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Abstract

This paper provides simple four-stage game forms that fully implement a large

class of two-person bargaining solutions in subgame-perfect equilibrium. The

solutions that can be implemented by our game forms are those that maximize

a monotonic and quasi-concave function of utilities after normalizing each agent’s

utility function so that the maximum utility is 1 and the utility of the disagreement

outcome is 0. This class of solutions includes the Nash, Kalai–Smorodinsky, and

Relative Utilitarian solutions. The game forms have a structure of alternating

offers and contain no integer device.
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1 Introduction

This paper provides game forms that solve the implementation problem for two-person

bargaining problems. We exhibit simple four-stage game forms that implement

any bargaining solution that maximizes a monotonic and quasi-concave function of

normalized utilities. The solutions that can be implemented by our game forms

include the Nash, Kalai–Smorodinsky, and Relative Utilitarian solutions.

Consider a bargaining problem, where two agents have to choose an alternative

from a certain set. They can agree on any alternative in the set, and if they disagree,

they obtain a predetermined alternative. To avoid disagreements, they have decided

to follow the recommendation of an arbitrator. His recommendation is described by

a bargaining solution, which associates an alternative with each profile of preferences.

Unfortunately, agents’ preferences are typically unknown to the arbitrator, and

agents may not be willing to report their preferences truthfully if it is not in their

interests. A way to solve the manipulation problem is to confront the agents with

a well-chosen game form (or mechanism). A (sequential) game form specifies when

an agent can take action, what actions are available for an agent at each move, and

which alternative is selected for a given sequence of actions. Our hope is that there

exists a game form whose equilibrium outcome is the solution outcome for the true

preferences. When this is the case, the solution is called implementable. The idea is

that the arbitrator may be able to exploit strategic interactions among the agents to

extract their private information.

Whether or not a solution is implementable depends on the type of game forms as

well as the equilibrium concept being considered. This paper considers a sequential

game form (finite-horizon extensive game form with perfect information) together

with subgame-perfect equilibrium.

Our game forms implement a large class of bargaining solutions. To describe

this class, we first identify the unique von Neumann–Morgenstern utility function for

each agent such that the maximum utility is 1 and the utility of the disagreement

outcome is 0. Recall that the solutions proposed by Nash (1950) and Kalai and

Smorodinsky (1975) are both defined by maximizing a function of normalized utilities.

For the Nash solution, the function to be maximized is the Cobb–Douglas, and for the

Kalai–Smorodinsky solution, it is the minimum function. Another interesting solution

of this type is what is called the Relative (or Normalized) Utilitarian solution, which

maximizes the sum of the agents’ normalized utilities. This solution, introduced by

Cao (1982), has received increasing attention recently (e.g., Dhillon and Mertens,

1999; Segal, 2000; Sobel, 2001).
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We are able to implement any bargaining solution that maximizes a monotonic

and quasi-concave function of normalized utilities. We show that for any monotonic

and quasi-concave function, the associated bargaining solution can be implemented

by one of our sequential game forms. All of our game forms are identical except for

their second stage, in which the strategy space is given by an indifference curve of the

function associated with the solution. The other stages are defined independently of

the solution to be implemented.

The literature provides general necessary or sufficient conditions on solutions for

them to be implementable, for many equilibrium concepts including subgame-perfect

equilibrium.1 A typical sufficiency proof, following Maskin (1999), provides an algorithm

that produces a game form that implements a given solution satisfying certain conditions.

The negative side of these general results is that the game forms produced in such

proofs are typically complex and not intuitive.

Moore and Repullo (1988) provide a sufficient condition for subgame-perfect

implementation. The usefulness of their condition in our context depends on the

bargaining setting being considered. Their condition is satisfied by all of our solutions

in a certain important setting, but in other settings, it can be violated by all of our

solutions. When their condition is violated by our solutions, no other result in the

literature proves whether or not our solutions are implementable.

Abreu and Sen (1990) provide a necessary condition for subgame-perfect implementation.

It turns out that their condition has no bite in the context of bargaining, since it is

satisfied by any bargaining solution whether or not it maximizes some function. 2

We also show that in a canonical bargaining setting, none of our solutions satisfies

Maskin’s (1999) well-known necessary condition for Nash implementation.

We show not only that our solutions are implementable in subgame-perfect equilibrium,

but also that they can be implemented by means of “simple” game forms. Some of the

advantages of our game forms are: (i) They contain no “integer (modulo) device.”

