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Abstract

A basic assumption of economics is that consumers choose what they want.
However, many consumers find it difficult to stop overeating, overspending, smoking,
procrastinating, etc, even though they want to. In reality, consumers have temptation
and it is psychologically costly to exercise self-control. To clarify the implications of
the existence of temptation and self-control costs, this paper studies a firm’s optimal
selling strategy exploiting the behavioral features of consumers. We characterize
optimal nonlinear pricing schemes for a monopoly when self-control is costly for
consumers. Since consumers have a preference for commitment, the firm faces a
trade-off between offering a small menu that makes the consumers’ self-control easier
and offering a large menu that achieves better price discrimination. We show that the
optimal menu resembles the one in the standard nonlinear pricing problem with a price
ceiling, where the upper bound on prices is determined endogenously by a participation
constraint. The ceiling motivates the firm to offer a relatively flat and compact price
schedule, serving more consumers with low demand. The characterization also shows
that the firm may earn less if consumers have temptation.
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1 Introduction

Standard economic theories are based on the assumption that consumers choose what
they prefer. On the other hand, millions of people are unable to quit smoking even
though they want to. Many of us also want and fail to stop overeating, overspending,
procrastinating, wasting time, etc. It would be safe to say that, for the average consumer,
self-control is psychologically costly and incomplete. Traditional economics assumes that
self-control is costless. While the assumption is certainly convenient, it is rather extreme
and lacks realism. A more natural way to analyze consumers’ behavior is to assume that
the level of self-control is determined endogenously by its benefits and costs. The simple
idea can be captured by a class of utility functions formulated by Gul and Pesendorfer [14].
Using the utility formulation, this paper studies a firm’s optimal selling strategy against
consumers with temptation and costly self-control.

With standard preferences, a consumer’s utility from a set of options depends only on his
most preferred option in the set. If X is the choice set and U is the utility function, the utility
for the consumer equals maxx∈X U(x). An implication of the standard formulation is that
consumers do not mind having more options because additional options can only increase
their maximum utility. However, consumers with temptation and costly self-control may not
want to have more options since additional options may be tempting and make self-control
more difficult.

To capture the idea that “more may be less,” Gul and Pesendorfer [14] consider a class of
preferences with which the consumer has two utility functions, U and V , where U represents
the preferences that the consumer would like to commit to—“commitment utility”—and V
represents his temptation—“temptation utility.” With these utility functions, the consumer
chooses an option that maximizes U +V , which represents his compromise between the
two utility functions. According to this formulation, self-control is exercised to some
degree since the realized choice is affected by the commitment utility. Since the choice
is also affected by the temptation utility, self-control is incomplete. The level of self-control
is determined by the relative cardinal scale of each utility function, which represents the
relative bargaining power of temptation and commitment preferences. For example, if the
relative scale of V is small, temptation does not have a strong influence over the choice,
which means that the consumer has strong willpower.

This modeling is a simple way to capture the intuition that, as Schelling [21] described, a
person “behaves like two people, one who wants clean lungs and long life and another who
adores tobacco, or one who wants a lean body and another who wants dessert. The two are
in a continual contest for control”.

For consumers with some willpower, the realized choice does not maximize the
temptation utility. The forgone temptation utility, namely, the difference between the
realized value of V after self-control and the maximum value of V over the choice set, is
considered as a measure of psychological costs of self-control. Gul and Pesendorfer’s utility
formulation says that a consumer’s overall utility from a choice set equals the realized value
of U minus self-control costs. That is, if x̂ is the realized choice from a set X , the consumer’s
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overall utility is given by

W (X) = U(x̂)−
[

max
x∈X

V (x)−V (x̂)
]

= max
x∈X

[
U(x)+V (x)

]
−max

x∈X
V (x).

The second line makes it clear that a larger choice set may be less desirable since it may
yield a higher value of V . Additional options may be tempting and make self-control more
costly.

If self-control is indeed costly for consumers, it should be known to the firms, having
implications on their supply behavior. This paper studies a firm’s optimal selling strategy in
terms of which goods to sell and how much to charge for each of the goods. Does the firm
offer many tempting goods to take advantage of consumers’ temptation? Or does it have an
incentive to simplify its selection to make self-control less painful? How does the incentive
affect the degree of price discrimination?

To address these questions, we build on the standard model of second-degree price
discrimination due to Mussa and Rosen [19] and Maskin and Riley [17], where a monopolist
sells goods that differ in a single-dimensional quality (or quantity) level q ∈ R+. The firm
does not observe consumers’ preferences and therefore uses an indirect price discrimination
scheme that relies on consumers’ self-selection. The firm’s problem is to choose a set of
goods Q⊆R+ to sell and a price function p : Q→R+ that specifies the price p(q) for each
quality level to maximize the firm’s expected profit.

A consumer buys from the seller only if the menu (Q, p) satisfies two constraints of
individual rationality. One constraint is that after the consumer enters the store, he has an
incentive to buy something: the “no-exit” constraint, or what we call ex-post IR. The other
constraint is that a consumer has an incentive to enter the store: the “entry” constraint or
ex-ante IR. These constraints are identical under standard preferences: a consumer has an
incentive to enter a store if and only if the store sells something worth buying. However,
for consumers with costly self-control, a difference appears. Even if a consumer will buy
something upon entering the store, he may prefer to stay away from the store if he expects
to incur a high level of self-control costs in the store. The entry constraint is what makes
the firm’s problem distinct from the standard nonlinear pricing problem.

It turns out that the nature of the optimal menu depends sharply on the direction of
temptation, which pertains to the relation between U and V for each individual consumer.
One important case is where temptation increases the desirability of the goods, in the sense
that the marginal value of additional quality relative to the price is higher when the consumer
is tempted than when he is not. An example is the case where seeing many high-quality TV
sets in a store increases the marginal value of additional quality. In this case, we say that
the consumer has upward temptation.

The case of downward temptation is also important, since temptation may increase the
desirability of other ways of spending money. For example, consumers often become
more frugal when they have to decide and pay. For these consumers, temptation raises the
marginal value of money saved. Perhaps, the direction of temptation depends on whether the
consumer tends to pay more attention to the good he gets or the amount of money he spends,
at the time of decision-making.1 There are also domains where downward temptation is the

1The result of Ameriks et al. [1] suggests not holding a stereotype about the direction of temptation. They
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norm. For the participants of weight-loss programs, the main temptation is to lose less
weight. Temptation lowers their marginal value of weight loss.

We show that if temptation is upward for all consumers, the optimal menu is small
(a singleton) and makes self-control unnecessary. Although consumers may differ
considerably in their preferences, the firm chooses not to separate them. In contrast,
if temptation is downward for all consumers, the optimal menu is large (infinite) and
consumers incur positive self-control costs. The optimal menu in this case is identical to
the one in the standard model where consumers have standard preferences represented by
U +V . Therefore the standard analysis can be used to characterize the optimal menu. Aside
from our specific preference formulation, the source of the sharp asymmetry between the
cases of upward and downward temptation is the asymmetry that the no-purchase option
may be a tempting choice for consumers with downward temptation but not for those with
upward temptation.

We also analyze the mixed case where the direction of temptation varies across
consumers. The firm’s problem in this case turns out to be similar to the one in the
standard model with a price ceiling (e.g., Besanko et al. [3]). However, there is an important
difference. In our problem, the upper bound on prices is not given exogenously but comes
from the entry constraint discussed above. Because of the bound, the optimal menu typically
induces bunching of high-demand consumers and involves inefficiency for the consumers
with the highest demand. The inefficiency means that, for the consumers with the highest
marginal valuation, there exists an offer that does not appear in the optimal menu but is
preferred by the consumers and generates larger profits for the firm. The firm chooses not
to include the Pareto-improving offer since it is so undesirable for the commitment utility
that, if it appeared in the menu, the consumers would not enter the store.

By comparing the optimal menu with that in the absence of temptation, we also show that
the existence of temptation does not immediately imply that the firm gains from it. Although
the firm acts optimally taking advantage of the consumers’ temptation, it is theoretically
possible that the presence of temptation does not raise the firm’s maximum profits. The
basic insight is that the consumers’ ability to foresee their temptation and self-control can
offset the firm’s advantage. If temptation may be downward, the firm’s profits may be
strictly lower in the presence of temptation.

A few papers also study mechanism design for consumers with temptation, but their focus
lies on present-biased preferences with hyperbolic discounting. For example, O’Donoghue
and Rabin [20] study optimal contracts for motivating a worker to complete a task early
when the worker can freely choose when to work. The cost for the worker to complete the
task is determined stochastically each period and the worker is unaware of his present bias
(he is “naive”). The optimal contract for the firm may exhibit a “deadline” in the sense that
the punishment for a delay becomes more severe after a certain date. Gilpatric [13] studies
optimal contracts for motivating a worker to exert effort at a fixed point in time. A present
bias is relevant since the worker is rewarded after his work with a time lag. The paper
shows that the firm may want to offer a contract such that the workers who are aware of
their present bias will walk away. DellaVigna and Malmendier [7] study optimal two-part
tariffs, in a complete information setup, for a service whose costs and benefits accrue to the

conducted a survey asking the respondents how they will deal with a two-period consumption-saving problem.
The result is that, surprisingly, 20% of the respondents reveal temptation to consume less in the first period.
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consumer in different points in time. A present bias is relevant since consumers have to
pay a lump-sum fee before using the service. The paper shows that the optimal usage fee is
below (respectively above) the usage cost to the firm if the benefits accrue to the consumers
later (respectively earlier) than the costs.2

The current paper is not concerned with present-bias. Present-bias is certainly in the
background as a major reason for temptation. But our focus is on a firm’s pricing strategy
as to which goods to sell and at what prices. We focus on how temptation affects consumers’
preferences over different products. As suggested above, the effect of temptation on how
the consumer values each of the products appears to vary with the context and individual. In
this paper, we clarify in what way the seller’s optimal strategy depends on the direction of
the consumers’ temptation. We are also the first to study a firm’s strategy when self-control
is costly.

There is also an empirical literature that tests for the presence of preference reversals
using pricing data. DellaVigna and Malmendier [8] look for this evidence in health club
membership data and find that the data can be better explained with the behavior of
time-inconsistent consumers. Miravete [18] tests for the presence of irrational behavior
in calling plan choices (where the popularity of flat rate plans has been viewed as evidence
of irrationality). He finds the data to be consistent with a model of learning and rational
behavior. Wertenbroch [25] finds evidence of lower price-elasticity for goods with delayed
negative effects (e.g., cigarettes), which suggests that consumers ration the purchase of these
goods to control their impulse consumption.

2 Menu

The model is a standard model of nonlinear pricing, as in Mussa and Rosen [19] and
Maskin and Riley [17], except that consumers have temptation and costly self-control.
There is a monopolist selling a set of goods. The goods are indexed by a scaler q ∈ R+,
which represents, as usual, either quantity or quality. We will refer to it as quality. The good
of quality q = 0 is the equivalent of nothing.

Each consumer is interested in buying at most one unit of one good. An offer from the
seller is defined as a pair (q, t) ∈ R2

+. With the offer available, a consumer can buy good q
for a total charge of t. A menu is a compact subset of offers M ⊆ R2

+ such that (0,0) ∈M.
The restriction (0,0) ∈ M means that a consumer who does not make a purchase does not
have to pay. In what follows, we sometimes omit (0,0) in the description of a menu: by
M = {(q, t),(q′, t ′), . . .}, we mean M = {(0,0),(q, t),(q′, t ′), . . .}.

