\right)=\operatorname{add}\left(\mathcal{I}^{(J)}\right)$, etc.

Powers of relational systems

When $\mathbf{R}_{i}=\mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^{I}:=\prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.
(1. $\mathcal{I}^{J} \cong_{\mathrm{T}} \mathcal{I}^{(J)}$ where $\mathcal{I}^{(J)}$ is the ideal on X^{J} generated by $\prod_{i \in J} A_{i}$ for $\left\langle A_{i}: i \in J\right\rangle \in \mathcal{I}^{J}$.
(2) $\mathbf{C}_{\mathcal{I}}^{J} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{I}^{(J)}}$.

So we denote $\operatorname{add}\left(\mathcal{I}^{J}\right):=\mathfrak{b}\left(\mathcal{I}^{J}\right)=\operatorname{add}\left(\mathcal{I}^{(J)}\right)$, etc.

$$
\operatorname{add}\left(\mathcal{I}^{J}\right)=\operatorname{add}(\mathcal{I}) \text { and } \operatorname{non}\left(\mathcal{I}^{J}\right)=\operatorname{non}(\mathcal{I})
$$

Powers of relational systems

When $\mathbf{R}_{i}=\mathbf{R}$ for all $i \in I$, we denote $\mathbf{R}^{I}:=\prod_{i \in I} \mathbf{R}$.

Example 1.10

Let \mathcal{I} be an ideal on X.
(1. $\mathcal{I}^{J} \cong_{\mathrm{T}} \mathcal{I}^{(J)}$ where $\mathcal{I}^{(J)}$ is the ideal on X^{J} generated by $\prod_{i \in J} A_{i}$ for $\left\langle A_{i}: i \in J\right\rangle \in \mathcal{I}^{J}$.
(2) $\mathbf{C}_{\mathcal{I}}^{J} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{I}^{(J)}}$.

So we denote $\operatorname{add}\left(\mathcal{I}^{J}\right):=\mathfrak{b}\left(\mathcal{I}^{J}\right)=\operatorname{add}\left(\mathcal{I}^{(J)}\right)$, etc.

$$
\operatorname{add}\left(\mathcal{I}^{J}\right)=\operatorname{add}(\mathcal{I}) \text { and } \operatorname{non}\left(\mathcal{I}^{J}\right)=\operatorname{non}(\mathcal{I})
$$

Example 1.11

When S is a directed preorder, denote

$$
\mathfrak{b}_{S}^{I}:=\mathfrak{b}\left(S^{I}\right), \quad \mathfrak{d}_{S}^{I}:=\mathfrak{d}\left(S^{I}\right)
$$

2. The ideal of strong measure zero sets and Yorioka ideals

Strong measure zero sets

Definition 2.1

(1) For $\sigma=\left\langle\sigma_{i}: i<\omega\right\rangle \in\left(2^{<\omega}\right)^{\omega}$, define $\mathrm{ht}_{\sigma}: \omega \rightarrow \omega$ s.t. $\mathrm{ht}_{\sigma}(i):=\left|\sigma_{i}\right|$.
(2) A set $Z \subseteq 2^{\omega}$ has strong measure zero (in 2^{ω}) if

$$
\forall f \in \omega^{\omega} \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \leq^{*} \mathrm{ht}_{\sigma} \text { and } Z \subseteq \bigcup_{i<\omega}\left[\sigma_{i}\right]
$$

where $[s]:=\left\{x \in 2^{\omega}: s \subseteq x\right\}$ for $s \in 2^{<\omega}$.
(3) $\mathcal{S N}$: the collection of strong measure zero subsets of 2^{ω}.

Strong measure zero sets

Definition 2.1

(1) For $\sigma=\left\langle\sigma_{i}: i<\omega\right\rangle \in\left(2^{<\omega}\right)^{\omega}$, define $\mathrm{ht}_{\sigma}: \omega \rightarrow \omega$ s.t. $\mathrm{ht}_{\sigma}(i):=\left|\sigma_{i}\right|$.
(2) A set $Z \subseteq 2^{\omega}$ has strong measure zero (in 2^{ω}) if

$$
\forall f \in \omega^{\omega} \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \leq^{*} \mathrm{ht}_{\sigma} \text { and } Z \subseteq \bigcup_{i<\omega}\left[\sigma_{i}\right]
$$

where $[s]:=\left\{x \in 2^{\omega}: s \subseteq x\right\}$ for $s \in 2^{<\omega}$.
(3) $\mathcal{S N}$: the collection of strong measure zero subsets of 2^{ω}.

