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Abstract

We study house allocation problems introduced by Shapley and Scarf (1974). We

prove that a mechanism (a social choice function) is individually rational, anonymous,

strategy-proof, and non-bossy (but not necessarily Pareto efficient) if and only if it

is either the core mechanism or the no-trade mechanism, where the no-trade mecha-

nism is the one that selects the initial allocation for each profile of preferences. This

confirms the intuition that even if we are willing to accept inefficiency, there exists

no interesting strategy-proof mechanism other than the core mechanism. Journal of

Economic Literature Classification Numbers: C71, C78, D71, D78, D89.

Key Words: strategy-proofness; non-bossiness; indivisible goods; housing market;

mechanism design.
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1 Introduction

We consider house allocation problems introduced by Shapley and Scarf (1974).1 There

are a group of agents, each of whom initially owns one indivisible object. A mechanism

(a social choice function) reallocates the objects with the condition that no one receives

more than one object. House allocation mechanisms are used in real life, for example, to

reallocate university apartments. An important theorem, due to Ma (1994), states that

the unique mechanism that is Pareto efficient, individually rational, and strategy-proof

is the core mechanism. We prove that a similar characterization holds when we replace

Pareto efficiency with a collusion-proofness condition.

The collusion-proofness condition that we consider is what is known as non-bossiness

in the literature. Roughly speaking, a mechanism is called non-bossy if no one can change

the welfare of others without changing his own. If a mechanism is bossy, then at some

preference profile, some agent can affect others’ welfare with no cost to himself. This

implies a possibility of collusion where this agent reports false preferences, in exchange

for a transfer from those who gain from his lie. A well-known mechanism that violates

this condition is the Vickrey auction, where the second highest bidder can change the

price of the object with no cost to himself. Collusion is indeed often observed in auctions

(Cassady, 1967).

The formal statement of our result is the following. A mechanism is individually

rational, strategy-proof, non-bossy, and anonymous if and only if it is either the core

mechanism or the “no-trade mechanism.” The no-trade mechanism is the one that selects

the initial allocation for each profile of preferences. There exists no mechanism “between”

the core mechanism and the no-trade mechanism that satisfies the four axioms.

The major difference between our characterization and Ma’s is that we use non-

bossiness and do not use Pareto efficiency. While Pareto efficiency is desirable, it con-

stitutes a significant part of the definition of the core, together with individual rationality.

For two-person economies, the core is, by definition, equivalent to Pareto efficiency plus

individual rationality. On the other hand, the relation between the core and non-bossiness

is less trivial. The core is defined for each preference profile (i.e., an intra-profile axiom),

while non-bossiness is defined for a set of preference profiles (i.e., an inter-profile axiom).

Our result is similar to that of Roth (1977) for Nash bargaining problems. Roth proves

that all of Nash’s axioms except for Pareto efficiency are satisfied only by the Nash solution

and the “disagreement solution.” The disagreement solution is the one that selects the

1A partial list of papers that study house allocation is: Abdulkadiroğlu and Sönmez (1998); Hylland
and Zeckhauser (1979); Ma (1994); Miyagawa (1999); Pápai (2000); Sönmez (1999); Wako (1991); Zhou
(1990).
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disagreement point for each bargaining problem.

Finally, we would like to mention that a similar result holds for marriage problems

introduced by Gale and Shapley (1962). We can show that a mechanism for marriage

problems is individually rational, strategy-proof, non-bossy, and anonymous, if and only if

it makes every agent remain single for each profile of preferences. This result is intuitive in

light of our result for house allocation problems and the fact that for marriage problems,

no selection from the core is strategy-proof for both sides (Roth, 1982). Marriage problems

are discussed in Section 6.

2 Preliminaries

2.1 The Model

We consider the model introduced by Shapley and Scarf (1974). We denote the set of

agents by N = {1, 2, . . . , n}. We often denote N \ {i} by −i. Each agent initially owns

one object. The object initially owned by agent i is called “object i,” and thus N denotes

the set of objects as well. An allocation is a list x = (x1, x2, . . . , xn) such that2

xi ∈ N for each i ∈ N ;

i 6= j =⇒ xi 6= xj .

Here xi ∈ N denotes the object allocated to agent i. The second condition simply states

that no two agents receive the same object. An allocation is simply a permutation of N .3

Let X be the set of allocations. Let the initial allocation be denoted by

e = (1, . . . , n).

Each agent i ∈ N has a complete and transitive preference relation Ri defined over N .

The associated strict preference relation is denoted by Pi. We assume, as usual, that Ri

is strict, i.e., for any j 6= k, either j Pi k or k Pi j. Thus j Ri k means that either j Pi k

or j = k. Let R be the set of complete, transitive, and strict preference relations defined

over N . A generic preference profile is denoted by R = (R1, . . . , Rn) ∈ R
N . We write RS

for (Ri)i∈S .

2Throughout the paper, “A =⇒ B” means “A implies B,” and “A⇐⇒ B” means “A if and only if B.”
3We are assuming that no agent can obtain more than one object. The case in which one can obtain

more than one object has been studied (Ehlers and Klaus, 1999; Klaus and Miyagawa, 1999; Pápai, 1998).
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We represent Ri by an ordered list of the objects:

Ri : k1, k2, k3, i, k4, . . . , kn−1.

We say that object k is acceptable for agent i at Ri if k Ri i. Since the ordering of the

objects that are not acceptable is immaterial for our analysis, we will write

Ri : k1, k2, k3, i, . . .