Many game forms that have been constructed in the literature involve each agent

announcing an integer as part of his strategy and, for certain strategy profiles, the

agent who announces the highest integer gets his most preferred alternative. The use

of integer devices makes many results in the literature somewhat unconvincing. As

Jackson (1992) demonstrated, a solution may be implementable by means of a game

form involving integer devices, but not by means of any “reasonable” game form.

(ii) Unlike many game forms in the literature, our game forms do not ask agents to

announce preference relations. Such information is hard to communicate in practice.

In our game forms, agents announce numbers and alternatives.3
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Furthermore, our game forms are intuitive. It is partly because the game forms

have a structure of alternating offers. In the first part of our game forms, an agent

announces a utility vector, which sets the minimum utility levels guaranteed in later

stages. The other agent is then allowed to announce a counter-proposal that satisfies

a certain condition. In the second part of the game forms, an agent is allowed to

announce an alternative, and then the other agent either accepts it or chooses a

certain predetermined alternative.

The implementation of bargaining solutions has been studied by various authors.

Moulin (1984) and Howard (1992) provide simple game forms that implement the

Kalai–Smorodinsky and Nash solutions, respectively, in subgame-perfect equilibrium.

Binmore, Rubinstein, and Wolinsky (1986) showed that a version of the alternating-offer

game form of Rubinstein (1982) approximately implements the Nash solution in

subgame-perfect equilibrium. Conley and Wilkie (1995) provide a similar game form

that approximately implements their extension of the Nash solution to non-convex

problems (Conley and Wilkie, 1996).

Note that each of the papers cited in the previous paragraph achieves implementation

for a single bargaining solution, while we achieve implementation for a family of

solutions. While our game forms can implement the Nash and Kalai–Smorodinsky

solutions, our game forms can also implement a number of solutions whose implementation

has not been examined in the literature (e.g., the Relative Utilitarian solution).

A partial list of contributions providing simple game forms to implement solutions

in other contexts is: Hurwicz (1979) and Walker (1981) for the Walrasian and Lindahl

solutions, Thomson (1996) for the no-envy solution and several variants of it, and

Jackson and Moulin (1992) for solutions to provide a public project. General results

on implementation by simple game forms—for various definitions of simplicity—are

obtained by Dutta, Sen, and Vohra (1995), Jackson, Palfrey, and Srivastava (1994),

Saijo, Tatamitani, and Yamato (1996), and Sjöström (1994).

The remaining sections are organized as follows. In Section 2, we describe the

model and define various concepts such as bargaining problems, solutions, and implementation.

We describe our game forms in Section 3, and we prove the result in Section 4.

In Appendix A.1, we prove that all of our solutions violate Maskin’s necessary

condition for Nash implementation. In Appendix A.2, we prove that any solution

satisfies Abreu and Sen’s necessary condition for subgame-perfect implementation.

Finally, in Appendix A.3, we prove that Moore and Repullo’s sufficient condition

for subgame-perfect implementation is satisfied by all of our solutions in a certain

bargaining setting, but violated by all of our solutions in other settings.
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2 Preliminaries

2.1 The Model

Let X be a compact metric space of alternatives and d ∈ X be a distinguished

alternative. Let ∆X be the set of lotteries defined over X having finite support,

and let it be endowed with the weak topology. We denote by p · x + (1 − p) · y the

lottery that selects x with probability p and y with probability 1 − p. The lottery

p ·x+(1− p) ·d is denoted simply by p ·x. The degenerate lottery that always selects

x ∈ X is denoted by x. We reserve the term alternative for a degenerate lottery.

There are two agents, and we denote the set of agents by N = {1, 2}. Each

agent i ∈ N has a preference relation (weak order) R i defined over ∆X . The

associated strict preference and indifference relations are denoted by Pi and Ii, respectively.

We assume that Ri is continuous and satisfies the independence axiom of von Neumann–Morgenstern.

The set of preference relations satisfying these conditions is denoted by R. Then, for

each Ri ∈ R, there exists a continuous function ui : X → R, called vN–M utility

function, such that (i) the expectation of ui represents Ri and (ii) ui is unique up

to positive affine transformations (e.g., Kreps, 1988). Let u(·, R i) : X → [0, 1] be the

unique continuous vN–M utility function whose expectation represents R i with the

normalization:

u(d, Ri) = 0

max
x∈X

u(x, Ri) = 1.

Abusing notation, we denote the utility level of a lottery a ∈ ∆X by

u(a, Ri) =
∑

x∈supp(a)

a(x)u(x, Ri),

where a(x) denotes the probability that lottery a assigns to alternative x, and supp(a)

denotes the support of a. We write u(a, R) = (u(a, R1), u(a, R2)).

