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Abstract

For a social code of conduct to gain universal acceptance in a society,
it would have to satisfy minimum requirements of consistency and procedu-
ral justice. The so-called universalizability principle in ethics says that any
moral judgement made for an action of a person in a situation should be
universalizable to other persons’ actions in situations that are identical in
relevant respects. By adapting standard axioms in social choice theory, we
formalize this principle in the framework of normal form games and study
its implications on equilibrium outcomes. A social code specifies socially
acceptable responses against other individuals’ behavior. A fair play equi-
librium is an action profile where everyone behaves optimally subject to the
social code. We show that for any admissible social code, the set of fair
play equilibria coincides with that of Nash equilibria in all games. The re-
sult identifies a conflict between the universalizability principle and what a
social code can achieve as equilibrium outcomes.
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1 Introduction

In economic theory, social codes of conduct have been studied mainly in terms
of the incentives of individuals to follow the social code. Incentive compatibility,
however, is not the only characteristic expected for social codes. For a social
code to gain universal acceptance in a society, it would have to satisfy minimum
conditions of consistency and procedural justice. In this paper, we use ideas in
social choice theory to formulate such conditions for social codes and study their
implications on equilibrium social behavior.

We use normal form games to describe the basic economic and social inter-
actions among the members of a society. A social code is then a mapping that
specifies socially correct responses to each possible action profile of other players,
for each player and each normal form game. That is, the set of socially acceptable
actions of player i is given by a set Fi(G, x−i), which depends on the game G of
the society and the action profile x−i of other players.

If a player has more than one socially acceptable response, he can choose one
he prefers the most. Given a social code, a fair play equilibrium is an action profile
where each player chooses a most preferred action within the set of socially correct
responses to other players’ actions. The equilibrium concept is an application
of the social equilibrium of Debreu (1952) when the action set of a player is
constrained by the social code.

We formulate a set of axioms that reasonable social codes are expected to
satisfy, which can be described briefly as follows.

Anonymity says that all players should be treated in the same way. If a
person is allowed to take a certain action in a situation, the same action should
be allowed to you in the situation where your position is the same as his in the
first situation.

Welfare nondiscrimination says that what matters ultimately for the society is
the members’ welfare, and therefore a pair of actions or games should be treated
in the same way if they are equivalent in terms of welfare. For example, if a
person’s hairstyle does not affect anyone’s welfare, including his own, then the
social code should also be indifferent about his choice of hairstyle. We also require
monotonicity, which ensures that social correctness is associated positively, not
negatively, with welfare.

Independence says that Fi(G, x−i) is independent of information about action
profiles where x−i is not chosen. By definition, Fi(G, x−i) is relevant only if other
players behave according to x−i. Thus, the axiom says, action profiles in which
other players choose x′−i 6= x−i are counter-factual and should be irrelevant for
Fi(G, x−i). The requirement is natural since what a social code determines is
socially correct responses to the behavior of other players.

Lastly, effectiveness says that it should be physically possible for everyone to
follow the social code. That is, for any game, there should be at least one action
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profile where no one violates the social code.
An important feature of these axioms is that they do not define social cor-

rectness directly. They do not impose a particular ethical view for an individual
situation. They rather formulate consistency in what a social code prescribes
across situations and players. The basic form of the axioms is “if it is socially
(in)correct for player i to choose action A in situation S, then it should be
(in)correct for player i′ to choose action A′ in situation S′.”

The axioms of this form capture the principle of universalizability in ethics.
The principle says that any moral judgement made for an action of a particu-
lar person in a particular situation should be universalizable to anyone’s action
in situations that are equivalent in relevant respects (e.g., Hare, 1963, 1981).
Anonymity, welfare nondiscrimination, and independence are applications of this
principle, based on specific ideas of what situations are regarded equivalent. The
basic idea of universalizability is old and can be traced back to Kant’s Categorical
Imperative (1785) and the Golden Rule in various religions (e.g., Luke 6:31 in
the Christian Bible). The principle is a key element in Hare’s ethics. We are
interested in its implications on equilibrium outcomes in game-theoretic contexts
where agents respond rationally to the social code and each other’s behavior.

The axioms, perhaps except for effectiveness, are familiar in social choice
theory.1 A difference is that social choice theory considers axioms for social
choice or welfare functions, which directly specify an outcome—an action profile
in our context—or social preferences over outcomes. A social code, on the other
hand, does not specify an outcome directly. It only specifies a set of socially
correct actions for each individual for each possible contingency. The outcome
is determined by equilibrium. In this sense, we are concerned with procedural
justice.

We show that, under any social code that satisfies the axioms, fair play equi-
libria are necessarily Nash equilibria in any game. Thus at any fair play equilib-
rium, the social code is not a binding constraint for any player. We also show
that strict Nash equilibria are necessarily fair play equilibria. The social code
cannot eliminate any strict Nash equilibrium. These results together imply that
if there is any difference between the set of fair play equilibria and that of Nash
equilibria, it consists of Nash equilibria where some players have multiple best
replies. If the social code also satisfies a mild continuity condition, the difference
disappears: the set of fair play equilibria coincides with the set of Nash equilibria.

Since Nash equilibria are not necessarily Pareto efficient, our result identifies
a subtle difficulty in achieving socially desirable outcomes by means of a social
code. For example, if the game is the Prisoners’ Dilemma, our result implies that
the unique Nash equilibrium is also the unique fair play equilibrium under any

1For introductions to social choice theory, see, e.g., Sen (1986), Moulin (1988), Austen-Smith
and Banks (1999), and Arrow et al. (2002).
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admissible social code. The difficulty is an example of “fallacy of composition”
when rational agents have to play fair: the fact that each individual chooses a
socially correct action does not necessarily imply that the action profile itself is
socially desirable.

The basic intuition of the result is that, if the constraint imposed by the social
code is binding for some agent in some game, then we can find a game in which
the social code induces a cycle where each agent ought to give an advantage to
others and it is physically impossible for all agents to follow the social code.

2 Model

The set of players is fixed and denoted by N = {1, 2, . . . , n} where n ≥ 2. Let X
be a non-empty infinite set of potential actions. A (finite) game is a list

(X, <) ≡ (
∏

i∈N

Xi, (<i)i∈N )

where for all i ∈ N , Xi ⊆ X is a non-empty finite set of actions and <i is
a complete and transitive preference relation defined over X ≡ ∏

i∈N Xi. The
strict preference and indifference relations associated with <i are denoted by Âi

and ∼i. The class of all games is denoted as G. Let P (X) denote the set of all
complete and transitive preference relations defined over X.

We denote
∏

j∈N\{i}Xj by X−i. A typical element of X−i is denoted by x−i.
Let BRi(X, <, x−i) denote the best replies to x−i for player i: BRi(X, <, x−i) ≡
{xi ∈ Xi : (xi, x−i) <i (yi, x−i) for all yi ∈ Xi}.

Even when each <i is defined over a set Y ⊇ X, we write (X, <) instead of
(X, <|X). If each <i can be represented by a utility function ui : X → R, we may
write the game as (X, u) where u = (ui)i∈N . In what follows, we often present
game matrices with specific utility values, but it should be understood that only
ordinal preferences induced by those utility values are relevant.

A social code is a correspondence F that associates with each game (X, <) ∈
G, each i ∈ N , and each x−i ∈ X−i a non-empty subset Fi(X, <, x−i) ⊆ Xi.2

Here, Fi(X, <, x−i) is the set of i’s actions that are considered as fair or socially
correct in game (X, <) when the other players’ actions are x−i. We require this
set to be non-empty; for each player and each possible situation, there exists at
least one socially correct action.

We assume that players respect a given social code; i.e., players do not choose
a socially incorrect action although choosing such an action is physically possible.
In practice, agents choose to respect the given social code either because a vio-
lation of the code is followed by a punishment from other agents or agents have
an intrinsic desire to comply with the code (either because they appreciate the

2Note that we write Fi(X, <, x−i) instead of F (i, X, <, x−i).
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ideas behind the code or they have been educated to have such a desire). Since
the incentive issue is not our main concern in this paper, we simply assume that
players choose only socially correct actions.

A social code may specify more than one action as socially acceptable and
does not necessarily deprive players of their free choice completely. The typical
form of a social code is not “one ought to do this” but “one ought not to do this.”

When there are multiple actions that are socially correct, we assume that
the player chooses an action that is most preferred within the set of socially
correct actions. Given a social code F and a game (X, <), an action profile x

is a fair play equilibrium if, for each player i, xi is a most preferred action
in Fi(X, <, x−i) for <i. The set of fair play equilibria is denoted FPE (X, <, F ).
Thus FPE (X,<, F ) consists of x ∈ X such that for all i ∈ N , xi ∈ Fi(X, <, x−i)
and xi <i yi for all yi ∈ Fi(X, <, x−i). At a fair play equilibrium, a player may
have better replies but none of them is socially correct.

