
The Folk Theorem for Repeated Games
with Observation Costs

Eiichi Miyagawa∗
Kobe University

Yasuyuki Miyahara†

Kobe University
Tadashi Sekiguchi‡§

Kyoto University

October 28, 2007

Abstract

The folk theorem literature has been relaxing the assumption on how much
players know about each other’s past action. Here we consider a general
model where players can “buy” precise information. Every period, each player
decides whether to pay a cost to accurately observe the actions chosen by other
players in the previous period. When a player does not pay the cost, he obtains
only imperfect private signals. Observational decisions are unobservable to
others. Known strategies such as trigger strategies do not work since they
fail to motivate players to pay for information. This paper shows that the
folk theorem holds for any level of observation costs. Unlike existing folk
theorems with private monitoring, ours imposes virtually no restriction on
the nature of costless imperfect signals. The theorem does not use explicit
or costless communication, thereby having implications on antitrust laws that
rely on evidence of explicit communication. The main message is that accurate
observation alone, however costly, enables efficient cooperation in general
repeated games.
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1 Introduction

The folk theorem literature has been weakening the assumption on what players
know about each other’s past actions. A seminal version of the folk theorem by
Fudenberg and Maskin [12] assumes perfect monitoring: players receive accurate
information about each other’s past actions. The theorem has been extended rather
generally to the case of imperfect public monitoring, where information is imperfect
but identical across players [1, 10, 11]. An example is where oligopolistic firms
observe only market prices, which are public information but do not fully reveal the
actions chosen by other firms [13]. More recent studies consider the case where
information is not only imperfect but private. An example is where each firm
observes only the sales of its own products, which are private information and are
correlated only imperfectly with other firms’ actions [29]. For this imperfect private
monitoring case, the folk theorem is known only under restrictive assumptions. For
example, many of the existing results pertain to the limit case where information is
almost perfect [e.g., 7, 14, 28].

The basic idea of the current paper is that the quality of information usually
depends on the cost spent for acquiring information. By spending more time
and resources, one can usually obtain better information. To capture the feature,
this paper considers an extreme case where one can obtain precise information
by paying a sufficiently large cost. For community enforcement, for instance, the
assumption means that you can obtain accurate information about your neighbors
if you spend enough time for collecting information. For price-fixing collusion,
it means that a firm can observe the prices charged by other firms if the firm
spends enough resources for monitoring. Under the assumption, this paper clarifies
conditions under which the folk theorem extends.

We distinguish observational decisions and other stage-game actions by
assuming that observational decisions cannot be observed by other players at any
cost. The assumption makes it difficult to motivate players to pay a cost for
information. A player is willing to pay for information only if the cost does not
exceed the expected benefit. Since a player’s decision on information acquisition
is unobservable and thereby has no effect on other players’ future actions, the only
benefit from paying the observation cost is that it enables the player to accurately
predict the other players’ future actions. An immediate but important implication
is that if a player is expected to choose a certain action with probability one, other
players have no incentive to pay a cost to observe the player.

Because of this feature, it is not trivial to extend known strategies to the present
class of repeated games. As an illustration, consider a grim-trigger strategy, under
which players start with cooperation and any deviation triggers a repetition of a
static Nash equilibrium. Under the strategy, since players are expected to cooperate
in the first period, the previous argument implies that players have no incentive
to pay the observation cost in the first period. As a result, deviations in the first
period are not observed by anyone. For the strategy to deter deviations, therefore,

2



punishments must be triggered on the basis of costless information (e.g., realized
period-payoffs). However, if costless information is private, which is a case we
allow, players cannot coordinate when to start punishments.1 It is difficult to
construct an equilibrium along these lines in general environments, as we know
from the literature of imperfect private monitoring.

To construct equilibria in which players pay for information, we use strategies
where players randomize. However, randomization alone does not solve the
problem. As an illustration, consider a repeated prisoners’ dilemma and suppose
that an equilibrium strategy is such that each player defects with a positive
probability at any history (as in Ely and Välimäki [7]). In such an equilibrium, even
though players may be randomizing, no costly observation takes place. Indeed,
nothing is gained by knowing the actions chosen by other players since defection
is assigned a positive probability and therefore is an optimal action at any history.
This argument says that, to motivate players to pay for information, the equilibrium
strategy has to be such that one’s optimal action varies with the other players’ past
actions. For the prisoners’ dilemma, it means that there need to be a history at
which a player’s unique optimal action is to cooperate with probability one. But, if
a player cooperates with probability one, he will not be observed by anyone and the
problem discussed above persists.

The present paper shows, however, that the folk theorem holds generally. Here
are some of the features. First, the theorem holds for any n-player finite stage game
that satisfies the standard full dimensionality condition. Second, the theorem holds
for any level of observation costs. That is, payoff vectors arbitrarily close to the
Pareto frontier can be supported even if observation costs are extremely large. This
is the case since there exists a rich class of equilibria in which players observe each
other only periodically and the expected per-period observation cost is small. The
level of observation cost affects only the threshold level of discount factor. Third,
the theorem holds under a minimal assumption on the costless information—the
information that players obtain when they do not pay the observation cost. All
we need is that there is no one whose action has no influence over the other
players’ costless information. That is, it is sufficient that the action of each
player has a non-zero influence on the probability distribution of at least another
player’s costless information under at least one action profile. Since the nature of
influence is immaterial and costless information includes realized period-payoffs,
the assumption would be satisfied in virtually all economic applications.

As mentioned above, the folk theorem for repeated games with private
monitoring is known only under special cases. Early studies assume the prisoners’
dilemma and almost perfect monitoring [5, 7, 25, 28]. Recent studies obtain
more general results but are still limited to the prisoners’ dilemma and its variants
[24, 30], the case of almost perfect monitoring [14, 22], or a subclass of equilibria

1A player cannot deduce the action profile from his period-payoff because they are correlated
only imperfectly.
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that is not large enough to generate a general folk theorem [8]. The difficulty has
led Matsushima [23] and other researchers to introduce explicit communication in
the model so that players can exchange their private information [2, 3, 4, 6, 16].
Communication makes the analysis tractable because players can coordinate their
continuation actions.

In contrast with those results, our folk theorem holds in general environments
with private monitoring without explicit communication. A sufficient condition for
the folk theorem is that obtaining precise information about other players’ actions
is possible, i.e., the cost of perfect monitoring is finite. By modeling players’
monitoring decisions concretely, we find that the folk theorem holds if perfect
monitoring is an option for each player, and it does not matter how costly the option
is. The availability of the option enables players to coordinate their continuation
actions when they need, and its cost can be controlled since the option does not
have to be executed every period.

A key idea is that costly perfect monitoring enables players to communicate
implicitly. Players can announce messages by their stage-game actions. For
example, they may use last digits of prices for communication. Players obtain
other players’ messages via costly observation. Implicit communication of this kind
differs from explicit communication considered in the literature. Unlike “cheap
talk,” implicit communication is costly for both senders and receivers. In particular,
since acquiring information is costly, implicit communication works only if players
are motivated to obtain the messages of other players. Moreover, if a player deviates
and chooses not to acquire information, he becomes uncertain about other players’
continuation actions but other players do not notice it. Therefore the continuation
play after a deviation is not an equilibrium, which makes it difficult to apply the
recursive method of dynamic programming. It should be also noted that in the case
of implicit communication via stage-game actions, the message space is constrained
by the action set, which may contain only two elements.

In the context of private monitoring, the series of work by Lehrer [18, 20, 21]
are somewhat close to the present paper (see also Flesch and Monsuwé [9] for
an extension). Lehrer considers two-player repeated games with no discounting
where costless private signals are imperfect but deterministic. Lehrer shows that
an action profile can be supported even if it admits short-run better replies that do
not affect the opponent’s signal and hence are undetectable, if the better replies
make the player’s own signal less informative. The result is relevant since not
paying for information is precisely a short-run better reply that is undetectable
and less informative. Lehrer’s result therefore says that costly observation, even
if unobservable, can be supported in equilibrium. However, his result relies on the
assumption of no discounting and is limited to the two-player case.

The present paper also contributes to the literature of public monitoring since the
assumption on costless signals subsumes imperfect public monitoring as a special
case. For repeated games with public monitoring, the folk theorem by Fudenberg,
Levine, and Maskin [11] depends on certain distinguishability assumptions on the

4



signal structure (Radner, Myerson, and Maskin [26]). Kandori [15] shows that,
if communication is allowed, the folk theorem holds for a larger class of signal
structures. However, there remain non-trivial restrictions. For instance, neither
folk theorem works for games with two players, two actions, and two signals.
The present paper shows that the folk theorem holds regardless of the numbers
of players, actions, and signals, even without explicit communication, if the signal
distribution is non-constant with respect to every player’s action and the cost of
perfect monitoring is finite.

There are a few papers that also study repeated games with costly observation.
Ben-Porath and Kahneman [4] show that the folk theorem holds if explicit
communication is allowed. The present paper shows that the theorem holds even
if explicit communication is not allowed. On the other hand, we assume that
players make an observational decision after they choose their stage-game action
and observe the realization of public randomization. Thus, our model pertains to
the case where a player’s action can be observed ex post, at least within the period.
Ben-Porath and Kahneman allow the case where players make both decisions at the
same time. Kandori and Obara [17] consider a related setup with costly observation
where what players observe may be wrong with a small probability. They assume
that observational activities are observable with small errors. Their construction
requires observation costs to be small and relies on the prisoners’ dilemma and its
variants.

The folk theorem in the present paper has significant advantages over the folk
theorem that relies on explicit communication. First, the specific model of explicit
communication used in the literature assumes that communication is costless. The
assumption means that a message is costless not only to announce but also to
receive and process. However, communication is never costless. It takes time
and requires attention. In particular, it is costly to ensure that everyone gets
your message. Firms spend a large portion of their resources for advertising,
to ensure that their messages reach consumers. Our model can be considered
as a model with costly communication, where the act of sending messages is
included as part of stage-game action. The result obtained here thus shows how
to design incentive-compatible communication schemes in the world of costly
communication.