We denote by b(Ri) the set of most preferred lotteries for R i. Our normalization

implies that for any a ∈ ∆X and any b ∈ b(R i), we have a Ii [u(a, Ri) · b].

A preference profile is denoted by R = (R1, R2). Let S(R) = {u(a, R) : a ∈ ∆X}

be the image under (u(·, R1), u(·, R2)) of ∆X . Since X is compact and u(., R i) is

continuous in x, {u(x, R) : x ∈ X} is compact. Since S(R) is the convex hull of

{u(x, R) : x ∈ X}, S(R) is compact and convex.
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2.2 Bargaining Problems

A bargaining problem is a triple (X, d, R) where R ∈ RN and the following conditions

hold.4

A1. There exists a lottery that both agents strictly prefer to d.

A2. For each agent, d is a least preferred alternative.

A3. For any lottery b ∈ b(R i), b Ij d for j 6= i.

A4. The utility possibility frontier is strictly convex; i.e., for all λ ∈ (0, 1) and all

lotteries a, a′ ∈ ∆X , if it is not the case that a I i a′ for all i ∈ {1, 2}, then there

exists a lottery a′′ ∈ ∆X such that a′′ Pi (λ · a + (1− λ) · a′) for all i ∈ {1, 2}.

A5. No two alternatives are Pareto indifferent; i.e., for all x, x ′ ∈ X ,

[x Ii x′ for all i ∈ {1, 2}] =⇒ [x = x ′].

A1 excludes trivial problems where Pareto improvement is not feasible. A2 and

A3 are standard assumptions and imposed for simplicity. A4 and A5 are imposed to

avoid ties.

A4 and A5 imply that all Pareto efficient lotteries are degenerate. A2, A3, and

A5 imply that b(Ri) is a singleton containing a degenerate lottery. 5

Here is an example of a bargaining problem satisfying all of our assumptions.

Example 1. Two agents have to divide I > 0 units of a good that is perfectly

divisible and freely disposable. Let X = {(x1, x2) ∈ [0, I ]2 : x1 + x2 ≤ I} and

d = (0, 0). Agent i’s preferences are represented by a vN–M utility function u i(x)

such that ui(x) depends only on xi (selfishness) and ui(·, xj) is a continuous, strictly

increasing, and strictly concave function of xi. Then assumptions A1 – A5 are all

satisfied.

We fix X and d, and let B ⊆ RN be the set of preference profiles R ∈ RN such

that (X, d, R) is a bargaining problem. Note that B may not be a product set.

2.3 Bargaining Solutions

A solution is a function f : B → ∆X associating a lottery with each preference profile

in B. Note that with this formulation, a solution is a function of preferences, and hence

its outcome is invariant with respect to the choice of a vN–M utility representation.
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This property is called scale invariance in the literature and embedded in our definition

of solutions. Many important solutions in the literature are defined in utility space

and violate this property (e.g., the Egalitarian, Utilitarian, and Equal Loss solutions).

Thus these solutions are not considered in this paper.

Two most important solutions considered in the literature are the Nash and

Kalai–Smorodinsky solutions, which are both scale invariant. The Nash solution

(Nash, 1950) is defined by N(R) = arg maxx∈X u(x, R1)·u(x, R2). The Kalai–Smorodinsky

solution (Kalai and Smorodinsky, 1975) is defined by KS(R) = arg maxx∈X min{u(x, R1), u(x, R2)}.

Both solutions are defined by maximizing a function of the form W (u(x, R 1), u(x, R2)).

We are interested in implementing every solution defined in this fashion.

We define a solution fW by

fW (R) = arg max
x∈X

W (u(x, R1), u(x, R2)), (1)

where W : [0, 1]2 → R is continuous, monotonic (i.e., for all v, v ′ ∈ [0, 1]2, v′ � v

implies W (v ′) > W (v)), and quasi-concave. The set of functions W satisfying these

conditions is denoted by W . The function W may be interpreted as the objective

function of the arbitrator.

Note that in (1), we maximize over X and not over ∆X . This is without loss of

generality, since as mentioned above, assumptions A4 and A5 imply that any Pareto

efficient lottery is degenerate. Furthermore, assumption A4 and A5 together with

the quasi-concavity of W imply that the maximizer in (1) is unique and hence f W is

single-valued.

The Nash and Kalai–Smorodinsky solutions are defined in (1) with W (u) = u1 ·u2

and W = min{u1, u2}, respectively. Another interesting example of f W is the one

with W (u) = u1 + u2. This solution, introduced by Cao (1982), is called the Relative

(or Normalized) Utilitarian solution, which has received increasing attention recently

(e.g., Dhillon and Mertens, 1999; Segal, 2000; Sobel, 2001).