Fact 2.2

A set $Z \subseteq 2^{\omega}$ has strong measure zero iff

$$
\forall f \in \omega^{\omega} \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \leq^{*} \mathrm{ht}_{\sigma} \text { and } Z \subseteq[\sigma]_{\infty}
$$

where $[\sigma]_{\infty}:=\left\{x \in 2^{\omega}: x\right.$ extends infinitely many $\left.\sigma_{i}\right\}$.

Yorioka ideals

Definition 2.3

(1) For $x, y \in \omega^{\omega}$,

$$
x \ll y \text { iff } \forall k<\omega \exists m_{k}<\omega \forall i \geq m_{k}: x\left(i^{k}\right) \leq y(i)
$$

(2) $\omega^{\uparrow \omega}:=\left\{f \in \omega^{\omega}: f\right.$ is increasing $\}$.
(3) For $f \in \omega^{\dagger \omega}$ define the Yorioka ideal

$$
\mathcal{I}_{f}:=\left\{A \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \ll \mathrm{ht}_{\sigma} \text { and } A \subseteq[\sigma]_{\infty}\right\}
$$

Yorioka ideals

Definition 2.3

(1) For $x, y \in \omega^{\omega}$,

$$
x \ll y \text { iff } \forall k<\omega \exists m_{k}<\omega \forall i \geq m_{k}: x\left(i^{k}\right) \leq y(i)
$$

(2) $\omega^{\uparrow \omega}:=\left\{f \in \omega^{\omega}: f\right.$ is increasing $\}$.
(3) For $f \in \omega^{\uparrow \omega}$ define the Yorioka ideal

$$
\mathcal{I}_{f}:=\left\{A \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \ll \mathrm{ht}_{\sigma} \text { and } A \subseteq[\sigma]_{\infty}\right\}
$$

Theorem 2.4 (Yorioka 2002)
Each \mathcal{I}_{f} is a σ-ideal and $\mathcal{S N}=\bigcap_{f \in \omega^{\dagger \omega}} \mathcal{I}_{f}$.

Yorioka ideals

Definition 2.3

(1) For $x, y \in \omega^{\omega}$,

$$
x \ll y \text { iff } \forall k<\omega \exists m_{k}<\omega \forall i \geq m_{k}: x\left(i^{k}\right) \leq y(i)
$$

(2) $\omega^{\uparrow \omega}:=\left\{f \in \omega^{\omega}: f\right.$ is increasing $\}$.
(3) For $f \in \omega^{\uparrow \omega}$ define the Yorioka ideal

$$
\mathcal{I}_{f}:=\left\{A \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}: f \ll \mathrm{ht}_{\sigma} \text { and } A \subseteq[\sigma]_{\infty}\right\} .
$$

Theorem 2.4 (Yorioka 2002)

Each \mathcal{I}_{f} is a σ-ideal and $\mathcal{S N}=\bigcap_{f \in \omega^{\uparrow \omega}} \mathcal{I}_{f}$.

Theorem 2.5 (Kamo \& Osuga 2008)

We do not get an ideal when replacing $f \ll \mathrm{ht}_{\sigma}$ by $f \leq^{*} \mathrm{ht}_{\sigma}$.

Fact 2.6

(1) If $f \leq^{*} g$ then $\mathcal{I}_{g} \subseteq \mathcal{I}_{f}$.
(2) If $D \subseteq \omega^{\uparrow \omega}$ is a dominating family, then $\mathcal{S N}=\bigcap_{f \in D} \mathcal{I}_{f}$.

Fact 2.6

(1) If $f \leq^{*} g$ then $\mathcal{I}_{g} \subseteq \mathcal{I}_{f}$.
(2) If $D \subseteq \omega^{\uparrow \omega}$ is a dominating family, then $\mathcal{S N}=\bigcap_{f \in D} \mathcal{I}_{f}$.