Our theorem also has practical implications for antitrust laws since it suggests
that explicit communication is unnecessary for efficient cooperation, even in
environments with private information. By dispensing with explicit communication,
cartels can reduce the probability of antitrust charges, often almost to zero, because
of the lack of evidence. In the US, an antitrust charge requires evidence of
explicit communication among cartel members, and as a result, tacit collusion is
legal. To see what the policy implies, we need to know to what extent collusion
can be achieved via tacit coordination. The result obtained here shows that tacit
coordination can achieve full collusion even in environments where information
is costly and private. The result is shown in a fairly general model. The
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theory therefore suggests that an antitrust policy that relies on evidence of explicit
communication is not effective if cartels are patient.

One feature of the present paper is that the proof is constructive. We present
a specific class of strategy profiles that can support any target payoff profile.
The strategy profiles in this class have an intuitive general structure allowing for
reasonable interpretations (Rubinstein [27]). Section 4 illustrates the construction
for a prisoners’ dilemma example.

2 Model

We consider a repeated game, where a set of players play the same game
repeatedly over periods t = 1,2, . . . . Let N = {1,2, . . . ,n} denote a finite set of
players, where n > 2, and let Ai be a finite set of actions that player i can choose in
each period, where |Ai|> 2. Let A≡ A1×·· ·×An denote the set of action profiles.

Given a set K, let ∆(K) denote the set of probability distributions over K. Thus
Ai ≡ ∆(Ai) denotes the set of mixed actions of player i, A ≡A1×·· ·×An denotes
the set of mixed action profiles, and ∆(A) denotes the set of correlated action
profiles.

At each period, after all players choose actions, each player i observes a signal
ωi costlessly and privately. The set of signals that player i might receive is given
by a finite set Ωi. A signal profile ω = (ω1, . . . ,ωn) ∈ Ω1× ·· · ×Ωn is realized
with probability P(ω |a) given an action profile a. Let Pi(ωi |a) denote the marginal
distribution of ωi given a. We assume the following on the marginal distribution.

Assumption 1. For all i ∈ N, all ωi ∈Ωi, and all a ∈ A,

Pi(ωi |a) > 0.

Assumption 2. There exists no player i∈N such that for all pairs {a1
i ,a

2
i } ⊆ Ai, all

a−i ∈ A−i, and all r ∈ N \{i},

Pr( · |a1
i ,a−i) = Pr( · |a2

i ,a−i).

Assumption 1 states that any ωi ∈Ωi is realized with a positive probability given
any action profile. Since the full-support condition is required only for individual
signal spaces, there may exist some (ω,a) such that P(ω | a) = 0. Assumption 2
states that there exists no player who has no influence at all on any other player’s
signal. This means that, for each player, there exists a pair of actions that induce
different probability distributions of at least one player’s signal under at least
one action profile. Assumption 2 is innocuous since, as we describe below, ω j
contains information about j’s own payoff, and usually, a player’s action affects
the probability distribution of other players’ payoffs.2 It should be also noted

2Assumption 2 is stated with pure actions, but rewriting it with mixed actions yields the same
condition.
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that Assumptions 1 and 2 allow the case of public signals, the case in which
ω1 = · · ·= ωn always holds.

The stage-game payoff for player i is given by πi(ai,ωi), which depends on
his own action ai and the realized private signal ωi.3 Since the payoff depends on
what the player already knows, it gives no additional information on other players’
actions or signals.4 One special case is when the realized stage-game payoff is the
sole information contained in the free signal, which is the case if πi(ai, ·) : Ωi → R
is one-to-one for each ai.

Given an action profile a ∈ A, the expected stage-game payoff for player i is

ui(a)≡ ∑
ωi∈Ωi

πi(ai,ωi)Pi(ωi |a).

We write u(a) = (ui(a))i∈N . For a mixed action profile α ∈A , we abuse notation
and write u(α) = (ui(α))i∈N to denote the expected payoff profile under α .
Similarly, for a correlated action profile ρ ∈ ∆(A), we write ui(ρ) = ∑a∈A ρ(a)ui(a)
and u(ρ) = (ui(ρ))i∈N .

Observation takes place at the end of each period. After all players choose
actions and receive signals, each player chooses the set of players to observe. Let
λi : 2N\{i} → R+ denote the observation cost function for player i. If player i
chooses J ⊆ N \ {i}, he incurs observation costs λi(J) and obtains completely
accurate information about the realized action profile (a j) j∈J in the present period.
We assume that λi( /0) = 0, λi(J) > 0 for all J, and λi(J) 6 λi(J′) if J ⊆ J′.5

We assume that what players observe from their costly observational activities
are their private information. We also assume that observational activities are
stealthy. This means first that observational activities are not observable to other
players. That is, whether player i observes another player j in a given period (let
alone what i observes) is unobservable to any player k 6= i even if k observes i in the
period (even if k = j). Second, players do not even receive any noisy information
about other players’ observational activities. These assumptions imply that one’s
observational decision itself does not affect other players’ future actions. Therefore,
deviations with respect to observational decisions cannot be punished directly. This
feature makes it difficult to create monitoring incentives.

We assume that there exists a public randomization device (e.g., public lotteries,
last digits of the Dow Jones, etc), which generates a sequence of independent

3Our result extends to the model where the stage-game payoff depends directly on the action
profile a and the signal profile ω , i.e., πi(a,ω), if we also assume that players do not observe
their own stage-game payoffs (e.g., the repeated game ends stochastically and players collect
repeated-game payoffs at the end).

4If the realized payoff does give additional information, we can redefine signals to include payoff
information. That is, we can redefine a signal as a pair (ωi,πi) of the original signal and the realized
payoff. If this pair satisfies the full-support condition, Assumption 1 is preserved and the payoff
gives no additional information.

5The monotonicity condition is assumed only for simplicity and can be dispensed with, as we
will note in Footnote 12.
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random variables (X1,Y1,X2,Y2,X3, . . .) that are all uniformly distributed over [0,1].
Random variable Xt (t = 1,2, . . . ) is realized at the beginning of period t before
players choose actions, while Yt (t = 1,2, . . . ) is realized in the middle of period t
right before players make observational decisions. The realizations of the random
variables (“sunspots”) are observable publicly and costlessly and irrelevant to
stage-game payoffs.

To summarize, the sequence of events within a given period t is as follows.
First, players observe the realization of public random variable Xt . Second, players
simultaneously choose an action ai ∈ Ai. Third, each player i observes a signal ωi
privately, which determines πi(ai,ωi). Fourth, players observe the realization of the
middle-of-period public random variable Yt . Fifth, each player i chooses whom to
observe, Ji ⊆N \{i}, and incurs a disutility of λi(Ji). Finally, i observes the realized
action profile (a j) j∈Ji .

Note that players make observational decisions after observing the free signal
ωi. Under the assumption, the amount of information that players can use
for observational decisions is maximal: players can fine-tune their observational
decisions based on ωi.6 However, our result does not depend on the assumption.
Indeed, as we show, there exists a sufficiently large class of equilibria in which
observational decisions do not depend on the realized value of ωi.

Player i’s (private) history at the beginning of period t > 2 is a sequence of
realizations of public random variables, his own actions, realizations of his private
signals, and his observations about the other players’ actions, all up to (including)
period t−1. Formally, it is a sequence

ht
i = [xk,ai,k,ωi,k,yk,(a j,k) j 6=i]t−1

k=1

∈
[
[0,1]×Ai×Ωi× [0,1]× ∏

j∈N\{i}
(A j∪{φ})

]t−1
.

In this sequence, xk ∈ [0,1] is the realized value of random variable Xk, ai,k ∈ Ai is
player i’s action in period k, ωi,k ∈ Ωi is the realized private signal of i in period k,
yk ∈ [0,1] is the realized value of random variable Yk, and a j,k ∈ A j ∪ {φ} is i’s
observation about player j’s action in period k, where a j,k = φ means that i did not
observe j in period k.

For all t = 1,2, . . . , let Ht
i denote the set of all (private) histories for player i at

period t (H1
i is an arbitrary singleton). A strategy of player i is a pair of functions

6If players can choose the timing of observational decisions, they would weakly prefer to wait
for the realization of ωi.
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σi = (σa
i ,σm

i ) such that

σa
i :

∞⋃

t=1

(Ht
i × [0,1])→ ∆(Ai),

σm
i :

∞⋃

t=1

(Ht
i × [0,1]×Ai×Ωi× [0,1])→ ∆(2N\{i}).

A strategy profile σ = (σ1, . . . ,σn) generates a probability distribution over
sequences (at ,(Ji,t)i∈N)∞

t=1, where at ∈ A is the action profile in period t and
Ji,t ⊆ N \ {i} is the set of players that i observes in period t. Given the sequence,
player i’s overall payoff is

(1−δ )
∞

∑
t=1

δ t−1[ui(at)−λi(Ji,t)
]
,

where δ ∈ (0,1) is a discount factor common to all players. Players maximize the
expected overall payoff. We are interested in sequential equilibria of the repeated
game when the discount factor is close to one.

3 Result

Player i’s minmax payoff is defined by

¯
ui ≡ min

α−i∈A−i
max
ai∈Ai

ui(ai,α−i),

where A−i ≡∏ j 6=i A j. Let

V ≡ convex hull of {u(a) : a ∈ A},
V ∗ ≡ {v ∈V : vi >

¯
ui for all i ∈ N}.

Note that
¯
ui, V , and V ∗ are all defined independently of the observation cost

functions λ1, . . . ,λn.
Our result is the following.

Theorem. Suppose that V ∗ has a dimension of n, i.e., intV ∗ 6= /0. Then for any v∗ ∈
intV ∗, there exists

¯
δ ∈ (0,1) such that, for any δ ∈ [

¯
δ ,1), there exists a sequential

equilibrium whose payoff profile is v∗.

Proof. See Appendix.