3 Axioms

We are interested in characterizing fair play equilibria when the social code sat-
isfies the following axioms. The first axiom is anonymity, which says that the
names of the players should not matter. Formally, given an action profile x and
a bijection (permutation) π : N → N , we define xπ by xπ

π(i) = xi. That is, xπ is
the action profile in which player π(i)’s action coincides with xi.

Definition. A social code F satisfies anonymity if for all (X,<), (X ′, <′) ∈ G
and all bijections π : N → N , if for all i ∈ N and all x, y ∈ X,

Xi = X ′
π(i) and

[
x <i y ⇐⇒ xπ <′

π(i) yπ
]
,

then for all i ∈ N and all x ∈ X,

Fi(X, <, x−i) = Fπ(i)(X
′, <′, xπ

−π(i)).

For example, consider the following games:

Player 1

Player 2
a b c

A 4, 4 2, 5 3, 7
B 6, 0 0, 9 0, 7

Player 1

Player 2
A B

a 4, 4 0, 6
b 5, 2 9, 0
c 7, 3 7, 0

These games are identical except that the players are interchanged. Thus if A is
a socially correct response to a in the left game, then anonymity says that the
same should be the case in the right game as well.
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To state the next axiom, we first introduce a definition. We write xi ' x′i
if these actions are identical in term of welfare for all players, regardless of the
actions of N \ {i}. Formally,

Definition. Given (X, <) ∈ G and i ∈ N , actions xi ∈ Xi and x′i ∈ Xi are
welfare-equivalent , denoted xi ' x′i, if for all x−i ∈ X−i and all j ∈ N ,
(xi, x−i) ∼j (x′i, x−i).

Then the next axiom requires that welfare-equivalent actions should be treated
as the same action. Formally,

Definition. A social code F satisfies welfare nondiscrimination if for all
(X, <) ∈ G, the following conditions are satisfied.

1. For all x, y ∈ X, if xi ' yi for all i ∈ N (possibly xi = yi for some i), then
for all i ∈ N ,

xi ∈ Fi(X,<, x−i) ⇐⇒ yi ∈ Fi(X, <, y−i).

2. For all x ∈ X, all i ∈ N , and all yi 6= xi such that yi ' xi,

Fi(Xi \ {yi} ×X−i, <, x−i) = Fi(X,<, x−i) \ {yi},
Fj(Xi \ {yi} ×X−i, <, x−j) = Fj(X, <, x−j) for all j 6= i.

Condition 1 says that for a given game, the social code does not distinguish
welfare-equivalent actions. Condition 2 relates two games, saying that if there
is a pair of welfare-equivalent actions, then deleting one of those from the game
does not change the social code’s instructions.

As an illustration, consider the left game.

A B

a 6, 0 1, 5
b 2, 7 3, 4
c 2, 7 3, 4

A B

a 6, 0 1, 5
b 2, 7 3, 4

(1)

Since b and c are welfare-equivalent, welfare nondiscrimination requires that b

is socially correct if and only if c is (condition 1 when i = 1 and x−i = y−i).
Welfare nondiscrimination also says that whether player 1 plays b or c does not
affect socially correct actions for player 2 (condition 1 when i = 2 and xi = yi).

The game on the right is obtained from the left by deleting c. Since c is a
replica of b, there is a sense in which these games are identical. This is why
welfare nondiscrimination (condition 2) also requires that at any action profile
that exists in both games, a player’s action is socially correct in the left game if
and only if it is socially correct in the right game. For example, b is a socially
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correct response to A in the left game if and only if it is the case in the right
game.

Welfare nondiscrimination is a straightforward application of the welfarism
principle in social choice theory: what matters is agents’ welfare and therefore al-
ternatives should not be distinguished if they have identical welfare consequences.
There are two separate issues: how to treat welfare-equivalent actions (condition
1) and how to respond if welfare-equivalent actions are deleted or added (condi-
tion 2). Condition 2 ensures a minimum condition of consistency across games
that have different numbers of actions. It rules out artificial social codes that
give two games different treatments only because they have different numbers of
actions.

An important implication of welfare nondiscrimination is what corresponds
to neutrality in social choice theory. Neutrality, in our context, requires that two
games should be treated in the same way if they differ merely in the labeling of
actions. Formally,

Definition. A social code F is neutral if for all (X, <), (X ′,<′) ∈ G, if for all
i ∈ N , there exists a bijection ρi : Xi → X ′

i such that for all x, y ∈ X and all
i ∈ N ,

x <i y ⇐⇒ (ρ1(x1), . . . , ρn(xn)) <′
i (ρ1(y1), . . . , ρn(yn)),

then for all x ∈ X and all i ∈ N ,

xi ∈ Fi(X, <, x−i) ⇐⇒ ρi(xi) ∈ Fi(X ′,<′, ρ−i(x−i))

where ρ−i(x−i) = (ρ1(x1), . . . , ρi−1(xi−1), ρi+1(xi+1), . . . , ρn(xn)).

Proposition 1. Welfare nondiscrimination implies neutrality.

Proof. See Appendix.

Neutrality is strictly weaker than welfare nondiscrimination because neutral-
ity does not relate games that have different numbers of actions: it allows the
games in (1) to receive totally different treatments.

The next axiom, monotonicity, says that if a player’s action is socially correct
at an action profile x for a preference profile <, it remains the case for another
preference profile <′ if the relative ranking of x in <′ is as high as in < for every
player.

Definition. A social code F is monotonic if for all (X, <) ∈ G, all x ∈ X, all
i ∈ N , and all <′ ∈ P (X)N , if xi ∈ Fi(X,<, x−i), and for all j ∈ N and all

6



y ∈ X,

x <j y =⇒ x <′
j y,

x Âj y =⇒ x Â′j y,

then xi ∈ Fi(X, <′, x−i).

This is a natural translation of Arrow’s condition of positive association
(1963). The condition is also reasonable in the present context since we would
like to assume that social correctness is associated positively, not negatively, with
welfare.

The next axiom, independence, says that whether player i’s action is a socially
acceptable response to x−i is independent of preferences over action profiles where
x−i is not played.

Definition. A social code F satisfies independence if for all (X, <) ∈ G, all
<′ ∈ P (X), all i ∈ N , and all x−i ∈ X−i, if for all j ∈ N , <j and <′

j induce the
same preferences over {(yi, x−i) : yi ∈ Xi}, then Fi(X,<, x−i) = Fi(X, <′, x−i).

This is a natural requirement since what a social code prescribes to a player
is conditional on other players’ behavior. By definition, Fi(X, <, x−i) is relevant
only if other players play x−i. Given x−i, action profiles in X\{(yi, x−i) : yi ∈ Xi}
are counter-factual and hence deemed immaterial.

For this axiom, it is critical that what a social code decides is whether one’s
action is a socially correct response to others’ behavior. Thus a judgement that a
player’s action is socially incorrect cannot be justified on the ground that it may
induce bad behavior of others. Since other players’ behavior is held fixed, one
can reasonably say that what happens if they behave differently is irrelevant.

The next axiom, effectiveness, says that, for any game, there exists at least
one action profile where each player plays fair.

Definition. A social code F is effective if for all (X,<) ∈ G, there exists x ∈ X

such that
xi ∈ Fi(X, <, x−i) for all i ∈ N. (2)

Thus a violation of effectiveness means that there exists a game in which it is
logically impossible for all players to follow the social code. The axiom represents
a basic requirement that a social code’s prescriptions to different players should
be compatible. Effectiveness is weaker than demanding the existence of a fair
play equilibrium, since (2) is only a necessary condition for x to be a fair play
equilibrium. An action profile that satisfies (2) is called a fair play profile.
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4 Main Result

Our main result states that if a social code satisfies all the axioms defined in
the previous section, then for any player, there always exists a socially correct
action that is also an unconstrained best reply. That is, while the social code
may prohibit a player from choosing some of his best replies, it never prohibits
all. This result immediately implies that under the social code, all fair play
equilibria are necessarily Nash equilibria, and conversely, all strict Nash equilibria
are necessarily fair play equilibria.

Formally, let NE (X,<) and SNE (X, <) denote the set of pure-strategy Nash
equilibria and strict Nash equilibria, respectively. Then

Theorem 1. If a social code F satisfies anonymity, welfare nondiscrimination,
monotonicity, independence, and effectiveness, then for all (X, <) ∈ G, all i ∈ N ,
and all x−i ∈ X−i,

Fi(X, <, x−i) ∩ BRi(X, <, x−i) 6= ∅. (3)

Thus for all (X, <) ∈ G,

SNE (X, <) ⊆ FPE (X, <, F ) ⊆ NE (X, <). (4)

(3) indeed implies the first inclusion in (4) since at any strict Nash equilibrium,
the best reply is unique and hence must be socially correct. To see that the second
inclusion in (4) is also implied by (3), suppose that a fair play equilibrium is not
a Nash equilibrium. Then some player is not playing an unconstrained best
reply. This is a contradiction with fair play equilibrium since there exists an
unconstrained best reply that is also socially correct.