We write R̂i ∼i Ri if R̂i and Ri induce the same ranking above the endowment (i.e.,

j P̂i k R̂i i⇐⇒ j Pi k Ri i). For a pair of preference profiles R, R̂ ∈ RN , we write R̂ ∼ R if

R̂i ∼i Ri for all i ∈ N .

We denote by R0
i a preference relation for agent i for which the top object is his

endowment, i.e.,

R0
i : i, . . .

2.2 Mechanisms

A mechanism is a function ϕ : RN → X, which associates an allocation x ∈ X with each

preference profile R ∈ RN . We denote by ϕi(R) the object allocated to agent i.

An important mechanism for Shapley-Scarf economies is the (strict or strong) core

mechanism. To define this mechanism, we need an additional piece of notation. Given a

coalition S ⊆ N , let

XS = {y ∈ X : yi ∈ S for all i ∈ S}.

This is the set of allocations where agents in S exchange their endowments among them-

selves.

An allocation x ∈ X is in the core for a preference profile R ∈ RN if there exist no

coalition S ⊆ N and no allocation y ∈ XS such that yi Ri xi for all i ∈ S, with strict

preference holding for some i ∈ S. Let C(R) denote the core for R ∈ RN . Since Ri is strict

for all i ∈ N , C(R) is a singleton (Roth and Postlewaite, 1977). Thus C is a function.

We call the function C the core mechanism. The unique core allocation can be computed

easily by means of the top trading cycle algorithm, introduced by David Gale (Shapley

and Scarf, 1974).4

4The algorithm works as follows. In the first round, each agent “points” to his most preferred object,
and then we look for “cycles.” A set of agents {i1, i2, . . . , im} form a cycle if i1 points to i2, i2 points to
i3, . . ., and im points to i1. If agents form a cycle, they exchange their endowments according to the cycle,
and then leave the economy. In the next round, those who remain in the economy repeat the procedure
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The no-trade mechanism is the mechanism NT : RN → X defined by NT (R) = e

for all R ∈ RN . That is, the mechanism selects the initial allocation for each preference

profile. This is not an interesting mechanism, but we need it to state our main result.

2.3 Axioms

We now introduce a few axioms, which are all standard in the literature.

A mechanism ϕ is individually rational if for all R ∈ RN and all i ∈ N , ϕi(R)Ri i.

A mechanism is anonymous if it is defined independently of the names of the agents.

To define this axiom formally, let π : N → N be a permutation (i.e., bijection), and let

T (R, π) be the preference profile R′ defined by the condition that for all i, j, k ∈ N ,

j Ri k ⇐⇒ π(j)R′
π(i) π(k).

Thus R′ is identical to R except that agent i is renamed agent π(i) (and hence object i

is renamed object π(i)). For convenience, we write π as a vector in NN . For example,

by π = (2, 3, 1), we mean that π(1) = 2, π(2) = 3, and π(3) = 1. For this example, if

R′ = T (R, π), then

R1 : 2, 1, 3 =⇒ R′
2 : 3, 2, 1. (1)

A mechanism ϕ is anonymous if for all R ∈ RN , all permutations π : N → N , and all

i ∈ N , ϕπ(i)(T (R, π)) = π(ϕi(R)). For example (1), if ϕ is anonymous and ϕ1(R) = 3,

then ϕ2(R
′) = 1.

A mechanism ϕ is strategy-proof if in its associated revelation game, it is a dominant

strategy for each agent to report his preferences truthfully, i.e., for all R ∈ RN , all i ∈ N ,

and all R′
i ∈ R, ϕi(R)Ri ϕi(R

′
i, R−i).

Finally, a mechanism ϕ is non-bossy (Satterthwaite and Sonnenschein, 1981) if no

agent can change the allocation for others without changing the allocation for himself, i.e.,

for all R ∈ RN , all i ∈ N , and all R′
i ∈ R,

[ϕi(R
′
i, R−i) = ϕi(R)] =⇒ [ϕ(R′

i, R−i) = ϕ(R)].

To understand the meaning of this condition, suppose that it is violated, i.e., ϕi(R
′
i, R−i) =

ϕi(R) and ϕj(R
′
i, R−i) 6= ϕj(R) for some j 6= i. This means that agent i can change the

welfare level of agent j with no cost to himself. This suggests a possibility of collusion

among themselves. The algorithm terminates when no agent remains in the economy. Since at least one
cycle forms in each round, the algorithm terminates eventually.
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where agent i reports a preference relation that is favorable for agent j in exchange for a

transfer from agent j. A well-known mechanism that violates non-bossiness is the Vickrey

auction, where the second highest bidder can change the price of the object while remaining

a loser. Collusion is indeed observed often in auctions. Non-bossiness would not eliminate

collusion completely, but non-bossiness is still an appealing property.5

We introduce a few facts that will be useful.

Fact 1. Let ϕ be a mechanism that is strategy-proof and non-bossy. Then for all

R ∈ RN , all i ∈ N , and all R′
i ∈ R, if the most preferred object for R′

i is ϕi(R), then

ϕ(R′
i, R−i) = ϕ(R).

Proof. Strategy-proofness implies ϕi(R
′
i, R−i) R

′
i ϕi(R). Since ϕi(R) is the most pre-

ferred object for R′
i, it follows that ϕi(R

′
i, R−i) = ϕi(R). This together with non-bossiness

implies ϕ(R′
i, R−i) = ϕ(R).