2.4 Subgame-Perfect Implementation

We now introduce our definition of implementation. By a sequential game form, we

mean a finite-horizon extensive game form with perfect information. A sequential

game form Γ is said to implement a solution f in subgame-perfect equilibrium if

for any preference profile R ∈ B, f(R) is the unique pure-strategy subgame-perfect

equilibrium outcome of the game (Γ, R). Note that this condition is what is called

full implementation, since all equilibria are required to induce the desirable outcome.
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3 The Game Forms

We now present a sequential game form that implements solution f W for a given

function W ∈ W . See Figure 1. In stage 1, agent 1 announces a vector p ∈ [0, 1]2 [Fig 1 about

here]such that p1 + p2 ≥ 1. Having observed p, agent 2 offers a “counter-proposal” p ′ =

(p′1, p
′

2) ∈ [0, 1]2. It is required that W (p′

1, p
′

2) = W (p1, p2). The agent who moves in

the next stage, called agent i, is then determined based on whether agent 2 agrees

(p′ = p) or disagrees (p′ 6= p). If agent 2 agrees, then he moves next (i = 2).

Otherwise, agent 1 moves next (i = 1). Agent i then chooses either “quit” or “stay,”

and then announces a lottery ai. If he chooses to “quit,” then the game ends with

p′i · ai as the outcome. If agent i chooses to “stay,” then agent j 6= i either “accepts”

ai, in which case the outcome is ai, or he selects another lottery a ′

j, in which case the

outcome is p′j · a
′

j.

To summarize, game form ΓW is defined as follows:

Stage 1. Agent 1 announces a vector p ∈ [0, 1]2 that satisfies p1 + p2 ≥ 1.

Stage 2. Agent 2 announces a vector p′ ∈ [0, 1]2 that satisfies W (p′

1, p
′

2) = W (p1, p2).

If p′ = p, let (i, j) = (2, 1). Otherwise let (i, j) = (1, 2).

Stage 3. Agent i announces λi ∈ {“stay”, “quit”} and a lottery a i ∈ ∆X .

If λi is “quit,” the game ends with p′

i · ai as the outcome. Otherwise, go to Stage 4.

Stage 4. Agent j chooses either “accept” or a lottery a ′

j ∈ ∆X , and then the game

ends. If agent j chooses “accept,” the outcome is ai. If he chooses a lottery

a′j ∈ ∆X , the outcome is p′

j · a
′

j.

The first two stages determine a vector p ′. The value p′i is going to be the utility

level for agent i when he chooses to “quit” in stage 3, and p ′

j is the utility level for

agent j when he rejects agent i’s proposal in stage 4. To determine p ′, agent 1 first

offers a proposal p, and then agent 2 can either agree on it or offer a counter-proposal

p′. Agreeing is appealing for agent 2 because it allows him to move in the next stage

and enjoy a “first-mover’s advantage.”

Note that all game forms ΓW are identical except for their second stage. The

other stages are defined independently of the function W .

Our main result states that game form ΓW implements fW in subgame-perfect

equilibrium. To get the intuition of the result, ignore the case p ′ = p for a moment

and suppose that agent 1 moves in stage 3. First note that in stage 3, agent 1 chooses
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“stay” only when there exists a proposal a1 that gives each agent k ∈ {1, 2} a utility

larger than or equal to p ′

k. Indeed if u(a1, R2) < p′2, agent 2 will reject agent 1’s

proposal in stage 4 (which is as bad as d for agent 1), and if u(a 1, R1) < p′1, agent 1 is

better off choosing “quit.” Since agent 2 in stage 2 does not want agent 1 to choose

“quit,” agent 2 announces a point p′ inside the normalized utility possibility set S(R).

Typically, agent 2’s best action is to choose the point in S(R) that has the maximal

second coordinate (i.e., point p ′ in Figure 2), and this point gives the utility vector of [Fig 2 about

here]the equilibrium outcome. What agent 1 does in stage 1 is to choose an indifference

curve of W , on which agent 2 has to set p′. Since agent 2 chooses p′ in S(R) to

maximize p′2, agent 1’s best action is to choose the indifference curve that is tangent

to the frontier of S(R).

Our game form allows agent 2 to move in stage 3 if agent 2 “agrees” (p ′ = p).

Without this device, agent 1 can set p = (1, 1) and then choose “quit,” which induces

his ideal alternative (since then agent 2 has no option but to announce p ′ = p). By

allowing agent 2 to move in stage 3 if he agrees, the game form prevents agent 1

from choosing an indifference curve that lies outside S(R). If agent 1 chooses an

indifference curve that lies outside S(R), then any p ′ 6= p makes agent 1 to choose

“quit” and thus agent 2’s best response is to announce p′ = p and then choose “quit,”

which is as bad as d for agent 1.