3 Consumers’ Preferences

Consumers have preferences over menus. Their preferences differ in the way in which
they are tempted and are parameterized by a number γ ∈ R+. We assume that γ is
the consumer’s private information and is distributed in the population according to a

2A few other papers that use Gul–Pesendorfer preferences include the following. Krusell et al. [15] consider
a neoclassical growth model with self-control preferences. Krusell et al. [16] analyze a general-equilibrium
asset pricing model where consumers have temptation to save. DeJong and Ripoll [5] analyze whether
self-control preferences in an asset pricing model can explain the behavior of stock prices.
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distribution function F . The associated density function is f , which has support Γ≡ [a,b],
where a and b are finite.

The utility function of a consumer of type γ is given by

Wγ(M)≡ max
(q,t)∈M

[
U(q, t)+Vγ(q, t)

]− max
(q,t)∈M

Vγ(q, t), (1)

where U and Vγ are functions from R2
+ into R. The function U represents the preferences

that the consumer would like to commit to, while Vγ represents his temptation. We call
U the commitment utility and Vγ the temptation utility. The actual choice of the consumer
is the offer that maximizes U +Vγ , which is interpreted as the compromise between the
two utility functions. Since the consumer’s choice is influenced by U , the consumer
exercises self-control to some degree. Since V also influences the choice, self-control is not
complete. The strength of self-control—the “bargaining power” of each utility function—is
determined by the relative scale of each utility function. If the scale of U is large relative to
that of V , the consumer has strong willpower.3

The choice that maximizes Vγ represents the most tempting offer in the menu. The role
of the maximization can be seen by rearranging (1) into

Wγ(M) = U(x̂)− [
max
x∈M

Vγ(x)−Vγ(x̂)
]
,

where x̂ is a maximizer of U +Vγ . The term in square brackets represents the amount
of temptation utility that the consumer forgoes as a result of self-control. The consumer
is tempted to maximize Vγ , but he ends up with x̂ as a result of self-control. The forgone
utility of Vγ therefore quantifies the cost of self-control.4 With the definition, the consumer’s
overall utility equals the commitment utility from his actual choice minus the self-control
cost. Since self-control costs may be higher for larger menus, consumers may prefer smaller
menus, exhibiting a preference for commitment. But, of course, consumers may prefer a
larger menu. A larger menu may be preferable if additional items yield a higher value of
U(x̂).

The first maximization problem in (1) is called the ex-post problem or the U +Vγ problem.
The maximum value of U +Vγ is called the ex-post utility from M and denoted as wγ(M).
The overall utility from the menu, i.e., Wγ(M), is called the ex-ante utility from M.

We place the following standard assumptions on U and V :

Assumption 1. The functions U and Vγ are continuous, strictly increasing in q, strictly
decreasing in t, quasi-concave, and satisfy U(0,0) = Vγ(0,0) = 0; and, the process
{Vγ}γ∈R+ , viewed as a function of (q, t,γ), is continuous.

Given two utility functions Vγ and V̂γ (defined over R2
+), we write V̂γ < Vγ if the marginal

value of quality is weakly higher for V̂γ than for Vγ at any point (q, t)∈R2
+. Graphically, the

indifference curve of V̂γ is at least as steep as that of Vγ when the first (respectively, second)
argument is measured on the horizontal (respectively, vertical) axis. Figure 1 depicts

3Similar two-self formulations of self-control have been considered by Winston [26], Thaler and
Shefrin [24], and Shefrin and Thaler [23]. More recent papers that suggest similar formulations are Fudenberg
and Levine [11] and Chatterjee and Krishna [4]. A generalization of Gul–Pesendorfer preferences is proposed
by Dekel et al. [6].

4For different notions of self-control costs, see, e.g., Thaler and Shefrin [24] and Fudenberg and Levine [11].
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q (quality)

t (payment)
V̂γ

VγV̂γ < Vγ

Figure 1: A representative indifference curve for each utility function.

representative indifference curves. Formally, V̂γ <Vγ if and only if, for all (q, t),(q′, t ′)∈R2
+

such that q′ > q,

Vγ(q′, t ′) > Vγ(q, t) implies V̂γ(q′, t ′) > V̂γ(q, t), and

Vγ(q′, t ′) > Vγ(q, t) implies V̂γ(q′, t ′) > V̂γ(q, t).

If V̂γ <Vγ and V̂γ 4Vγ , the two functions induce the same indifference map, which is denoted
as V̂γ ∼Vγ .

We also write V̂γ Â Vγ if the indifference curve of V̂γ is strictly steeper than that of Vγ at
any point (q, t). Formally, V̂γ ÂVγ if and only if, for all (q, t),(q′, t ′) ∈ R2

+ such that q′ > q,

Vγ(q′, t ′) > Vγ(q, t) implies V̂γ(q′, t ′) > V̂γ(q, t),

which is the case drawn in Figure 1.
We place the following assumptions.

Assumption 2. For all γ,γ ′, if γ ′ > γ , then Vγ ′ ÂVγ .

Assumption 3. There exists a type γ∗ ∈ R+ such that

Vγ 4 U if γ 6 γ∗,
Vγ < U if γ > γ∗.

Assumption 4. For any pair of types γ,θ ∈ R+ such that θ > γ and any pair of offers
x,y ∈ R2

+ such that U(x)+Vγ(x) < U(y)+Vγ(y), there exists z ∈ R2
+ such that

U(z)+Vγ(z) = U(x)+Vγ(x) and U(z)+Vθ (z) = U(y)+Vθ (y).

Assumption 2 is a single-crossing property, saying that the indifference curves of Vγ are
steeper for higher types.

Assumption 3 says that there exists a critical type γ∗ at which the direction of temptation
switches. For consumers of type γ > γ∗, the marginal value of additional quality is higher
when they are tempted than when they are not: Vγ Â U +Vγ Â U . These consumers are
tempted by goods of higher quality, and we say that they have upward temptation.
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For consumers of type γ < γ∗, on the other hand, temptation lowers the marginal value
of quality: Vγ ≺ U +Vγ ≺ U . These consumers have downward temptation. For these
consumers, temptation raises the marginal value of money saved. For example, consumers
may become more frugal when it is time to decide and pay. Perhaps, the marginal value
of money increases temporarily as the consumer’s attention gets focused on the amount of
expenditure. In contrast, temptation may be upward if, at the time of decision-making, the
consumer pays more attention to the good he gets than the amount he pays.

There are also situations in which temptation is normally downward. For example,
for participants of a weight loss program (e.g., Weight Watchers), temptation lowers the
marginal value of additional weight loss. For them, temptation raises the marginal value of
eating or not exercising. This is a situation where the good is desirable in the long run but
less so in the short run. Similar examples can be found for people who want to study, work,
quit smoking, etc.

Consumers of the threshold type γ∗ do not have a temptation problem since their
temptation preferences coincide with their commitment preferences. Indeed, Assumption 3
implies Vγ∗ ∼U .

Assumption 4 is a technical condition saying that any pair of indifference curves, one for
U +Vγ and the other for U +Vθ , should cross somewhere, except when the steeper one lies
entirely above the flatter one. Intuitively speaking, the assumption says that if the curves do
not cross, they do cross in R2 \R2

+ if we extend the curves naturally from R2
+ to R2.

4 The Seller’s Problem

Let C : R+ → R+ be the per-consumer cost function, where C(q) denotes the cost of
offering good q to a consumer. For any offer x = (q, t), let π(x) ≡ t −C(q) denote the
per-consumer profit from the offer. The cost function is assumed to satisfy the following
standard assumptions.

Assumption 5. C is strictly increasing, convex, and satisfies C(0) = 0. Further, there exists
a unique solution x∗À (0,0) that maximizes π(x) subject to U(x) > 0.

An assignment function for a given menu M is a function x(·) = (q(·), t(·)) : Γ → M
that assigns to each type γ an offer in the menu. As usual, the interpretation is that x(γ)
is the offer that the type γ is expected to choose. Since M contains (0,0), we allow for
x(γ) = (0,0).

Consumers have the freedom of not choosing from M. If M represents a store, this means
that consumers have the option of not entering the store. If a consumer does not choose from
M, he is thought to be choosing from M0 = {(0,0)}. Consumers of type γ have an incentive
to choose from M only if Wγ(M) > 0, in which case M is said to satisfy ex-ante IR for
type γ . In what follows, we let E ⊆ Γ denote the set of types who choose from M. Since
consumers γ /∈ E choose M0 = {(0,0)}, the assignment function has to satisfy x(γ) = (0,0)
for all γ /∈ E.

A schedule is an ordered list (M,x,E), where M is a menu, x : Γ → M is an assignment
function, and E ⊆ Γ. The firm’s problem is to choose a schedule (M,x,E) that maximizes

∫ [
t(γ)−C(q(γ))

]
dF(γ)
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subject to that, for all γ ∈ E,

Wγ(M) > 0, (ex-ante IR)

U(x(γ))+Vγ(x(γ)) > 0, (ex-post IR)

U(x(γ))+Vγ(x(γ)) > U(y)+Vγ(y) for all y ∈M, (ex-post IC)

and, for all γ /∈ E,

Wγ(M) 6 0,

x(γ) = (0,0).

The ex-post IR and IC conditions together imply that, for each type who chooses M, x(γ)
is an optimal choice for U +Vγ . On the other hand, for the consumers who stay away from
M, x(γ) equals (0,0) and is not required to satisfy ex-post IC with respect to M.5

A schedule that satisfies all the constraints is called a feasible schedule. If a feasible
schedule (M,x,E) solves the maximization problem, it is an optimal schedule and M is an
optimal menu. We only consider the problem for which the monopolist can earn strictly
positive profits.

The ex-post IR and IC conditions are independent of the consumers’ V problem (their
second maximization problem). The V problem affects the monopolist’s problem only
because it affects the consumers’ ex-ante utility levels and thereby whether they have an
incentive to enter the store.

If the consumers’ entry decisions are ignored, i.e., if all consumers are assumed to choose
from M, then the monopolist’s problem reduces to the standard nonlinear pricing problem
of Mussa and Rosen where the utility function of type-γ consumers is U +Vγ . In the reduced
problem, ex-post IR and IC have to be satisfied for each type, while ex-ante IR is not
required. This problem serves as a useful benchmark to the monopolist’s problem and is
referred to as the ex-post selling problem or the standard problem with utility functions
U +Vγ . Since the ex-post selling problem is a standard nonlinear pricing problem, its
solution satisfies well-known properties: an optimal menu consists of a continuum of offers,
leaves no surplus to the lowest type (ex-post IR holds with equality for type a), and achieves
social efficiency for the highest type (the indifference curve of U +Vγ for type b is tangent
to the isoprofit curve).6

Another useful benchmark is the case without temptation, i.e., Vγ ∼U for all γ . If there
is no temptation, the self-control cost is zero. Since the U function is common across
consumers, the firm will offer the menu M = {x∗}, where x∗ solves

max π(x) subject to U(x) > 0.

By Assumption 5, x∗ is uniquely defined.

5Consumers for whom Wγ (M) = 0 are indifferent about their entry decision. We assume that their decisions
are resolved in the way the firm prefers.

6See, for example, Fudenberg and Tirole [12, Chapter 7].
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5 The Case of Complete Information

Before we characterize optimal schedules, we clarify the seller’s optimal strategy when
each consumer’s type can be observed by the seller. Consider a consumer of type γ and
suppose that the seller knows the consumer’s type. Then the seller can offer a personalized
menu M to the consumer. If the seller wants the consumer to choose x ∈ M, then (M,x)
need to satisfy

U(x)+Vγ(x) > 0, (2)

U(x)+Vγ(x) > U(y)+Vγ(y) for all y ∈M, (3)

Wγ(M) > 0. (4)

But, if a pair (M,x) satisfies (2)–(4), so does ({x},x). That is, the seller does not gain by
adding any other item to the menu since the added items can only raise the consumers’
self-control cost. Therefore, the constraints reduce to (2) and (4), where the latter is
equivalent to

U(x)+Vγ(x)−max{0,Vγ(x)}> 0. (5)

Since (5) implies (2), the seller’s problem reduces to maximizing π(x) subject to (5). We
denote its solution by x∗γ and call it the perfect discrimination offer for consumers of type γ .