Fact 2. Let ϕ be a mechanism that is strategy-proof, non-bossy, and individually

rational. Then

R′
i ∼i Ri =⇒ ϕ(R′

i, R−i) = ϕ(Ri, R−i).

We omit the straightforward proof. Note that by using Fact 2 repeatedly, we obtain

R′ ∼ R =⇒ ϕ(R′) = ϕ(R).

3 The Result

The axioms defined in the previous section are all satisfied trivially by the no-trade mech-

anism. The axioms are satisfied also by the core mechanism. It is well-known that the

core mechanism is strategy-proof (Roth, 1982; see also Moulin, 1995). To see that the

core mechanism is non-bossy, suppose Ci(R
′
i, R−i) = Ci(R) = j. Let R′′

i be such that

its top object is j. Then C(R) is a core allocation also for preference profile (R′′
i , R−i),

since blocking this allocation is even more difficult at this preference profile. This estab-

lishes C(R′′
i , R−i) = C(R), and a symmetric argument yields C(R′′

i , R−i) = C(R′
i, R−i), as

desired.

We have seen that the no-trade mechanism and the core mechanism satisfy our axioms.

Our contribution is to show that no other mechanism does.

5A violation of non-bossiness does not mean that collusion must occur, especially since agents may
not know each other’s preferences. Similarly, a violation of strategy-proofness does not mean that a
misrepresentation of preferences must occur.
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Theorem 1. A mechanism is individually rational, anonymous, strategy-proof, and

non-bossy, if and only if it is either the core mechanism or the no-trade mechanism.

This result complements Ma’s important theorem (Ma, 1994), which states that a

mechanism is individually rational, strategy-proof, and Pareto efficient if and only if it

is the core mechanism. The main insight that our result provides is that even if we are

willing to accept inefficiency, there is no interesting strategy-proof mechanism other than

the core mechanism.6

Theorem 1 is similar to a theorem due to Roth (1977) for Nash bargaining. Roth shows

that all of Nash’s axioms except for Pareto efficiency are satisfied only by the Nash solution

and the “disagreement solution.” The disagreement solution is the one that selects the

disagreement point for each bargaining problem.

4 Proof of Theorem 1

Let ϕ be a mechanism satisfying all of our axioms. We prove that ϕ is either the core

mechanism (C) or the no-trade mechanism (NT ). We use induction on n. The theorem

holds trivially when n = 2, since when n = 2, the core mechanism and the no-trade

mechanism are the only mechanisms that are individually rational. Given k ≥ 2, suppose

that the result holds if n ≤ k, and suppose n = k + 1.

An induction argument on n is effective since when agent 1’s preferences are fixed at

R0
1, the function ϕ(R

0
1, ·) is essentially a mechanism for (n−1)-person economies, to which

we can apply the induction hypothesis.

We have to be careful since Rj for j 6= 1 is defined over N , not N \{1}. But it is easy to

verify that if Rj and R′
j induce the same ranking over N \ {1}, then ϕ(R0

1, Rj , RN\{1,j}) =

ϕ(R0
1, R

′
j , RN\{1,j}) (by strategy-proofness, agent j obtains the same object, and by non-

bossiness, so does everyone else). This fact enables us to define functions g1
j by

g1
j (R2|N\{1}, . . . , Rn|N\{1}) = ϕj(R

0
1, R−1), j ∈ {2, . . . , n},

where Rj |N\{1} is agent j’s ranking over N \ {1}. Then the function g1 = (g1
2, . . . , g

1
n) is a

mechanism for economies in which the set of agents is N \ {1}. The function g1 satisfies

all of our axioms, and thus by our induction hypothesis, g1 is either the core mechanism

6Miyagawa (1999) demonstrates that the core mechanism stands out even when monetary transfers
are allowed. Specifically, it is proved that for a mechanism to be strategy-proof, non-bossy, individually
rational, onto, and budget balanced, it has to set the price of each object in advance and allocates the
objects according to the core of the Shapley-Scarf economy associated with the prices.
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or the no-trade mechanism. Then we have

[g1 = NT ] =⇒ [∀R−1 ∈ R
N\{1}, ϕ(R0

1, R−1) = e]; (2)

[g1 = C] =⇒ [∀R−1 ∈ R
N\{1}, ϕ(R0

1, R−1) = C(R0
1, R−1)]. (3)

We define gi for i 6= 1 similarly. By anonymity, either gi = NT for all i ∈ N or gi = C for

all i ∈ N . We prove

[gi = NT ∀i ∈ N ] =⇒ [ϕ = NT ];

[gi = C ∀i ∈ N ] =⇒ [ϕ = C].

4.1 Case 1: gi = NT for each i ∈ N

We first claim that for all R ∈ RN ,

[ϕi(R) = i for some i ∈ N ] =⇒ [ϕ(R) = e]. (4)

Indeed, (2) for gi implies ϕ(R0
i , R−i) = e. Thus if ϕi(R) = i, then non-bossiness implies

ϕ(R) = e.

Thus it suffices to prove that for all R ∈ RN , there exists i ∈ N such that ϕi(R) = i.

Suppose, to the contrary, that there exists R ∈ RN such that ϕi(R) Pi i for all i ∈ N .

Without loss of generality, assume ϕ1(R) = 2. Let x = ϕ(R).

Define preference profiles R̂, R′, and R′′ as follows:

A1. For all i ∈ N , R̂i : xi, i, . . .

A2. R′
1 : 3, 2, 1, . . .