Since the proof is long and involved, we here give a proof for the case of two
persons and two actions; the general proof is given in Appendix. Suppose that
there are two players (1 and 2) and consider a game (X, <) where the action set
is Xi = {a, b} for each player. To prove (3), suppose that it does not hold for
some i and xj (j 6= i). Without loss of generality, assume (i, j) = (1, 2), x2 = a,
F1(X, <, a) = {a}, and BR1(X, <, a) = {b}. It is useful to distinguish two cases.

Case 1. (b, a) ≺2 (a, a). That is, player 1’s playing his best reply makes player 2
worse off. Consider the left game:

a b

a 2, 2 · · ·
b 3, 1 · · ·

a b

a 2, 2 · · ·
b 3, 1 · · ·
c 3, 1 · · ·

(5)

where the payoffs in the cells with “· · · ” are immaterial. By independence, the
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same conclusion continues to hold in the left game: if player 2 plays a, the
unique fair play for player 1 is a. Next, we add another action c to the action
set of player 1 and consider the right game in (5). By welfare nondiscrimination
and independence, action c is regarded identical to b if player 2 plays a. Thus
if 2 plays a, the unique fair play for player 1 remains a. Finally, consider the
following game:

a b

a 2, 2 3, 1
b 3, 1 2, 2
c 3, 1 3, 1

(6)

We now apply the conclusion derived above to this game. Suppose that player 2
plays a. Then the unique fair play for player 1 is a. So now, suppose that player 1
plays a. By anonymity, it is not difficult to show that the unique fair play for
player 2 is b. But if player 2 plays b, the unique fair play for 1 is b. If 1 plays b,
the unique fair play for 2 is a, and we obtained a cycle. This shows that there
exists no fair play profile, a contradiction with effectiveness.

Case 2. (b, a) <2 (a, a). Let <′
2 be the preference relation that is obtained from

<2 by moving (b, a) to the bottom of the ordering without changing the other
part of the ordering. Then by Case 1, b ∈ F1(X, (<1,<′

2), a). Since <2 is obtained
from <′

2 by moving (b, a) upwards, monotonicity implies b ∈ F1(X, <, a), which
is a contradiction with our initial assumption. Q.E.D.

In game (6), player 2 wants to choose the same action as player 1 but player 1
does not want to choose the same action as player 2. Since only player 1 can
choose c, a Nash equilibrium is where he chooses c. A problem arises if players
have to be “kind”—altruistic and self-sacrificing—to each other. To be kind,
player 1 ought to choose the same action as player 2 since that is what pleases
2. Player 2, on the other hand, ought to choose the different action to please 1.
The problem is that it is impossible for both players to be kind.

Remark 1. The proof for Case 1 can be simplified by using Matching Pennies:

a b

a 2, 2 3, 1
b 3, 1 2, 2

By applying the conclusion from the left game in (5), we can conclude that
Matching Pennies has no fair play profile.3 While this makes the proof simpler,

3The simplified proof with Matching Pennies does not change action sets. This implies that,
to prove the result for two-person two-action games, we do not need the full force of welfare
nondiscrimination: neutrality suffices. However, this conclusion does not generalize beyond the
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the added simplicity is obtained in exchange for using a game that has no pure-
strategy Nash equilibrium. The theorem itself does not rely on such games. As
noted above, the game in (6) has pure-strategy Nash equilibria. The general
proof in Appendix also uses only games that have pure-strategy Nash equilibria.
Formally, let GNE ≡ {(X, <) ∈ G : NE (X,<) 6= ∅} denote the class of games
that have pure-strategy Nash equilibria. Then Theorem 1 holds for any class of
games G′ such that G′ ⊇ GNE .

The general proof in Appendix is considerably more complicated. One reason
for the complication is that the violation of (3) may be at an action profile
where player i has multiple best replies, and other players may have complicated
preferences over i’s best replies. This complicates the proof since we then need
to maintain the same preference structure along each step of a cycle. Another
source of complication is that we need to change every player’s action to complete
a cycle.

The inclusion relations in (4) are tight in the sense that there exist exam-
ples where the reverse relations do not hold. The following example shows that
SNE (X, <) ( FPE (X, <, F ) is possible.

Example 1 (Local weak Pareto code). For all (X, <) ∈ G, all i ∈ N , and all
x−i ∈ X−i, let Fi(X, <, x−i) be the set of xi ∈ Xi such that there exists no
x′i ∈ Xi such that (x′i, x−i) Âk (xi, x−i) for all k ∈ N .

Thus, an action is judged as socially incorrect if there exists an action that
makes all players better off. This code is “local” in the sense that x−i is held fixed
when Pareto efficiency is invoked. One can easily verify that this code satisfies
all the axioms.4 Apply this code to the following game:

A B

A 2, 2 1, 1
B 1, 1 1, 1

Then SNE (X, <) = {(A,A)} ( {(A, A), (B,B)} = FPE (X, <, F ).
To show that FPE (X, <, F ) ( NE (X,<) is also possible, consider the follow-

ing social code.

Example 2 (Local strong Pareto code). This is the modified version of Exam-
ple 1 where strong Pareto efficiency is used. Thus, an action is socially incorrect
if there exists an action that makes no player worse off and at least one player
strictly better off.

two-person two-action case: a counter-example is Example 7 in Appendix A.3.
4This code satisfies effectiveness since any weakly Pareto efficient action profile is a fair play

profile.
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This code also satisfies all the axioms. Apply this code to the following game:

A B

A 1, 1 0, 1
B 1, 0 0, 0

Then FPE (X, <, F ) = {(A,A)} ( X = NE (X, <).
The inclusion relations in (4) have a few immediate implications on the ex-

istence of fair play equilibria under our axioms. The relation SNE (X, <) ⊆
FPE (X, <, F ) implies that a fair play equilibrium exists for all games that have
strict Nash equilibria. Therefore, for generic games that have pure-strategy Nash
equilibria, fair play equilibria exist.

On the other hand, a fair play equilibrium does not necessarily exist in all
games. For example, suppose that the social code is the local strong Pareto code
(Example 2) and consider

A B

A 1, 1 1, 0
B 1, 2 0, 3

Then NE (X,<) = {(A,A)} but FPE (X, <, F ) = ∅. The game does have fair
play profiles (i.e., (B, A) and (B, B)) but none of them is a fair play equilibrium.

The relation FPE (X, <, F ) ⊆ NE (X, <) implies that a necessary condition
for the existence of a fair play equilibrium is that a pure-strategy Nash equilibrium
exists. By definition, effectiveness ensures that fair play profiles do exist. But
none of them is a fair play equilibrium if the game has no pure-strategy Nash
equilibrium and the social code satisfies the axioms.

For some social codes, the necessary condition for the existence of fair play
equilibria is also sufficient. A particularly simple example is the absence of any
code:

Example 3 (Empty code). All actions are always socially correct: Fi(X,<, x−i) ≡
Xi.

Under this code, trivially FPE (X, <, F ) ≡ NE (X, <). Hence, a fair play
equilibrium exists if and only if a pure-strategy Nash equilibrium exists. This
code is not the only one that has this property. The local weak Pareto code
(Example 1) also has FPE (X, <, F ) ≡ NE (X, <) since any unconstrained best
reply is weakly Pareto efficient given x−i.

In Appendix, we show that none of the axioms in Theorem 1 is redundant,
by showing that a counter-example can be found if any of the axioms is removed.
The examples there also help us see the reasonableness of each axiom.

The relation between Theorem 1 and Arrow’s impossibility theorem (1963) is
elusive. Our result relies on games with a cyclic nature, just as Arrow’s result
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relies on Condorcet’s voting cycle—the well-known preference profile with 3 vot-
ers and 3 alternatives where the majority-rule winner does not exist. It is also
interesting to observe that Nash equilibrium can be thought of as a social code
in which each player is a dictator for his own socially correct actions given the
other players’ actions. We could easily construct more “democratic” procedures
to determine socially correct actions, in such a way that there may not exist
an unconditional best response that is also socially correct (e.g., Example 8).
However, just in Arrow’s theorem, all those procedures violate at least one basic
axiom.

The cyclic nature of the game in the proof also suggests a relation to the
Liberal Paradox (Sen, 1970). Indeed, a variant of the paradox in Gibbard (1974)
is based on Matching Pennies, although the direction of the cycle is opposite,
i.e., everyone there tries to increase his own payoff. There is also a similarity in
terms of the framework if one interprets Fi(X, <, x−i) as the player’s rights. A
critical difference is that none of our axioms is about liberty. Each of our axioms
permits Fi(X, <, x−i) to be always a singleton, in which case the social code gives
no freedom.