The exact characterization of the perfect discrimination offers depends on the direction
of the consumer’s temptation. For all consumers with upward temptation, (2)—which
is redundant but has to be satisfied—implies Vγ(x) > 0. Thus (5) reduces to U(x) > 0.
Conversely, any x such that U(x) > 0 satisfies Vγ(x) > 0 and hence (5). Therefore, x∗γ is a
solution to maximizing π(x) subject to U(x) = 0, which implies x∗γ = x∗ for all γ > γ∗. The
personalized menu M = {x∗} does not impose a self-control cost on the consumer.

For consumers with downward temptation, on the other hand, any x such that U(x) +
Vγ(x) = 0 satisfies Vγ(x) 6 0 and hence (5). Therefore, x∗γ maximizes π(x) subject to U(x)+
Vγ(x) = 0. The personalized menu {x∗γ} imposes a positive self-control cost of Vγ(0,0)−
Vγ(x∗γ) > 0. The consumer is tempted by (0,0).

6 Ex-Ante IR

We now return to the case of incomplete information and begin the characterization of the
optimal schedule. We start by characterizing the ex-ante IR constraint since the constraint
is what distinguishes our pricing problem from the standard one.

We first show that, for any menu, all consumers for whom ex-ante IR is satisfied receive
a non-negative utility of U .

Lemma 1. Suppose that a menu M satisfies ex-ante IR for a type γ . Then, for any offer
x ∈M solving the U +Vγ problem, U(x) > 0.

Proof. Since M satisfies ex-ante IR for γ and x maximizes U +Vγ ,

0 6 Wγ(M) = U(x)+Vγ(x)−max
y∈M

Vγ(y) 6 U(x). ¤
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In words, the ex-ante utility equals the utility in U minus the self-control cost. Since
the self-control cost is non-negative, a necessary condition for the ex-ante utility to be
non-negative is that the utility U be non-negative.

On the other hand, for consumers for whom ex-ante IR is violated, x(γ) = (0,0) and
hence U(x(γ)) = 0. This yields the next corollary.

Corollary 1. For any feasible schedule (M,x,E) and any type γ , we have U(x(γ)) > 0.

The corollary says that offers x such that U(x) < 0 are never chosen by any consumer.
The following lemma is a converse of Lemma 1 and Corollary 1, stating that if all offers

in a menu leave non-negative U surplus, the menu necessarily satisfies ex-ante IR for all
consumers.

Lemma 2. If a menu M satisfies U(x) > 0 for all x ∈ M, ex-ante IR is satisfied for all
consumers.

Proof. Let M be a menu such that U(x) > 0 for all x ∈M, and let γ be any type. Let y ∈M
be an offer that maximizes Vγ . Then

Wγ(M) = max
x∈M

[
U(x)+Vγ(x)

]−Vγ(y) > U(y)+Vγ(y)−Vγ(y) = U(y) > 0. ¤

In words, y is a most tempting offer in the menu. Upon entering the store, the consumer
has an option of succumbing to the temptation completely choosing y, in which case his
overall utility is U(y) since the self-control cost is zero. By ex-post IC, he attains at least
this level of ex-ante utility. If all offers in the menu yield non-negative utility in U , then
U(y) > 0 and so the ex-ante utility is also non-negative.

Corollary 1 says that all offers that are chosen by some consumers give non-negative U
surplus, while Lemma 2 says if all offers in the menu give non-negative U surplus then
ex-ante IR is satisfied. These results together imply that if a feasible schedule (M,x,E) is
not “decorated” in the sense that every item in the menu is chosen by some consumer, then
ex-ante IR is satisfied for all types. Formally,

Definition. A feasible schedule (M,x,E) is undecorated if M = closure{x(γ) : γ ∈ Γ}.

Then Corollary 1 and Lemma 2 imply

Corollary 2. If a feasible schedule (M,x,E) is undecorated, then U(x) > 0 for all x ∈ M
and M satisfies ex-ante IR for all types.

To search for an optimal menu, we can focus on undecorated menus. Indeed, if a menu
is decorated, then by removing the offers that are not chosen by any consumer, the firm can
make the menu less tempting and raise the consumers’ ex-ante utility. Formally,

Proposition 1. For any feasible schedule (M,x,E), there exists a feasible schedule
(M′,x′,E ′) that generates at least as large profits as (M,x,E) and such that

1. M′ = closure{x′(γ) : γ ∈ Γ} (i.e., the schedule is undecorated),
2. U(y) > 0 for all y ∈M′ (i.e., all offers in the menu generate non-negative U surplus),
3. E ′ = Γ (i.e., all types enter the store),
4. π(x) > 0 for all x ∈M′ (i.e., all offers in the menu generate non-negative profits).
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The proof is relegated to the appendix, which also contains all other proofs omitted from
the text. The proposition motivates us to introduce the following definition.

Definition. An optimal schedule (M,x,E) is regular if it satisfies properties 1–4 in
Proposition 1.

Proposition 1 then implies that if an optimal schedule exists, there exists one that is
regular.

7 Upward Temptation

To characterize optimal schedules, we first consider the case where all consumers have
upward temptation, i.e., γ > γ∗ for all γ ∈ Γ. In this case, we show that the seller can extract
the entire ex-ante surplus of the consumers by offering a singleton menu given by M = {x∗}.

Proposition 2. If all consumers have upward temptation, then M = {x∗} is an optimal menu
and extracts each consumer’s entire ex-ante surplus.

Proof. Suppose the monopolist offers {x∗}. Since U(x∗) > 0, Lemma 2 implies that the
menu satisfies ex-ante IR for all types. The remaining question is whether all consumers
will choose x∗ over (0,0). Since the temptation is upward for all consumers, U(x∗) > 0
implies U(x∗)+Vγ(x∗) > 0 and hence x∗ satisfies ex-post IR. ¤

Although (0,0) is in the menu, it does not tempt consumers whose temptation is upward.
As a result, the menu {x∗} eliminates self-control costs and enables the seller to extract the
entire ex-ante surplus of consumers. Ex post, consumers of type γ > γ∗ obtain a positive
surplus equal to U(x∗)+Vγ(x∗) = Vγ(x∗) > 0, but the seller cannot extract this surplus since
doing so makes the consumer’s ex-ante utility negative.

8 Downward Temptation

We now consider the case where all consumers have preferences with downward
temptation: γ 6 γ∗ for all γ ∈ Γ. The following proposition shows that for consumers
with downward temptation, ex-ante IR never binds.

Proposition 3. For all consumers with downward temptation, any menu M satisfies
ex-ante IR, i.e., Wγ(M) > 0.

Proof. Consider a consumer with downward temptation and consider any menu M. Let
y ∈M be an offer that maximizes Vγ . Then the ex-ante utility from the menu is

Wγ(M) = max
x∈M

[
U(x)+Vγ(x)

]−Vγ(y) > U(y)+Vγ(y)−Vγ(y) = U(y). (6)

Since y maximizes Vγ when (0,0) is also available, Vγ(y) > 0. Since the temptation is
downward, this implies U(y) > 0. Therefore (6) implies Wγ(M) > 0. ¤

11



A corollary is that if all consumers have downward temptation, we can ignore the ex-ante
IR constraint. As a result, the monopolist’s problem reduces to the standard problem where
each type’s utility function is simply U +Vγ . Therefore, the optimal menu can be identified
by the standard technique of nonlinear pricing.

Corollary 3. Suppose that all consumers have downward temptation, i.e., γ 6 γ∗ for all
γ ∈ Γ. Then (M,x,E) is an optimal schedule if and only if (M,x) is an optimal schedule in
the ex-post selling problem.

9 Mixed Case

This section studies the case where some consumers have downward temptation and
others have upward temptation (a < γ∗ < b). We divide our analysis into two sections. The
first section clarifies the properties of optimal menus in general environments. Section 9.2
gives sharper characterizations by assuming quasi-linear and differentiable preferences.

9.1 General Properties of Optimal Menus

The first property of optimal menus is that ex-post IR binds for the lowest consumer type.

Proposition 4. For any regular optimal schedule, U(x(a))+Va(x(a)) = 0.

This is not a trivial result in our context. In the standard problem, if ex-post IR is not
binding for the lowest type, one argues that the firm can simply shift the entire price schedule
by a constant ε > 0 without changing consumers’ participation decisions. In the present
problem, however, the same argument does not work, since if the entire menu is shifted, the
new menu may no longer satisfy ex-ante IR, which requires U(x(γ)) > 0. Therefore some
consumers may choose to stay away from the modified menu, which makes the total effect
on profits ambiguous. We deal with the problem by raising prices across quality levels in a
non-uniform way. Specifically, we determine the price increase for each quality level so that
the new price generates the same per-person profit as the lowest quality sold. If the price
increment so defined is negative, we keep the initial price. We then remove the offers such
that U(x) < 0. The deletion does not pose a problem since all remaining offers are at least
as profitable as any of the deleted offers. There is a technical complication since the initial
menu may not be a connected set, i.e., the quality function q(γ) may have discontinuous
jumps. The proof deals with the issue by first filling the “holes” in the menu to obtain a
single connected set.

It should be noted that the conclusion of Proposition 4 is not true if all consumers have
upward temptation. Indeed, the optimal menu in Proposition 2 gives a strictly positive
ex-post utility to all types γ > γ∗. If a > γ∗, therefore, the lowest type gets a positive
ex-post utility in the optimal schedule.

The next result says that the right end of the tariff gives no surplus in terms of U if the
highest type has a sufficiently high marginal value for quality.

Proposition 5. Suppose that, for all offers x ∈ R2
+ such that π(x) > 0 and U(x) > 0, there

exist a type γ ∈ Γ and an offer yÀ x such that

π(y) > π(x) and U(y)+Vγ(y) > U(x)+Vγ(x).
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Then, for any regular optimal schedule, U(x(b)) = 0.

To get the intuition, suppose the optimal price schedule ends before reaching the
U = 0 curve. Then at x(b), the isoprofit curve and type b’s indifference curve generate
a lens-shaped area in the north-east consisting of offers that both the firm and consumers of
type b prefer to x(b). Choose any offer y in the interior of this lens and below the U = 0
curve, and add it to the menu. Since consumers γ close to b choose the added offer, the
modified menu generates more profits.

We can also show that the price schedule reaches the U = 0 curve to the right of x∗.

Proposition 6. Assume the same condition as Proposition 5. Then, for any regular optimal
schedule, x(b) > x∗. If U(q, t) = u(q)− t, and u and C are differentiable, then u′(q(b)) 6
C′(q(b)).

If the menu reaches the U = 0 curve to the left of x∗, the firm can raise profits by adding
x∗ to the menu. Indeed, x∗ will then be chosen by some of the high-type consumers and
yield more profits than any other offer in the initial menu. Since x∗ satisfies U > 0, its
addition preserves ex-ante IR.

9.2 Differential Approach

To obtain sharper characterizations of optimal menus, we now assume that preferences
are quasi-linear and differentiable. We consider the following specification:

U(q, t) = u(q)− t,

Vγ(q, t) = i
[
v(q,γ)− t],

where i > 0. This formulation is convenient since it makes U , V , and U +V all quasi-linear.
The scalar i > 0 is the weight attached to the temptation utility and serves as the index of
impulsiveness or the inverse of willpower. As i→ 0, willpower becomes infinite. The limit
is a standard consumer with costless and complete self-control.

Additionally, we assume that u and v are C2 and C3, respectively, and satisfy the following
assumptions.

Assumption 6. v12(q,γ) > 0.

Assumption 7. v2(q,γ) > 0 if q > 0.

Assumption 8. v122(q,γ) 6 0 and v112(q,γ) > 0.7

Assumption 9. f is log-concave; i.e., f ′(γ)/ f (γ) is non-increasing in γ .