A3. For all i 6= 1 and all k /∈ {xi, i}, xi P
′
i k P

′
i i;

A4. R′′ = T ((R̂1, R
′
−1), π) where π = (1, 3, 2, 4, . . . , n).

Note that A2 and A4 are well-defined since n = k + 1 ≥ 3. We will show that

ϕ(R) = ϕ(R̂) = ϕ(R′
1, R̂−1) = ϕ(R′) = ϕ(R̂1, R

′
−1); (5)

ϕ1(R
′′) = 3; (6)

ϕ(R′′) = e. (7)

Claims (6) and (7) provide a desired contradiction.

The first equality in (5) follows from Fact 1.
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To see the second equality in (5), let x′ = ϕ(R′
1, R̂−1). By strategy-proofness, x′1 R

′
1

ϕ1(R̂) = x1 = 2, which implies x′1 ∈ {2, 3}. We show x′1 = 2. Suppose, to the contrary,

that x′1 = 3, and let k 6= 3 be the agent such that xk = 3. Individual rationality implies

x′k ∈ {3, k}. Since object 3 is assigned to agent 1, we have x′k = k. It then follows from

(4) that x′ = e, which is in contradiction with x′1 = 3. This contradiction establishes

x′1 = 2 = x1. Non-bossiness then implies x′ = x.

The third equality in (5) follows from Fact 1 applied to agents N \ {1}. The last

equality in (5) follows from Fact 1 applied to agent 1.

To see (6), note that anonymity implies ϕ1(R
′′) = π(ϕ1(R̂1, R

′
−1)) = π(x1) = 3, where

the second equality follows from (5).

Finally, to derive (7), note first that

R′′
1 : 3, 1, . . .

By strategy-proofness, 2 = ϕ1(R
′)R′

1 ϕ1(R
′′
1 , R

′
−1), which implies ϕ1(R

′′
1 , R

′
−1) = 1. Then

by (4), ϕ(R′′
1 , R

′
−1) = e. We now change agent 2’s preferences to R′′

2 . By strategy-

proofness, 2 = ϕ2(R
′′
1 , R

′
−1) R

′
2 ϕ2(R

′′
1 , R

′′
2 , R

′
N\{1,2}). Since the endowment is the least

preferred object for R′
2, it follows that ϕ2(R

′′
1 , R

′′
2 , R

′
N\{1,2}) = 2. Non-bossiness then

implies ϕ(R′′
1 , R

′′
2 , R

′
N\{1,2}) = e. Repeating this argument for agents {3, 4, . . . , n} yields

(7).

4.2 Case 2: gi = C for each i ∈ N

A key to the proof for this case is Lemma 1, which we first describe informally. Suppose

that agents S = {1, 2, . . . ,m} ⊆ N are sitting around a table in such a way that the

right-hand neighbor of agent i is agent i + 1 (mod m). Lemma 1 says that if for each

agent in S, the endowment of his right-hand neighbor is the only object he prefers to his

endowment, then each agent in S obtains the endowment of his right-hand neighbor, i.e.,

the mechanism does not select the initial allocation for S.

To obtain intuition, consider the case when S = N and n ≥ 3. Then consider another

preference profile such that for each agent, the top choice is the endowment of his right-

hand neighbor, the second choice is the endowment of his left-hand neighbor, and the

third choice is his own endowment. Anonymity implies that for this preference profile,

either (i) each agent obtains the endowment of his right-hand neighbor or (ii) each agent

obtains the endowment of his left-hand neighbor or (iii) each agent keeps his endowment.

If (i) or (ii) holds, then the desired result follows from Fact 1. If (iii) holds, then suppose

that agent 1 reports a false preference relation for which the top choice is his endowment.
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He neither gains nor loses. But since g1 = C, the mechanism now lets agents n − 1 and

n exchange their endowments. This means that agent 1’s false report makes agents n− 1

and n better off with no cost to agent 1, in violation of non-bossiness. This means that

Case (iii) does not occur.

In the above argument, we assumed that S = N and n ≥ 3. If S ( N , then not all

agents are sitting around the table, and thus we have to be careful in using anonymity.

Moreover, the above argument does not work if only two agents are sitting around the

table (since then n − 1 = 1). We deal with the two-agent case using a less transparent

argument.

Lemma 1. Let S = {i1, . . . , im} ⊆ N be such that m ≡ |S| ≥ 2 and let R ∈ RN .

Suppose that

∀k ∈ {1, . . . ,m}, Rik : ik+1, ik, . . . ,

where im+1 = i1. Then for all k ∈ {1, . . . ,m}, ϕik(R) = ik+1, where im+1 = i1.

Proof. Without loss of generality, assume S = {1, 2, . . . ,m}. Denote x = ϕ(R). We

show that

∀i ∈ S, xi = i+ 1 (mod m). (8)

Case 1: m ≥ 3. Define R′ by

∀i ∈ S, R′
i : i+ 1, i− 1, i, . . . (mod n)

∀i /∈ S, R′
i : xi, i, . . . (if xi = i, then R′

i : i, . . .)

Since m ≥ 3, it follows that for each i ∈ S, i+1 (mod m) 6= i− 1 (mod m), i.e., agent i’s

right-hand neighbor and left-hand neighbor differ. Applying Fact 1 to N \ S yields

ϕ(RS , R
′
N\S) = x. (9)

Observe now that at preference profile R′, agents in S are symmetric in the sense

that the relation between i and i + 1 is identical to the relation between i + 1 and i + 2.