Definition 2.7

$$
\begin{aligned}
& \text { minadd }:=\min _{f \in \omega^{\uparrow \omega}} \operatorname{add}\left(\mathcal{I}_{f}\right), \quad \text { supadd }=\operatorname{add}\left(\mathcal{I}_{\text {id }}\right) \\
& \text { supcov }:=\sup _{f \in \omega^{\uparrow \omega}} \operatorname{cov}\left(\mathcal{I}_{f}\right) \\
& \text { minnon }:=\min _{f \in \omega^{\uparrow \omega}} \operatorname{non}\left(\mathcal{I}_{f}\right) \\
& \text { supcof }:=\sup _{f \in \omega^{\uparrow \omega}} \operatorname{cof}\left(\mathcal{I}_{f}\right) .
\end{aligned}
$$

Expanded diagram

New arrows: Miller, Yorioka, Kamo, Osuga, Cardona \& M., Brendle

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

(1) $\operatorname{non}(\mathcal{S N})=$ minnon.
(2) $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{S N})\}$.
(3) $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}$, supcov $\}$.

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

(1) $\operatorname{non}(\mathcal{S N})=$ minnon.
(2) $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{S N})\}$.
(3) $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}$, supcov $\}$.

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber \aleph_{1} posets with length of uncountable cofinality forces $\operatorname{cov}(\mathcal{S N}) \leq \aleph_{1}$.

About the cardinal characteristics

Fact 2.8 (Miller 1981, Osuga 2008)

(1) $\operatorname{non}(\mathcal{S N})=$ minnon.
(2) $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{S N})\}$.
(3) $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}$, supcov $\}$.

Theorem 2.9 (Pawlikowski 1990)

Any FS (finite support) iteration of precaliber \aleph_{1} posets with length of uncountable cofinality forces $\operatorname{cov}(\mathcal{S N}) \leq \aleph_{1}$.

Theorem 2.10 (Cardona \& M. \& Rivera-Madrid 2021)
In Sacks' model, $\operatorname{cov}(\mathcal{S N})=\mathfrak{c}$.

Theorem 2.11 (Carlson 1993)
 $\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{S N})$.

Theorem 2.12 (Goldstern, Judah \& Shelah 1993)
It is consistent with ZFC that $\operatorname{cof}(\mathcal{M})<\operatorname{add}(\mathcal{S N})$.

Theorem 2.11 (Carlson 1993) $\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{S N})$.

Theorem 2.12 (Goldstern, Judah \& Shelah 1993)
It is consistent with ZFC that $\operatorname{cof}(\mathcal{M})<\operatorname{add}(\mathcal{S N})$.

Theorem 2.13 (Kamo - proof by Cardona \& M. 2019)
$\operatorname{add}(\mathcal{N}) \leq \operatorname{minadd} \leq \operatorname{add}(\mathcal{S N})$.

Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)
If minadd $=$ supcof $=\lambda$ then $\mathcal{S N} \cong_{\mathrm{T}} \lambda^{\lambda}$. In particular $\operatorname{add}(\mathcal{S N})=\lambda$ and $\operatorname{cof}(\mathcal{S N})=\mathfrak{d}_{\lambda}$.

Yorioka's Characterization Theorem

Theorem 2.14 (Yorioka 2022)
If mined $=$ supcof $=\lambda$ then $\mathcal{S N} \cong_{\mathrm{T}} \lambda^{\lambda}$. In particular $\operatorname{add}(\mathcal{S N})=\lambda$ and $\operatorname{cof}(\mathcal{S N})=\mathfrak{d}_{\lambda}$.

Theorem 2.15 (Yorioka 2002)
ZFC does not prove any relation between $\operatorname{cof}(\mathcal{S N})$ and \mathbf{c}.

$$
\begin{aligned}
& C H \rightarrow c<\operatorname{cof}(S N) \\
& \times \cos (\operatorname{cof}(S N)<C)
\end{aligned}
$$

3. Developments about $\operatorname{cof}(\mathcal{S N})$

Improvements

Definition 3.1 (Cardona 2022)

Let S be a directed preorder with minimal element i_{0}.
For $f \in \omega^{\uparrow \omega}, \bar{A}=\left\langle A_{i}: i \in S\right\rangle$ is an \mathcal{I}_{f}-directed system on S if
(I) $\forall i \in S: A_{i} \in \mathcal{I}_{f}$,
(II) $A_{i_{0}}$ is dense G_{δ},
(III) if $i \leq_{S} j$ then $A_{i} \subseteq A_{j}$, and
(IV) $\left\{A_{i}: i \in S\right\}$ is cofinal in \mathcal{I}_{f}.