The cycle in the game (6) captures situations in which each person ought to
give an advantage to others. For example, when everyone insists on paying a bill
for the others, it could take long before they reach an agreement. An extreme
example of such situations can be found in Japan when a group of business
persons go to a restaurant and decide where each person sits. There exists a
socially predetermined way of assigning a ranking over the seats around a given
table. The socially correct behavior is to offer higher-ranked seats to members
with higher social ranks. This social code causes a problem when the social
ranking within the group is ambiguous and is a sensitive issue, since then they
need to keep standing around a table insisting on giving better seats to each
other.

5 Variations

5.1 Full Characterization

Theorem 1 is not a complete characterization of the fair play equilibria, since
it fails to determine whether a given x ∈ NE (X, <) \ SNE (X, <) is a fair play
equilibrium. In this subsection, we show that a complete characterization is
obtained if the social code satisfies a continuity condition. We prove that for any
social code that satisfies the previous axioms and continuity, the set of fair play
equilibria coincides with the set of pure-strategy Nash equilibria.

Given a set of action profiles X, let U(X) denote the set of all utility functions
ui : X → R. Any profile of utility functions u = (ui)i∈N ∈ U(X)N can be
represented by a vector of n|X| numbers. Thus U(X)N can be regarded as Rn|X|.
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Recall that games (X, <) and (X,u) are considered to be equivalent if for all
i, ui is a utility-function representation of <i.

Definition. A social code F satisfies continuity if for all (X, u) ∈ G, all x ∈ X,
all i ∈ N , and all sequences (uk)∞k=1 of utility function profiles in U(X)N , if
uk → u as k →∞ and xi ∈ Fi(X, uk, x−i) for all k, then xi ∈ Fi(X, u, x−i).

This is the upper-hemi continuity of the correspondence Fi(X, u, x−i) with
respect to u. It says that for any action xi, the set of payoff-function profiles in
which the action is socially correct is closed. Thus, at the boundary of situations
in which xi is socially correct, the social code takes the permissive side.

Corollary 1. If a social code F satisfies anonymity, welfare nondiscrimination,
monotonicity, independence, effectiveness, and continuity, then for all games
(X, <) ∈ G,

FPE (X,<, F ) = NE (X,<).

The same conclusion holds on any restricted domain G′ such that G′ ⊇ GNE .

Proof. Take any game (X, <) in the domain. Let u ∈ U(X)N be such that for
each i, ui is a utility-function representation of <i. By Theorem 1, we only need to
prove NE (X,u) ⊆ FPE (X,u, F ). So, let x ∈ NE (X, u). For each k ∈ {1, 2, . . .}
and each i ∈ N , let uk

i be a utility function defined by uk
i (x) = ui(x) + (1/k)

and uk
i (y) = ui(y) for all y 6= x. Then uk

i → ui and x ∈ SNE (X,uk) for all k.
Theorem 1 then implies x ∈ FPE (X, uk, F ) for all k, hence xi ∈ Fi(X, uk, x−i)
for all i and k. Continuity then implies xi ∈ Fi(X,u, x−i) for all i. Since x is a
Nash equilibrium, we obtain x ∈ FPE (X, u, F ). Q.E.D.

Since this result gives a normative axiomatization of Nash equilibria, it is
somewhat similar to the result of Peleg and Tijs (1996). They axiomatize Nash
equilibria based on the so-called reduced-game property. The property requires
consistency across games with different sets of players. Their solution concept,
however, chooses action profiles directly, as in social choice theory.

5.2 Domain Restriction

As mentioned above, Theorem 1 holds even if we restrict our attention to games
that have pure-strategy Nash equilibria. However, since the theorem mentions
strict Nash equilibria, it is of interest to examine what happens if the domain is
further restricted to games that have strict Nash equilibria. Under the domain
restriction, the proof of Theorem 1 cannot be extended directly. In this section,
we give a few results under the domain restriction.

Let GSNE denote the class of games that have strict Nash equilibria: GSNE ≡
{(X, <) ∈ G : SNE (X, <) 6= ∅}. It turns out that on the domain GSNE , the
inclusion SNE ⊆ FPE remains true while FPE ⊆ NE does not.
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Proposition 2. If a social code F defined on GSNE satisfies anonymity, welfare
nondiscrimination, monotonicity, independence, and effectiveness, then for all
(X, <) ∈ GSNE ,

SNE (X, <) ⊆ FPE (X,<, F ).

Proposition 3. On the domain GSNE , there exists a social code F that satisfies
anonymity, welfare nondiscrimination, monotonicity, independence, and effec-
tiveness and such that for some game (X, <) ∈ GSNE ,

FPE (X,<, F ) * NE (X,<).

Proof. Proposition 2 is proved in Appendix (which also contains a corollary). To
prove Proposition 3, we exhibit a specific social code. To specify it, consider a
game (X, <) and fix i and x−i. For any subset X ′

i ⊆ Xi and any j 6= i, let

BRj
i (X, <, x−i, X

′
i) ≡ {xi ∈ X ′

i : (xi, x−i) <j (x′i, x−i) ∀x′i ∈ X ′
i}.

This is the set of i’s actions in X ′
i that are preferred by j. Given this definition,

consider a social code F defined by

Fi(X, <, x−i) ≡
[⋃

j 6=i

BRj
i (X, <, x−i, Xi)

]

∪
[⋂

j 6=i

BRj
i

(
X, <, x−i,BRi(X, <, x−i)

)]
.

(7)

The first line says that if an action xi is a most preferred choice for at least one
j 6= i, it is socially correct. The second line says that an action xi is also socially
correct if it is a most preferred choice within i’s best replies for all j 6= i.

This social code satisfies effectiveness on GSNE . To see this, take any (X, <) ∈
GSNE and let x ∈ SNE (X, <). Then, for all i, xi is the unique best reply and
hence it is trivially the preferred choice within i’s best replies for all j 6= i. Thus,
the second line of (7) is {xi} and hence xi ∈ Fi(X, <, x−i).

The social code also satisfies monotonicity. To see this, let xi ∈ Fi(X, <, x−i)
and <′ be as in the definition of monotonicity. First, if xi ∈ BRj

i (X, <, x−i, Xi)
for some j 6= i, then by the construction of <′, we have xi ∈ BRj

i (X,<′, x−i, Xi)
and hence xi remains socially correct. Suppose then that xi belongs to the second
line of (7). Then by the construction of <′, xi remains a best reply for i and the
set of i’s best replies can only get smaller: xi ∈ BRi(X, <′, x−i) ⊆ BRi(X, <, x−i).
Since xi was initially a most preferred choice within i’s best replies for all j 6= i

and the relative ranking of xi does not go down for any j, it remains a most
preferred choice for all j. Hence xi remains in the second line of (7).

The social code also satisfies welfare nondiscrimination since clearly the code
distinguishes actions based only on preferences. It should be also clear that

14



anonymity and independence are satisfied, too.
To complete the proof, consider the following 3-person game:

Player 1

Player 2
a b

a 4, 1, 4 6, 6, 6
b 4, 4, 1 5, 5, 5
c 2, 6, 6 1, 1, 1

(8)

where player 3 has a single action, say X3 = {a}.5 For this game, SNE (X, <) =
NE (X, <) = {(a, b, a)} while FPE (X, <, F ) = {(a, b, a), (c, a, a)}. Q.E.D.

The social code used in the proof, (7), does not disprove Theorem 1 because
if the domain is enlarged to GNE , the social code does not satisfy effectiveness.

There is a sense in which the counter-example in Proposition 3 is not robust.
In game (8), it is critical that player 1 has an indifference over his best replies.
If player 2 plays a, player 1 is indifferent between a and b and none of them is
unanimously preferred by the other players, which is why player 1 is not allowed
to play any of his best replies. If 1’s preferences are perturbed so that he has a
unique best reply, then he is allowed to play the best reply and thus the problem
disappears.

In what follows, we formalize this argument and show that if indifference is
ruled out from preferences, Theorem 1 is restored. Since Nash equilibria are all
strict under strict preferences, we obtain FPE = SNE .

We introduce a few definitions. Let GG denote the class of games in which no
player has any indifference given the others’ actions: (X, <) ∈ GG if and only if
for all i ∈ N and all x−i ∈ X−i, <i has no indifference over {(yi, x−i) : yi ∈ Xi}.
In what follows, we consider GG ∩ GSNE as the domain of social codes.

Given a pair of actions {xi, x
′
i}, we say that xi Pareto dominates x′i if xi

gives a higher payoff than x′i for every player and for every x−i: i.e., (xi, x−i) Âj

(x′i, x−i) for all j ∈ N and all x−i ∈ X−i.

Definition. A social code F satisfies Pareto dominance if for all (X,<) ∈
GG ∩ GSNE , all i ∈ N , all x−i ∈ X−i, and all pairs {xi, x

′
i} ⊆ Xi such that xi

Pareto dominates x′i,

x′i ∈ Fi(X, <, x−i) =⇒ xi ∈ Fi(X, <, x−i),

Fi(Xi \ {x′i} ×X−i, <, x−i) = Fi(X, <, x−i) \ {x′i}.