Asymmetry exists if we take into account agents’ rankings below their endowments, but

this asymmetry is immaterial by Fact 2. Thus anonymity implies that one of the following

cases holds:7

7A formal argument goes as follows. Let π = (2, 3, . . . ,m, 1,m + 1,m + 2, . . . , n) and R′′ = T (R′, π).
Then it can be verified thatR′′ ∼ R′. Thus Fact 2 and anonymity imply π(ϕi(R

′)) = ϕπ(i)(R
′′) = ϕπ(i)(R

′).
This means that if ϕ1(R

′) = 2, then π(2) = ϕπ(1)(R
′) or equivalently ϕ2(R

′) = 3. Repeating this argument,

11



B1. For all i ∈ S, ϕi(R
′) = i+ 1 (mod m);

B2. For all i ∈ S, ϕi(R
′) = i;

B3. For all i ∈ S, ϕi(R
′) = i− 1 (mod m).

If B1 holds, then we apply Fact 1 to S to obtain ϕ(RS , R
′
N\S) = ϕ(R′). This together

with (9) implies ϕ(R′) = x, which in turn implies (8).

If B2 holds, then Fact 1 implies ϕ(R0
1, R

′
−1) = ϕ(R′). But then ϕm(R

0
1, R

′
−1) = m 6=

m− 1 = Cm(R
0
1, R

′
−1).

8 This is in contradiction with g1 = C and (3). This contradiction

means that B2 does not hold.

Finally, suppose that B3 holds. Define R′′
S by

∀i ∈ S, R′′
i : i− 1, i, . . . (mod m)

By Fact 1,

ϕ(R′′
S , R

′
N\S) = ϕ(R′). (10)

Now, an important observation is that the preference profile (R′′
S , R

′
N\S) is equivalent, in

the sense of ∼, to the preference profile (RS , R
′
N\S), except that the agents in S are named

in the reversed order. That is, for π defined by

π = (m,m− 1, . . . , 1,m+ 1,m+ 2, . . . , n),

we have T ((R′′
S , R

′
N\S), π) ∼ (RS , R

′
N\S). Thus, anonymity, Fact 2, and (10) imply that

for all i ∈ S, ϕi(RS , R
′
N\S) = i+ 1. This together with (9) implies (8).

Case 2: m = 2. Thus S = {1, 2}. Denote x = ϕ(R), and suppose, by way of

contradiction, that x1 = 1 and x2 = 2.

If xk = k for some k /∈ {1, 2}, then Fact 1 and (3) imply ϕ(R) = ϕ(R0
k, R−k) =

C(R0
k, R−k). This implies ϕ1(R) = 2 and ϕ2(R) = 1, and thus we are done. So we assume

that xk 6= k for all k /∈ {1, 2}, and that x3 = 4 without loss of generality.

Define R̂ by

∀k ∈ {1, 2}, R̂k = Rk;

∀k /∈ {1, 2}, R̂k : xk, k, . . .

we obtain that if ϕ1(R
′) = 2, then B1 holds. Similarly, ϕ1(R

′) = 1 implies B2, and ϕ1(R
′) = m implies

B3.
8The equality does not hold if m = 2, since then m− 1 = 1.
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By Fact 1, ϕ(R̂) = x.

Define R′
1 and R′

3 by

R′
1 : 2, 3, 1, . . .

R′
3 : 1, 4, 3, . . .

Note that ϕ1(R
′
1, R̂−1) 6= 3, since objects 1 and 2 are not acceptable for agents k /∈ {1, 2} at

R̂k. And strategy-proofness implies x1 = 1R̂1ϕ1(R
′
1, R̂−1), which implies ϕ1(R

′
1, R̂−1) 6= 2.

Thus ϕ1(R
′
1, R̂−1) = 1 and non-bossiness then implies ϕ(R′

1, R̂−1) = x.

Let x′ = ϕ(R′
1, R

′
3, R̂N\{1,3}). Strategy-proofness implies x′3 R

′
3 x3 = 4, which implies

x′3 ∈ {1, 4}. We derive a contradiction in each of the cases.

Suppose x′3 = 1. Then one can easily verify that x′1 = 3, x′2 = 2, and x′4 = 4. By

applying Fact 1 to agent 4 and then using (3), we obtain x′ = ϕ(R′
1, R

′
3, R

0
4, R̂N\{1,3,4}) =

C(R′
1, R

′
3, R

0
4, R̂N\{1,3,4}). But this is a contradiction since agents 1 and 2 block x′, i.e.,

2 P ′
1 x

′
1 = 3 and 1 P̂2 x

′
2 = 2.

Suppose x′3 = 4. Non-bossiness then implies x′ = x. By applying Fact 1 to agent 2 and

then using (3), we obtain x = ϕ(R′
1, R

0
2, R

′
3, R̂N\{1,2,3}) = C(R′

1, R
0
2, R

′
3, R̂N\{1,2,3}). But

this is a contradiction since agents 1 and 3 block x, i.e., 3 P ′
1 x1 = 1 and 1 P ′

3 x3 = 4.

We are now ready to complete the proof of Theorem 1 (Case 2). Take any preference

profile R ∈ RN , and let x = C(R). We show that ϕ(R) = x. Define R̂ by

∀i ∈ N, R̂i : xi, i, . . . (if xi = i, then R̂i : i, . . .)

Then ϕi(R̂) = xi for all i ∈ N . This follows from Lemma 1 for i ∈ N such that xi 6= i.

For i ∈ N such that xi = i, it follows from individual rationality.