Our proof is constructive: for a given payoff profile v∗ ∈ intV ∗, we construct
a specific strategy profile σ that is a sequential equilibrium and yields v∗ if the
discount factor is close to one.
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4 An Illustration: Prisoners’ Dilemma

In this section, we illustrate the proof of the folk theorem using a repeated
prisoners’ dilemma. At the end of the section, we comment on how to generalize
the construction to general stage games.

Suppose that there are two players and each of them has two actions and two
signals: A1 = A2 = {C,D} and Ω1 = Ω2 = {C,D}. If ωi 6= a j ( j 6= i), we call it
an “error.” The signal distribution P(ω | a) is such that a signal profile ω with a
single error occurs with probability p1 and the signal profile with two errors occurs
with probability p2. The right matrix in Figure 1 gives the signal distribution when
a = (C,C). Assumptions 1 and 2 are satisfied if and only if 0 < p1 + p2 < 1 and
p1 + p2 6= 0.5, respectively. We here assume p1 + p2 < 0.5 for concreteness and will
note how to deal with the reverse inequality (Footnote 8). The stage-game payoff
function πi(ai,ωi) is such that the expected payoff function ui(a) is given by the
left matrix in Figure 1. The observation cost function is given by λi( /0) = 0 and
λi({ j}) = λ > 0 for each i and j 6= i.

C D

C 1, 1 −1, 2

D 2,−1 0, 0

u(a)

C D

C 1−2p1− p2 p1

D p1 p2

P(ω |a) when a = (C,C)

Figure 1: The stage-game payoffs and the signal distribution

Fix an interior feasible payoff profile v∗ = (v∗1,v
∗
2) À (0,0) as a target (note

that
¯
ui = 0 for each i). In what follows, we construct a specific strategy profile that

achieves v∗ and constitutes a sequential equilibrium for sufficiently patient players.7

We here describe only the strategy on the equilibrium path since it gives enough
details to see the main idea. The technical details on the out-of-equilibrium path are
given fully in Appendix.

The play on the equilibrium path is characterized by three types of periods:
cooperation periods, examination periods, and report periods. We begin with
describing those periods and the rule that governs the transition among them. A
summary diagram is given in Figure 2.

7For some classes of signal distributions, the literature proves a folk theorem for repeated
prisoners’ dilemma without observation costs. Sekiguchi [28], Bhaskar and Obara [5], Piccione [25],
and Ely and Välimäki [7] consider the case of almost perfect monitoring, where p1 and p2 are close
to 0. Matsushima [24] extends the result to signal distributions where errors are not necessarily rare
but signals are independent across players given an action profile, which is the case in the current
example if p1 =

√
p2− p2. The following exposition covers these cases and all remaining cases.
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Prisoner’s dilemma

Coop(ρ)

Each a ∈ A is selected
with probability ρ(a).

Each i plays αa
i .

middle-of-period public randomization
�����

HHHHj
1−µ µ

Each i observes
Da\{i}.

	 ρ = ρ∗

if Da = /0

no observation
*

the same ρ

-
if Da 6= /0

j ∈ Da chosen with
equal probability

Z
Z

Z
Z

Z
Z

Z
ZZ~

Z
Z

Z
Z

Z
Z

Z
ZZ~

if j played C
if j played D

1−ξ a
j

ξ a
j

�

Exam ( j)

k 6= j plays bright
k = j’s action

in the previous period.

j plays 0.5 ·C +0.5 ·D.

k observes j.

j does not observe k.

0.5�

^

0.5
Report ( j)

j plays

{

0.9 ·C +0.1 ·D if ω j = bright
k ,

0.1 ·C +0.9 ·D otherwise.

k plays 0.5 ·C +0.5 ·D.
All observe each other.

new ρ

0.25 j = 1

0.25 j = 2

0.5
J

J
J

JJ]

-

-

(D,D)

W

1

Figure 2: The strategy profile for the prisoners’ dilemma.

4.1 Cooperation Periods

Cooperation periods are parameterized by ρ ∈ ∆(A) and denoted by Coop(ρ).
The initial period (t = 1) is Coop(ρ∗) for a particular ρ∗ that will be specified
below. In Coop(ρ), the public random variable realized at the beginning of the
period chooses each pure action profile a ∈ A with probability ρ(a). If a is chosen,
players play a mixed action profile αa defined by

αCC = ((1−η)C +ηD,(1−η)C +ηD),

αCD = ((1−η)C +ηD,D),

αDC = (D,(1−η)C +ηD),

αDD = (D,D),

where η ∈ (0,1) is a small probability. Note that, if ai is not a short-run best
response to αa

j , then αa
i assigns probability η to the best response. If ai is a short-run

best response, αa
i assigns probability 1 to ai. Let Da be the set of players who

randomize under αa:

DCC = {1,2}, DCD = {1}, DDC = {2}, DDD = /0.

Players use the middle-of-period public randomization to coordinate their
observational decisions. Specifically, with probability 1−µ (i.e., if yt > µ), where
µ ∈ (0,1) is small, no one observes the other player, and the next period continues to
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be Coop(ρ) with the same ρ . With probability µ (i.e., if yt < µ), on the other hand,
each player observes the other player if the other player is in Da. In this case, the
play in the next period, say period t +1, is determined as follows. If Da = /0, which
is the case if and only if a = (D,D), period t +1 is set to Coop(ρ∗), i.e., the play is
reset and returns to the initial period. If Da 6= /0, then a player, who will be denoted
as j, is chosen equiprobably from Da, with the help of public randomization at the
beginning of period t + 1. If j’s action in period t was C, then period t + 1 is an
examination period denoted as Exam( j), which is described in the next subsection.
If j’s action in period t was D, then with probability ξ a

j , the perpetual repetition of
(D,D) starts from period t +1, where ξ a

j is defined by

ξ a
j =

(1−δ )|Da|
µδv∗j

. (1)

Note that, for a fixed µ , we have 0 < ξ a
j < 0.5 if δ is sufficiently close to one.

With the remaining probability (i.e., 1−ξ a
j ), period t + 1 is an examination period

Exam( j). As we will verify, the particular choice of ξ a
j equates the short-run

gain from choosing D and the long-run loss from the possibility of triggering the
repetition of (D,D), thereby motivating the players j ∈Da to randomize between C
and D.

4.2 Examination Periods

In examination periods Exam( j), player k 6= j is given a “test” where he has
to state the action that player j chose in the previous period. To state the answer
without explicit communication, player k (“examinee”) uses his stage-game action.
Specifically, player k chooses the same action that player j chose in the previous
period, which is denoted bright

k ∈ Ak. Player j (“examiner”), on the other hand,
plays 0.5 ·C + 0.5 ·D. Regardless of the middle-of-period public randomization,
player k observes player j, while j does not observe k. Player j has no incentive to
observe k since bright

k is a pure action that player j knows.
The state transition is determined by the public randomization at the beginning

of the next period. With probability 0.5, the next period is again Exam( j), in
which k states what j just played in this (examination) period. With the remaining
probability, the next period is a report period denoted by Report( j).

Before we proceed to describe report periods, we briefly note the role of
examination periods and why we need report periods. In examination periods, the
action prescribed to the examinee depends on the realized action of the examiner
in the previous period. This feature makes a player who ignored the instruction
of observation uncertain of the prescribed action in the examination period. This
feature, however, does not suffice for providing observational incentives, since, as
described above, the examinee’s action is pure and therefore is not observed by the
examiner. We can surely create observational incentives if we make the examinee’s
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action stochastic. However, it makes the exam trivial since the stage-game has only
two actions and therefore there will be an action that belongs to the support of the
mixed action for any realized action of the examiner in the previous period.

Our solution is to use the costless signal that the examiner receives in the
examination period. Since the distribution of the examiner’s signal depends on
the examinee’s action, we can motivate the examinee to choose a pure action if we
make the continuation strategy dependent on the signal received by the examiner.
However, there remains a problem, which is that the examiner’s signal is his private
information and therefore does not allow the players to coordinate their continuation
strategy. This is why we proceed to a report period, in which the examiner “reports”
his private signal to the examinee by means of his stage-game action, which in turn
determines the continuation strategy profile, as we now describe.

4.3 Report Periods

By construction, if the present period is Report( j), the previous period is
Exam( j). Let k 6= j denote the examinee. In the report period, player j (examiner)
uses his stage-game action to announce whether he “approves” or “disapproves” of
player k. Specifically, j plays the following mixed action:

0.9 ·C +0.1 ·D if ω j = bright
k ,

0.1 ·C +0.9 ·D otherwise
(2)

where bright
k is the action prescribed to k in the previous period and ω j is the signal

received by j in the same period.8 Meanwhile, player k plays 0.5 ·C +0.5 ·D. The
players observe each other.

To understand j’s action, recall that p1 + p2 < 0.5 and hence the probability
of ω j = bright

k is maximized if and only if player k plays bright
k . If ω j = bright

k ,
player j basically gives his approval for player k by choosing C.9 Player j actually
randomizes, giving his approval only with probability 0.9. Symmetrically, if
ω j 6= bright

k , player j disapproves of player k with probability 0.9. We make player j
randomize to ensure that his action (“report”) is observed by k.10

This construction implies that the probability of getting j’s approval is
maximized if and only if k plays bright

k . If k is uncertain of bright
k , he will play a

wrong action in the examination period with a positive probability and hence the
expected probability of getting j’s approval is strictly lower than if k knows bright

k .

8This part depends on the assumption p1 + p2 < 0.5. If the reverse inequality holds, we simply
reverse the conditions in (2).

9We let C signify j’s approval, but the roles of C and D can be reversed.
10Even if j does not randomize, his action appears random to k since j’s action depends on his

private signal. However, if p1 = 0 (which we allow), there is a perfect correlation between signals
across the players, and therefore k can infer j’s action without costly observation. This possibility
introduces an unnecessary complication to the proof, which is why we introduced the randomization
in j’s action. The exact way in which j trembles is immaterial.
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The state transition depends on the public randomization at the beginning of the
next period. With probability 0.25, the next period is Exam(1), where player 1 is the
examiner and player 2 has to state 1’s action in the report period. With probability
0.25, the next period is Exam(2), where the players’ roles are reversed. With the
remaining probability, the next period is Coop(ρ) where ρ ∈∆(A) is newly selected.
The selection of ρ is described in what follows.