Improvements

Definition 3.1 (Cardona 2022)

Let S be a directed preorder with minimal element i_{0}.
For $f \in \omega^{\uparrow \omega}, \bar{A}=\left\langle A_{i}: i \in S\right\rangle$ is an \mathcal{I}_{f}-directed system on S if
(I) $\forall i \in S: A_{i} \in \mathcal{I}_{f}$,
(II) $A_{i_{0}}$ is dense G_{δ},
(III) if $i \leq_{S} j$ then $A_{i} \subseteq A_{j}$, and
(IV) $\left\{A_{i}: i \in S\right\}$ is cofinal in \mathcal{I}_{f}.

If $\left\{f_{\alpha}: \alpha<\lambda\right\}$ is a dominating family on ω^{ω} then $\left\langle\bar{A}^{f_{\alpha}}: \alpha<\lambda\right\rangle$ is a λ-dominating directed system on S if each $\bar{A}^{f_{\alpha}}$ is an $\mathcal{I}_{f_{\alpha}}$-directed system on S and

$$
\text { (V) } \forall \alpha<\lambda: \bigcap_{\xi<\alpha} A_{i_{0}}^{f_{\xi}} \notin \mathcal{I}_{f_{\alpha}} .
$$

Lemma 3.2 (Yorioka 2002)
If minadd $=$ supcof $=\lambda$ then there is a λ-dominating system on λ.

If minadd $=$ supcof $=\lambda$ then there is a λ-dominating system on λ.
Lemma 3.3 (Cardona 2022)
If $\operatorname{cov}(\mathcal{M})=\mathfrak{d}=\lambda, D \subseteq \omega^{\uparrow \omega}$ is dominating and, for each $f \in D$, there is some \mathcal{I}_{f}-directed system on S, then there is a λ-dominating directed system on S.

Lemma 3.2 (Yorioka 2002)

If minadd $=$ supcof $=\lambda$ then there is a λ-dominating system on λ.

Lemma 3.3 (Cardona 2022)

If $\operatorname{cov}(\mathcal{M})=\mathfrak{d}=\lambda, D \subseteq \omega^{\uparrow \omega}$ is dominating and, for each $f \in D$, there is some \mathcal{I}_{f}-directed system on S, then there is a λ-dominating directed system on S.

Lemma 3.4 (Cardona 2022)

If there is a λ-dominating directed system on S then $\mathcal{S N} \preceq_{\mathrm{T}} S^{\lambda}$. In particular

$$
\mathfrak{b}(S) \leq \operatorname{add}(\mathcal{S N}) \text { and } \operatorname{cof}(\mathcal{S N}) \leq \mathfrak{d}_{S}^{\lambda}
$$

Lemma 3.2 (Yorioka 2002)

If minadd $=$ supcof $=\lambda$ then there is a λ-dominating system on λ.

Lemma 3.3 (Cardona 2022)

If $\operatorname{cov}(\mathcal{M})=\mathfrak{d}=\lambda, D \subseteq \omega^{\uparrow \omega}$ is dominating and, for each $f \in D$, there is some \mathcal{I}_{f}-directed system on S, then there is a λ-dominating directed system on S.

Lemma 3.4 (Cardona 2022)

If there is a λ-dominating directed system on S then $\mathcal{S N} \preceq_{\mathrm{T}} S^{\lambda}$. In particular

$$
\mathfrak{b}(S) \leq \operatorname{add}(\mathcal{S N}) \text { and } \operatorname{cof}(\mathcal{S N}) \leq \mathfrak{d}_{S}^{\lambda}
$$

Point

If there is some \mathcal{I}_{f}-directed system on S then $\mathcal{I}_{f} \preceq_{\mathrm{T}} S$.

Lemma 3.5
$\mathcal{S N} \preceq_{\mathrm{T}} \prod_{f \in D} \mathcal{I}_{f}$ for any dominating family $D \subseteq \omega^{\dagger \omega}$.
In particular, mined $\leq \operatorname{add}(\mathcal{S N})$ and

$$
\operatorname{cof}(\mathcal{S N}) \leq \mathfrak{d}\left(\prod_{f \in D} \mathcal{I}_{f}\right) \leq \prod_{f \in D} \operatorname{cof}\left(\mathcal{I}_{f}\right)=2^{\mathfrak{d}}
$$

the last equality when $|D|=\mathfrak{d}$.

$$
\begin{gathered}
S N \rightarrow \prod_{f \in D} I_{f} \quad \prod_{f \in D} I_{f} \rightarrow S \mathcal{N} \\
z \mapsto \quad\langle\cdots, z, \cdots\rangle \quad\left\langle\cdots, A_{f},\right\rangle \mapsto \bigcap_{f \in D} A_{f} \in \bigcap_{f \in D} I_{f}=S N \\
\\
\langle\cdots, z, \cdots\rangle \leq \leq^{\pi}\left\langle\cdots, A_{f}, \cdots\right\rangle \Rightarrow z \leq \bigcap_{f \in D} A_{f}
\end{gathered}
$$