For each i ∈ N , let ri be the round in which agent i obtains an object in the top

trading cycle algorithm when the preference profile is R (see Footnote 4 for a description

of the algorithm). Without loss of generality, assume that i < j implies ri ≤ rj . For each

i ∈ {1, . . . , n+ 1}, define

Ri = (R̂1, . . . , R̂i−1, Ri, . . . , Rn).

We use an induction argument to prove that ϕ(Ri) = x for all i ∈ {1, . . . , n + 1}. Note

that ϕ(Rn+1) = x, since Rn+1 = R̂. So, suppose that ϕ(Ri+1) = x for some i ∈ {1, . . . , n},

and consider the preference profile Ri = (Ri, R
i+1
−i ). Let Nri = {j ∈ N : rj ≥ ri}. The

following facts imply ϕi(R
i) = xi:

13



1. Objects in Nri are not acceptable for agents in N \Nri at R
i. Thus ϕi(R

i) ∈ Nri ;

2. The definition of the top trading cycle algorithm implies that xi is the most preferred

object in Nri for Ri (since agent i points to xi in round ri);

3. Strategy-proofness implies ϕi(R
i)Ri xi.

Non-bossiness then implies ϕ(Ri) = x. This completes the induction argument, and it

follows that ϕ(R) = x, since R = R1.

5 Independence of the Axioms

We verify that none of the axioms in Theorem 1 is redundant. We exhibit mechanisms

that satisfy all but one of the axioms.

Example 1 (Bossy).

ϕ(R) =







e if for some i ∈ N , Ri : i, . . .

C(R) otherwise.

That is, the mechanism selects the core allocation except when some agent’s top choice is

his endowment, in which case it selects the initial allocation. The mechanism is strategy-

proof, since no agent wants to lie to induce the initial allocation, and if one’s top choice

is his endowment, truth-telling gives him his top choice. The mechanism is bossy, since

there exists a preference profile R where the endowment is not the top choice for anyone,

C(R) 6= e, and Ci(R) = i for some agent i. Then agent i can change the selected allocation

from C(R) to e by reporting R0
i .

Example 2 (Not anonymous). Let y ∈ X be an allocation such that yi 6= i for all

i ∈ N . Then let

ϕy(R) =







y if yi Pi i for all i ∈ N ;

e otherwise.

That is, the mechanism ϕy selects the initial allocation except when allocation y is unan-

imously preferred to the initial allocation. This mechanism violates anonymity since allo-

cation y depends on how we assign names to the agents. Non-bossiness is satisfied because

of the condition yi 6= i for all i ∈ N .
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Example 3 (Not strategy-proof). Let b(Ri) ∈ N be the top choice of agent i.

Then let

ϕ(R) =







(b(R1), . . . , b(Rn))
if b(Ri) 6= i for all i ∈ N ,

and b(Ri) 6= b(Rj) for all i 6= j;

e otherwise.

That is, the mechanism selects the initial allocation except when it is feasible to give each

agent his most preferred object and no agent prefers his endowment. This mechanism is

not strategy-proof; at some preference profile, an agent can avoid the initial allocation

and gain by lying about his top choice. Non-bossiness is satisfied because of the condition

b(Ri) 6= i for all i ∈ N .

Example 4 (Not individually rational). Let ϕ(R) = C(R∗) where each R∗
i is

identical to Ri except that the endowment is the last choice. That is, if

Ri : k1, k2, . . . , km, i, km+1, . . . , kn−1,

then

R∗
i : k1, k2, . . . , km, km+1, . . . , kn−1, i.

It is easy to see that non-bossiness of C implies that ϕ is non-bossy as well. To see why ϕ

is strategy-proof, suppose that Ci(R
∗) = k` 6= i. The strategy-proofness of C implies that

for all R̂i ∈ R,

k` R
∗
i Ci(R̂

∗
i , R

∗
−i) R̂

∗
i k`.

The first part implies Ci(R̂
∗
i , R

∗
−i) /∈ {k1, . . . , k`−1}. The second part together with k` 6= i

implies Ci(R̂
∗
i , R

∗
−i) 6= i, and hence Ci(R̂

∗
i , R

∗
−i) ∈ {k`, . . . , kn−1}, as desired.

6 Marriage Problems

Matching problems that are closely related to house allocation problems are marriage

problems (Gale and Shapley, 1962). We can prove a similar result for marriage problems.

Theorem 2. Suppose that there are at least two men and two women. Then a mecha-

nism for marriage problems is individually rational, anonymous, strategy-proof, and non-

bossy, if and only if it makes every agent remain single for each profile of preferences.

Proof. See the Appendix.
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Here, anonymity means that agents on the same side are treated symmetrically, but it

allows mechanisms that treat the two sides asymmetrically. Thus anonymity is satisfied

by the men-optimal stable matching mechanism.

Theorem 2 is intuitive in light of Theorem 1 and the fact that for marriage problems, no

selection from the core is strategy-proof for both sides (Roth, 1982). Alcalde and Barberà

(1994) prove a similar impossibility result, which states that there exists no mechanism

that is Pareto efficient, individually rational, and strategy-proof. Their result does not

imply, and is not implied by, Theorem 2. Theorem 2 confirms the intuition that no

interesting strategy-proof mechanism exists for marriage problems, even if we are willing

to accept inefficiency.