4.4 Selection of ρ

The selection has two goals. The first is to offset the difference between the
target payoffs v∗ and the realized payoffs during the previous two periods, which
are an examination period and a report period. By doing this, we can make the
players’ continuation values from any examination period equal to v∗ regardless of
the realized actions in the two periods. This in turn makes both players in the report
period and the examiner in the examination period indifferent about their actions
and willing to randomize as prescribed. The second goal of the selection rule for ρ
is to punish the examinee who did not get the examiner’s approval.

To give a detailed description of the selection of ρ , we begin with its first goal.
That is, we look for a selection rule for ρ ∈ ∆(A) that makes the continuation values
from any examination period equal to v∗.

By construction, if period t is a cooperation period and period t− 1 is a report
period, then period t − 2 is an examination period. Let k be the examinee, bright

k
his prescribed action in the examination period, bobs

j the observed action of the
examiner in the examination period, and cobs the observed action profile in the report
period. Abusing notation, let Coopi(ρ) denote the continuation value of player i
from a cooperation period with ρ . Then our objective is to find a distribution ρ ′ ∈
∆(A) that satisfies the following equation for all i:

v∗i = (1−δ )
[
ui(b

right
k ,bobs

j )−λi(N \{i,k})
]

+
1
2

δv∗i +
1
2

δ (1−δ )
[
ui(cobs)−λ

]

+
1
4

δ 2v∗i +
1
4

δ 2Coopi(ρ ′).

(3)

Observe that ρ ′ depends on (k,bright
k ,bobs

j ,cobs), which are determined in the

preceding two periods. If ρ ′ is set to satisfy (3) for any given (k,bright
k ,bobs

j ,cobs)
and any i, then the continuation value from any examination period is indeed v∗i for
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all players. Rearranging (3) yields

0 =
[
v∗i −ui(b

right
k ,bobs

j )+λi(N \{i,k})
]

+
[
v∗i −ui(cobs)+λ

]δ
2

+
[
v∗i −Coopi(ρ ′)

] δ 2

4(1−δ )
.

(4)

To identify ρ ′ that satisfies (4), we need to compute the value Coopi(ρ ′). Since
Coopi(ρ ′) is the continuation value from a cooperation period,

Coopi(ρ ′) = (1−δ ) ∑
a∈A

ρ ′(a)
[
ui(αa)−µλi(Da \{i})

]

+(1−µ)δCoopi(ρ ′)

+ µδ
[
1− ∑

a∈A:Da 6= /0
ρ ′(a)

1
|Da|η ∑

j∈Da
ξ a

j

]
v∗i .

(5)

The equation is written based on the assumption that Coopi(ρ∗) = v∗i , which will
be verified later.

Substituting (1) into (5) to eliminate ξ a
j , we obtain

Coopi(ρ ′) = v∗i +
1−δ

1−δ + µδ

[
ûi(ρ ′)− v∗i

]
(6)

where ûi : A→ R is defined by

ûi(a)≡ ui(αa)−µλi(Da \{i})−η ∑
j∈Da

v∗i
v∗j

.

The function ûi, which we call the virtual payoff function for player i, represents
his stage-game payoff in a cooperation period when a is selected, after we take into
account expected observation costs and expected losses from possible transition to
the punishment stage. By choosing small numbers for µ and η , we can make the
virtual payoff function ûi arbitrarily close to the true payoff function ui.

Substituting (6) into (4), we obtain that for each i,

ûi(ρ ′) = v∗i +
1−δ + µδ
(1/4)δ 2

[
v∗i −ui(b

right
k ,bobs

j )+λi(N \{i,k})
]

+
1−δ + µδ

(1/2)δ

[
v∗i −ui(cobs)+λ

]
.

(7)

There exists ρ ′ ∈ ∆(A) that satisfies this equation for all i if µ and η are close to
0 and δ is close to 1. Indeed, if δ is close to 1 and µ is close to 0, 1− δ + µδ
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is close to 0 and hence ûi(ρ ′) is close to v∗i . Since v∗ is an interior point of the
feasible payoff vector set and ûi is close to ui, a distribution ρ ′ ∈ ∆(A) that yields
the equality for all i exists regardless of the values of (k,bright

k ,bobs
j ,cobs).

The preceding argument shows that if ρ ′ is always chosen to satisfy (7), the
continuation value from any examination period is v∗i for all players. Further,
(3) shows that the continuation value is the same regardless of the randomizing
players’ realized actions in the examination and report periods (i.e., (bobs

j ,cobs)).
This implies that all these randomizing players are completely indifferent about
their actions.

The choice of ρ ′, however, does not give a right incentive to the examinee
(player k) in the examination period, since (7) depends only on what he is prescribed
to do (bright

k ) and not what he does. This is where our second goal comes in. To
deal with the examinee’s incentive, we modify ρ ′ slightly to punish or reward
him depending on the report from the examiner. Specifically, let APk denote
the probability that player k earns his examiner’s approval given that k plays as
prescribed. For the current example,

APk = 0.9(1− p1− p2)+0.1(p1 + p2).

Let ε > 0 be a small number. Then, finally, let ρ ∈ ∆(A) be such that

ûk(ρ) =

{
ûk(ρ ′)+ ε(1−APk) if cobs

j = C,

ûk(ρ ′)− εAPk otherwise,
(8)

û j(ρ) = û j(ρ ′).

This is the ρ that is used in the new cooperation period. If ε > 0 is sufficiently
small, there exists ρ ∈ ∆(A) that satisfies these equations. The equations mean
that player k receives a “bonus” of ε(1−APk) if he earns his examiner’s approval,
and pays a “penalty” of εAPk otherwise. Since the examiner’s approval is given
with probability APk in equilibrium, the expected net bonus is zero, and hence the
continuation value from an examination period remains unchanged and equal to v∗k .

4.5 Initial Play

The initial period is set as a cooperation period Coop(ρ∗) where ρ∗ ∈ ∆(A) is
chosen to satisfy

û(ρ∗) = v∗.

Such a ρ∗ exists if µ and η are close to 0 and δ is close to 1. Then (6) implies
Coopi(ρ∗) = v∗i and hence v∗ is indeed the payoff profile for the entire repeated
game under the strategy profile.
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4.6 Incentives

We now discuss why players have incentives to follow the strategy described
above. We start with incentives with respect to stage-game actions.

(i) Cooperation periods. Players i ∈ Da are willing to randomize between
C and D because of the way the probabilities ξ a

i are defined. For our specific
prisoners’ dilemma, the short-run gain of playing D is 1− δ . The long-run loss
of playing D is given by ξ a

i (1/|Da|)µδv∗i . The probabilities ξ a
i are set so that the

long-run loss equals the short-run gain (see (1)). On the other hand, players i /∈ Da

are prescribed to play D and, indeed, these players have no incentive to play C since
their action in this period is not observed by the other player and has no effect on
the continuation play.

(ii) Report periods. In report periods, as discussed above, players are
completely indifferent about their actions because of the way ρ is chosen in the
subsequent cooperation period (if reached).

(iii) Examiner in an examination period. For the same reason, the examiner in
an examination period is also indifferent about his action.

(iv) Examinee in an examination period. Suppose that player k is the examinee
in an examination period and bright

k = C (the case when bright
k = D is omitted since

it is similar and simpler). The short-run gain from playing D is 1− δ . Playing
D, on the other hand, increases the probability that j’s signal is ω j = D, by L =
1−2p1−2p2 > 0. If ω j = D, then if the next period is a report period (which occurs
with probability 0.5), the probability that the examiner gives his approval (choosing
C) goes down from 0.9 to 0.1. This has three effects on player k’s payoffs. First,
there is a direct effect on k’s stage-game payoff in the report period. Second, there
is an effect on ρ ′ since ρ ′ depends on cobs

j (see (3)). However, (3) implies that these
two effects are canceled out by each other. Finally, there is an effect on ρ through
the last term of (8). If the examiner gives his disapproval, ûk(ρ) goes down by ε ,
which means, by (6), that Coopk(ρ) goes down by (1− δ )ε/(1− δ + µδ ). This
effect matters if the report period is followed immediately by a cooperation period,
which occurs with probability 0.5. Altogether, the long-run loss from playing D is

L
1
2
(0.9−0.1)

1
2

δ 2 (1−δ )ε
1−δ + µδ

.

A sufficient condition for this to exceed the short-run gain is

1 <
0.2Lδ 2ε

1−δ + µδ
.

This is satisfied if δ is close to 1 and µ is close to 0. Recall that µ is the probability
that observation is prescribed in cooperation periods, which also determines how
long a cooperative phase with the same ρ is expected to continue. If µ is small, a
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cooperative phase with the same ρ is expected to continue for a large number of
periods and therefore a slight effect on ρ has a significant effect on the long-run
payoff. This gives players strong incentives to answer correctly in examination
periods since doing so maximizes the probability that ρ is set favorably.

(v) Observation. Suppose that player i did not observe player j 6= i when he
was prescribed to. Since η and ξ a

k are set small, it follows that with a probability p >
0.5, the next period is an examination period. In the examination period, player i is
chosen as the examinee at least with probability 0.5. In this (worst) case, player i
is uncertain of bright

i and therefore there is a positive probability that his action
turns out to be wrong: bi 6= bright

i . This probability is bounded below by some
F > 0. In this event, the continuation payoff goes down strictly, as we just showed
in the previous paragraph. A sufficient condition for the loss to exceed the saving
of observation costs is

λ <
1
4

Fδ
[ 0.2Lδ 2ε

1−δ + µδ
−1

]
,

which holds if δ is close to 1 and µ is close to 0.11

4.7 Extending to General Games

We now briefly describe how to extend the construction to general stage games
and signal distributions. For cooperation periods, we can construct a mixed action
αa

i for each a ∈ A and i ∈ N to satisfy the following properties: (i) if ai is a
short-run best response to αa

−i, then αa
i assigns probability 1 to ai, and (ii) if ai

is not a short-run best response to αa
−i, then αa

i is a randomization between ai and
a short-run better response, assigning a small probability to the short-run better
response. If observation is prescribed (i.e., if yt < µ), players observe only the
players who randomize in αa.12

The play in examination periods is also modified. If there are three or more
players, each examination period is parameterized by a pair of players ( j,k),
where j is one of the players who randomized in the previous period and k 6= j
is the examinee. By Assumption 2, there exists an action profile a−k under which
player k’s action has a non-zero influence on the signal distribution of a player r 6= k.