Theorem 1. For each W ∈ W, game form ΓW implements solution fW in

subgame-perfect equilibrium.

A proof of the theorem is given in the next section.

4 Proof of Theorem 1

We fix R ∈ B. For simplicity, agent i’s normalized utility function is denoted by u i(·).

We first assume the existence of equilibrium and characterize equilibrium outcomes.

We will exhibit an equilibrium at the end of the proof. We start with the last stage.

4.1 Stage 4

It is straightforward to see that agent j’s best responses are:



















“accept” if uj(ai) > p′j,

{“accept”, b(Rj)} if uj(ai) = p′j,

b(Rj) if uj(ai) < p′j.
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This implies that to avoid b(R j), agent i must propose ai such that uj(ai) ≥ p′j. That

is, p′j is the minimum utility level that agent i must guarantee to agent j to avoid a

worst outcome for agent i.

4.2 Stage 3

4.2.1 Case 1: p′ ∈ intS(R)

See Figure 3. Agent i can obtain a utility level of p ′

i by choosing “quit.” Suppose he [Fig 3 about

here]chooses “stay” and proposes ai. If uj(ai) < p′j, agent j will select b(R j), and thus

the outcome is p′j · b(Rj), which is as bad as d for agent i. If uj(ai) > p′j, agent j will

accept the proposal. Since p′ ∈ intS(R), there exists a lottery a such that u(a) � p ′.

Such a lottery is acceptable for agent j and gives agent i a utility level of more than

p′i. This means that “quit” is not optimal for agent i, and his best response is to

“stay” and propose the alternative

ϕ(p′) ≡ arg max
x∈X s.t.
uj (x)=p′

j

ui(x).

Recall that (“stay”, ϕ(p ′)) induces either ϕ(p′) or p′j · b(Rj) depending on whether

or not agent j accepts ϕ(p′). But agent i has a best response if and only if agent j

accepts ϕ(p′). Thus ϕ(p′) is the unique equilibrium outcome of the subgame.

4.2.2 Case 2: p′ 6∈ S(R)

Then there is no lottery a such that u(a) = p′. This means that “stay” is not optimal

for agent i and his response is (“quit”, b(R i)). The outcome is p′

i · b(Ri).

4.2.3 Case 3: p′ is on the boundary of S(R)

Since agent i is indifferent between ϕ(p′) and p′i ·b(Ri), the subgame has two equilibria:

(i) agent i chooses (“quit”, b(R i)) and the outcome is p′i · b(Ri); (ii) agent i chooses

(“stay”, ϕ(p′)) and the outcome is ϕ(p′).

4.3 Stage 2

Let

P ′(p) = {p′ ∈ [0, 1]2 : W (p′1, p
′

2) = W (p1, p2)}

be the indifference curve for W passing through p. This is the set of vectors that

agent 2 is allowed to announce in this stage. We distinguish several cases (see
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Figure 4). [Fig 4 about

here]

4.3.1 Case 1: P ′(p) ∩ S(R) = ∅

This means that agent 2 cannot announce a p′ inside S(R). Thus for any p′, the game

ends with p′i · b(Ri), where i = 2 if agent 2 “agrees” (p ′ = p), and i = 1 otherwise.

Thus agent 2’s best response is to “agree,” i.e., to announce p ′ = p.6

4.3.2 Case 2: |P ′(p)∩ S(R)| > 1

This means that the boundary of S(R) intersects P ′(p) at two points. Choose the

intersection whose second coordinate is higher than the other’s, and denote it by

p̂. Let x̂ ∈ X be the unique alternative such that u(x̂) = p̂. We distinguish three

subcases.

Subcase i: p̂2 > p2 Whatever action agent 2 chooses in this stage, the outcome

is not better than x̂ for agent 2 (since any p ′ such that p′2 > p̂2 is outside of S(R),

and induces agent 1’s “quit”). Furthermore, by choosing p ′ such that p′2 = p̂2 − ε for

small ε > 0, agent 2 can make the outcome arbitrarily close to x̂ in terms of welfare.

Thus the unique equilibrium outcome of this subgame is x̂.

Subcase ii: p2 = p̂2 In this case too, the outcome is never better than x̂ for agent 2.

And if agent 2 chooses p′ = p = p̂, the outcome is either x̂ or p2 · b(R2), which are

equivalent for agent 2 in terms of welfare. Thus the equilibrium outcome is either x̂

or p2 · b(R2).

