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Abstract

Unlike consumers in standard economic models, the average consumer has to deal
with temptation and go through a costly process of self-control. What if firms are aware
of consumers’ self-control problems? Does it affect firms’ optimal selling strategies qual-
itatively? To answer this question, we use Gul–Pesendorfer utility formulation and char-
acterize a monopolist’s optimal selling scheme in the otherwise standard model of nonlin-
ear pricing. With costly self-control, the firm can earn more profits by offering multiple
menus (or plans). If the temptation of consumers is to buy a larger quantity (or a good
of higher quality), a set of menus can be designed to extract all the surplus: with those
menus, consumption choices appear as if the consumers’ preferences were observable. If
the temptation is to choose a smaller quantity (or spend more on outside options), full sur-
plus extraction is not possible. The optimal scheme in this case charges entry fees since
they work as a commitment device for consumers.
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1 Introduction

Standard theories of firms’ pricing behavior assume that consumers are free from temptation
and have complete control of what they choose. The standard assumption implies that con-
sumers can easily stop overspending, overeating, smoking, procrastinating, etc. The average
consumer, on the other hand, has temptation and can control it only partially. Self-control is
mentally costly and tends to be incomplete. Assuming costless self-control may not be a rea-
sonable approximation for the average consumer. Recent advances in decision theory allow
one to formulate the behavior of consumers with costly self-control. The present paper uses
the formulation due to Gul and Pesendorfer (2001) and studies a firm’s optimal selling strategy
in the world of temptation.

In standard consumer theory, a consumer’s utility from a choice set depends only on the
most preferred choice. An important implication of the theory is that adding options to the
choice set can only make consumers better off: more is always better, at least weakly. However,
consumers with temptation problems may dislike a larger choice set in the strict sense since
it may include tempting choices which are not desirable from the ex ante perspective. For
example, students may prefer not to study in environments that allow many other activities. A
dieter may avoid all-you-can-eat buffets knowing that she will end up eating too much. Gruber
and Mullainathan (2005) report evidence that a higher rate of cigarette taxes makes smokers
considerably happier.

To formalize the idea that consumers may prefer a smaller choice set, Gul and Pesendorfer
(2001) introduced the following class of preferences: a consumer prefers a choice set X to
another set Y if and only if W (X) > W (Y ), where W is defined by

W (X)≡max
x∈X

[
U(x)+V (x)

]
−max

x∈X
V (x). (1)

In this formulation, the consumer has two utility functions: U and V . Utility function U repre-
sents the preference that the consumer would like to commit to: e.g., the desire to save more,
lose weight, quit smoking, work hard, etc. The other utility function, V , on the other hand,
represents the consumer’s temptation: e.g., the urge to buy, eat, smoke, be lazy, etc.

What the consumer actually chooses is given by the first maximization problem in (1),
which represents a compromise between the two conflicting motives. The “bargaining power”
of each utility function, given by the relative scales of the functions, determines the strength
of self-control. If the relative cardinal scale of V is small, the consumer has strong willpower
since his actual choice is not affected much by temptation.

The unusual part of the utility formulation (1) is the second maximization problem, the role
of which can be seen by rearranging the entire formula as follows:

W (X) = U(x̂)−
[
max
x∈X

V (x)−V (x̂)
]
,

where x̂ is a maximizer of U(x) +V (x). The term in square brackets is the utility that the
consumer forgoes by exercising self-control: the tempted part of the consumer wants to max-
imize V (x) but ends up with V (x̂) after self-control. The forgone utility is interpreted as the
psychological cost of exercising self-control.

This paper considers consumers who have preferences of the type described above and
studies a seller’s optimal pricing decision. We use the classic model of nonlinear pricing by
Mussa and Rosen (1978) and Maskin and Riley (1984). A monopolist sells a good and sets a
nonlinear price schedule, in which the price per unit may depend on the quantity chosen by the
consumer. The seller does not observe consumers’ preferences and relies on self-selection.
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In the standard nonlinear pricing problem, the seller chooses a price function p : R+ →
R+ ∪{∞} that specifies a price p(q) for each quantity level. The choice of p determines the
choice set for consumers, which is a menu of quantity-price pairs given by M = {(q, p(q)) :
q≥ 0}. Given the menu, each consumer chooses a most preferred pair (q, p(q)). Anticipating
consumers’ choices, the seller chooses a menu that maximizes expected profits.

The present paper extends the pricing problem to the case in which consumers exhibit
temptation as described above. In doing so, we also allow the seller to offer more than one
menu. While the number of menus is immaterial in the standard setting, it does matter in the
present context because the consumer’s welfare is affected not only by his choice but also by
the tempting choices. It is indeed not unusual that firms offer multiple menus. For example,
cellphone carriers offer multiple plans, each of which is a nonlinear price schedule. The pres-
ence of multiple menus implies that consumers make a choice in two steps: first choose a plan
and then choose the number of minutes to talk. This implies that the seller’s problem has to
deal with two sets of incentive compatibility conditions, one for consumers’ choice within a
plan and one for the choice of a plan.