Lemma 3.5

$\mathcal{S N} \preceq{ }_{\mathrm{T}} \prod_{f \in D} \mathcal{I}_{f}$ for any dominating family $D \subseteq \omega^{\uparrow \omega}$.
In particular, minadd $\leq \operatorname{add}(\mathcal{S N})$ and

$$
\operatorname{cof}(\mathcal{S N}) \leq \mathfrak{d}\left(\prod_{f \in D} \mathcal{I}_{f}\right) \leq \prod_{f \in D} \operatorname{cof}\left(\mathcal{I}_{f}\right)=2^{\mathfrak{d}}
$$

the last equality when $|D|=\mathfrak{d}$.

The existence of an \mathcal{I}_{f}-directed system on S for all $f \in D$ implies

$$
\mathcal{S N} \preceq_{\mathrm{T}} \prod_{f \in D} \mathcal{I}_{f} \preceq_{\mathrm{T}} \prod_{f \in D} S=S^{D} .
$$

A more direct Tukey-connection

Fact 3.6
(1) If $X \subseteq Y$ and $\theta \leq \kappa$ then $\mathbf{C}_{[X]<\kappa} \preceq_{\mathrm{T}} \mathbf{C}_{[Y]<\theta}$.
(2) If S is a directed preorder then $S \preceq_{\mathrm{T}} \mathbf{C}_{[\mathfrak{d}(S)]<\mathfrak{b}(S)}$.
$\left\{Y_{2}: u<\partial(s)\right\}$ dom. on S.

$$
\begin{aligned}
& S \longrightarrow \partial(s) \\
& x \mapsto \alpha_{k} \text { st. } x \leqslant y_{\alpha x}
\end{aligned}
$$

$$
[\partial(s)]^{<\delta(s)} \rightarrow S
$$

$A \longmapsto Z_{A}$: upper bound of

$$
\left\{y_{2}: \alpha \in A\right\}
$$

$$
\begin{equation*}
\alpha_{x} \in A \rightarrow x \leq y_{\alpha x} \in z_{A} \tag{s}
\end{equation*}
$$

A more direct Tukey-connection

Fact 3.6

(1) If $X \subseteq Y$ and $\theta \leq \kappa$ then $\mathbf{C}_{[X]<\kappa} \preceq_{\mathrm{T}} \mathbf{C}_{[Y]<\theta}$.
(3) If S is a directed preorder then $S \preceq_{T} \mathbf{C}_{[\mathfrak{0}(S)]<\mathrm{b}(S)}$.

Theorem 3.7 (BCM)
$\mathcal{S N} \preceq_{\mathrm{T}} \mathbf{C}_{[\text {supcof] }]<\text { minadd }}^{\mathrm{o}}$, in particular

$$
\operatorname{cof}(\mathcal{S N}) \leq \operatorname{cov}\left(\left([\text { supcof }]^{<\operatorname{minadd}}\right)^{\mathfrak{d}}\right)
$$

$$
\begin{aligned}
& |D|=\partial
\end{aligned}
$$

Lower bounds of $\operatorname{cof}(\mathcal{S N})$

Lemma 3.8 (Cardona 2022)

Asumme that κ and λ are cardinals such that $0<\kappa \leq \lambda \leq \operatorname{non}(\mathcal{S N})$ and that there is some λ-dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$, in particular $\operatorname{add}(\mathcal{S N}) \leq \lambda$ and $\mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})$.

Lower bounds of $\operatorname{cof}(\mathcal{S N})$

Lemma 3.8 (Cardona 2022)

Asumme that κ and λ are cardinals such that $0<\kappa \leq \lambda \leq \operatorname{non}(\mathcal{S N})$ and that there is some λ-dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$, in particular $\operatorname{add}(\mathcal{S N}) \leq \lambda$ and $\mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})$.

Using a matrix iteration:
Theorem 3.9 (Cardona 2022)
It can be forced that $\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$ and the continuum \mathfrak{c} in any position with respect to $\operatorname{cof}(\mathcal{S N})$.