The first line says that if an action is socially correct, then any action that
Pareto dominates it is also socially correct. The second line says that deleting

5It is easy to modify the game so that player 3 has more than one action.
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a Pareto dominated action from the game does not affect whether remaining
actions are socially correct.6

Definition. A social code F satisfies independence* if for all (X, <), (X ′,<′) ∈
GG ∩ GSNE and all i ∈ N such that X ′

i = Xi and X−i ∩ X ′
−i 6= ∅ , and for all

x−i ∈ X−i ∩X ′
−i, if for all j ∈ N , <j and <′

j induce the same preferences over
{(yi, x−i) : yi ∈ Xi}, then Fi(X, <, x−i) = Fi(X ′,<′, x−i).

This variant of independence is based on the same idea but is technically
stronger since it can be applied to pairs of games with different action sets. In
the definition, (X, <) and (X ′, <′) may have different action sets for j 6= i, but
these games induce identical preferences over i’s actions if other players play x−i.

Proposition 4. If a social code F defined on GG ∩ GSNE satisfies anonymity,
neutrality, monotonicity, independence*, effectiveness, and Pareto dominance,
then for all (X, <) in the domain,

FPE (X, <, F ) = SNE (X, <).

Proof. Let F be a social code that satisfies the axioms and consider any game
(X, <) ∈ GG ∩ GSNE . It suffices to prove the following: for all i and all x−i,

BRi(X, <, x−i) ⊆ Fi(X, <, x−i). (9)

That is, the (unique) unconstrained best reply is a fair play. It is immediate that
this implies the desired result. To prove (9), suppose, by contradiction, that it
is false. Thus there exist y ∈ X and i ∈ N such that BRi(X, <, y−i) = {yi} and
yi /∈ Fi(X, <, y−i). Without loss of generality, let Xi = {1, 2, . . . , k} and yi = k,
where k ≥ 2.

If |X−i| > 1, choose any action profile w−i 6= y−i. If X−i = {y−i}, let
w−i = y−i. Let v : X → RN be a payoff vector function such that

v(x) =





(0, . . . , 0, xi, 0, . . . , 0) if x = y,

(xi, . . . , xi) if x−i = y−i and xi < yi,

(2k, . . . , 2k) if x = (yi, w−i) and w−i 6= y−i,

where “xi” on the first line appears in the ith entry. For all other action profiles
x, we can specify v(x) ∈ RN so that (i) (k, . . . , k) ¿ v(x) ¿ (2k, . . . , 2k), (ii)
(X, v) ∈ GG , and (iii) every xi < k − 1 is Pareto dominated by k − 1. Then
(yi, w−i) ∈ SNE (X, v) and hence (X, v) ∈ GSNE ∩ GG . Let <′ denote the prefer-
ence profile induced by v.

6Since the dominated action is not part of any strict Nash equilibrium, the new game remains
in the domain: (Xi \ {x′i} ×X−i, <) ∈ GG ∩ GSNE .
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The construction implies that for all x ∈ X and all j ∈ N ,

y <′
j x =⇒ y <j x,

y Â′j x =⇒ y Âj x.
(10)

To see this, note that y <′
j x holds for x 6= y only if x−i = y−i and j = i. Thus we

have y Âj x since {yi} = BRi(X, <, y−i) by our initial choice of y. (10) implies
that, in the move from < to <′, the relative ranking of y does not go up for any
player. Therefore, by monotonicity and independence, yi /∈ Fi(X, <′, y−i). Since
k − 1 Pareto dominates all xi < k − 1, we obtain k − 1 ∈ Fi(X,<′, y−i).

We now remove all xi < k−1 from Xi. Thus X ′
i ≡ {k−1, k} is the new action

set for i, and X ′ ≡ X ′
i ×

∏
j 6=i Xj is the new set of action profiles. Since (k, w−i)

remains in the game, (X ′, <′) ∈ GSNE . Since the removed actions are all Pareto
dominated by k − 1, the fact that k is not socially correct remains unchanged.
Hence Fi(X ′, <′, y−i) = {k − 1}. Note that given y−i, player i prefers k while all
other players prefer k− 1. Anonymity, neutrality, and independence* thus imply
the following: for any game, if a given player j has only two actions a and b and,
given x−j , j prefers a and all other players prefer b, then j ought to play b.

To derive a contradiction, we now construct a game that has no fair play
profile. If n = 2, we can use the following game:

A B C

a 7, 7 2, 2 1, 1
b 0, 0 9, 3 3, 9
c 5, 8 4, 4 6, 6

This game has a strict Nash equilibrium, i.e., (a,A). However, there exists no
fair play profile. To see this, suppose that player 2 plays A. We claim that a is
not a socially correct reply to A. Note that given A, b is dominated by a and c.
Thus, Pareto dominance and independence imply that deleting b from the game
does not affect whether remaining actions are socially correct responses to A. If b

is removed, the conclusion in the previous paragraph implies that c is the unique
fair reply to A, since by playing c, player 1 can make himself worse off and the
other player better off. Thus c is a socially correct reply to A, and a is not. Since
a dominates b given A, Pareto dominance and independence imply that b is not
socially correct (if b is correct, then a should be correct, too). Therefore c is the
unique fair reply to A.

So, suppose that player 1 plays c. By the same argument applied to player 2,
the unique fair reply for 2 is C (note that B is dominated). But if player 2 plays
C, the unique fair play for 1 is b. If 1 plays b, the unique fair play for 2 is B. If
2 plays B, the unique fair play for 1 is c, and we obtained a cycle. Since we went
through all actions of player 2, there exists no fair play profile.
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If n ≥ 3, we can use the following game. The action set is Xi = {0, 1} for each
player. For each i ∈ N , define ti ≡ (1, . . . , 1, 1−n, 1, . . . , 1) ∈ RN where 1−n < 0
appears in the ith entry. This vector represents a transfer of 1 unit of i’s utility
to every other player. Let ei ≡ (0, . . . , 0, 1, 0, . . . , 0) ∈ RN be the unit vector for
the ith coordinate. Let L and M be two integers such that L > M > n− 1. Let
ε ∈ (0, 1). Consider the following payoff vector function u : X → RN :

u(x) =
n−1∑

i=1

xixnti +
n−1∑

i=1

(1− xi)(1− xn)Lti

+ (1− x1)x2 · · ·xn(1 + L)t1

+ x1x2 · · ·xn−1(1− xn)Men

+ εx.

(11)

The first term says that if players i and n (i 6= n) both choose 1, then one unit
of utility is transferred from player i to every other player. The second term says
that if i and n both choose 0, then L > 1 units of utility are transferred from i

to every other player. By the third term, player 1 also makes utility transfers at
action profile (0, 1, . . . , 1). By the fourth term, player n gets a bonus of M > 0
at action profile (1, . . . , 1, 0). By the last term, players who play 1 get a small
bonus ε.

In the game (X, u), (1, . . . , 1, 0) is a strict Nash equilibrium, yielding a payoff
vector (ε, . . . , ε, M). To see (X, u) ∈ GG , note that the first 3 lines in (11)
generate integers for each player. Thus if xi = 0, ui(x) is an integer. If xi = 1,
on the other hand, ui(x) is not an integer because of ε ∈ (0, 1). This implies that
players are never indifferent between their actions.

To prove that this game has no fair play profile, suppose, by contradiction,
that there exists a fair play profile x. It is useful to distinguish two cases.

Case 1. xn = 0. We first show x = (0, . . . , 0). To see this, suppose that xi = 1
for some i 6= n. Then, by switching to 0, player i can add to the payoff vector
either Lti− εei or Lti− εei−Men. Since L > M and ε > 0, this makes i himself
worse off and all the other players better off. Thus, under the social code, i ought
to switch to 0, in contradiction with our assumption that x is a fair play profile.

Therefore, if an action profile x such that xn = 0 is a fair play profile, x =
(0, . . . , 0). But then, at this action profile, player n ought to switch to 1, since
u(0, . . . , 0, 0) =

∑n−1
i=1 Lti = −Ltn while u(0, . . . , 0, 1) = εen.

Case 2. xn = 1. We first show that xi = 1 for all 1 < i < n. To see this, suppose
that xi = 0 for some 1 < i < n. This makes the second line of (11) equal to zero.
Thus player 1 can affect only the first term and the last term in (11). He ought to
play 1 since it allows him to transfer his utility to others. Given x1 = 1, player i

can also affect only the first term and the last term in (11). Then by the same
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reason, i ought to switch to 1, in contradiction with x being a fair play profile.
Hence xi = 1 for all i > 1. This implies that player 1 ought to play 0, since

u(1, 1, . . . , 1) =
∑n−1

i=1 ti + (ε, . . . , ε) and u(0, 1, . . . , 1) =
∑n−1

i=2 ti + (1 + L)t1 +
(0, ε, . . . , ε) and hence u(0, 1, . . . , 1)− u(1, 1, . . . , 1) = Lt1 − εe1.