11The value of F is inversely related to the accuracy of costless signals. Thus, as the costless
information becomes more accurate, the inequality gets tighter and therefore δ need to be higher for
the strategy to work. When players can obtain fairly accurate information costlessly, a high level of
patience is necessary to motivate them to undertake costly observation. The result is a by-product of
our specific strategy, where the observational decision is made independently of the realized private
signal.

12If the observation cost functions are not monotonic (i.e., J′ ⊆ J does not imply λi(J′) 6 λi(J),
which is relevant if it may be easier to monitor multiple players at the same time), then it suffices
to modify the strategy as follows: if J is the set of randomizing players in the current period and
monitoring is instructed, player i monitors J′ that solves minJ′⊇J λi(J′) and then ignores any observed
deviation by players in J′ \ J.
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The influence of k’s action does not disappear if a−k is perturbed to a completely
mixed action profile β−k. Then there exists a subset Ω′

r ⊆Ωr such that

max
ak

Pr(Ω′
r |ak,β−k) > min

ak
Pr(Ω′

r |ak,β−k),

which is equivalent to

Argmax
ak

Pr(Ω′
r |ak,β−k)

⋂
Argmax

ak

Pr(Ωr \Ω′
r |ak,β−k) = /0. (9)

The prescribed action for player k, i.e., bright
k is chosen from a solution to one of the

maximization problems in (9). Which maximization to choose is determined by the
realized action of player j in the previous period.13 While k plays bright

k , the other
players randomize according to β−k. In the report period that follows, player r
(not j) decides whether to approve of player k based on whether ωr ∈ Ω′

r or not,
with trembles, as in (2). This construction ensures that k’s action in the examination
period affects r’s signal distribution, and failing to observe j’s action in the previous
period reduces the ex-ante probability of getting r’s approval.

The punishment phase also needs to be modified for general stage games
since the repetition of a static Nash equilibrium does not necessarily give a
sufficiently severe punishment. In the proof in Appendix, we adapt the punishment
scheme of Fudenberg and Maskin [12] to our basic construction. Specifically, we
introduce minmax periods, in which players play a perturbed minmax action profile
where all players randomize except for the minmaxed player. The perturbation is
introduced to create observational incentives. As in cooperation periods, with a
positive probability, observation is prescribed, in which case the play returns to
an examination period. However, in the continuation strategy, the target payoff
profile v∗ (and the selection rule for ρ) is modified to make the minmaxing
players indifferent about their actions in the minmax period and motivate them to
randomize. This is possible since these players are observed when the play exits
from the minmax period.

We conclude this section by noting that, for general stage games, the set V ∗ may
be a proper subset of feasible and individually rational payoff vectors in our class
of repeated games. To see this, note that the set of feasible payoff vectors in our
context is

V̄ ≡ {(vi− piλi(N \{i}))i∈N : v ∈V and p ∈ [0,1]N},
which is a superset of V since V deals only with the case where pi = 0 for all
i. While any v ∈ V is feasible, players can also decrease their payoffs by paying
observation costs, and the reduced payoff vector may not be in V . Our proof relies
on a strategy profile that works only if the frequency of monitoring is close to zero,

13If the maximization has multiple solutions, choose one that maximizes player k’s stage-game
payoff.
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and it is not straightforward to modify the strategy to accommodate payoff profiles
in V̄ \V .14

5 Conclusion

There are a few assumptions that contribute to the extreme conclusion. First,
we assume that it is possible to observe other players’ actions without errors (e.g.,
obtaining hard evidence), although the cost of doing so can be arbitrarily large.
If only noisy observations can be obtained at any cost, coordination is difficult
and our construction does not extend easily. As mentioned in the introduction,
Kandori and Obara [17] study a repeated prisoners’ dilemma where observations
are almost but not perfectly accurate, under the assumption that observation costs
are not large and observational decisions are also observable with small errors.
Second, the existence of middle-of-period public randomization plays a critical role
in controlling the expected per-period observation costs. However, public random
variables are abundant in real life and the use of them does not appear to be difficult.

Even if our assumptions are satisfied, a few concerns remain. First, the
strategy profile in the proof may be too complex in the sense that it is difficult to
believe that the carefully designed strategy profile emerges from some adjustment
process. The strategy profile, however, has a rather intuitive recursive structure
and a clear interpretation. Therefore, if the players discuss their collusion scheme
explicitly in period 0, the strategy profile may not be too difficult for actual
implementation. Finally, the critical discount factor may be too high, particularly
when the observation cost is high. The theory is silent about the issue. A
contribution of this paper is to confirm that the folk theorem is extremely robust.

The main message of our folk theorem is that accurate observation per se,
however costly, enables efficient cooperation in general long-term relationships.
The idea may give general insights in a wide range of applications. It may, for
instance, provide guidance on how to avoid conflicts and facilitate cooperation
among countries in the absence of a world government. The idea may also shed
light on why only certain species of living creatures can cooperate. As mentioned
in the introduction, the conclusion also poses a question on antitrust policies that
rely on evidence of explicit communication.

14Another reason for the difference between V ∗ and the set of feasible and individually rational
payoff vectors is that the minmax value

¯
ui is defined under the assumption that the other players

randomize independently. Since actions and signals are private information, the other players can
actually make their actions appear correlated to the player being punished, and the minmax value in
correlated actions may be lower than that in mixed actions. For the idea of using private signals to
induce correlations in repeated games, see Lehrer [19].
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A Appendix: Proof

A.1 Preliminaries

We use the sup metric for Euclidean spaces: for all v,w ∈ R`, ‖v− w‖ ≡
maxi∈{1,...,`}|vi −wi|. For all ε > 0 and all v ∈ RN , let N̄ε(v) denote the closed
ε-neighborhood of v.

Let v∗ ∈ intV ∗ be an arbitrarily chosen target payoff profile. Then there exists
ε > 0 such that

N̄4ε(v∗)⊆V ∗, (10)

3ε < min
i∈N

[
v∗i − ¯

ui
]
. (11)

Let D ∈ R be defined by

D≡max
i∈N

[
λi(N \{i})+ max

a,a′∈A
|ui(a)−ui(a′)|

]
> 0.

Then there exist q > 0 and η̄ ∈ (0,0.5) such that

qD < ε(1−q), (12)

2Dnη̄
[

1+
D
qε

]
< ε. (13)

The following lemma defines a mixed action profile αa for each a ∈ A. In
the equilibrium we will construct, players play this mixed action profile in the
cooperative stage when a is chosen as the cooperative action profile.

Lemma. For all a∈ A, there exists a mixed action profile αa such that for all i∈N:

(i) Either αa
i = ai or

αa
i = (1−ηa

i ) ·ai +ηa
i ·da

i (14)

where da
i 6= ai and 0 < ηa

i 6 η̄ .
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(ii) If αa
i = ai, then ai is a best response to αa

−i.

(iii) If αa
i 6= ai, i.e., αa

i is given by (14), then ui(da
i ,αa

−i) > ui(ai,αa
−i).

Proof. Fix a pure action profile a ∈ A. For a given mixed action profile α ∈ A ,
define a set Dev(α) by

Dev(α)≡ {i ∈ N : max
a′i∈Ai

ui(a′i,α−i) > ui(ai,α−i)}.

This is the set of players for whom ai is not a best response to α−i. Let D0 ≡
Dev(a). If D0 = /0, then we are done by setting αa = a. So suppose D0 6= /0. Then
for all i ∈ D0, there exists an action da

i ∈ Ai such that ui(da
i ,a−i) > ui(a). Thus

for any mixed action profile α̂ such that ‖α̂ − a‖ is sufficiently small, we have
ui(da

i , α̂−i) > ui(ai, α̂−i) for all i∈D0. Hence, there exists ηa
i ∈ (0, η̄ ] for all i∈D0,

such that the mixed action profile α1 defined by

α1
i ≡

{
(1−ηa

i ) ·ai +ηa
i ·da

i if i ∈ D0

ai if i /∈ D0

satisfies ui(da
i ,α1

−i) > ui(ai,α1
−i) for all i ∈ D0. Thus D0 ⊆ Dev(α1)≡ D1. If D1 =

D0, we are done by setting αa = α1. So suppose otherwise. Then for all i∈D1\D0,
there exists an action da

i ∈ Ai such that ui(da
i ,α1

−i) > ui(ai,α1
−i). Therefore, for

any mixed action profile α̂ such that ‖α̂ −α1‖ is sufficiently small, ui(da
i , α̂−i) >

ui(ai, α̂−i) for all i ∈ D1. Hence, there exists ηa
i ∈ (0, η̄ ] for all i ∈ D1 \D0, such

that the mixed action profile α2 defined by

α2
i ≡

{
(1−ηa

i ) ·ai +ηa
i ·da

i if i ∈ D1

ai if i /∈ D1

satisfies ui(da
i ,α2

−i) > ui(ai,α2
−i) for all i∈D1. Thus D1⊆Dev(α2)≡D2. Since the

number of players is finite, repeating this procedure yields k such that Dk+1 = Dk.
We then set αa = αk+1. ¤

For all a ∈ A, let Da be the set of randomizing players in αa. Define

¯
ηa ≡ min

i∈Da
ηa

i (set
¯
ηa = 1 if Da = /0),

¯
η1 ≡min

a∈A ¯
ηa > 0. (15)

We now modify the minmax profiles slightly in such a way that all players
except for the minmaxed player randomize over all actions. Specifically, for all
i ∈ N, there exists a mixed action profile mi ∈A such that

supp(mi
j) = A j for all j 6= i, (16)

ui(mi) = max
ai∈Ai

ui(ai,mi
−i) <

¯
ui + ε, (17)

mi
i ∈ Ai (i.e., mi

i is a pure action), (18)
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where “supp” denotes the support of the probability distribution. By (16),

¯
η2 ≡min

i∈N
min
j 6=i

min
a j∈A j

mi
j(a j) > 0. (19)

Assumption 2 implies that for all k ∈ N, there exist a completely mixed action
profile β k

−k, a player r(k) ∈ N \ {k}, and a partition of Ωr(k), {Ω1,k
r(k),Ω

2,k
r(k)}, such

that
Argmax

bk∈Ak

Pr(k)(Ω
1,k
r(k) |bk,β k

−k)
⋂

Argmax
bk∈Ak

Pr(k)(Ω
2,k
r(k) |bk,β k

−k) = /0. (20)

The player r(k) will be called the referee for k. Let B1
k and B2

k be defined by

B1
k ≡ Argmax

bk∈Ak

Pr(k)(Ω
1,k
r(k) |bk,β k

−k), B2
k ≡ Argmax

bk∈Ak

Pr(k)(Ω
2,k
r(k) |bk,β k

−k).