Subcase iii: p2 > p̂2 This means that p is outside of S(R). Thus agent 2’s best

response is p′ = p, and the equilibrium outcome is p2 · b(R2).

4.3.3 Case 3: P ′(p) ∩ S(R) = {u(f W (R))}

Let p̂ = u(fW (R)).

Subcase i: p = p̂ If agent 2 announces p′ 6= p, then since p′ is outside of S(R),

the outcome is p′1 · b(R1), which is as bad as d for agent 2. Thus his best response is

p′ = p, which induces either fW (R) or p2 · b(R2).
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Subcase ii: p 6= p̂ Then p′ = p̂ induces either fW (R) or p̂1 · b(R1). Note that p

is outside of S(R), and hence p′ = p induces p2 · b(R2). Any other vector p′ induces

p′1 · b(R1). Thus the equilibrium outcome is either f W (R) or p2 · b(R2), depending on

whether the outcome associated with p′ = p̂ is better than p2 · b(R2) for agent 2.

4.4 Stage 1

We have distinguished several cases in the analysis of stage 2. Note that the only

cases in which the equilibrium outcome is better than d for agent 1 are Case 2-i,

Case 2-ii, and Case 3. In each of these cases, the outcome better than d for agent 1

is

x̂(p) ≡ arg max
x∈X s.t.

u(x)∈P ′(p)

u2(x),

which is well-defined in Cases 2 and 3. For agent 1, the best outcome among {x̂(p)} p is

fW (R). Furthermore, he can make the outcome arbitrarily close (in terms of welfare)

to fW (R) by choosing p = u(f W (R)) − (ε, ε) for small ε > 0. Thus the unique

equilibrium outcome of the game is f W (R), if an equilibrium exists.

4.5 Equilibrium Existence

Finally, we exhibit an equilibrium strategy profile. In this profile, all ties are broken

in a way that avoids outcomes of the form p · b(R i).

Stage 1: Agent 1 chooses p = u(fW (R)).

Stage 2: Given p, agent 2 chooses

p′ =



















p if P ′(p)∩ S(R) = ∅,

p if P ′(p)∩ S(R) 6= ∅ and p2 ≥ u2(x̂(p)),

u(x̂(p)) if P ′(p)∩ S(R) 6= ∅ and p2 < u2(x̂(p)).

Stage 3: Given p and p′, agent i chooses







(“stay”, ϕ(p′)) if p′ ∈ S(R),

(“quit”, b(Ri)) otherwise.
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Stage 4: Given p and p′, and (“stay”, ai), agent j 6= i chooses







“accept” if uj(ai) ≥ p′j,

b(Rj) otherwise.

This completes the proof of Theorem 1.

A Appendix

A.1 All fW violate Maskin’s necessary condition for Nash implementation

Maskin (1999) provides a necessary condition for implementation in Nash equilibrium.

We prove that his condition is violated by solutions f W for all W ∈ W in the

bargaining setting introduced in Example 1.

A solution (correspondence) f : B � ∆X is Maskin monotonic if for all R ∈ B,

all a ∈ f(R), all i ∈ N , and all R ′

i ∈ R with (R′

i, Rj) ∈ B,

[for all a′ ∈ ∆X, a Ri a′ implies a R′

i a′] =⇒ a ∈ f(R′

i, Rj).

In words, if a lottery a is selected for profile R, then it should also be selected for

profile (R′

i, Rj) if the lower contour set of R ′

i at a contains that of Ri at a. Maskin

shows that this condition is necessary for Nash implementability.

Proposition 1. In the bargaining setting of Example 1, none of the solutions f W

is Maskin monotonic.

Proof. Without loss of generality, assume that the total amount to be divided

is I = 1. Consider a preference profile R in which agent i has a differentiable,

strictly increasing, and strictly concave vN–M utility function g i : [0, 1] → R, such

that gi(0) = 0 and gi(1) = 1. Let x = fW (R).

Suppose now that agent i’s vN–M utility function changes to a function h i : [0, 1] →

R that is differentiable, strictly increasing, and strictly concave, and satisfies

hi(z) = gi(z) if z ≥ xi,

hi(z) < gi(z) if z < xi.

Note that hi is not normalized. Let R′

i be the associated preference relation. Then

the upper contour set of R′

i at allocation x is contained in the corresponding set for
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Ri. Indeed, for any lottery a =
∑

k pk · yk, if x Ri a, then

∑

k

pkhi(y
k
i ) ≤

∑

k

pkgi(y
k
i ) ≤ gi(xi) = hi(xi),

which implies xR′

i a. We show that either f W (R′

1, R2) 6= x or fW (R1, R
′

2) 6= x, which

is a desired violation of Maskin monotonicity.