Therefore, x = (0, 1, . . . , 1) is the only remaining possibility. But, at this
action profile, player n ought to switch to 0, since u(0, 1, . . . , 1, 1) =

∑n−1
i=2 ti +

(1 + L)t1 + (0, ε, . . . , ε) = −tn + Lt1 + (0, ε, . . . , ε) and u(0, 1, . . . , 1, 0) = Lt1 +
(0, ε, . . . , ε, 0) and hence u(0, 1, . . . , 1, 0)− u(0, 1, . . . , 1, 1) = tn − εen. Q.E.D.

6 Conclusion

Contrary to our result, real-life social codes appear to constrain people’s behav-
ior. People often accept unpleasant tasks because of a social code or their own
ethical feeling. This is not a contradiction since our result is based on norma-
tive properties of social codes and does not necessarily characterize actual social
codes. What our result does is to shed light on a tension between the universal-
izability of a social code and what a social code can achieve as equilibrium social
outcomes.

A dilemma is that if one accepts our axioms as ethically desirable, the result
says that having a social code that satisfies them has little merit in terms of the
induced outcomes. Since an admissible social code does not create new equilibria,
it does not do anything for the Prisoners’ Dilemma. Since it retains all strict Nash
equilibria, its role as a coordination device is also limited: it does not eliminate
any equilibrium in coordination games.

The result also shows that a seemingly plausible social code may violate a
basic normative requirement. If a social code requires a person to sacrifice his
own payoff to make others better off, we know that the social code violates at
least one of the axioms. The violation may not be easy to detect since doing so
requires one to consider hypothetical situations. This, we believe, gives a useful
perspective on real-life social codes and ethical judgements.
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A Appendix

A.1 Proof of Proposition 1

Suppose that F satisfies welfare nondiscrimination and let (X, <), (X ′,<′) ∈ G
be such that the assumption in the definition of neutrality is satisfied. Assume,
without loss of generality, that the games are identical except for the names of
player 1’s actions: for all i 6= 1, X ′

i = Xi and ρi(xi) ≡ xi.7 For example, it
may be that these games are both Prisoners’ Dilemma but player 1’s actions are
labeled differently; e.g.,

A B

a 5, 5 0, 7
b 7, 0 1, 1

(X, <)

A B

c 5, 5 0, 7
d 7, 0 1, 1

(X ′, <′)

We further assume X1 ∩X ′
1 = ∅. The case in which X1 ∩X ′

1 6= ∅ can be proved
easily by repeating the argument that follows.8

Now, we start with (X, <) and add X ′
1 to 1’s action set so that x1 and

ρ1(x1) are welfare-equivalent for all x1 ∈ X1. Denote the constructed game by
((X1∪X ′

1)×X−1,<′′). For the above example, the game constructed is one where
one of the games is “stacked” on top of the other. Welfare nondiscrimination then

7The general case can be proved by repeating the argument for the other players.
8Specifically, we choose any set Y ⊆ X such that |Y | = |X1| = |X ′

1|, Y ∩ X1 = ∅, and
Y ∩X ′

1 = ∅, and then apply our argument first to the pair (X1, Y ) and then to (Y, X ′
1).
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implies that for all x ∈ X,

x1 ∈ F1(X,<, x−1) ⇐⇒ x1 ∈ F1((X1 ∪X ′
1)×X−1, <′′, x−1)

⇐⇒ ρ1(x1) ∈ F1((X1 ∪X ′
1)×X−1, <′′, x−1)

⇐⇒ ρ1(x1) ∈ F1(X ′, <′, x−1)

Welfare nondiscrimination also implies that for all x ∈ X and all i ∈ N \ {1},

Fi(X, <, (x1, xN\{1,i})) = Fi((X1 ∪X ′
1)×X−1, <′′, (x1, xN\{1,i}))

= Fi((X1 ∪X ′
1)×X−1, <′′, (ρ1(x1), xN\{1,i}))

= Fi(X ′, <′, (ρ1(x1), xN\{1,i}))

A.2 Proof of Theorem 1

Let F be a social code that satisfies all the axioms. Suppose, by contradiction,
that there exist a game (X,<) ∈ G, a player j ∈ N , and an action profile
x∗−j ∈ X−j such that

Fj(X,<, x∗−j) ∩ BRj(X, <, x∗−j) = ∅. (12)

Let B ≡ BRj(X, <, x∗−j). By welfare nondiscrimination, we can assume, without
loss of generality, that |B| ≥ 2. Pick any action x∗j ∈ Fj(X, <, x∗−j). To simplify
notation, let j = 1, X1 = {1, 2, . . . , |X1|}, B = {1, . . . , k−1}, and x∗1 = k (k ≥ 3).

Let <′ ∈ P (X)N be a preference profile such that for all y1, y
′
1 ∈ B, all

z1, z
′
1 ∈ X1 \B, and all i ∈ N ,

(y1, x
∗
−1) <′

i (y′1, x
∗
−1) ⇔ (y1, x

∗
−1) <i (y′1, x

∗
−1), (13)

(y1, x
∗
−1) Â′1 (z1, x

∗
−1) ∼′1 (z′1, x

∗
−1), (14)

(y1, x
∗
−1) ≺′i (z1, x

∗
−1) ∼′i (z′1, x

∗
−1) if i 6= 1. (15)

Note that these conditions do not specify preferences over x such that x−1 6= x∗−1.
This does not cause a problem because of independence. The first condition says
that we do not change anyone’s preferences over B. The indifferences in (14) and
(15) say that each player is indifferent over X1 \B. The strict preferences in (14)
and (15) say that B remains the set of 1’s best replies to x∗−1, while the other
players are better off outside of B.

Note that the move from < to <′ can only shrink players’ weak/strict lower-
contour sets at action profiles (y1, x

∗
−1) with y1 ∈ B. Thus, monotonicity and

independence imply that this change of preferences does not make any action
x1 ∈ B socially correct against x∗−1, i.e., F1(X, <′, x∗−1)∩B = ∅. Indeed, if there
exists x1 ∈ F1(X, <′, x∗−1) ∩ B, then monotonicity and independence imply that
x1 is also in F1(X, <, x∗−1), which is a contradiction.
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Now, note that all actions in X1 \B are indifferent for all players given x∗−1.
So, we now remove all these actions except for k: 1’s action set is now B ∪{k} =
{1, . . . , k}. We keep preferences over the remaining action profiles. Since removed
actions are all equivalent to k, welfare nondiscrimination and independence imply
that no action in B becomes socially correct:

F1({1, . . . , k} ×X−1,<′, x∗−1) ∩B = ∅.

Since F is nonempty-valued,

F1({1, . . . , k} ×X−1,<′, x∗−1) = {k}. (16)

By anonymity and welfare nondiscrimination, this conclusion can be extended to
other games and players.

For all i ∈ N , let ui : X → R be a utility function that represents <′
i and

satisfies a normalization ui(k, x∗−1) = 0. We define a function f : K ×N → R by

f(x1, i) = ui(x1, x
∗
−1).

This function simply represents the k × n matrix whose (x1, i) element denotes
the payoffs that i obtains in game (X,<′) at action profile (x1, x

∗
−1). Because of

the normalization that ui(k, x∗−1) = 0, we have f(k, i) = 0 for all i ∈ N .
Define a function π : N ×N → N by π(j, i) = i− j + 1 (mod n).
For all i ∈ N , let αi : {1, . . . , n−1}×K → R++ and βi > 0. At this point, the

values of αi(·, ·) and βi are arbitrary as long as they are strictly positive. These
values are specified at the end of the proof.

We are now ready to construct a game. The action set is K = {1, . . . , k} for
all players. For each i, the payoff function vi : KN → R is given by

vi(x) =
n−1∑

j=1

αi(j, xn)f(xj , π(j, i)) + βif(xn, π(n, i)) if xn < k, (17)

vi(x) =
n−1∑

j=1

αi(j, k)
[
f(k + 1− xj , π(j, i))− f(1, π(j, i))

]
if xn = k. (18)

We claim that game (KN , v) where v = (vi)i∈N has no fair play profile. We prove
the claim by a series of lemmas.

Lemma 1. For any fair play profile x in (KN , v), if xn < k, then xi = k for all
i 6= n.

Proof. Let x be a fair play profile such that xn < k, and let i 6= n. We consider
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the set of payoffs that player i can obtain given x−i. Then (17) implies

vi(·, x−i) = constant + αi(i, xn)f(·, 1)

where “constant” represents the term that is independent of i’s action. We also
need to look at the effect of i’s action on the other players’ welfare. For all j ∈ N ,

vj(·, x−i) = constant + αj(i, xn)f(·, π(i, j)).