Lower bounds of $\operatorname{cof}(\mathcal{S N})$

Lemma 3.8 (Cardona 2022)

Asumme that κ and λ are cardinals such that $0<\kappa \leq \lambda \leq \operatorname{non}(\mathcal{S N})$ and that there is some λ-dominating directed system on $\kappa \times \lambda$. Then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$, in particular $\operatorname{add}(\mathcal{S N}) \leq \lambda$ and $\mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})$.

Using a matrix iteration:

Theorem 3.9 (Cardona 2022)

It can be forced that $\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$ and the continuum \mathfrak{c} in any position with respect to $\operatorname{cof}(\mathcal{S N})$.

What is the role of κ ?

Non-directed systems

Definition 3.10

Let I be a set and $i_{0} \in I$. Given $f \in \omega^{\dagger \omega}$, a family $A^{f}=\left\langle A_{i}^{f}: i \in I\right\rangle$ is an \mathcal{I}_{f}-system on $\left(I, i_{0}\right)$ if it satisfies:
(I) $\forall i \in I: A_{i}^{f} \in \mathcal{I}_{f}$,
(II) $A_{i_{0}}^{f} \in \mathcal{I}_{f}$ is dense G_{δ},
(III) $\forall i \in I: A_{i_{0}}^{f} \subseteq A_{i}^{f}$, and
(IV) $\left\langle A_{i}^{f}: i \in I\right\rangle$ is cofinal in \mathcal{I}_{f}.

Non-directed systems

Definition 3.10

Let I be a set and $i_{0} \in I$. Given $f \in \omega^{\uparrow \omega}$, a family $A^{f}=\left\langle A_{i}^{f}: i \in I\right\rangle$ is an \mathcal{I}_{f}-system on $\left(I, i_{0}\right)$ if it satisfies:
(I) $\forall i \in I: A_{i}^{f} \in \mathcal{I}_{f}$,
(II) $A_{i_{0}}^{f} \in \mathcal{I}_{f}$ is dense G_{δ},
(III) $\forall i \in I: A_{i_{0}}^{f} \subseteq A_{i}^{f}$, and
(IV) $\left\langle A_{i}^{f}: i \in I\right\rangle$ is cofinal in \mathcal{I}_{f}.

If $\left\{f_{\alpha}: \alpha<\lambda\right\}$ is a dominating family on $\omega^{\uparrow \omega}$ then $\left\langle\bar{A}^{f_{\alpha}}: \alpha<\lambda\right\rangle$ is a λ-dominating system on $\left(I, i_{0}\right)$ if each $\bar{A}^{f_{\alpha}}$ is an $\mathcal{I}_{f_{\alpha}}$-system on $\left(I, i_{0}\right)$ and (V) $\forall \alpha<\lambda: \bigcap_{\xi<\alpha} A_{i_{0}}^{f_{\xi}} \notin \mathcal{I}_{f_{\alpha}}$.

Existence of systems

Remark 3.11

An \mathcal{I}_{f}-system on $\left(I, i_{0}\right)$ exists iff $\operatorname{cof}\left(\mathcal{I}_{f}\right) \leq|I|$.

Existence of systems

Remark 3.11
An \mathcal{I}_{f}-system on $\left(I, i_{0}\right)$ exists jiff $\operatorname{cof}\left(\mathcal{I}_{f}\right) \leq|I|$.
Lemma 3.12
If $\operatorname{cov}(\mathcal{M})=\mathfrak{d}=\lambda, D \subseteq \omega^{\uparrow \omega}$ is dominating and supcof $\leq|I|$, then there is a λ-dominating system on $\left(I, i_{0}\right)$.
suprof $\leq|I| \rightarrow \forall_{f}: \exists \bar{A}^{f}=\left\langle A_{i}^{f}: i \in I\right\rangle$ and I_{f}-system on $\left(I, i_{0}\right)$,
Fix \{xi: <<A\} ~ d o u ~ f a m i l y ~
We desire $\left\{d_{\lambda}:\{<\lambda\} \leqslant D\right.$ dou. family by recursion on α. (to get (v))
(2) $\xi<\alpha \rightarrow A_{i_{0}}^{d_{\xi}}:$ dense $\sigma \delta, \mid\left\{A_{i}^{d}:\{<\alpha\} \mid<\lambda \cdot \operatorname{cov}(\mu)\right.$
by adding a perfect set of cohen reals. we get a perfect set $P \subseteq \bigcap_{\xi<\alpha} A_{i}^{d_{i}}$.
$P \& S N=\bigcap_{f \in D} I_{f}: \exists d_{\alpha} \in D$ s.t. $P \notin I_{d_{\alpha}}$ and $d_{\alpha} \geqslant h_{\alpha}$
$\because \bigcap_{K \alpha} A_{S}^{d} \notin Z_{d \alpha}$

Main Lemma

Definition 3.13

λ - $\mathrm{DS}\left(I, i_{0}\right)$: There is a λ-dominating system $\left\langle\bar{A}^{d_{\alpha}}: \alpha<\lambda\right\rangle$ on $\left(I, i_{0}\right)$.