By (20), B1
k ∩B2

k = /0. Let b1
k and b2

k be such that

b1
k ∈ Argmax

bk∈B1
k

uk(bk,β k
−k), b2

k ∈ Argmax
bk∈B2

k

uk(bk,β k
−k).

The definitions of B1
k and B2

k imply

L1
k ≡ Pr(k)(Ω

1,k
r(k) |b1

k ,β
k
−k)− max

bk /∈B1
k

Pr(k)(Ω
1,k
r(k) |bk,β k

−k) > 0,

L2
k ≡ Pr(k)(Ω

2,k
r(k) |b2

k ,β
k
−k)− max

bk /∈B2
k

Pr(k)(Ω
2,k
r(k) |bk,β k

−k) > 0.
(21)

Let L ∈ R be defined by

L≡min
k∈N

min{L1
k ,L

2
k}> 0. (22)

Since β k
−k is completely mixed, we have

¯
η3 ≡min

k∈N
min
j 6=k

min
a j∈A j

β k
j (a j) > 0. (23)

Let
¯
η ∈ R be defined by

¯
η ≡min{

¯
η1,

¯
η2,

¯
η3,0.1}> 0. (24)

Let
¯
p ∈ R be defined by

¯
p≡min

i∈N
min

ωi∈Ωi
min
a∈A

Pi(ωi |a) > 0,
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where the inequality holds by Assumption 1. Let (µ ,
¯
δ ) ∈ (0,1)2 be sufficiently

close to (0,1) so that for all δ ∈ [
¯
δ ,1),

µ̂ ≡ 1−δ
δ

1−q
q

< 1, (25)

n(1−δ )D < 0.5µδqε, (26)
Dµ < 0.5ε, (27)

n(n−1)D(1−δ + µδ ) < 0.05δ 3

¯
η

¯
pLε. (28)

In what follows, we fix δ >
¯
δ .

For all j ∈ N, let W j ∈ RN be defined by

W j
i ≡





(1−q)(v∗i − ε)+q
[
ui(mi)− µ̂λi(N \{i})] if i = j,

(1−q)(v∗i + ε)+q
[

min
â∈supp(m j)

ui(â)− µ̂λi(N \{i, j})
]

if i 6= j.

For all v ∈ N̄ε(v∗), all a ∈ A, and all i ∈ Da, let ξ v
i (a) ∈ R be defined by

(1−δ )
[
ui(da

i ,αa
−i)−ui(ai,αa

−i)
]
=

1
|Da|ξ

v
i (a)µδ (vi−W i

i ). (29)

To see that ξ v
i (a) is a probability (i.e., falls in between 0 and 1), note that

vi−W i
i > v∗i − ε−W i

i > q(v∗i −ui(mi)− ε) > q(v∗i − ¯
ui−2ε) > qε (30)

by (11) and (17). This implies 0 < ξ v
i (a) 6 n(1−δ )D/(µδqε) < 0.5 by (26).

For all v ∈ N̄ε(v∗), we define a virtual payoff function uv : A→ RN as

uv
i (a)≡ ui(αa)−µλi(Da \{i})

− ∑
j∈Da

ηa
j

[
u j(da

j ,αa
− j)−u j(a j,αa

− j)
] vi−W j

i

v j−W j
j

(31)

for all i. For all v ∈ N̄ε(v∗) and all a ∈ A,

|uv
i (a)−ui(a)|6 |ui(αa)−ui(a)|+ µD+nη̄D

D
qε

6 D
[
nη̄ + µ +

nη̄D
qε

]

< ε

by (13) and (27). This implies that there exists ρ∗ ∈ ∆(A) such that

uv∗(ρ∗) = v∗. (32)
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Figure 3: Cooperation states

For all h ∈ N and all a ∈ supp(mh), let V h(a) ∈ RN be defined by

V h
i (a)≡





v∗i − ε if i = h,

v∗i + ε− q
1−q

[
ui(a)− min

â∈supp(mh)
ui(â)

]
if i 6= h.

(33)

Then for all i 6= h, v∗i + ε > V h
i (a) > v∗i by (12). This implies

V h(a) ∈ N̄ε(v∗).

Thus if we define V ∗∗ ⊆ RN by

V ∗∗ ≡ {v∗}∪{V h(a) : h ∈ N and a ∈ supp(mh)},

then V ∗∗ is a finite set and V ∗∗ ⊆ N̄ε(v∗).

A.2 Strategy

We now construct a strategy profile that yields the target payoff profile v∗ and
is a sequential equilibrium under δ >

¯
δ . The strategy has four types of states:

cooperation, examination, report, and minmax.

Cooperation States (Figure 3). A cooperation state, denoted Coop(v,ρ), is
indexed by a payoff profile v ∈ V ∗∗ and a distribution ρ ∈ ∆(A). In particular,
the initial period is in state Coop(v∗,ρ∗) where ρ∗ is given by (32). In each period
of state Coop(v,ρ), the public randomization at the beginning of the period selects
each a ∈ A with probability ρ(a) as the cooperative action profile of the period.
Suppose ρ selects a. Then players play the mixed action profile αa. Observational
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Examination: 3

Exam (v,( j,k),a j,aobs
j )

k plays bright
k =

{

b1
k if aobs

j = a j,
b2

k otherwise.

The other players play β k
−k.

Each i observes N\{i,k}.

( j′,k′) chosen with

equal probability

where j′ 6= k and k′ 6= j′

- Exam (v,( j′,k′),b1
j′ ,b

obs
j′ )

�
�

�
�

��1
0.5

-
0.5

Report (v,k,bright
k ,bobs

−k )

1

Figure 4: Examination states

decisions are coordinated by the public randomization in the middle of the period. If
yt ≥ µ , no one observes others, and the state remains Coop(v,ρ) in the next period.

If yt < µ , on the other hand, each player i observes all players in Da \ {i}. If
Da = /0, then the public randomization at the beginning of the next period selects a
pair of players ( j,k) such that j 6= k with equal probability, and the next period is in
Exam(v,( j,k),a j,a j). If Da 6= /0, let (aobs

i )i∈Da denote the realized action profile of
players in Da. The public randomization at the beginning of the next period selects a
pair of players ( j,k) such that j ∈Da and k 6= j with equal probability. If aobs

j = da
j ,

then the state changes to Minmax( j) with probability ξ v
j (a). If aobs

j /∈ {a j,da
j}, the

state changes to Minmax( j) with probability 0.5. In all these cases (where Da 6= /0),
if the state does not change to Minmax( j), it changes to Exam(v,( j,k),a j,aobs

j ).

Examination States (Figure 4). An examination state, denoted
Exam(v,( j,k),a j,aobs

j ), is indexed by a payoff profile v ∈ V ∗∗, a pair of players
( j,k) such that j 6= k, a j ∈ A j, and aobs

j ∈ A j. In this state, player k is prescribed to

play a pure action bright
k determined by

bright
k =

{
b1

k if aobs
j = a j,

b2
k otherwise.

The other players play a mixed action profile β k
−k. Regardless of the public

randomization in the middle of the period, each player i observes N \ {i,k}. Let
bobs
−k ∈ A−k denote the realized action profile of players N \{k}. The state transition

depends on the public randomization at the beginning of the next period. With
probability 0.5, a pair ( j′,k′) such that j′ 6= k and k′ 6= j′ is selected with equal
probability and the state changes to Exam(v,( j′,k′),b1

j′,b
obs
j′ ).15 With the remaining

probability, the state changes to Report(v,k,bright
k ,bobs

−k ).

Report States (Figure 5). A report state, denoted Report(v,k,bright
k ,bobs

−k ), is
indexed by a payoff profile v ∈ V ∗∗, a player k ∈ N, and an action profile

15Here the choice of a particular action b1
j′ is arbitrary; any other action works since β k

j′ assigns
positive probability to all actions.
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Report

Report (v,k,bright
k ,bobs

−k )

r(k) plays










0.9 · c′r(k) +0.1 · c′′r(k) if bright
k = be

k

and ωr(k) ∈ Ωe,k
r(k), for some e ∈ {1,2},

0.1 · c′r(k) +0.9 · c′′r(k) otherwise.

Each i 6= r(k) plays 0.5 · c′i +0.5 · c′′i .
Each i observes N\{i}.

-

( j,k) chosen with

equal probability

where j 6= k

-

0.5
Exam (v,( j,k),c′j,c

obs
j )

-

0.5 new ρ
Coop (v,ρ)

1

Figure 5: Report states

(bright
k ,bobs

−k ) ∈ {b1
k ,b

2
k}×A−k. Player k is the one who was under examination in

the last period (by construction, the previous period is an examination period). For
each player i, choose a pair of distinct actions {c′i,c

′′
i } ⊆ Ai arbitrarily in advance.