We also assume that f and C are C1 and C2, respectively, and the cost function also
satisfies C′ > 0 and C′′ > 0.

The firm’s problem is to maximize

∫ b

a

[
u(q(γ))+ iv(q(γ),γ)−w(γ)− (1+ i)C(q(γ))

]
f (γ)dγ

7This is A8 in Fudenberg and Tirole [12, page 263].
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subject to that, for all γ ∈ [a,b],

w′(γ) = iv2(q(γ),γ),
w(γ) > i

[
v(q(γ),γ)−u(q(γ))

]
, (7)

w(a) = 0,

q(γ) > 0,

q is non-decreasing. (8)

Here, w(γ) denotes the ex-post utility of type γ; i.e., w(γ)≡ u(q(γ))− t(γ)+ i
[
v(q(γ),γ)−

t(γ)
]
. The constraint (7) is equivalent to u− t > 0. Since the values of q(·) at the points of

discontinuity are immaterial, we only consider q(·) that is continuous from the left.
Following the standard approach in the nonlinear pricing literature, we first characterize

the solution to the “relaxed” problem ignoring the monotonicity condition (8). The relaxed
problem can be formulated as an optimal control problem in which w is the state variable
and q is the control. The associated Hamiltonian is

H(w,q,µ,λ ,γ) =
[
u(q)+ iv(q,γ)−w− (1+ i)C(q)

]
f (γ)

+ µiv2(q,γ)+λ [iu(q)− iv(q,γ)+w].

As in the standard case, the log-concavity of f (Assumption 9) guarantees the monotonicity
of the quantity function q(·) characterized by the necessary conditions. We prove this as
part of Proposition 7 below.

The ex-ante IR condition in (7) places restrictions on the values that the state w(γ)
can take. As is well-known, when such state restrictions are present, a first-order
approach (which uses the necessary conditions for the optimal control problem given by the
Maximum Principle) may fail to isolate the optimal solution due to a constraint qualification
(see Seierstad and Sydsæter [22, page 278, Note 4]). The constraint qualification (CQ)
associated with the inequality constraint iu− iv + w > 0 states that the derivative of the
constraint with respect to q (i.e., i(u′− v1)) must not be equal to zero at all types at which
the constraint binds. This implies that the CQ is violated if and only if U = 0 (or equivalently
iu− iv+w = 0) for type γ∗. Hence, we consider two families of feasible schedules wherein
the optimal schedule may lie: (1) those that violate the CQ, and (2) those that satisfy it.

9.2.1 Case 1: Optimal Schedule Violating Constraint Qualification

For a feasible tariff such that U = 0 for γ∗, ex-post and ex-ante IR conditions imply that
all types γ < γ∗ buy nothing and all types γ > γ∗ choose x∗. This implies that if the CQ is
violated at an optimal schedule, the menu in Proposition 2 is optimal.

9.2.2 Case 2: Optimal Schedule Satisfying Constraint Qualification

Let (q,w) be a pair that solves the relaxed problem and satisfies CQ. The necessary
condition is that for all γ ∈ [a,b],

[
u′(q(γ))+ iv1(q(γ),γ)− (1+ i)C′(q(γ))

]
f (γ)+ µ(γ)iv12(q(γ),γ)

+λ (γ)i
[
u′(q(γ))− v1(q(γ),γ)

]
+δ (γ) = 0,

(9)
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µ ′(γ) = f (γ)−λ (γ), (10)

λ (γ)
[
iu(q(γ)− iv(q(γ),γ)+w(γ)

]
= 0, λ (γ) > 0, (11)

µ(b) = 0, (12)

q(γ)δ (γ) = 0, δ (γ) > 0. (13)

The solution to the relaxed problem can be characterized as follows.

Proposition 7. Suppose that a solution (q,w) to the relaxed problem satisfies the constraint
qualification. Then q is non-decreasing. Let

¯
γ ≡max{γ ∈ [a,b] : w(γ) = 0}, and

γ̄ ≡ sup{γ ∈ [a,b] : w(γ)/i > v(q(γ),γ)−u(q(γ))}. (14)

Then
¯
γ < γ∗ < γ̄ and q(γ) is given as follows:

1. For all γ > γ̄ , q(γ) is constant. Let q̄ denote the common quality level.

2. For all γ ∈ [
¯
γ, γ̄],

u′(q(γ))+ iv1(q(γ),γ)− iv12(q(γ),γ)
β (γ̄)−F(γ)

f (γ)
= (1+ i)C′(q(γ)), (15)

where β (γ̄) is defined by

β (γ̄)≡ F(γ̄)−µ(γ̄) = F(γ̄)+(1−F(γ̄))
1+ i

i
C′(q̄)−u′(q̄)

v1(q̄, γ̄)−u′(q̄)
∈ [F(γ̄),1]. (16)

If γ̄ < b, then β (γ̄) > F(γ̄).

3. For all γ <
¯
γ , q(γ) = w(γ) = 0.

9.2.3 The Effect of Temptation

We now compare the optimal menu characterized above and the one in the absence of
temptation, i.e., Vγ ∼U for all γ . The comparison is useful since it shows how the presence
of temptation affects the optimal menu. If Vγ ∼U for all γ , temptation does not exist and the
optimal menu is simply M∗ = {x∗}. To compare this with the optimal menu in the presence
of temptation, we divide the discussion based on whether the optimal menu satisfies the
constraint qualification. In what follows, let M denote the optimal menu in the presence of
temptation, i.e., the one that we characterized above.

Case 1: CQ is violated. If M does not satisfy the CQ, then, as shown above, M = M∗.
However, consumers’ choice within the menu is affected by their temptation. In the absence
of temptation, consumers are indifferent between x∗ and (0,0) and choose x∗. In the
presence of temptation, all types γ > γ∗ prefer x∗ while all γ < γ∗ prefer (0,0) in the
strict sense. Nevertheless, all consumers get a zero ex-ante utility whether or not there
is temptation.

The firm’s profits, on the other hand, depend on the presence of temptation. Since
consumers γ < γ∗ with temptation choose (0,0), the presence of temptation lowers the
firm’s profit by π(x∗)F(γ∗).
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Case 2: CQ is satisfied. If the optimal menu in the presence of temptation satisfies the
CQ, the effect of temptation is slightly different. First, the optimal menu with temptation
gives all consumers a higher ex-ante utility. Specifically, in the presence of temptation, M
satisfies Wγ(M) > 0 for all γ and Wγ(M) > 0 for all γ ∈ (

¯
γ, γ̄), while M∗ satisfies Wγ(M∗) = 0

for all γ . Therefore, no consumer prefers M∗ to M. This is interesting since it implies that
if consumers have temptation, they are better off if the firm is aware of the consumers’
temptation. On the other hand, in the absence of temptation, we have Wγ(M) > 0 =Wγ(M∗).
Thus, even if temptation does not exist, consumers are better off if the firm believes it exists.

The firm’s profits, on the other hand, are lower in the presence of temptation, as in the
previous case. To see this, note that the optimal menu with temptation satisfies U(x(γ)) > 0
by ex-ante IR. Proposition 7 implies U(x(γ)) > 0 for all γ ∈ (

¯
γ, γ̄). Since x∗ is the solution

of maximizing π(x) subject to U(x) > 0, we have π(x∗) >
∫

π(x(γ)) f (γ)dγ .
Intuitively, there are two basic reasons for lower profits. First, since the menu must

satisfy ex-ante IR, the firm cannot take advantage of the consumers with upward temptation
by charging high prices to high quality goods. For those consumers, the menu such that
U(x(γ)) < 0 can satisfy ex-post IR but not ex-ante IR. Second, temptation lowers some
consumers’ ex-post willingness to pay and these consumers find x∗ too expensive to be
acceptable. Therefore, to sell to these consumers, the menu has to offer them less profitable
items.

Since the presence of temptation lowers the firm’s profits and raises consumers’ ex-ante
utility, it is natural to ask in what ways temptation affects “social welfare.” Let us define
social welfare as the sum of the expected profit of the firm and the expected ex-ante utility
of consumers:

∫
[π(x(γ)) + Wγ(M)] f (γ)dγ . Since the ex-ante utility is U(x(γ)) minus

self-control costs, and t(γ) is a transfer from consumers to the firm, the social welfare
equals the expected value of u(q(γ))−C(q(γ)) minus self-control costs. Since q(γ) 6= q∗

and self-control costs are positive for a positive measure of consumers, social welfare is
strictly lower in the presence of temptation.

To summarize the effect of temptation,

Proposition 8. A consumer’s ex-ante utility in the presence of temptation is at least as high
as in the absence of temptation. If the optimal menu satisfies the constraint qualification,
some consumers get a strictly higher ex-ante utility in the presence of temptation. The
presence of temptation, on the other hand, lowers the firm’s maximum profits, and the loss
in the profit exceeds the gain in consumers’ surplus.

9.2.4 Comparison with the Standard Analysis

We now compare the optimal menu and the solution to the standard nonlinear pricing
problem with utility functions U +Vγ . The comparison is interesting since, if an economist
were to analyze the current problem of the firm using the standard theory of nonlinear
pricing, he would use U +Vγ as the utility function of type-γ consumers. Indeed, when our
consumers choose within a menu, they maximize U +Vγ . We ask how the calculation of the
optimal menu based on the standard theory differs from ours. As we show, there are a few
non-trivial qualitative as well as quantitative differences.

Throughout this section, the “standard problem” refers to the standard problem with
utility functions U +Vγ . Let MS = closure{(qS(γ), tS(γ)) : γ ∈ [a,b]} denote the optimal
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menu in the standard problem, which yields no surplus for a and satisfies efficiency for b.
Generally, we use superscript S to denote the variables for the standard problem. Let
M = closure{(q(γ), t(γ)) : γ ∈ [a,b]} denote the optimal menu in our original problem.

Singleton Menu. An obvious difference between M and MS is that M may not satisfy the
constraint qualification, in which case M contains a single non-zero choice. For MS, on the
other hand, CQ is not an issue and therefore a menu with a single non-zero offer is never
optimal.

The comparison is less trivial if the CQ is satisfied by M, since in this case M is somewhat
similar to MS. The necessary condition for MS is

u′(qS(γ))+ iv1(qS(γ),γ)− iv12(qS(γ),γ)
1−F(γ)

f (γ)
= (1+ i)C′(qS(γ)) for γ >

¯
γS, (17)

qS(γ) = 0 for γ <
¯
γS.

The only difference between (17) and (15) is that 1−F(γ) in (17) becomes β (γ̄)−F(γ)
in (15). If γ̄ = b, then β (γ̄) = 1 by (16) and hence the two equations coincide. Therefore, in
what follows, we focus on the case with γ̄ < b. In this case, β (γ̄) < 1 as we will show.
Despite the apparent similarity between (17) and (15), a closer look reveals non-trivial
differences between the two menus, as we now describe.

Inefficiency at the top. An important general property of optimal menus in the standard
theory is that the offer chosen by the highest-type consumers is socially efficient. The
so-called “efficiency at the top” property is lost in the current problem. Indeed, if γ̄ < b,
Proposition 7 says β (γ̄) > F(γ̄). Therefore, (15) for γ̄ implies

u′(q̄)+ iv1(q̄, γ̄)
1+ i

> C′(q̄). (18)

The left-hand side is the marginal value of quality for the utility function U +Vγ̄ . Since
the marginal value is increasing in γ , the inequality holds for all γ > γ̄ , including the
highest type. The inequality shows that there is room for a Pareto improvement between
the firm and the consumer if the consumer has chosen the menu. Specifically, there exists
an offer y that the consumer prefers to x(γ) in the post-entry stage and generates higher
profits. Formally, there is an offer y such that U(y) +Vγ(y) > U(x(γ)) + Vγ(x(γ)) and
π(y) > π(x(γ)). However, the firm does not want to include y in the menu since y is
not desirable for the consumer’s commitment utility, and if the consumer knows that y is
available, he will stay away from the menu.