Main Lemma

Definition 3.13

λ - $\mathrm{DS}\left(I, i_{0}\right)$: There is a λ-dominating system $\left\langle\bar{A}^{d_{\alpha}}: \alpha<\lambda\right\rangle$ on $\left(I, i_{0}\right)$.

Main Lemma 3.14

Under λ - $D S\left(I, i_{0}\right)$, for any $\left\langle\mathcal{C}_{\alpha}: \alpha<\lambda\right\rangle$ satisfying

$$
\mathcal{C}_{\alpha} \subseteq \mathcal{I}_{d_{\alpha}} \text { and } \sum_{\xi<\alpha}\left|\mathcal{C}_{\xi}\right|<\operatorname{non}(\mathcal{S N}) \text { for all } \alpha<\lambda
$$

there is some $K \in \mathcal{S N}$ such that $K \nsubseteq C$ for all $C \in \bigcup_{\alpha<\lambda} \mathcal{C}_{\alpha}$.
By recursion on $\ll \lambda$, define $\sigma: \lambda \rightarrow I$ and $\left\{x_{c}^{\alpha}: c \in b_{\alpha}\right\}$ as follows.

$$
\begin{aligned}
& \text { step } 2 \text { Fir } c \in b_{\alpha}, B_{c}:=C \cup \frac{\left\{X_{E}^{1}:\left\{<\alpha, E \in b_{\}}\right\}\right.}{\text {size } \leq \sum_{\{\alpha \alpha}\left|b_{s}\right|<\text { non }(s V)=\text { minamn }} \\
& B_{c} \in Z_{d_{2}} \text {. } \\
& \text { But } \bigcap_{k<\alpha} A_{i_{0}}^{d_{s}} \subseteq \bigcap_{k<\alpha} A_{G(s)}^{d_{1}} \notin I_{d_{2}} \therefore \bigcap_{i<2} A_{C(s)}^{d_{s}} \notin B_{C} \\
& \therefore \exists \underbrace{x_{c}^{\alpha} \in \bigcap_{k \alpha} \Lambda_{6(1)}^{b_{1}}} \backslash B_{c} \\
& \{\begin{array}{c}
X_{E}^{*}: \begin{array}{c}
\left\{\leq \alpha, E \in b_{\alpha}\right\} \\
\text { Size }<\text { non }(S N)
\end{array}
\end{array} \underbrace{A_{G(\alpha)}^{d_{\alpha}}} . \\
& k=\left\{x_{c}^{\alpha}: \alpha<\lambda, \quad c \in b_{\alpha}\right\} \subseteq \bigcap_{\alpha<\lambda} A_{\sigma(2)}^{d_{\alpha}} \in S N \\
& x_{c}^{2} \in k \backslash c \text { for } c \in \mathscr{L}_{\alpha} \therefore k \notin c \text {. }
\end{aligned}
$$

Results

$$
\operatorname{cov}(\mu)=\partial=\lambda \leq \operatorname{non}(S N)
$$

Theorem 3.15
implies $\lambda<\operatorname{cof}(\mathcal{S N})$.
If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{S N}))=\operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$.

$$
\begin{aligned}
& \text { Let }\left\{c_{\alpha}: \alpha<\lambda\right\} \leq S N \\
& \therefore b_{\alpha}=\left\{c_{\alpha}\right\}, \sum_{\{\alpha \alpha} 1=\alpha<\lambda \leq \operatorname{mon}(S N)
\end{aligned}
$$

Results

Theorem 3.15
$\lambda-D S\left(I, i_{0}\right)$ implies $\lambda<\operatorname{cof}(\mathcal{S N})$.
If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{S N}))=\operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$.
Corollary 3.16
If $\mathfrak{d} \leq \operatorname{cof}(\mathcal{S N})$ then $\operatorname{cov}(\mathcal{M})<\operatorname{cof}(\mathcal{S N})$.
Cases: $\cdot \operatorname{cov}(\mu)=\partial=\lambda \xrightarrow{3.15} \lambda<\operatorname{cof}$ (SN $)$

- $\operatorname{cov}(M)<2 \therefore$ by $\theta \leqslant \operatorname{cop}(S N)$.