These equations imply that i’s position when the other players choose x−i is
identical to the position of player 1 in the game (K×X−1, <′) given x∗−1. Player j

plays the role that player π(i, j) plays in (K ×X−1,<′). Formally, for any pair
of actions a, a′ ∈ K and for all j ∈ N ,

vj(a′, x−i) > vj(a, x−i) ⇐⇒ (a′, x∗−1) Â′π(i,j) (a, x∗−1).

Then, anonymity, independence, welfare nondiscrimination, neutrality, and (16)
together imply Fi(KN , v, x−i) = {k}. Q.E.D.

Lemma 2. For any fair play profile x in (KN , v), if xi = k for all i 6= n, then
xn = k.

Proof. Let x be a fair play profile such that x−n = (k, . . . , k). Since f(k, ·) = 0,

vi(·, x−n) = βif(·, π(n, i)) for all i ∈ N.

Since π(n, n) = 1, this implies that player n’s position is identical to that of
player 1 in (K×X−1,<′) given x∗−1. Hence, Fn(KN , v, (k, . . . , k)) = {k}. Q.E.D.

Lemmas 1 and 2 imply that if there exists a fair play profile, xn = k.

Lemma 3. For any fair play profile x in (KN , v), if xn = k, then xi = 1 for all
i 6= n.

Proof. Let x be a fair play profile such that xn = k. Let i 6= n and consider the
payoff vectors that player i 6= n can induce. The definition of v implies that for
all yi ∈ Xi and all j ∈ N ,

vj(yi, x−i) = constant + αj(i, k)f(k + 1− yi, π(i, j))

where the first term is constant with respect to yi. This implies that as before,
the position of each player i 6= n in (KN , v, x−i) is identical to that of player 1
in (K ×X−1,<′, x∗−1), but this time, action k in (K ×X−1, <′, x∗−1) corresponds
to action k + 1− k = 1 in (KN , v, x−i). Thus, the only fair action for player i is
1: Fi(KN , v, x−i) = {1}. Q.E.D.
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Therefore, if a fair play profile exists, it must be (1, . . . , 1, k). However, the
next lemma shows that (1, . . . , 1, k) is not a fair play profile. This concludes our
proof that (KN , v) has no fair play profile, a desired violation of effectiveness.

Lemma 4. Action profile (1, . . . , 1, k) is not a fair play profile in (KN , v).

Proof. It suffices to prove that for any pair of actions a, a′ ∈ K and for all i ∈ N ,

vi(1, . . . , 1, a′) > vi(1, . . . , 1, a) ⇐⇒ (k+1−a′, x∗−1) Â′π(n,i) (k+1−a, x∗−1) (19)

Indeed, if this condition holds, player n’ position against x−n = (1, . . . , 1) is es-
sentially identical to that of player 1 in (K×X−1,<′) given x∗−1. The differences
are that player i in (KN , v) corresponds to player π(n, i) in (K×X−1, <′), action
a in (KN , v) corresponds to action k + 1− a in (K ×X−1,<′), and players i 6= 1
have different numbers of actions in (K×X−1, <′) and (KN , v). These differences
are, however, not essential under anonymity, welfare nondiscrimination, and in-
dependence. Thus (19) implies that xn = 1 is the only fair play for player n in
(KN , v) given x−n = (1, . . . , 1): Fn(KN , v, (1, . . . , 1)) = {1}. Hence (1, . . . , 1, k)
is not a fair play profile in (KN , v). The remainder of the proof is devoted to
prove (19).

A sufficient condition for (19) is that for all i ∈ N and all xn < k,

vi(1, . . . , 1, xn)− vi(1, . . . , 1, k) = f(k + 1− xn, π(n, i))− f(1, π(n, i)). (20)

This implies that the function vi(1, . . . , 1, ·) is identical, up to a constant, to
f(·, π(n, i)) except that the ordering in the domain of the function is reversed,
i.e., vi(1, . . . , 1, xn) corresponds to f(k + 1− xn, π(n, i)).

By (17) and (18), it follows that (20) is equivalent to

n−1∑

j=1

f(1, π(j, i))
[
αi(j, xn) + αi(j, k)

]
+ βif(xn, π(n, i))

= f(k + 1− xn, π(n, i))− f(1, π(n, i)).

(21)

This condition does not necessarily hold if αi(·, ·) and βi are chosen arbitrarily.
However, we claim that for all i ∈ N , there exist αi : {1, . . . , n− 1} ×K → R++

and βi > 0 such that (21) holds for all xn < k. This is sufficient for our proof
since the argument so far does not depend on the values of αi(·, ·) and βi as long
as they are strictly positive.

To prove our claim, fix i ∈ N . An important observation is that for all xn < k,

f(1, π(i, i)) > 0 and f(xn, π(n, i)) < 0 if i 6= n,

f(1, π(1, i)) < 0 and f(xn, π(n, i)) > 0 if i = n,
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which follows from the definition of <′ and the normalization f(k, ·) = 0. Thus,
for all xn < k, the left-hand side of (21) contains a positive term as well as a
negative term, so it should be intuitively clear that (21) holds for all xn < k if we
choose the weights on those terms appropriately. It should be noted, however,
that βi is independent of xn while αi(j, xn) can depend on xn.

A formal proof goes as follows. First, consider the case when i 6= n. Then,
let βi > 0 be sufficiently large so that for all xn < k,

n−1∑

j=1

f(1, π(j, i)) + βif(xn, π(n, i))

< f(k + 1− xn, π(n, i))− f(1, π(n, i)).

(22)

The left-hand side of (22) coincides with that of (21) when αi(j, xn) = 1/2 for all
(j, xn). Since f(1, π(i, i)) > 0, the equality of (21) can be attained if we increase
αi(i, xn).

The case when i = n is similar. First, set βi > 0 sufficiently large so that for
all xn < k, (22) holds with the reverse inequality. The inequality implies that if
we set αi(j, xn) = 1/2 for all (j, xn), then the left-hand side of (21) is larger than
the right-hand side. Since f(1, π(1, n)) = f(1, n) < 0, the equality in (21) can be
attained if we increase αn(1, xn).

To sum up, the last two paragraphs prove that for all i, there exist αi and βi

such that (21) holds for all xn < k, thus (19) holds. As we discussed, (19) implies
Fn(KN , v, (1, . . . , 1)) = {1}, hence (1, . . . , 1, k) is not a fair play profile. Q.E.D.

Remark 2. The proof goes through for any subclass of games G′ such that
G′ ⊇ GNE , since only games in GNE are used. To see this, first note that, for
(X, <′) and (K × X−1,<′), the issue is trivial since <′ is specified only for one
“column” associated with x∗−1. It is easy to complete the specification of these
games so that they belong to GNE . For (KN , v), since k > 2, the arguments in
the proof reveal that (1, . . . , 1, 2) is a Nash equilibrium, hence (KN , v) ∈ GNE .

A.3 Independence of the Axioms in Theorem 1

This section shows that none of the axioms in Theorem 1 is redundant. We show
that if any of the axioms is removed, there exists a social code that satisfies the
remaining axioms and violates the conclusion of the theorem.

Example 4 (Global Pareto code). Let GP(X,<) ⊆ X denote the set of strongly
Pareto efficient action profiles in game (X, <). Define a social code by

Fi(X, <, x−i) = {xi ∈ Xi : (xi, x
′
−i) ∈ GP(X, <) for some x′−i ∈ X−i}.

Thus, for an action to be acceptable, it suffices that the action achieves a
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(global) Pareto efficient outcome for some (not necessarily actual) action profile
of the other players.

This code satisfies all the axioms except for independence. To see that (4)
does not hold, consider

A B

A 1, 1 1, 0
B 0, 3 2, 2

Since the strongly Pareto efficient outcomes are {(B, A), (B, B)}, the socially
correct actions are {B} for 1 and {A,B} for 2, regardless of each other’s action.
Then FPE (X, <, F ) = {(B,A)}, while NE (X,<) = SNE (X, <) = {(A,A)}.
Example 5 (Dictatorship). There exists k ∈ N such that for all (X, <) ∈ G, all
i ∈ N , and all x−i ∈ X−i,

Fi(X, <, x−i) = {xi ∈ Xi : (xi, x−i) <k (yi, x−i) for all yi ∈ Xi}.

Thus one’s action is fair if and only if it is optimal for the dictator. This code
satisfies all the axioms except for anonymity. It should be clear that (4) does not
hold under this code.

Example 6 (Anti-Pareto code). The code first reverses each player’s preference
ordering and then applies the local strong Pareto code (Example 2). Formally,
given (X, <) ∈ G, x ∈ X, and i ∈ N , xi ∈ Fi(X, <, x−i) if and only if there exists
no x′i ∈ Xi such that (x′i, x−i) 4k (xi, x−i) for all k ∈ N with strict preference
holding for some k ∈ N .