By substituting (18) into (16), we obtain β (γ̄) < 1, as mentioned earlier.

Bunching at the top. Another non-standard feature of the optimal menu M is the
possibility that consumers of highest types are bunched together. Proposition 7 shows that
if γ̄ < b, all consumers γ > γ̄ choose the same offer from M. It appears, therefore, as if
there were a price regulation that sets a price ceiling at t(b). Indeed, the optimal menu
M resembles the menu in Besanko et al. [3], who study nonlinear pricing when there is a
price ceiling. In their problem, however, the price ceiling is exogenous. In our problem, the
constraint is U(x(γ)) > 0 coming from ex-ante IR.

We now describe the quantitative differences between M and MS.
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Consumers who buy. We first compare the lowest type of consumers who participate.
Equation (15) can be written as Bq(q(γ),γ) = 0, where B(q,γ) is defined by

B(q,γ)≡ u(q)+ iv(q,γ)− iv2(q,γ)
β (γ̄)−F(γ)

f (γ)
− (1+ i)C(q). (19)

Appendix A.6 shows Bqq < 0 and Bqγ > 0 (see the proof of Claim 8). With the definition,
(15) says Bq(q(

¯
γ),

¯
γ) = 0. On the other hand, (17) says

Bq(qS(
¯
γS),

¯
γS) = iv12(qS(

¯
γS),

¯
γS)

1−β (γ̄)
f (

¯
γS)

> 0 = Bq(q(
¯
γ),

¯
γ). (20)

The inequality follows from β (γ̄) < 1 and v12 > 0. Suppose, for the moment, that
¯
γ,

¯
γS > a.

Then by the left-continuity, q(
¯
γ) = qS(

¯
γS) = 0. Then, since Bqγ > 0, the inequality in (20)

yields
¯
γS >

¯
γ . That is, the standard analysis predicts that the lowest type served is higher.

As the following proposition shows,
¯
γS =

¯
γ is possible but only if

¯
γS =

¯
γ = a.

Proposition 9. Either
¯
γS >

¯
γ or

¯
γS =

¯
γ = a.

Qualities chosen by consumers. We now see how the quality levels chosen by consumers
differ for M and MS. (17) and (19) imply that for all γ ∈ [

¯
γS, γ̄],

Bq(qS(γ),γ) = iv12(qS(γ),γ)
1−β (γ̄)

f (γ)
> 0 = Bq(q(γ),γ).

The inequality implies qS(γ) < q(γ), which holds for all γ ∈ (
¯
γ, γ̄]. For these consumers,

the standard analysis predicts lower quality levels.
To obtain intuition, recall that in the standard nonlinear pricing problem, the firm

deteriorates the quality sold to low type consumers, and excludes some of them, in order to
increase the surplus extracted from the high type ones. With self-control preferences, the
ex-ante IR condition imposes an effective bound on the feasibility of price discrimination
against higher type consumers. As a result, the firm has less incentives to deteriorate the
quality sold to lower types, or exclude them, than it does in the standard problem.

To extend the comparison to types γ > γ̄ , first consider the highest type, b. While
inequality (18) holds for γ = b, (17) yields u′(qS(b))+ iv1(qS(b)) = (1 + i)C′(qS(b)), i.e.,
there is “efficiency at the top” in the standard problem. Thus qS(b) > q̄. It follows that there
exists a threshold type γ̂ ∈ (γ̄,b) such that

qS(γ) > q̄ if γ > γ̂,

qS(γ) < q̄ if γ̄ < γ < γ̂.

Figure 2 summarizes the comparison between q(γ) and qS(γ).

Prices. We can also compare the prices. For each quality level q, let P(q) denote the
price for the quality level in menu M. Formally,

P(q)≡
{

t(γ) if there exists γ ∈ [a,b] such that q(γ) = q,

+∞ otherwise.

This is well-defined since t(γ) is identical for all γ that have the same value of q(γ). For
MS, we can define PS(q) similarly. The following result compares P(q) and PS(q).
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q(γ)
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Figure 2: The quality level chosen by each type.

Proposition 10. The optimal menu charges a lower price than the optimal menu in the
standard problem for any good that is offered in both menus: P(q) < PS(q) for any q > 0
such that P(q) and PS(q) are both finite.

Proof. Let q > 0 be as in the proposition. Since P(q) is finite, there exist t ∈ R+ and
γ ∈ [a,b] such that (q, t) = x(γ). Similarly, there exist tS ∈ R+ and γS ∈ [a,b] such that
(q, tS) = x(γS).

Here, we consider only the case where
¯
γ < γ 6 γ̄ . The other cases are considered in the

appendix. By the inequalities,

U(q, t)+Vγ(q, t) = w(γ) =
∫ γ

a
iv2(q(y),y)dy

>
∫ γ

a
iv2(qS(y),y)dy = wS(γ) > U(q, tS)+Vγ(q, tS).

(21)

The first inequality follows from that q(y) > qS(y) for all y ∈ (
¯
γ,γ], and the second one

follows from ex-post IC. The inequalities imply t < tS. ¤
Profits. Let Π and ΠS denote the expected profit from M and MS, respectively. Since the

standard problem has fewer constraints than our problem, ΠS > Π.8 If γ̄ < b then ΠS > Π.
Welfare. An advantage of Gul and Pesendorfer’s utility formulation is that it has a clear

notion of ex-ante welfare. We take advantage of it and compare Wγ(M) and Wγ(MS). To
facilitate the comparison, we assume that Vγ is defined for all γ ∈R so that, for any γ ∈ [a,b],
there exists θγ ∈R such that U +Vθγ has the same ordinal preferences as Vγ . For the current
quasi-linear formulation, this means

u(q)+ iv(q,θγ)
1+ i

= v(q,γ) for all q.

Thus, the requirement is that each v(·,γ) can be written as the weighted average of u(·)
and v(·,θγ) for some θγ . If this is the case, then θγ > γ if γ > γ∗ and θγ < γ if γ < γ∗. For
example, this assumption is satisfied in the linear environment where v(q,γ) = γq, u(q) = q,

8A proof goes as follows. Proposition 1 implies that in our original problem, there exists a feasible schedule
(M̂, x̂,Γ) such that the expected profit equals Π. Since all types enter, ex-post IR and IC are satisfied by all types,
which implies that (M̂, x̂) is a feasible schedule in the standard problem. The expected profit of the schedule,
Π, therefore gives a lower bound of ΠS.
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and γ∗ = 1. It is possible that θγ is outside the interval [a,b], but this is not a problem, as
we discuss later. We begin, however, with the case where θγ ∈ [a,b].

Consider a type γ such that θγ ∈ [a,b]. The consumer’s ex-ante utility from M is then

Wγ(M) =
[
u(q(γ))+ iv(q(γ),γ)− (1+ i)t(γ)

]

− i
1+ i

[
u(q(θγ))+ iv(q(θγ),θγ)− (1+ i)t(θγ)

]

= w(γ)− i
1+ i

w(θγ)

=
∫ γ

a
iv2(q(y),y)dy− i

1+ i

∫ θγ

a
iv2(q(y),y)dy

=
1

1+ i

∫ γ

a
iv2(q(y),y)dy+

i
1+ i

∫ γ

θγ
iv2(q(y),y)dy. (22)

We can also compute Wγ(MS) by replacing q(γ) with qS(γ) in (22). Now, consider any type
γ < γ∗. As stated above, θγ < γ and qS(y) 6 q(y) for all y < γ . Therefore, replacing q(y)
with qS(y) lowers the value of (22) weakly. If γ >

¯
γ , then qS(y) < q(y) for all y ∈ (

¯
γ,γ) and

therefore the value of (22) decreases strictly. This gives a partial proof of the following.

Proposition 11. For all consumers with downward temptation, the optimal menu gives
a higher ex-ante utility than the optimal menu in the standard problem, except for the
consumers who buy nothing under both menus: Wγ(M) > Wγ(MS) for all γ such that

¯
γ < γ < γ∗, and Wγ(M) = Wγ(MS) = 0 for all γ <

¯
γ .

Proof. The above proof is not complete since we assumed θγ ∈ [a,b]. To complete the
proof, therefore, we need to consider types γ such that γ < γ∗ and θγ < a. For these types, Vγ
has flatter indifference curves than U +Va. This implies maxx∈M Vγ(x) = 0 = maxx∈MS Vγ(x)
since ex-post IR binds for type a in both menus. Therefore,

Wγ(M) = w(γ) =
∫ γ

a
iv2(q(y),y)dy >

∫ γ

a
iv2(qS(y),y)dy = wS(γ) = Wγ(MS).

As before, the inequality is strict if γ >
¯
γ . ¤

For consumers with upward temptation, the comparison between Wγ(M) and Wγ(MS) is
generally ambiguous. However, we can make a clear statement for sufficiently high types.

Proposition 12. For a high end of consumers with upward temptation, the optimal menu
yields a higher ex-ante utility than the optimal menu in the standard problem: for all γ > γ̂ ,
Wγ(M) > Wγ(MS).

Proof. Since γ̂ > γ̄ , all consumers γ > γ̂ choose the same offer x̄ = (q̄, t̄) from M. By the
definition of γ̄ in (14), we have w(γ)/i = v(q̄,γ)− u(q̄), which implies U(x̄) = 0. Since
q̄ is the maximum quality in M, the offer x̄ also maximizes Vγ in the menu. Therefore
Wγ(M) = 0.

What remains to be shown is Wγ(MS) < 0. We start with type γ̂ . By definition, qS(γ̂) = q̄.
Proposition 10 implies tS(γ̂) > t̄. Thus, Wγ̂(MS) 6 U(xS(γ̂)) < U(x̄) = 0.
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Now, consider any type γ > γ̂ . By ex-post IC, xS(γ) > xS(γ̂), and xS(γ) is not better than
xS(γ̂) for U +Vγ̂ . Since U +Vγ̂ has steeper indifference curves than U and U(xS(γ̂)) < 0, it
follows that U(xS(γ)) < 0. Therefore Wγ(MS) 6 U(xS(γ)) < 0. ¤

Here is the intuition behind the comparisons between Wγ(M) and Wγ(MS). The main
difference between M and MS is that M charges lower prices for the goods it offers, but
its product selection is limited toward the high end. Obviously, having lower prices has a
positive effect on consumers’ welfare. But there is a negative effect as well since tempting
products are also offered at lower prices, which may induce a stronger temptation and make
self-control more costly. The total effect on welfare is therefore ambiguous generally.

For consumers with downward temptation, however, the positive effect dominates the
negative one. The reason is that tempting choices for consumers with downward temptation
are low-quality goods, for which the price reduction is relatively small. Indeed, P′(q) is
equal to the marginal value of quality for U +Vγ where γ is the one such that q(γ) = q.
Thus Figure 2 implies P′(q) < PS′(q) for all q 6 q̄. The price difference is larger for higher
quality goods.

The reason why we also obtain a clear welfare comparison for high-valuation consumers
is that the consumers who choose the highest-quality product do not see anything more
tempting. As a result, those consumers incur no self-control cost and fully enjoy the benefit
of having low prices. In contrast, the welfare comparison is ambiguous for consumers
γ ∈ (γ∗, γ̂) since for these consumers the optimal compromise between U and V is located
in the middle of M and the presence of higher-quality products inflicts self-control costs.
For these consumers, it is theoretically possible that the loss from having larger self-control
costs exceeds the gain in the commitment utility from having lower prices.