In this period, player r(k), i.e., the referee for k defined in (20), plays the following
mixed action:

0.9 · c′r(k) +0.1 · c′′r(k) if bright
k = b1

k and ωr(k) ∈Ω1,k
r(k),

0.9 · c′r(k) +0.1 · c′′r(k) if bright
k = b2

k and ωr(k) ∈Ω2,k
r(k),

0.1 · c′r(k) +0.9 · c′′r(k) if bright
k = b1

k and ωr(k) /∈Ω1,k
r(k),

0.1 · c′r(k) +0.9 · c′′r(k) if bright
k = b2

k and ωr(k) /∈Ω2,k
r(k),

where ωr(k) ∈Ωr(k) denotes the referee’s private signal in the previous period. Any
other player i 6= r(k) plays a mixed action 0.5 · c′i +0.5 · c′′i .

Regardless of the public randomization in the middle of the period, all players
observe all the other players. Let cobs ∈ A denote the realized action profile
(possibly cobs

i /∈ {c′i,c
′′
i } for some players). The state transition depends on the

public randomization at the beginning of the next period. With probability 0.5,
a new pair of players ( j,k) such that j 6= k is chosen with equal probability and
the state changes to Exam(v,( j,k),c′j,c

obs
j ). With the remaining probability, the

state changes to Coop(v,ρ) where ρ ∈ ∆(A) depends on (v,k,bright
k ,bobs

−k ,cobs) and
is determined as follows.

First, let v′ ∈ RN be defined by

v′i = vi +
1−δ + µδ
(1/4)δ 2

[
vi−ui(b

right
k ,bobs

−k )+λi(N \{i,k})
]

+
1−δ + µδ

(1/2)δ

[
vi−ui(cobs)+λi(N \{i})

]
.

(34)

By (28),

|v′i− vi|6 (1−δ + µδ )D(3/2)
(1/4)δ 2 < ε.
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Figure 6: Minmax states

Thus v′ ∈ N̄ε(v)⊆ N̄2ε(v∗). Now, we choose a distribution ρ ∈ ∆(A) such that

uv
i (ρ) = v′i if i 6= k, (35)

uv
k(ρ) =

{
v′k + ε(1−APk) if cobs

r(k) = c′r(k),
v′k− εAPk otherwise,

(36)

where

APk ≡




0.9Pr(k)(Ω
1,k
r(k) |b1

k ,β
k
−k)+0.1Pr(k)(Ω

2,k
r(k) |b1

k ,β
k
−k) if bright

k = b1
k ,

0.9Pr(k)(Ω
2,k
r(k) |b2

k ,β
k
−k)+0.1Pr(k)(Ω

1,k
r(k) |b2

k ,β
k
−k) if bright

k = b2
k

denotes the ex ante probability that k’s referee r(k) plays c′r(k) in equilibrium. To
see that ρ exists, note that by construction, uv(ρ) is within ε of v′ and so within 3ε
of v∗. Since uv is within ε of u, it follows that u(ρ) is within 4ε of v∗. Hence, ρ
exists by (10).

Minmax States (Figure 6). A minmax state, denoted Minmax(h), is indexed
by a player h ∈ N who is to be punished. In this state, players play the modified
minmax action profile mh (see (16)–(18)). Observational decisions are coordinated
by the public randomization in the middle of the period. If yt ≥ µ̂ , where µ̂ is
defined in (25), no one observes others and the state remains the same in the next
period.

If yt < µ̂ , on the other hand, each player i observes N \ {i,h}. Let aobs
−h ∈ A−h

denote the realized action profile of players i 6= h. The public randomization at the
beginning of the next period chooses a pair ( j,k) such that j 6= h and k 6= j, and the
state changes to

Exam(V h(mh
h,a

obs
−h ),( j,k),b1

j ,a
obs
j ),

where V h is defined by (33).16

16Again, b1
j was chosen arbitrarily as the determinant of bright

k for the examination stage. Any
action will do since each player j 6= h plays a completely mixed action in Minmax(h).
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We have specified the strategy profile on the equilibrium path. To complete
the specification of the strategy profile, we first add the following rules. (i) The
prescribed observational decision for a player does not depend on the stage-game
action he chose in the period. That is, a player’s own deviation in terms of
stage-game action does not change the prescribed observational decision for the
player in the period. (ii) The prescribed behavior (action and observation) for a
player does not depend on any information he obtained by observing players whom
he was not prescribed to observe. That is, if a player i observed a deviation of
a player j in a period when player i was not prescribed to observe j, then i is
prescribed to ignore the deviation and behave as if he did not observe it.

Let σ̂ be a strategy profile that follows the state-dependent play described above
and satisfies rules (i) and (ii). Consider a sequence of behavioral strategy profiles
(σ̂ k)∞

k=1 with σ̂ k → σ̂ , such that each σ̂ k puts a positive probability to every move
but puts far smaller weights on the trembles with respect to observational decisions
than those with respect to actions. This sequence generates a sequence of belief
systems (ψ1,ψ2, . . .) whose limit ψ is such that, at any history, each player believes
that the other players have not deviated with respect to observational decisions.

For each player i, let Ĥi be the set of i’s (private) histories throughout which
i did observe every player he was prescribed to observe under the state-dependent
play (with rules (i) and (ii)). Thus Ĥi includes histories in which i deviated in terms
of action, as well as histories in which i observed players he was not prescribed to
observe. It should be noted that, at all histories hi ∈ Ĥi, player i knows the current
state and can follow the state-dependent play.

For each player i, let σ∗i be a strategy that agrees with σ̂i on Ĥi and such that, at
all histories outside Ĥi, the player plays a best response given the belief ψ and given
that the other players follow σ̂−i. Let σ∗ = (σ∗1 , . . . ,σ∗n ). We show that (σ∗,ψ) is
a desired sequential equilibrium. To see that ψ is consistent with σ∗, consider a
sequence of behavioral strategy profiles (σ k)∞

k=1 with σ k → σ∗, such that, for each
k, σ k

i agrees with σ̂ k
i on Ĥi and, as before, puts a positive probability to every move

but far smaller weights on the trembles with respect to observational decisions than
those with respect to actions. Then, the associated sequence of belief systems also
converges to ψ . In what follows, we show that σ∗ attains the target payoff profile
v∗ and is sequentially rational given ψ .

A.3 Values

In this section, we show that the strategy profile σ∗ attains the target payoff
profile v∗. To do so, we also show that the continuation value from a state is given
by

Coop(v,ρ) :
[
(1−δ )uv(ρ)+ µδv

]
/(1−δ + µδ ),

Exam(v,( j,k),a j,aobs
j ) : v,

Minmax(h) : W h.
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To compute the continuation value for each state, we need to solve a system of
equations. Since the set of states is finite in equilibrium (because the number of
distributions ρ used in the cooperation states is finite in equilibrium), the solution
is unique. To identify the solution, we first assume that the continuation value from
any state of the form Exam(v, ·) is exactly equal to v. We then show that this indeed
constitutes a solution.

Given the assumption, we first compute the continuation value from minmax
states. Given h ∈ N, let M(h) ∈ RN denote the continuation payoff profile at the
beginning of the state Minmax(h). The continuation payoff for player h is given by

Mh(h) = (1−δ )
[
uh(mh)− µ̂λh(N \{h})]+(1− µ̂)δMh(h)+ µ̂δ (v∗h− ε).

Since µ̂δ = (1−δ )(1−q)/q by definition, reorganizing the equation gives

Mh(h) = W h
h .

To compute the continuation payoff for players i 6= h, let Ma
i (h) denote the

continuation payoff of player i evaluated at the beginning of the state given that
a ∈ supp(mh) is the realized action profile in this period. Then

Ma
i (h) = (1−δ )

[
ui(a)− µ̂λi(N \{i,h})]+(1− µ̂)δMi(h)+ µ̂δV h

i (a).

Using µ̂δ = (1−δ )(1−q)/q and substituting the definition of V h
i (a) in (33) give

Ma
i (h) = (1−δ )

[
min

â∈supp(mh)
ui(â)− µ̂λi(N \{i,h})]

+(1− µ̂)δMi(h)+ µ̂δ (v∗i + ε).
(37)

This implies that Ma
i (h) does not depend on a and hence Ma

i (h) = Mi(h) for all a.
Substituting this fact into (37) yields

Mi(h) = W h
i for all i 6= h.

Thus M(h) = W h for any h ∈ N.
Abusing notation, let Coop(v,ρ) ∈ RN denote the continuation payoff profile at

the beginning of the state Coop(v,ρ). Then

Coopi(v,ρ) = (1−δ ) ∑
a∈A

ρ(a)
[
ui(αa)−µλi(Da \{i})

]
+(1−µ)δCoopi(v,ρ)

+ µδvi−µδ ∑
a∈A

ρ(a) ∑
j∈Da

1
|Da|η

a
j ξ v

j (a)(vi−W j
i ).

Substituting the definition of ξ v
j (a) (see (29)) yields

(1−δ + µδ )Coopi(v,ρ) = (1−δ ) ∑
a∈A

ρ(a)
{

ui(αa)−µλi(Da \{i})

− ∑
j∈Da

ηa
j

[
u j(da

j ,αa
− j)−u j(a j,αa

− j)
] vi−W j

i

v j−W j
j

}
+ µδvi.

30



Using virtual payoff functions uv defined in (31) and writing uv(ρ) =
∑a∈A ρ(a)uv(a), we obtain

Coop(v,ρ) =
(1−δ )uv(ρ)+ µδv

1−δ + µδ
. (38)

Then by the definition of ρ∗ given by (32),

Coop(v∗,ρ∗) = v∗.

Since the initial state is Coop(v∗,ρ∗), the target payoffs v∗ are indeed achieved as
the repeated-game payoffs under σ∗.