This code satisfies all the axioms except for monotonicity. To see that (4)
does not hold, consider

A B

A 2, 2 1, 1
B 1, 1 0, 0

Then, FPE (X, <, F ) = {(B,B)}, while NE (X,<) = SNE (X, <) = {(A,A)}.
Example 7. This code roughly says that an action is not socially correct if it
is the unique least preferred action for every other player and the action sets are
sufficiently large. Formally, take any game (X, <). If

∑
i∈N 1/|Xi| ≥ 1, then all

actions are socially correct for all players in all situations: Fi(X, <, x−i) = Xi

for all i and all x−i. On the other hand, if
∑

i∈N 1/|Xi| < 1 (i.e., the number
of actions is sufficiently large for each player), then for all x ∈ X and all i ∈ N ,
xi /∈ Fi(X, <, x−i) if and only if for all x′i ∈ Xi \ {xi} and all k ∈ N \ {i},
(x′i, x−i) Âk (xi, x−i).
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This code satisfies all the axioms except for welfare nondiscrimination. To see
that effectiveness is satisfied, suppose

∑
i∈N 1/|Xi| < 1 (otherwise, it is trivial).

A key observation is that there exists at most one socially incorrect action for
each player given the other players’ actions. Thus, the maximum number of
action profiles in which at least one player chooses a socially incorrect action
is

∑
i∈N

∏
j 6=i|Xj |. Hence, the minimum number of action profiles in which all

players play fair is
∏

i∈N

|Xi| −
∑

i∈N

∏

j 6=i

|Xj | =
(
1−

∑

i∈N

1/|Xi|
) ∏

i∈N

|Xi| > 0.

To see that this social code violates welfare nondiscrimination, consider

A B C

a 1, 3 0, 0 0, 0
b 3, 1 0, 0 0, 0

A B C

a 1, 3 0, 0 0, 0
b 3, 1 0, 0 0, 0
c 3, 1 0, 0 0, 0

Note that 1/|X1| + 1/|X2| < 1 for either game. Thus if player 2 plays A, the
social code states that b is not socially correct in the left game since it gives the
unique least preferred outcome for player 2. In the right game, however, b is
socially correct since c is as bad as b for player 2.9

The left game also shows that (4) does not hold for this social code, since
FPE (X, <, F ) = {(a,A)} while NE (X, <) = {(b, A)}. Since this social code
satisfies neutrality, this example also shows that Theorem 1 does not hold if
welfare nondiscrimination is replaced with neutrality.

Example 8 (Borda code). This social code states that for all (X,<) ∈ G, all
x ∈ X, and all i ∈ N , xi ∈ Fi(X, <, x−i) if and only if (xi, x−i) is a Borda count
winner in {(x′i, x−i) : x′i ∈ Xi} when action profiles that are indifferent for all
players are viewed as the same alternative.10

This code satisfies all the axioms except for effectiveness. To see that effec-
tiveness is not satisfied, consider

a b c

a 5, 3 4, 2 0, 1
b 1, 5 3, 1 2, 0
c 0, 4 2, 5 1, 2

(23)

9On the other hand, if we remove the requirement of uniqueness from the definition of the
social code, then we lose effectiveness.

10That is, if (x′i, x−i) ∼k (x′′i , x−i) for all k ∈ N , then they are viewed as equivalent, and we
apply the Borda count to equivalent classes.

27



For example, if player 2 plays a, the unique fair play for player 1 is b. Indeed,
among the action profiles in the first column, (b, a) ranks first for player 2 and sec-
ond for 1, while (a, a) ranks first for 1 but third for 2, and hence (b, a) dominates
(a, a) under the Border count. This social code is well defined since it specifies a
non-empty set of socially correct actions for every contingency. However, under
this code, the above game has no fair play profile. Indeed, if 2 plays c, then 1
should play c, in which case 2 should play b, in which case 1 should play a, in
which case 2 should play a, in which case 1 should play b, in which case 2 should
play b, and we obtained a cycle. Since we went through all actions of player 2,
there exists no fair play profile.

The same game also shows that (4) does not hold for this social code, since
FPE (X, <, F ) = ∅ while NE (X, <) = SNE (X, <) = {(a, a)}. To see that FPE *
NE is also possible, we can use the first column in (23), viewed as a 3× 1 game
matrix, where FPE (X, <, F ) = {(b, a)} and NE (X,<) = {(a, a)}.

A.4 Proof of Proposition 2

We note in advance that the proof will eventually use a part of the proof for
Proposition 4 (specifically, we will use game (11)). Let F be a social code that
satisfies the axioms and let (X,<) ∈ GSNE . It suffices to prove the following:

Lemma 5. For all i and all x−i, if |BRi(X,<, x−i)| = 1, then BRi(X, <, x−i) ⊆
Fi(X, <, x−i).

To prove this, suppose otherwise: i.e., there exist y ∈ X and i ∈ N such that
BRi(X, <, y−i) = {yi} but yi /∈ Fi(X, <, y−i). If |X−i| > 1, choose any w−i ∈ X−i

such that w−i 6= y−i. If X−i = {y−i}, let w−i = y−i. Let <′ be a preference profile
represented by the following payoff-vector function v : X → RN :

v(x) =





(1, . . . , 1) if x = y,

(2, . . . , 2, 0, 2, . . . , 2) if x−i = y−i and xi 6= yi,

(3, . . . , 3) if x = (yi, w−i) and w−i 6= y−i,

(2, . . . , 2) otherwise,

where “0” on the second line appears in the ith entry. In this game, (yi, w−i) is
a strict Nash equilibrium, hence (X, <′) ∈ GSNE .

The construction implies that for all x ∈ X and all j ∈ N ,

y <′
j x =⇒ y <j x,

y Â′j x =⇒ y Âj x.
(24)

To see this, note that y <′
j x holds for x 6= y only if x−i = y−i and j = i. But then,

we have y Âj x since {yi} = BRi(X, <, y−i) by our initial choice of y. (24) implies
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that, in the move from < to <′, the relative ranking of y does not go up for any
player. Therefore, by monotonicity and independence, yi /∈ Fi(X, <′, y−i). Since
all actions xi 6= yi are welfare-equivalent given y−i, welfare nondiscrimination
and independence imply Fi(X, <′, y−i) = Xi \ {yi}.

Pick any action zi ∈ Xi \ {yi}. We now remove all actions from Xi except for
{zi, yi}. Thus, X ′

i ≡ {zi, yi} is the new action set for i, and X ′ ≡ X ′
i ×

∏
j 6=i Xj

is the new set of action profiles. Since (yi, w−i) remains in the game, (X ′, <′) ∈
GSNE . By welfare nondiscrimination, Fi(X ′,<′, y−i) = {zi}. Note that given y−i,
player i prefers yi while all the other players prefer zi. Hence, anonymity, welfare
nondiscrimination, and independence imply the following: for any game, if a given
player j has only two actions a and b and, given x−j , player j prefers a and all
the other players prefer b, then j ought to play b. By welfare nondiscrimination,
we can extend this conclusion to the case in which j has more than two actions.

If n ≥ 3, the remaining argument is the same as that of Proposition 4: use
(11). If n = 2, the argument in the proof of Proposition 4 does not work here
since it relies on Pareto dominance. However, we can use the following game.

A B C

A 1, 1 2, 0 2, 0
B 0, 2 2, 0 0, 2
C 0, 2 0, 2 2, 0

This game has a strict Nash equilibrium, i.e., (A,A). By the conclusion derived
in the previous paragraph, if player 2 plays A, player 1 ought to play either B or
C since doing so makes himself worse off and the other player better off. Using
the same argument, one can easily see that at any action profile, at least one of
the players ought to change his action. Q.E.D.

Lemma 5 has another implication: the inclusion FPE ⊆ NE is restored on
GSNE if we limit ourselves to games where each player has two actions.

Corollary 2. Suppose that n ≥ 3 and the domain of social codes is the class
of games in GSNE such that |Xi| = 2 for all i. Then if a social code F satisfies
anonymity, monotonicity, independence, welfare nondiscrimination, and effec-
tiveness, then for all games in the domain,

SNE (X, <) ⊆ FPE (X, <, F ) ⊆ NE (X, <).

Proof. We only need to prove FPE (X, <, F ) ⊆ NE (X, <). Thus, suppose that
there exists x ∈ FPE (X, <, F ) such that x /∈ NE (X, <). Let i be such that xi is
not a best reply against x−i. Since there are only two actions, BRi(X, <, x−i) =
{yi} where yi ∈ Xi\{xi}. But then, by Lemma 5, yi ∈ Fi(X,<, x−i); if n ≥ 3, the
proof of the lemma goes through even if only two-action games are in the domain.
Therefore, i is allowed to switch to his best reply, a desired contradiction. Q.E.D.
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