We first normalize hi to obtain

ĥi(z) =
hi(z)− hi(0)

1− hi(0)
.

If fW (R′

1, R2) = x, then at point (ĥ1(x1), g2(x2)), the indifference curve of W is

tangent to the frontier of S(R ′

1, R2). Thus, the indifference curve at this point has

a slope equal to g ′

2(x2)(1 − h1(0))/g ′

1(x1), which is larger than g ′

2(x2)/g ′

1(x1). This

means that the indifference curve is steeper at (ĥ1(x1), g2(x2)) than at (g1(x1), g2(x2)).

By a symmetric argument, if f W (R1, R
′

2) = x, then the indifference curve is flatter at

(g1(x1), ĥ2(x2)) than at (g1(x1), g2(x2)). These slope conditions cannot be satisfied

simultaneously because W is quasi-concave and ĥi(xi) > gi(xi).

A.2 All solutions satisfy Abreu and Sen’s necessary condition for

subgame-perfect implementation

Abreu and Sen (1990) provide a necessary condition for subgame-perfect implementation.

Their condition is satisfied by f W for all W because our game forms do implement all

fW . More interestingly, it can be shown that Abreu and Sen’s condition is satisfied

by any solution for our bargaining problems. That is, their condition fails to identify

a single solution that is not implementable.

A solution (correspondence) f : B � ∆X satisfies Condition α if there exists a

set B ⊆ ∆X with range(f) ⊆ B such that for all R, R ′ ∈ B and all a ∈ f(R) \ f(R′),

there exist a sequence of agents {j(0), . . . , j(l)} and a sequence of lotteries {a =

a0, a1, . . . , al+1} in B such that

(i) a0 Rj(0) a1 Rj(1) a2 . . . al Rj(l) al+1 P ′

j(l) al,

(ii) for all k ∈ {0, . . . , l − 1}, a k is not maximal in B for R ′

j(k),

(iii) if al+1 is maximal in B for R ′

i for some i 6= j(l), then either l = 0 or j(l− 1) 6=

j(l).

Proposition 2. Any solution satisfies Condition α.
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Proof. We show that any solution f satisfies Condition α with B = ∆X . Let

R, R′ ∈ B be such that f(R) ≡ α 6= f(R′). Since R 6= R′, there exist an agent i and

lotteries β and γ such that either β R i γ P ′

i β or β R′

i γ Pi β.

Case 1 : β Ri γ P ′

i β.

Since b(R′

1) 6= b(R′

2), there exists an agent j such that α 6= b(R ′

j). Let k 6= j be

the other agent, and let p ∈ (0, 1). Then since p · b(Rk) is as bad as d for agent j, we

have

α Rj (p · b(Rk)) Rk (p · β) Ri (p · γ) P ′

i (p · β),

and hence condition (i) holds. Condition (ii) holds as well, because α 6= b(R ′

j) and

p < 1. Moreover, (iii) holds because p < 1.

Case 2 : β R′

i γ Pi β.

Subcase 1 : γ P ′

i d. Since γ Pi β, there exists p ∈ (0, 1) such that (p · γ) P i β. Note

also that β R′

i γ P ′

i d implies β P ′

i (p · γ). Thus we have

(p · γ) Pi β P ′

i (p · γ),

and hence Case 1 applies.

Subcase 2 : γ I ′

i d. This means b(R′

i) P ′

i γ. Since γ Pi β, there exists p ∈ (0, 1) such

that γ Pi [p · b(R′

i) + (1− p) · β]. This together with b(R ′

i) P ′

i γ and β R′

i γ implies

γ Pi [p · b(R′

i) + (1− p) · β] P ′

i γ,

and hence Case 1 applies.

A.3 On Moore and Repullo’s sufficient condition for subgame-perfect

implementation

Moore and Repullo (1988) provide a sufficient condition for subgame-perfect implementation.

We show that their condition is satisfied by solutions f W for essentially all W in the

bargaining setting of Example 1, while in other settings the condition can be violated

by fW for all W .

To define Moore and Repullo’s condition, let f : B � ∆X be a solution (correspondence)

satisfying (i) of Condition α for B = ∆X . Given R, R ′ ∈ B and a ∈ f(R) \ f(R′),

let Σ(R, R′, a) be the set of sequences {a, a1, . . . , al+1} satisfying condition (i). For a

given selection σ from Σ, let

Qσ =
⋃

{a′ ∈ σ(R, R′, a) : R, R′ ∈ B, a ∈ f(R) \ f(R′)}.
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For each set B ⊆ ∆X , let M(Ri, B) be the set of most preferred lotteries in B for R i.