10 Conclusion

We have considered consumers for whom self-control is costly and characterized a
monopolist’s optimal nonlinear pricing schedule. Costly self-control makes the no-exit
constraint (ex-post IR) different from the entry constraint (ex-ante IR), and the entry
constraint is what makes the optimal menu qualitatively different from the one in the
standard theory. In the first part of the paper, we saw that there exists an asymmetry
between upward and downward temptation. If all consumers have upward temptation, the
firm offers a small menu and extracts the entire surplus. If all consumers have downward
temptation, the optimal menu looks like one in the standard model. The second half of the
paper analyzed the case where both types of consumers exist. In the mixed case, the optimal
menu is either the same as in the absence of temptation or resembles the one in the standard
model with a price ceiling. In either case, the entry constraint binds for high-valuation
consumers and their choice exhibits bunching and inefficiency.

One message of our analysis is that the existence of temptation does not imply an
advantage to firms. The comparison between the worlds with and without temptation
showed that the firm does not gain from the presence of temptation. Firms are not better off
because the entry constraint prevents them from selling tempting products for high prices.
The entry constraint must be satisfied because consumers foresee their temptation. In our
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model, therefore, the foresight of consumers is sufficient to offset the firm’s advantage.9

Our simplifying assumptions make the conclusions less general. In particular, we
assumed that consumers differ only in their temptation preferences. Allowing both utility
functions to depend on the type makes it difficult to apply the existing technique of
mechanism design. Esteban and Miyagawa [9] deal with the issue by studying a two-type
model. Obtaining a general solution will be challenging. Another important assumption
in the present study is that the firm is not allowed to offer more than one menu. Since
consumers have a preference for small menus, the firm may have an incentive to offer
multiple small menus, which is the main topic of Esteban and Miyagawa [9]. In a separate
paper, Esteban and Miyagawa [10] study how the optimal pricing is affected by the presence
of rival firms.

9Of course, in reality, firms may be able to trick consumers occasionally, by hiding product attributes or
advertising deceptively. However, this can also happen with standard preferences and the presence of temptation
per se does not imply an advantage to firms.
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A Appendix

A.1 Proof of Proposition 1

Let (M,x,E) be a feasible schedule. Define

M1 ≡ {y ∈ R2
+ : y = x(γ) for some γ ∈ Γ},

M2 ≡ {y ∈ R2
+ : π(y) > 0},

M3 ≡ closure
[
(M1∩M2)∪{(0,0)}].

Since M is compact, so is M3. For all types γ ∈ E such that x(γ) ∈M3, define x̂(γ)≡ x(γ).
For all other types, let x̂(γ) ∈M3 be an offer that maximizes U +Vγ . Then let

M4 ≡ closure{y ∈ R2
+ : y = x̂(γ) for some γ ∈ Γ}.

We claim that a schedule given by (M4, x̂,Γ) is a desired schedule. Property 2 is satisfied
since any y ∈ M1 satisfies U(y) > 0 by Corollary 1. Properties 1, 3, and 4 are satisfied
obviously. The schedule is at least as profitable as the initial one since for all types such
that x̂(γ) 6= x(γ), x(γ) yields non-positive profits while x̂(γ) yields non-negative profits.

A.2 Proof of Corollary 3

“If” part. Suppose that (M,x) is an optimal schedule for the standard problem with
utility functions U +Vγ . Since the ex-post incentive constraints are satisfied for all types,
(M,x,Γ) is a feasible schedule for the original problem. To show that it is also optimal,
suppose that a feasible schedule (M′,x′,E ′) yields higher profits. By Proposition 1, we can
assume E ′ = Γ. But then, (M′,x′) is feasible for the standard problem yielding higher profits
than (M,x), a contradiction.

“Only if” part. Let (M,x,E) be an optimal schedule for the original problem. First,
observe that Proposition 3 does not imply E = Γ since some consumers may not enter
the store if Wγ(M) = 0. But, we first consider the case where E = Γ. The ex-post incentive
constraints are therefore satisfied for all types and hence (M,x) is a feasible schedule for the
standard problem. The schedule is also optimal since if it is dominated by another schedule
(M′,x′) then (M′,x′,Γ) is a feasible schedule for the original problem yielding larger profits
than (M,x,Γ), a contradiction.
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Now, consider the case where E ⊆ Γ. We show that we can actually set E = Γ, i.e.,
(M,x,Γ) is also an optimal schedule for the original problem, which then enables us to use
the argument in the previous paragraph. All we need to show is that the assignment function
x satisfies ex-post IC for all γ /∈ E. So, let γ /∈ E. By Proposition 3, Wγ(M) = 0. The proof
of the proposition shows that, in (6), the inequality holds with equality and U(y) = 0, where
y ∈ argmaxz∈M Vγ(z). Since γ 6 γ∗, U(y) = 0 implies Vγ(y) 6 0. Since y also maximizes
U +Vγ and (0,0) is available, we obtain maxz∈M U(z)+Vγ(z) = 0. Since x(γ) = (0,0), x
satisfies ex-post IC for γ .

A.3 Proof of Proposition 4

Let (M,x,Γ) be a regular optimal schedule. Since M may not be a connected set, we first
fill the holes.

For all (x,γ) ∈ R2
+×Γ, let ξ (x,γ) be defined by

ξ (x,γ)≡U(x)+Vγ(x).

This is simply the ex-post utility of an offer x for type γ . Let

Lγ ≡ {x ∈ R2
+ : ξ (x(γ),γ) > ξ (x,γ)} and L≡ ∩{Lγ : γ ∈ [a,b]}.

Since Lγ is closed, so is L. For all q ∈ [q(a),q(b)], there exists t > 0 such that (q, t) ∈ L
(e.g., t(b)). Since L is a closed subset of R2

+, we can define T : [q(a),q(b)]→ R+ by

T (q)≡min{t ∈ R+ : (q, t) ∈ L}.

Then for all q,
ξ (x(γ),γ) > ξ (q,T (q),γ) for all γ.

The inequality implies that the ex-post IC of x(·) is preserved in the enlarged menu
{(q,T (q)) : q ∈ [q(a),q(b)]}. The following lemma shows that the inequality holds with
equality for some γ .

Lemma 3. For all q ∈ [q(a),q(b)], there exists a type γ = γ̂(q) such that ξ (x(γ),γ) =
ξ (q,T (q),γ).

Proof. Suppose not. That is, there exists q̂ ∈ [q(a),q(b)] such that

ξ (x(γ),γ) > ξ (q̂,T (q̂),γ) for all γ. (23)

The inequality implies q(γ) 6= q̂ for all γ; for if q(γ) = q̂ then T (q̂) = t(γ). Since q(γ) is
non-decreasing, there exists a unique type γ̂ at which q(·) jumps over q̂. That is, q(γ) < q̂ <
q(γ ′) for all γ,γ ′ such that γ < γ̂ < γ ′. Without loss of generality, assume q(γ̂) > q̂. The
case in which q(γ̂) < q̂ can be dealt with symmetrically. By (23), there exists t̂ < T (q̂) such
that ξ (x(γ̂), γ̂) > ξ (q̂, t̂, γ̂). By ex-post IC and single-crossing,

ξ (x(γ),γ) > ξ (x(γ̂),γ) > ξ (q̂, t̂,γ) for all γ > γ̂. (24)
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Now, consider any strictly increasing sequence {γk} converging to γ̂ . Since x(γ) is
non-decreasing, x(γk) converges to some point x̃. By ex-post IC,

ξ (x(γk),γk) > ξ (x(γ̂),γk)
ξ (x(γk), γ̂) 6 ξ (x(γ̂), γ̂).

Since ξ is continuous, taking the limit gives ξ (x̃, γ̂) = ξ (x(γ̂), γ̂). Since q(γk) < q̂ for all k,
we have q̃ 6 q̂. By ex-post IC with single-crossing,

ξ (x(γ),γ) > ξ (x̃,γ) > ξ (q̂, t̂,γ) for all γ 6 γ̂.

This and (24) are in contradiction with the minimality of T (q̂) since t̂ < T (q̂). ¤

Lemma 4. Function T is strictly increasing.

Proof. Let q < q′ and γ = γ̂(q). Then since ξ (q,T (q),γ) > ξ (q′,T (q′),γ) and preferences
are strictly monotone, T (q′) > T (q). ¤

Lemma 5. Function T is continuous.

Proof. Take any q ∈ [q(a),q(b)]. Let t̄ and
¯
t be the right and left limit of T (q′) as q′→ q,

respectively. Since T is monotonic,
¯
t 6 T (q) 6 t̄. Let γ = γ̂(q). Take a sequence {qk} that

converges to q from the left. Then ξ (q,T (q),γ) > ξ (qk,T (qk),γ). Taking the limit yields
ξ (q,T (q),γ) > ξ (q,

¯
t,γ). This implies T (q) =

¯
t.

Now, take a different sequence {qk} that converges to q from the right. For each k, let γk =
γ̂(qk). Then ξ (qk,T (qk),γk) > ξ (q,

¯
t,γk). Since γk ∈ [a,b], there exists a subsequence of

{γk} converging to some γ̃ ∈ [a,b]. Since ξ is continuous, taking the limit yields ξ (q, t̄, γ̃) >
ξ (q,

¯
t, γ̃), which implies t̄ =

¯
t. ¤

To prove the proposition by way of contradiction, suppose ξ (x(a),a) > 0. We divide the
argument into a few steps.

Step 1 (Preliminaries). We first consider the case when

ξ (q,T (q),a) is constant over all q ∈ [q(a),q(b)].

That is, all offer in the enlarged menu lie on a single indifference curve of type a. By
ex-post IC, q(γ) = q(b) for all γ > a. That is, M consists of two items. Let

γ ′ ∈ argmax
γ∈{a,b}

π(x(γ)).

Then for a sufficiently small δ > 0, a singleton menu {(q(γ ′), t(γ ′) + δ )} satisfies both
conditions of IR and generates more profits than (M,x,Γ), in contradiction with the
optimality of (M,x,Γ).

Therefore, in what follows, we assume that there exists k ∈ (q(a),q(b)) such that

ξ (x(a),a) > ξ (k,T (k),a). (25)

Since ξ and T are continuous, we can choose k > q(a) sufficiently small to satisfy

ξ (q,T (q),a) > 0 for all q ∈ [q(a),k]. (26)
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Let ρ : [q(a),q(b)]→ R be defined by

ρ(q)≡ T (q)−C(q).

Since this function is continuous, there exists a quantity level qm ∈ [q(a),k] that maximizes
ρ over [q(a),k]. By (26), there exists a small number ε > 0 such that

ξ (qm,T (qm)+ ε,a) > 0. (27)

Step 2 (Construction of a schedule). We now construct a schedule that generates more
profits than (M,x,Γ). We basically consider the upper envelope of T and the isoprofit curve
that passes through (qm, t̂(qm)+ ε). Formally, let τ : [q(a),q(b)]→ R be defined by

τ(q)≡max{T (q),C(q)+ρ(qm)+ ε}. (28)

We remove the part of the upper envelope where U is negative. Formally, let

D≡ {q ∈ [q(a),q(b)] : U(q,τ(q)) > 0}.
Then D is compact and contains qm. The menu we consider is

M′ ≡ {(q,τ(q)) : q ∈ D}.
Let x′ : [a,b]→M′ be an assignment function such that, for all γ ∈ [a,b],

x′(γ) ∈ argmax
x∈M′

ξ (x,γ), (29)

with the tie-breaking rule that if x(γ) is a solution of (29) then x′(γ) = x(γ).
Step 3 (Feasibility). We show that (M′,x′,Γ) satisfies all the incentive constraints. The

ex-post IC condition follows from (29). The ex-ante IR condition holds for all types because
of the definition of D. The ex-post IR condition also holds for all types since (27) implies
that type a obtains a positive ex-post utility.

Step 4. We show that in terms of the ex-post utilities, all types are weakly worse off in
M′ than M. Indeed, for all γ ∈ [a,b],

w(M,γ) > ξ (q′(γ),T (q′(γ)),γ) > ξ (q′(γ),τ(q′(γ)),γ) = w(M′,γ).