A Appendix: Marriage Problems

A.1 Preliminaries

We consider the model introduced by Gale and Shapley (1962). Let M and W be two

non-empty, finite, disjoint sets. We call an element of M a man, and an element of W

a woman. We allow |M | 6= |W |. Each man m ∈ M has a (complete and transitive)

preference relation Rm defined over W ∪ {m}. The associated strict relation is denoted

by Pm. As before, we assume that Rm is strict, i.e., for all i 6= j, either i Pm j or j Pm i.

Thus i Rm j means that either i Pm j or i = j. Similarly, each woman w ∈W has a strict

(complete and transitive) preference relation Rw defined overM∪{w}. Let R be the set of

preference profiles of all agents R = (Ri)i∈M∪W . Given i ∈M ∪W , let R0
i be a preference

relation for agent i such that the top choice is i. As before, we represent preferences Rm

by:

Rm : w1, w2,m,w3, w4, . . . , w|W |.

Since the precise ordering of women below himself is not important in the following anal-

ysis, we write:

Rm : w1, w2,m, . . .

A matching is a function µ : M ∪W →M ∪W satisfying the following:

1. For all m ∈M , µ(m) ∈W ∪ {m}.

2. For all w ∈W , µ(w) ∈M ∪ {w}.

3. For all m ∈M and all w ∈W , µ(m) = w if and only if µ(w) = m.
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The first condition says that a man is matched to either a woman or himself. The

second condition is the same condition for women. The last condition simply says that if

man m is matched to woman w, then w should be matched to m.

Given i ∈ M ∪W , µ(i) is called the mate of agent i. When µ(i) = i, we say that

agent i remains single.

A mechanism is a function ϕ that associates with each preference profile R ∈ R a

matching ϕ(R). We denote by ϕi(R) the agent matched to agent i.

We now can redefine the axioms introduced in the previous section for marriage prob-

lems. Strategy-proofness and non-bossiness are defined without modification. Individual

rationality now states that no one should be made worse off than remaining single, i.e.,

for all i ∈M ∪W , ϕi(R)Ri i.

The meaning of anonymity is the same as before. We just note that the permutations

π should satisfy

π(m) ∈M ∀m ∈M ;

π(w) ∈W ∀w ∈W.

A permutation changes the agents’ names, but not their genders. Thus we allow a mech-

anism that treats the two sides asymmetrically, such as the men-optimal stable matching

mechanism (Gale and Shapley, 1962).

The following is the main result of this section.

Theorem 2. Suppose |M |, |W | ≥ 2. Then a mechanism is individually rational,

anonymous, strategy-proof, and non-bossy, if and only if it makes everyone remain single

for each profile of preferences.

A.2 Proof of Theorem 2

Let µ0 be the matching in which everyone remains single, and ϕ0 be the mechanism that

chooses µ0 for each preference profile.

Let ϕ be a mechanism satisfying all of our axioms.

A.2.1 Step 1

We first show that ϕ = ϕ0 when |M | = |W | = 2. Let M = {m1,m2} and W = {w1, w2}.

For each m, let

R12
m : w1, w2,m.
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Define R21
m and Rij

w similarly. Given m ∈M and i ∈ {1, 2}, let

Ri
m : wi,m, . . .

Let

µ = ϕ(R12
m1
, R21

m2
, R21

w1
, R12

w2
). (11)

To complete Step 1, it suffices to prove µ = µ0. Suppose, to the contrary, that µ 6= µ0.

We distinguish two cases.

Case 1: No one remains single at µ. Without loss of generality, assume

µ =

(

m1 m2

w1 w2

)

.

This means that m1 is matched to w1, and m2 is matched to w2. The other case

can be proved symmetrically. By changing w1’s preferences to R1
w1
, we obtain that

ϕ(R12
m1
, R21

m2
, R1

w1
, R12

w2
) = µ. Now, permute the women’s names. Anonymity implies

ϕ(R21
m1
, R12

m2
, R12

w1
, R1

w2
) =

(

m1 m2

w2 w1

)

≡ µ′. (12)

Changing w1’s preferences to R
21
w1
, we obtain

ϕ(R21
m1
, R12

m2
, R21

w1
, R1

w2
) = µ′. (13)

Applying strategy-proofness to (11), we obtain ϕ(R12
m1
, R21

m2
, R21

w1
, R1

w2
) = µ̂ where

µ̂(w2) = w2. We distinguish three cases.

Subcase 1: µ̂ = µ0. Changing the preferences of m1 and m2 to R21
m1

and R12
m2

respec-

tively, we obtain ϕ(R21
m1
, R12

m2
, R21

w1
, R1

w2
) = µ0, in contradiction with (13).

Subcase 2: µ̂ = µ̄ where

µ̄ ≡

(

m1 m2 w2

w1 m2 w2

)

.

Changing the preferences of m2 and w2 to R12
m2

and R0
w2

respectively, we obtain

ϕ(R12
m1
, R12

m2
, R21

w1
, R0

w2
) = µ̄. (14)
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Permuting the men’s names, we obtain

ϕ(R12
m1
, R12

m2
, R12

w1
, R0

w2
) =

(

m1 m2 w2

m1 w1 w2

)

≡ µ̃.

But by (14), w1 can gain by reporting R12
w1

at profile (R12
m1
, R12

m2
, R21

w1
, R0

w2
), a contradiction.

Subcase 3: µ̂ = µ̃. By changing m1’s preferences to R
21
m1

, we obtain that

ϕ(R21
m1
, R21

m2
, R21

w1
, R1

w2
) = µ̃.

But then by (13), if m2 reports R12
m2

instead, he will be matched to the same mate while

making m1 and w2 strictly better off. This is in contradiction with non-bossiness.