The following is Moore and Repullo’s sufficient condition for subgame-perfect

implementation for the two-person case. The solution f satisfies Condition C ++ if

there exist a selection σ from Σ, a set B ⊆ ∆X such that B ⊇ Qσ , and a lottery z,

such that the following conditions hold for all R ∈ B:

1. M(Ri, B) is non-empty for each i.

2. M(R1, B), M(R2, B), and Qσ are pairwise disjoint.

3. Both agents strictly prefer any lottery in Qσ to z.

4. Both agents weakly prefer any lottery in M(R1, B) ∪ M(R2, B) to z.

Proposition 3. Consider the bargaining setting of Example 1. For any W ∈ W,

if fW (R) /∈ {(0, I), (I, 0)} for all R ∈ B, then f W satisfies Condition C++.

Proof. It suffices to find a selection σ such that all lotteries in Qσ give each agent

a positive amount with a positive probability, since then we can take B = ∆X and

z = d.

So, let R, R′ ∈ B be such that fW (R′) 6= fW (R) and denote x = fW (R). Let

ui, u
′

i : [0, I ] → [0, 1] be agent i’s normalized vN–M utility functions associated with

Ri and R′

i, respectively.

Since fW (R) 6= fW (R′), we have Ri 6= R′

i for at least one of the agents and we

assume that it holds for agent 1. Then, there exists y ∈ [0, I ] such that u 1(y) 6= u′

1(y).

Since the utility functions are continuous, we can assume that y /∈ {0, I, x1}. Take a

small number ε ∈ (0, 1) such that

ε < u2(x2), (2)

1 − ε > max{u1(y), u′

1(y)}. (3)

Case 1 : u1(y) > u′

1(y). Take a number p such that

u′

1(y) < p < u1(y). (4)

Define three lotteries as follows:

`1 = (1− ε) · (I, 0) + ε · (0, I),

`2 = (y, I − y),

`3 = p · (I, 0) + (1− p) · (0, I).
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Then (i) in Condition α holds with (a0, a1, a2, a3) = (x, `1, `2, `3) and (j(0), j(1), j(2)) =

(2, 1, 1), because (2) implies x P2 `1, and (3) and (4) imply `1 P1 `2 P1 `3 P ′

1 `2.

Case 2 : u1(y) < u′

1(y). Take a number p such that

u1(y) < p < u′

1(y) (5)

and redefine lottery `3 with this p. Then (i) in Condition α holds with (a 0, a1, a2, a3) =

(x, `1, `3, `2) and (j(0), j(1), j(2)) = (2, 1, 1), because (2) implies xP 2 `1 as before, and

(3) and (5) imply `1 P1 `3 P1 `2 P ′

1 `3.

In other bargaining settings, Condition C++ may be violated by solutions f W

for all W . For example, consider a setting where any alternative x ∈ X \ {d} is

some agent’s most preferred alternative for some preference profile. In such a setting,

Condition C++ is violated by fW for all W . To see this, let σ and B be such that

Qσ ⊆ B. Since fW (R) ∈ X \ {d}, there exists x ∈ (X \ {d}) ∩ Qσ. Let R ∈ B and

i ∈ N be such that x is a most preferred alternative for R i. Then x ∈ M(Ri, B)∩Qσ,

violating condition 2 in Condition C++.
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Notes

1For an excellent introduction to the literature, see Moore (1991). Moore and

Repullo (1988) and Abreu and Sen (1990) obtained general results on subgame-perfect

implementation.

2Abreu and Sen also provide a sufficient condition for the case of three or more

agents. The condition does not apply to our problems because we consider two-person

problems.

3We should admit that in our game forms, an agent may not have a best response

when ties are broken in wrong ways in subsequent stages, and this is certainly not

desirable. On the other hand, an equilibrium does exist in each subgame.

4We follow Rubinstein, Safra, and Thomson (1992). See also Osborne and Rubinstein

(1994).

5A3 implies that all lotteries in b(R i) are Pareto indifferent, and by A2, all of them

are lotteries over alternatives in b(R i). By A5, b(Ri) contains only one alternative.

6Note that p2 > 0 because S(R) is convex and W is quasi-concave.
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Figure Legends

Figure 1: Game Form ΓW .

Figure 2: If agent 1 chooses p, the outcome is p ′ in utility space.

Figure 3: Stage 3: In each case, the arrows point at the normalized utility vectors of

equilibrium outcomes.

Figure 4: Stage 2: In each case, the arrows point at the normalized utility vectors of

equilibrium outcomes.
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