Step 5. We prove that (M′,x′,Γ) is at least as profitable as (M,x,Γ). We actually prove a
stronger statement: each type generates weakly more profits in (M′,x′,Γ) than in (M,x,Γ),
i.e.,

τ(q′(γ))−C(q′(γ)) > ρ(q(γ)) for all γ. (30)

To prove this, we first consider types γ such that

ρ(q(γ)) > ρ(qm)+ ε.

Then, by (28), τ(q(γ)) = T (q(γ)). This implies x(γ) ∈ M′. Thus, by Step 4 and the
tie-breaking rule for x′, we have x′(γ) = x(γ). So (30) holds with equality.

We now consider types γ such that

ρ(q(γ)) < ρ(qm)+ ε. (31)
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Then by (28),
τ(q(γ)) = C(q(γ))+ρ(qm)+ ε > T (q(γ)).

Using (28) again,
τ(q′(γ))−C(q′(γ)) > ρ(qm)+ ε > ρ(q(γ)). (32)

Step 6 (Final). We prove that (M′,x′,Γ) generates strictly more profits than (M,x,Γ). By
(32), it suffices to show that there exists a positive measure of types that satisfy (31). First,
note that (31) holds for type a by the definition of qm. Let γk = γ̂(k). Then (25) implies
γk > a. By single-crossing, q(γ) 6 k for all γ < γk. So, by the definition of qm, all those
types satisfy (31).

A.4 Proof of Proposition 5

Suppose, by way of contradiction, that U(x(b)) > 0. By assumption, there exist a type γ ∈
Γ and an offer yÀ x(b) such that π(y) > π(x(b)) and U(y)+Vγ(y) > U(x(b))+Vγ(x(b)).
Since U(x(b)) > 0, we can choose y close to x(b) so that U(y) > 0.

We prove that the modified menu M̂ ≡ M∪{y} generates larger profits. The associated
assignment function is defined by: x̂(γ) = y if consumer γ strictly prefers y to x(γ) in terms
of U +V utility, and x̂(γ) = x(γ) otherwise.

We first show that the schedule (M̂, x̂,Γ) satisfies all the incentive constraints. Ex-ante
IR is preserved since the added item satisfies U(y) > 0. Ex-post IC is also satisfied since y
is assigned only to consumers who prefer y to what there are initially assigned to. Ex-post
IR is also satisfied since adding an item makes no one worse off in terms of U +V utility.

So it remains to show that for all types γ such that x̂(γ) = y, y generates more profits than
x(γ). Suppose, by contradiction, that there exists γ such that x̂(γ) = y and π(y) 6 π(x(γ)).
Consider the isoprofit curve through y. Then x(γ) is above or on the isoprofit curve, while
x(b) is below it. By a usual argument of incentive compatibility, x(·) is monotone and so
x(γ) 6 x(b) 6 y. Let x′ = (q′, t ′) be the convex combination of {x(γ),y} such that q′ = q(b).
Since the technology is convex, x′ is above or on the isoprofit curve. Since x(b) is below
the same curve, it is cheaper than x′, i.e., t(b) < t ′. Now, recall that y is preferred to x(γ)
for U +Vγ since x̂(γ) = y. Since U +Vγ is quasi-concave, x′ is at least as good as x(γ) for
U +Vγ . Therefore

U(x(b))+Vγ(x(b)) > U(x′)+Vγ(x′) > U(x(γ))+Vγ(x(γ)).

This shows that the initial schedule violates ex-post IC for γ , a contradiction.

A.5 Proof of Proposition 6

Suppose, by way of contradiction, that there exists an offer x′ > x̄ such that U(x′) > 0
and t ′−C(q′) > t̄−C(q̄). We claim that the monopolist can earn more profits by offering
M′ = M ∪{x′}. The argument is similar to that of Proposition 5; just note that x′ gives a
higher utility in U +Vγ than x̄ for all γ ′ > γ∗.
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A.6 Proof of Proposition 7

Since w(
¯
γ) = 0 and w is non-decreasing, w(γ) = 0 for all γ ∈ [a,

¯
γ]. Therefore, if

¯
γ > a,

then for all γ ∈ [a,
¯
γ], v2(q(γ),γ) = 0 = q(γ) and hence the ex-ante IR condition (7) binds.

By CQ,
¯
γ < γ∗.

We partition [a,b] into two sets:

Γ+ ≡ {γ ∈ [a,b] : w(γ)/i > v(q(γ),γ)−u(q(γ))},
Γ0 ≡ {γ ∈ [a,b] : w(γ)/i = v(q(γ),γ)−u(q(γ))}.

Claim 1. For all γ ∈ Γ0, if γ >
¯
γ then q(γ) > 0.

Proof. If q(γ) = 0, then since γ ∈ Γ0, w(γ)/i = v(0,γ)− u(0) = 0. This implies γ 6
¯
γ , a

contradiction. ¤

Claim 2. γ̄ ≡ supΓ+ satisfies γ̄ > γ∗.

Proof. By CQ, γ∗ ∈ Γ+, which implies γ∗ 6 supΓ+ = γ̄ . ¤

Claim 3. If γ̄ < b, then q is constant over Ī ≡ [γ̄,b]∩Γ0. (Note that (γ̄,b] ⊆ Γ0 but γ̄ may
not be in Γ0.)

Proof. Choose any pair γ1,γ2,∈ Ī such that γ2 > γ1. Since w′ = iv2,

[
w(γ2)−w(γ1)

]
/i =

∫ γ2

γ1

v2(q(γ),γ)dγ. (33)

Since γ1 and γ2 belong to Γ0, the left-hand side of (33) equals

v(q(γ2),γ2)−u(q(γ2))−
[
v(q(γ1),γ1)−u(q(γ1))

]

=
∫ γ2

γ∗
v2(q(γ2),γ)dγ−

∫ γ1

γ∗
v2(q(γ1),γ)dγ

=
∫ γ2

γ∗

∫ q(γ2)

q(γ1)
v12(q,γ)dqdγ +

∫ γ2

γ1

v2(q(γ1),γ)dγ.

Thus (33) reduces to

∫ γ2

γ∗

∫ q(γ2)

q(γ1)
v12(q,γ)dqdγ =

∫ γ2

γ1

∫ q(γ)

q(γ1)
v12(q,γ)dqdγ,

which is equivalent to

∫ γ1

γ∗

∫ q(γ2)

q(γ1)
v12(q,γ)dqdγ +

∫ γ2

γ1

∫ q(γ2)

q(γ)
v12(q,γ)dqdγ = 0. (34)

This equation holds for any γ1,γ2 ∈ Ī such that γ1 < γ2.
To prove that q is constant over Ī, suppose, by way of contradiction, that there exist

γ3,γ4 ∈ Ī such that γ3 < γ4 and q(γ3) 6= q(γ4).
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We first consider the case when q(γ3) < q(γ4). Let q′ = sup{q(γ) : γ3 6 γ 6 γ4}. Then
there exists a convergent sequence {γk} such that γk ∈ [γ3,γ4] and q(γk)→ q′. By applying
(34) to γ1 = γ3 and γ2 = γk, we get

∫ γ3

γ∗

∫ q(γk)

q(γ3)
v12(q,γ)dqdγ +

∫ γk

γ3

∫ q(γk)

q(γ)
v12(q,γ)dqdγ = 0.

Since this holds for all k, we can take the limit. Let γ ′ ∈ [γ3,γ4] denote the limit of {γk}.
Then

0 =
∫ γ3

γ∗

∫ q′

q(γ3)
v12(q,γ)dqdγ +

∫ γ ′

γ3

∫ q′

q(γ)
v12(q,γ)dqdγ >

∫ γ3

γ∗

∫ q′

q(γ3)
v12(q,γ)dqdγ > 0, (35)

which is a contradiction.
If q(γ3) > q(γ4), a symmetric argument works. Specifically, if we set q′ = inf{q(γ) : γ3 6

γ 6 γ4}, we obtain (35) with reverse inequalities. ¤

Let q̄≡ q(b).

Claim 4. γ̄ > γ∗.

Proof. We already proved γ̄ > γ∗. Suppose, by way of contradiction, that γ̄ = γ∗. We have
noted (γ̄,b] ⊆ Γ0 and the previous claim says q(γ) = q̄ over the interval. Thus, taking the
limit as γ ↓ γ̄ gives

w(γ∗)/i = v(q̄,γ∗)−u(q̄) = 0 (36)

since v( · ,γ∗) = u(·). On the other hand, since γ∗ ∈ Γ+ (by CQ),

w(γ∗)/i > v(q(γ∗),γ∗)−u(q(γ∗)) = 0.

This is a contradiction with (36). ¤

Claim 5. λ (γ̄) = 0.

Proof. If γ̄ ∈ Γ+, the result is obvious from (11). So, suppose γ̄ ∈ Γ0. Then q(γ̄) = q̄ and
Claim 1 implies q̄ > 0. Since q is continuous from the left, q(γ) > 0 for all γ close to γ̄ . The
definition of γ̄ implies that for all ε > 0, there exists γ ∈ (γ̄− ε, γ̄) such that γ ∈ Γ+ and so
λ (γ) = 0. Therefore, taking the limit of (9) as γ ↑ γ̄ , we get

[
u′(q̄)+ iv1(q̄, γ̄)− (1+ i)C′(q̄)

]
f (γ̄)+ µ(γ̄)iv12(q̄, γ̄) = 0.

On the other hand, evaluating (9) at γ̄ yields
[
u′(q̄)+ iv1(q̄, γ̄)− (1+ i)C′(q̄)

]
f (γ̄)+ µ(γ̄)iv12(q̄, γ̄)+λ (γ̄)i

[
u′(q̄)− v1(q̄, γ̄)

]
= 0.

Thus the last term is zero. Since γ̄ > γ∗ and q̄ > 0, we have u′(q̄) < v1(q̄, γ̄) and hence
λ (γ̄) = 0. ¤

Claim 6. If γ̄ < b, then µ(γ̄) < 0.
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Proof. Since (γ̄,b]⊆ Γ0, taking the limit as γ ↓ γ̄ gives

v(q̄, γ̄)−u(q̄) = w(γ̄)/i > v(q(γ̄), γ̄)−u(q(γ̄)).

Since γ̄ > γ∗, the inequality implies
q(γ̄) 6 q̄. (37)

By Claim 1, q̄ > 0. By (9) and (10), for all γ > γ̄ ,

(1+ i)[u′(q̄)−C′(q̄)] f (γ)+ µ(γ)iv12(q̄,γ)−µ ′(γ)i
[
u′(q̄)− v1(q̄,γ)

]
= 0.

We can solve the differential equation by using the fact that the sum of the last two terms is
the derivative of −µ(γ)i

[
u′(q̄)− v1(q̄,γ)

]
, together with the boundary condition µ(b) = 0

(see (12)). This gives

µ(γ̄) =
1+ i

i
(1−F(γ̄))

[
u′(q̄)−C′(q̄)

]

v1(q̄, γ̄)−u′(q̄)
. (38)

Since λ (γ̄) = 0, equation (9) evaluated at γ̄ yields
[
u′(q(γ̄))+ iv1(q(γ̄), γ̄)− (1+ i)C′(q(γ̄))

]
f (γ̄)+ µ(γ̄)iv12(q(γ̄), γ̄)+δ (γ̄) = 0. (39)

Now, suppose, by way of contradiction, that µ(γ̄) > 0. Then (39) implies

u′(q(γ̄))+ iv1(q(γ̄), γ̄) 6 (1+ i)C′(q(γ̄)). (40)

On the other hand, (38) implies u′(q̄) > C′(q̄). Since γ̄ > γ∗ and v12 > 0, this implies

u′(q̄)+ iv1(q̄, γ̄) > (1+ i)C′(q̄).