Results

Theorem 3.15

$\lambda-D S\left(I, i_{0}\right)$ implies $\lambda<\operatorname{cof}(\mathcal{S N})$.
If in addition $\operatorname{cf}(\operatorname{non}(\mathcal{S N}))=\operatorname{cf}(\lambda)$ then $\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$.

```
Corollary 3.16 If \(\mathfrak{d} \leq \operatorname{cof}(\mathcal{S N})\) then \(\operatorname{cov}(\mathcal{M})<\operatorname{cof}(\mathcal{S N})\).
```


Question

 Is $\mathfrak{b} \leq \operatorname{cof}(\mathcal{S N})$? Is $\operatorname{cof}(\mathcal{N}) \leq \operatorname{cof}(\mathcal{S N})$?
Question (Yorioka 2002)

```
Is }\mp@subsup{\aleph}{1}{}<\operatorname{cof}(\mathcal{SN})
```


Theorem 3.17

Under λ - DS $(\mu, 0)$, if non $(\mathcal{S N})=$ supcof $=\mu$ and $\operatorname{cf}(\mu)=\lambda$ then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$. In particular

$$
\operatorname{add}(\mathcal{S N}) \leq \lambda \text { and } \mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})
$$

Theorem 3.17
Under λ - $D S(\mu, 0)$, if $\operatorname{non}(\mathcal{S N})=\operatorname{supcof}=\mu$ and $\operatorname{cf}(\mu)=\lambda$ then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$. In particular

$$
\operatorname{add}(\mathcal{S N}) \leq \lambda \text { and } \mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})
$$

Yorioka's Characterization Theorem follows.

$$
\begin{aligned}
& \lambda=\text { minald }=\sup \text { oof } \rightarrow \text { col } / \mu)=\text { d }=\text { non }(S N)=\text { supcof }=\lambda \text { regular. } \\
& \cdots \lambda^{\lambda} \leqslant T S N \leqslant \mathbb{C}_{[\text {sincof] }] \text { mixed }}^{\partial}=C_{C_{i 7}<\lambda}^{\lambda} \leqslant_{T} \lambda^{\lambda} \\
& \therefore S N{ }^{-}{ }_{T} \lambda^{\lambda}
\end{aligned}
$$

Theorem 3.17

Under $\lambda-D S(\mu, 0)$, if $\operatorname{non}(\mathcal{S N})=\operatorname{supcof}=\mu$ and $\operatorname{cf}(\mu)=\lambda$ then $\lambda^{\lambda} \preceq_{\mathrm{T}} \mathcal{S N}$. In particular

$$
\operatorname{add}(\mathcal{S N}) \leq \lambda \text { and } \mathfrak{d}_{\lambda} \leq \operatorname{cof}(\mathcal{S N})
$$

Yorioka's Characterization Theorem follows.

Corollary 3.18

After adding λ-many Cohen reals with $\lambda \geq \aleph_{1}$ regular, $\operatorname{cof}(\mathcal{S N})=\mathfrak{d}_{\lambda}$.

More about $\operatorname{add}(\mathcal{S N})$

Question (Cardona \& M. \& Rivera-Madrid)

Is it consistent that $\operatorname{add}(\mathcal{S N})<\min \{\operatorname{cov}(\mathcal{S N}), \operatorname{non}(\mathcal{S N})\}$?
Can the four cardinal characteristics associated with $\mathcal{S N}$ be pairwise different?

Positive answer (BCM)

We can force:

More questions

Question

Is mined $=\operatorname{add}(\mathcal{N})$? Is supcof $=\operatorname{cof}(\mathcal{N})$?

Question

Is it consistent with ZFC that $\operatorname{add}(\mathcal{N})<\operatorname{add}(\mathcal{S N})<\mathfrak{b}$?
Or even $\operatorname{add}(\mathcal{N})<\mathfrak{b}<\operatorname{add}(\mathcal{S N})$?

$$
\operatorname{add}(N)=\operatorname{cof}(N)=\lambda \rightarrow \lambda<\operatorname{cof}(S M)
$$

$$
\text { (Q) } \operatorname{cov}(N)=\operatorname{cof}(N)=\lambda \rightarrow x<\operatorname{cof}(S M) ?
$$