We now verify that the continuation value from an examination state of the form
Exam(v, ·) is indeed v. Consider an examination state Exam(v,( j,k),a j,aobs

j ). We
need to show that for all i ∈ N,

vi = E
{

(1−δ )
[
ui(b

right
k ,bobs

−k )−λi(N \{i,k})]

+
1
2

δvi +
1
2

δ (1−δ )
[
ui(cobs)−λi(N \{i})]

+
1
4

δ 2vi +
1
4

δ 2Coopi(v,ρ)
}

,

(39)

where the expectation is taken over (bobs
−k ,cobs), and ρ is determined from (bobs

−k ,cobs)
by (34)–(36). For player i 6= k, substituting (34) into (35) and using (38) to replace
uv with Coopi(v,ρ) yield

vi = (1−δ )
[
ui(b

right
k ,bobs

−k )−λi(N \{i,k})]

+
1
2

δvi +
1
2

δ (1−δ )
[
ui(cobs)−λi(N \{i})]

+
1
4

δ 2vi +
1
4

δ 2Coopi(v,ρ)

(40)

for all bobs
−k ∈ A−k and all cobs ∈ A. Taking the expectation of (40) implies (39). For

player k, computation is the same except that uv
k(ρ) 6= v′k. Thus we obtain

vk = (1−δ )
[
uk(b

right
k ,bobs

−k )−λk(N \{k})]

+
1
2

δvk +
1
2

δ (1−δ )
[
uk(cobs)−λk(N \{k})]

+
1
4

δ 2vk +
1
4

δ 2Coopk(v,ρ)− 1
4

δ 2 1−δ
1−δ + µδ

[
uv

k(ρ)− v′k
]
,

where the only non-trivial difference from (40) is the last term. However, this term
is zero in expectation since the expected value of uv

k(ρ)− v′k is APkε(1−APk)−
(1−APk)εAPk = 0. Thus (39) also holds for player k.

The fact that (40) holds for all i 6= k and all bobs
−k ∈A−k implies that all players i 6=

k are completely indifferent over all actions in the examination period.
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A.4 Incentives

We now show that σ∗ is sequentially rational given ψ . We begin by showing
that no player i has an incentive to deviate at any history hi ∈ Ĥi. Recall that, at
histories hi ∈ Ĥi, player i knows the state, and believes that the other players also
know the state and follow the state-dependent play. We start with incentives in terms
of stage-game actions.

Cooperation States. When the public randomization selects an action profile
a as the cooperation action profile, players i ∈ Da are prescribed to randomize
between ai and da

i , and are indeed indifferent between the actions by the definition
of ξ v

i (a). These players also do not have incentives to play any other action
a′i /∈ {ai,da

i }; indeed, the long-run loss is at least

µ
1

2n
δ [vi−W i

i ] > µ
1

2n
δqε

by (30), and this exceeds (1−δ )D by (26). On the other hand, players i /∈ Da have
no incentive to deviate from ai since by Lemma, ai is a short-run best response to
αa
−i, and deviations are not observed and have no effects on the future play.

Report States. We show that in report states, all players are indifferent among
all actions. Fix a report state Report(v,k,bright

k ,bobs
−k ). Let Ri(ci) denote player i’s

continuation payoff from this period if i chooses ci ∈ Ai, where the expectation
is taken with respect to c−i based on all the information that player i has at the
beginning of this period. For players i 6= k, (35) and (38) imply

Ri(ci) = (1−δ )
[
E

[
ui(ci,c−i)

]−λi(N \{i})
]

+
1
2

δvi +
1
2

δ
(1−δ )E

[
v′i | ci

]
+ µδvi

1−δ + µδ
,

(41)

where v′i depends on c−i through (34). The right-hand side depends on ci because
of the two terms with expectation. But by taking the expectation of (34), we can see
that

E
[
ui(ci,c−i)

]
+

1
2

δ
E

[
v′i | ci

]

1−δ + µδ
as a whole does not depend on ci. Thus Ri(ci) is actually constant in ci. This implies
that each player i 6= k is completely indifferent about ci in this period and therefore
willing to randomize as instructed by the strategy.

For player k, the argument is the same except that v′i in (41) for i = k has to be
replaced by uv

k(ρ) since uv
k(ρ) 6= v′k for player k by (36). Thus

Rk(ck) = (1−δ )
[
E

[
uk(ck,c−k)

]−λk(N \{k})
]

+
1
2

δvk +
1
2

δ
(1−δ )

[
E[v′k | ck]+ (AP′k−APk)ε

]
+ µδvk

1−δ + µδ
,

(42)
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where AP′k denote k’s current belief about the probability that his referee r(k)
plays c′r(k) in this period.17 The only difference between (42) and (41) is the term
(AP′k−APk)ε , which does not depend on ck. Thus, the previous argument works for
player k as well. Hence Rk(ck) does not depend on ck and player k is also indifferent
about his action.

Examination States. At the end of Section A.3, we showed that, in
examination periods, players who are not under examination are indifferent over
all actions. Thus we now prove that the player under examination (player k) is
willing to play the pure action prescribed by the strategy (i.e., bright

k ). Consider an
examination state Exam(v,( j,k),a j,aobs

j ). Let ` ∈ {1,2} be such that bright
k = b`

k.

Since bright
k is a short-run best response within B`

k, it suffices to verify that player k
does not gain by playing any bk /∈ B`

k. The short-run gains from playing any bk /∈ B`
k

are at most (1− δ )D. On the other hand, by the definition of B`
k, playing an

action bk /∈ B`
k necessarily lowers the probability that player r(k) receives a signal

ωr(k) ∈ Ω`,k
r(k), at least by L > 0 (see (21) and (22)). If ωr(k) /∈ Ω`,k

r(k) and if the
next period is a report period, then the probability that the referee plays c′r(k) (i.e.,
approves of k’s answer) in the report period goes down from 0.9 to 0.1. If the
referee indeed gives a disapproval and if the following period is a cooperation
period, then the distribution ρ used in the cooperation period changes in such a way
that uv

i (ρ) goes down by ε (see (36)), which in turn implies that the continuation
value Coopi(v,ρ) goes down by (1−δ )ε/(1−δ + µδ ).

Altogether, the long-run losses from playing bk /∈ B`
k are at least

L
1
2
(0.9−0.1)

1
2

δ 2 (1−δ )ε
1−δ + µδ

.

This exceeds (1−δ )D by (28).

Minmax States. Consider a state Minmax(h). In this state, player h has no
incentive to deviate since the prescribed action mh

h is a short-run best response
against mh

−h. The other players i 6= h are willing to play mh
i since Ma

i (h) does not
depend on a and hence the players are completely indifferent.

Observational Decisions. We now verify that players have incentives to follow
the strategy with respect to observational decisions. First, a player has no incentive
to observe players who are not to be observed since they are expected to play a pure
action. Suppose now that a player k ∈N chooses not to observe a player j 6= k at the
end of a period t when the strategy prescribes him otherwise. Since k is prescribed to
observe j, player j was prescribed to play some mixed action α j ∈A j in this period.

17We may have AP′k 6= APk since APk is k’s belief at the beginning of the previous period and he
has since then updated his belief based on his signal and observations. Moreover, player k may have
deviated in stage-game action in the previous period, which is possible since we are considering a
history hk ∈ Ĥk.
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By the definition of
¯
η , any action in the support of α j is assigned a probability at

least as large as
¯
η > 0 (see (15), (19), (23), and (24)). By construction, period t +1

is an examination period with a positive probability. The probability is at least as
large as

min{0.5,1−max
a∈A

max
i∈N

max
v∈V ∗∗

ξ v
i (a)}= 0.5 (43)

since ξ v
i (a) < 0.5.18 If period t + 1 is an examination period, then with at least

probability 1/[n(n− 1)], player k is chosen to be examined and is prescribed to
“state” j’s realized action in period t. In this case, the state in period t +1 is of the
form Exam(v,( j,k),a j,aobs

j ) where {a j,aobs
j } ⊆ supp(α j). Since k did not observe

j, k does not know aobs
j and hence is uncertain of bright

k .
In this contingency, there is a positive probability bounded away from 0 with

which player k plays a “wrong” action, playing bk /∈B`
k when bright

k = b`
k (`∈ {1,2}).

To find a bound, let ω t
k ∈ Ωk denote the private signal that k received in the last

period. Suppose, without loss of generality, that player k plays an action bk /∈ B1
k

(the case where bk /∈ B2
k works similarly). This action is “wrong” if bright

k = b1
k , i.e.,

aobs
j = a j. The conditional probability that aobs

j = a j holds given that k received ω t
k

is bounded below by
¯
η

¯
p, since

¯
η is the minimum probability assigned to each action

in supp(α j) and
¯
p is the minimum probability assigned to each signal ωk ∈Ωk.

If player k plays bk /∈ B`
k in the examination period when bright

k = b`
k (` ∈ {1,2}),

then the continuation payoff from the period goes down strictly as we showed above.
The loss exceeds the short-run gain from not observing player j in period t if

(1−δ )D < ¯
η

¯
pδ

2n(n−1)

[
L

1
2
(0.9−0.1)

1
2

δ 2 (1−δ )ε
1−δ + µδ

− (1−δ )D
]
.

The inequality is satisfied by (28).

Histories hi /∈ Ĥi. It remains to consider each player i’s incentives at histories
hi /∈ Ĥi. By definition, the continuation play of σ∗i given hi prescribes an optimal
decision for i at the history given his belief ψ(hi) and given that the other players
follow σ̂−i. By the construction of ψ , player i believes that the other players j 6= i are
at some histories h j ∈ Ĥ j, and hence, by the definition of σ∗, their continuation play
coincides with that of σ̂−i along any path that i can induce. Therefore, following σ∗i
is sequentially rational for player i at hi given ψ . ¤

18The lower bound (43) is valid even if the history is off the equilibrium path. For example, if
period t was a cooperation period and player k played a′k /∈ {ak,da

k}, then the deviation is ignored
with probability 0.5 and therefore an exam is held next period with the same probability.
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