Case 2: A man and a woman remain single at µ. Without loss of generality,

assume µ = µ̄, where m1 and w1 are matched. Changing w1’s preferences to R12
w1
, we

obtain ϕ(R12
m1
, R21

m2
, R12

w1
, R12

w2
) = µ̄. Permuting the names for both sides, we obtain

ϕ(R12
m1
, R21

m2
, R21

w1
, R21

w2
) =

(

m2 m1 w1

w2 m1 w1

)

.

Changing w2’s preferences to R12
w2
, we obtain that ϕw2(R

12
m1
, R21

m2
, R21

w1
, R12

w2
) 6= w2, in

contradiction with µ(w2) = µ̄(w2) = w2.

A.2.2 Step 2

We complete the proof by induction. Let k ∈ {3, 4, . . .} and suppose that ϕ = ϕ0 if

min{|M |, |W |} ≤ k − 1. And suppose min{|M |, |W |} = k. Without loss of generality,

assume |M | = k, and let M = {m1,m2, . . . ,mk} and W = {w1, w2, . . . , wl} with l ≥ k.

Let R ∈ R and µ = ϕ(R), and we prove µ = µ0. We distinguish two cases.

Case 1: There exists a man m such that µ(m) = m. Then S ≡ {i ∈ M ∪W :

µ(i) = i} is non-empty. Applying strategy-proofness and non-bossiness repeatedly, we

obtain ϕ(R0
S , R−S) = µ. Since min{|M \ S|, |W \ S|} ≤ k − 1, the induction hypothesis

implies ϕ(R0
S , R−S) = µ0, and hence µ = µ0.

Case 2: For all men m, µ(m) 6= m. We derive a contradiction. Without loss of

generality, assume that for all i ∈ {1, . . . , k}, µ(mi) = wi. Let W ′ = {w1, . . . , wk}. Given
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i ∈M ∪W ′, let

R′
i : µ(i), i, . . .

For all w ∈W \W ′, let R′
w = R0

w. Applying strategy-proofness and non-bossiness repeat-

edly, we obtain ϕ(R′) = µ.

Let

R̂m1 : w2, w1,m1, . . .

Let µ̂ = ϕ(R̂m1 , R
′
−m1

). Strategy-proofness implies µ̂(m1) 6= m1. Since m1 is not accept-

able for w2, µ̂(m1) = w1. Then by non-bossiness, µ̂ = µ.

For each man m 6= m1, let

R̂m : µ(m), . . .
︸︷︷︸

W\{µ(m)}

,m.

That is, m’s top choice is µ(m) and the last choice is to remain single. Similarly, for each

w ∈W ′, let

R̂w : µ(w), . . .
︸︷︷︸

M\{µ(w)}

, w.

For each w ∈W \W ′, let R̂w = R0
w. Then by strategy-proofness and non-bossiness,

ϕ(R̂) = µ; (15)

ϕ(R′
m1
, R̂−m1) = µ. (16)

Let

R′′
m1

: w2,m1, . . .

Let µ′′ = ϕ(R′′
m1
, R̂−m1). By (15), µ′′(m1) = m1. Then by Case 1, µ′′ = µ0. Let

R̂′ be the preference profile obtained from R̂ by permuting the names of w1 and w2.

Note that R′
m1

is obtained from R′′
m1

by the same permutation. Thus anonymity implies

ϕ(R′
m1
, R̂′

−m1
) = µ0. Note that at this profile, for each i 6= m1, to remain single is the worst

choice. Thus changing the preferences of each i 6= m1 to R̂i, we obtain ϕ(R
′
m1
, R̂−m1) = µ0,

in contradiction with (16).

A.3 Independence of the Axioms

We verify that none of the axioms in Theorem 2 is redundant. We exhibit mechanisms

that satisfy all but one of the axioms.

Example 5 (Bossy). Consider the mechanism that selects µ0 for all profiles R except
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in the following case: there exist a man m and a woman w such that (i) m and w are

acceptable for each other (w Pm m and m Pw w), and (ii) for all the other agents i, the

top choice is to remain single (i Pi k for all k 6= i). If such a pair (m,w) exists, the

mechanism assigns the matching where m and w are matched, and all the others remain

single. This mechanism violates non-bossiness, since when (i) and (ii) hold for some pair

(m,w), another agent can change the matching to µ0 by reporting that to remain single

is not the top choice.

Example 6 (Not individually rational). Consider the mechanism where ϕ(R) = µ0

for all R except in the following case: there exists exactly one man m whose top choice

is not to remain single. In this case, ϕ(R) is the matching where m is matched to his

most preferred woman, and the others remain single. This mechanism violates individual

rationality, since it ignores the women’s preferences.

Example 7 (Not anonymous). Let us denote M = {m1,m2, . . . ,m|M |} and W =

{w1, . . . , w|W |}, and let n = min{|M |, |W |}. Then for each i ∈ {1, 2, . . . , n}, mi and wi are

matched if they are acceptable for each other (mi Pwi wi and wi Pmi
mi), and otherwise

they both remain single. Thus for i > n, man mi (or woman wi), if exists, remains single

independently of R.

Example 8 (Not strategy-proof). If there exists a matching µ such that for each

agent i, µ(i) is the top choice for i, and µ(i) 6= i, then µ = ϕ(R). Otherwise, ϕ(R) = µ0.

This mechanism is not strategy-proof; at some profile, an agent can gain by lying about

his top choice.
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