This and (40) imply q(γ̄) > q̄, which is a contradiction with (37). ¤

Claim 7. µ(γ) 6 0 for all γ < γ̄ that is sufficiently close to γ̄ .

Proof. Since µ is continuous, the result follows trivially from Claim 6 if γ̄ < b. So, suppose
γ̄ = b. Since µ ′(b) = f (b)−λ (b) and Claim 5 implies λ (b) = 0, we obtain µ ′(b) = f (b) >
0. This and µ(b) = 0 imply the desired result. ¤

By Claim 7, there exists ε > 0 such that µ(γ) 6 0 for all γ ∈ [γ̄− ε , γ̄]. In what follows,
let γ̃ ∈ [γ̄ − ε , γ̄] be such that γ̃ ∈ Γ+. Let Ĩ be the maximal interval such that γ̃ ∈ Ĩ and
Ĩ ⊆ Γ+.

Claim 8. q is non-decreasing over Ĩ.

Proof. Define a function β : [a,b]→ R by

β (γ)≡ F(γ)−µ(γ).

Since β ′(γ) = λ (γ), it follows that over the interval Ĩ, β (γ) is constant and equal to β (γ̃).
Since µ(γ̃) 6 0, β (γ̃) > 0. Since β is globally non-decreasing, β (γ̃) 6 β (b) = 1. (9) implies
that for all γ ∈ Ĩ,

u′(q(γ))+ iv1(q(γ),γ)− iv12(q(γ),γ)
β (γ̃)−F(γ)

f (γ)
+

δ (γ)
f (γ)

= (1+ i)C′(q(γ)). (41)
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Define a function B : R+× [a,b]→ R by

B(q,γ)≡ u(q)+ iv(q,γ)− iv2(q,γ)
β (γ̃)−F(γ)

f (γ)
− (1+ i)C(q).

Then for all γ ∈ Ĩ, q(γ) satisfies Bq(q(γ),γ) 6 0 and q(γ)Bq(q(γ),γ) = 0. For all γ ∈ Ĩ,
β (γ̃)−F(γ) =−µ(γ) > 0. Since we assume C′′ > 0 and v112 > 0,

Bqq = u′′(q,γ)+ iv11(q,γ)− iv112(q,γ)
β (γ̃)−F(γ)

f (γ)
− (1+ i)C′′(q) < 0.

Thus q(γ) is determined uniquely. A sufficient condition for q to be strictly increasing is
Bqγ > 0. The cross derivative is

Bqγ = iv12(q,γ)− iv12(q,γ)
∂

(
β (γ̃)−F(γ)

f (γ)

)

∂γ
− iv122(q,γ)

β (γ̃)−F(γ)
f (γ)

.

Since β (γ̃)−F(γ) > 0 and we assume v122 6 0 < v12, a sufficient condition for Bqγ > 0 is
that (β (γ̃)−F(γ))/ f (γ) is non-increasing. This is indeed the case since β (γ̃) ∈ [0,1] and f
is log-concave (Bagnoli and Bergstrom [2]). ¤

Define a function h : R+× [a,b]→ R by

h(q,γ)≡ w(γ)− iv(q,γ)+ iu(q).

Claim 9. h(q(γ),γ) is non-increasing in γ over Ĩ∩ [γ∗,b].

Proof. Let γ,γ ′ ∈ Ĩ be such that γ > γ ′ > γ∗. Since q is non-decreasing over the interval,

h(q(γ ′),γ ′) = w(γ ′)− iv(q(γ ′),γ ′)+ iu(q(γ ′))
> w(γ ′)− iv(q(γ),γ ′)+ iu(q(γ)). (42)

Now, for all θ ∈ [γ ′,γ], monotonicity over Ĩ implies q(θ) 6 q(γ). Since v12 > 0, we get
v2(q(θ),θ) 6 v2(q(γ),θ). Since w′ = iv2, the inequality implies that w(θ)− iv(q(γ),θ) is
non-increasing in θ over [γ ′,γ]. Thus

w(γ ′)− iv(q(γ),γ ′)+ iu(q(γ)) > w(γ)− iv(q(γ),γ)+ iu(q(γ)) = h(q(γ),γ).

This and (42) prove the desired result. ¤

Let
˜
γ ≡ inf Ĩ and

˜
q≡ limγ↓

˜
γ q(γ).

Claim 10.
˜
γ < γ∗.

Proof. Suppose, by way of contradiction, that
˜
γ > γ∗. The definition of Ĩ implies Ĩ ⊆ Γ+

and hence h(q(γ),γ) > 0 over the interval. Since h(q(·), ·) is non-increasing, taking the
limit yields h(

˜
q,

˜
γ) > 0, i.e., w(

˜
γ)/i > v(

˜
q,

˜
γ)−u(

˜
q). On the other hand, the maximality of

Ĩ implies that, within any neighborhood of
˜
γ , there exists γ <

˜
γ such that γ ∈ Γ0. Since q is

continuous from the left, taking the limit yields w(
˜
γ)/i = v(q(

˜
γ),

˜
γ)−u(q(

˜
γ)). Thus

v(q(
˜
γ),

˜
γ)−u(q(

˜
γ)) > v(

˜
q,

˜
γ)−u(

˜
q).
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Since
˜
γ > γ∗, the inequality implies

q(
˜
γ) >

˜
q. (43)

Since (41) holds for all γ ∈ Ĩ, taking the limit yields

u′(
˜
q)+ iv1(

˜
q,

˜
γ)− iv12(

˜
q,

˜
γ)

β (γ̃)−F(
˜
γ)

f (
˜
γ)

6 (1+ i)C′(
˜
q). (44)

By (43), q(
˜
γ) > 0. Thus, evaluating (9) at

˜
γ yields

u′(q(
˜
γ))+ iv1(q(

˜
γ),

˜
γ)− iv12(q(

˜
γ),

˜
γ)

β (γ̃)−F(
˜
γ)

f (
˜
γ)

+λ (
˜
γ)i

[
u′(q(

˜
γ))− v1(q(

˜
γ),

˜
γ)

]
/ f (

˜
γ) = (1+ i)C′(q(

˜
γ)).

(45)

Since
˜
γ > γ∗, u′(q(

˜
γ))−v1(q(

˜
γ),

˜
γ) 6 0. Thus (45) implies Bq(q(

˜
γ),

˜
γ) > 0, while (44) says

Bq(
˜
q,

˜
γ) 6 0. Since Bqq < 0, the inequalities imply q(

˜
γ) 6

˜
q, which is a contradiction with

(43). ¤

Remark 1. Claims 8–10 are proved for any γ̃ < γ̄ that is close to γ̄ (so that µ(γ̃) 6 0) and
such that γ̃ ∈ Γ+. Thus Claim 10 implies that Ĩ and

˜
γ are the same for all these γ̃ . This

implies sup Ĩ = γ̄ . Moreover, q is non-decreasing over Ĩ∪ Ī by Claim 8, (37), and Claim 3.

Claim 11.
˜
γ =

¯
γ .

Proof. First,
˜
γ <

¯
γ is not possible since [a,

¯
γ] ⊆ Γ0 and Ĩ ⊆ Γ+. On the other hand, if

¯
γ <

˜
γ , then the definition of

˜
γ implies that there exists γ ∈ (

¯
γ,

˜
γ) such that γ ∈ Γ0. But

then, 0 6 w(γ)/i = v(q(γ),γ)− u(q(γ)) 6 0 since γ < γ∗. Therefore w(γ) = 0, which is a
contradiction with γ >

¯
γ . ¤

Proposition 7 can now be proved as follows:
For the monotonicity of q, if Ĩ ∪ Ī = [a,b], then it follows from the last statement in

Remark 1. If
¯
γ > a, it suffices to note that q(γ) = 0 over [a,

¯
γ]. The only remaining case to

be considered is when
¯
γ = a and a ∈ Γ0. In this case, 0 = w(a)/i = v(q(a),a)−u(q(a)) 6 0

and hence q(a) = 0 and the monotonicity follows.
Statement 1 is proved in Claim 3.
(15) comes from (41). But a few things need to be proved. First, for γ >

¯
γ , we need to

show q(γ) > 0. If q(γ) = 0 for some γ >
¯
γ , the monotonicity of q implies q(γ ′) = w(γ ′) = 0

for all γ ′ ∈ [a,γ], which is a contradiction with γ >
¯
γ .

To prove (15) for γ =
¯
γ , we take the limit of (41) as γ ↓

¯
γ . This gives

u′(
˜
q)+ iv1(

˜
q,

¯
γ)− iv12(

˜
q,

¯
γ)

β (γ̄)−F(
¯
γ)

f (
¯
γ)

= (1+ i)C′(
˜
q). (46)

On the other hand, evaluating (9) at
¯
γ yields

u′(q(
¯
γ))+ iv1(q(

¯
γ),

¯
γ)− iv12(q(

¯
γ),

¯
γ)

β (γ̄)−F(
¯
γ)

f (
¯
γ)

+
λ (

¯
γ)i

[
u′(q(

¯
γ))− v1(q(

¯
γ),

¯
γ)

]

f (
¯
γ)

+
δ (

¯
γ)

f (
¯
γ)

= (1+ i)C′(q(
¯
γ)).

(47)
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Since
¯
γ < γ∗, u′(q)− v1(q,

¯
γ) > 0. Thus (47) implies Bq(q(

¯
γ),

¯
γ) 6 0, whereas (46) says

Bq(
˜
q,

¯
γ) = 0. Since Bqq < 0 and q is monotonic, q(

¯
γ) =

˜
q. Substituting this into (46) yields

(15) for
¯
γ .

A.7 Proof of Proposition 9

Suppose, by way of contradiction, that
¯
γ >

¯
γS and

¯
γ > a. The latter inequality implies

q(
¯
γ) = 0. Then

Bq(0,
¯
γ) = 0 > Bq(0,

¯
γS) > Bq(qS(

¯
γS),

¯
γS) = iv12(qS(

¯
γS),

¯
γS)

1−β (γ̄)
f (

¯
γS)

> 0,

which is a contradiction.

A.8 Proof of Proposition 10

It remains to consider the case where γ > γ̄ or γ 6
¯
γ . First, consider the case where γ 6

¯
γ .

Since q > 0, γ =
¯
γ = a. (15) then says Bq(q,a) = 0. Similarly, since q > 0, γS >

¯
γS. The

equality γS =
¯
γS holds only if γS = a. By (17),

Bq(q,γS) = iv12(q,γS)
1−β (γ̄)

f (γS)
> 0 = Bq(q,a).

The inequality implies γS > a. Therefore, γS >
¯
γS.

Let BS(q, t) be defined by replacing β (γ̄) with 1 in (19). With the definition, (17) says
BS(qS(γ),γ) = 0 for all γ >

¯
γS. The argument we used for B(q, t) can be used to show

BS
qq < 0 and BS

qγ > 0. Thus qS(γ) is strictly increasing for γ >
¯
γS. This and γS >

¯
γS imply

U(q, t)+VγS(q, t) = u(q)− t + i
[
v(q,γS)− t

]

= U(q, t)+Va(q, t)+
∫ γS

a
iv2(q,y)dy

>
∫ γS

a
iv2(qS(y),y)dy = wS(γS) = U(q, tS)+VγS(q, tS).

The inequality implies t < tS.
Lastly, consider the case in which γ > γ̄ . Thus (q, t) = x(b). This case is relevant only if

x(·) has a discontinuity at γ̄ (from the right) so that x(γ̄) < x(b). It is easy to show that type γ̄
is indifferent between x(γ̄) and x(b) in terms of U +Vγ̄ . Therefore U(q, t)+Vγ̄(q, t) = w(γ̄)
and so we obtain (21) where γ is replaced with γ̄ .
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