The character of the profit-maximizing scheme depends on the “direction” of temptation,
which pertains to the relation between U and V functions of a given consumer. We say that a
consumer has upward temptation if his marginal value for the additional unit is higher when
he is tempted than when he is not, which means that he is tempted toward a larger quantity.
Conversely, a consumer has downward temptation if his marginal value is lower under tempta-
tion. While upward temptation may be easier to imagine, downward temptation is not unusual.
In the case of weight-loss programs, for instance, downward temptation means that consumers
are tempted to lose less weight (where q is the amount of weight loss). Even in the case of
shopping, consumers may become more frugal when they make decisions and pay.1

Our first result says that, if consumers have upward temptation, then all the surplus can
be extracted by the seller. Although consumers’ preferences are not observable to the seller,
there exists a scheme that achieves the same outcome as in the complete information case.
To achieve this, the seller offers a separate menu for each individual type of consumers and
adds to the menu intended for the low types a choice that is irrelevant for the low types but
is tempting and ex ante undesirable for the high types. The scheme can extract all the surplus
since it eliminates the high types’ incentive to mimic the low types, which is the incentive
preventing full surplus extraction in the standard model. Under this incentive scheme, the high
types will not mimic the low types since they will either succumb to temptation choosing an
ex ante undesirable option, or have to deal with a painful process of self-control. The tempting
choice is not chosen by any consumer at equilibrium but raises profits by serving as a sorting
device.

In the context of cellphone plans, the result suggests that a good strategy for a carrier is
to design a plan for low-demand consumers so that if high-demand consumers chose it they
would be tempted to spend more than they desire ex ante. Plans for low-demand consumers
typically offer low monthly fees, few free minutes, and a high per-minute rate for additional
minutes. According to the present theory, the rate for additional minutes should be set to meet
the following two constraints: it should be low so that high-demand consumers who choose
the plan will feel temptation to talk beyond the free minutes; but it should be sufficiently high
so that the high-demand consumers who anticipate the temptation will stay away from the plan

1Using survey techniques, Ameriks, Caplin, Leahy, and Tyler (2003) find evidence of heterogeneity in the
direction of temptation in a two-period saving problem among TIAA-CREF participants: 20% of participants are
tempted to consume less in the first period.
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that is intended for the low-demand consumers.2

The result of full surplus extraction continues to hold even if V is close to U for each con-
sumer. For the result to hold, it is sufficient that the marginal value is higher for the temptation
preferences (V ) than for the commitment preferences (U). The magnitude of the difference is
immaterial as long as a difference exists and hence the model is not standard. Therefore, the
firm may be able to extract the entire surplus even if the model is only a perturbation of the
standard model. However, when V is close to U , the strategic item that the seller puts in the
low-type menu involves a very large quantity, which may not be feasible if there is a techno-
logical upper bound on quantity. With an upper bound on quantity, therefore, the strategic item
in the optimal scheme has the highest possible quantity when temptation is minimal.

Full surplus extraction is not possible if the temptation of consumers is to buy a smaller
quantity: i.e., the case of “downward” temptation. We provide a full characterization of the
optimal scheme. A notable feature of the optimal scheme is the existence of entry fees, fees that
consumers must pay even when they end up buying nothing. This is interesting since entry fees
are immaterial in the standard stylized model of nonlinear pricing. Given the usual assumption
that consumers are well informed of the price schedule, no consumer pays a positive amount
for zero quantity since they are better off by staying away from the seller. In the world of
temptation, however, entry fees can increase the seller’s profits even if consumers are informed
of the seller’s scheme. With downward temptation, the main temptation of consumers is to
buy nothing or quit from the weight-loss program, which is not desirable from their ex-ante
perspective. Entry fees can make self-control easier since they make quitting more expensive
and therefore less tempting, compared to the case where consumers can get refunds by quitting.

There is a growing number of papers that study optimal strategies against agents who have
non-standard preferences. O’Donoghue and Rabin (1999), Gilpatric (2001), and DellaVigna
and Malmendier (2004) study optimal contracts when agents have present-biased preferences
with hyperbolic discounting. The focus of these studies is “naive” agents, who do not real-
ize their time-inconsistency. Eliaz and Spiegler (2006) develop a model where consumers are
somewhat naive but not completely and the degree of naivete differs across consumers. The
present paper, in contrast, considers fully sophisticated consumers with no bias in their expec-
tations. This assumption is realistic for choice problems that consumers deal with repeatedly.
Consumers may initially underestimate their temptation or overestimate their self-control abil-
ity, but as they accumulate experience, they can learn to be realistic about themselves.3

There is also an empirical literature that tests for preference reversals with pricing data. For
example, Wertenbroch (1998) finds evidence that consumers tend to forgo quantity discounts
for goods that have delayed negative effects (e.g., cigarettes). DellaVigna and Malmendier
(2006) find evidence of time inconsistent behavior in consumers’ enrollment decisions in health
clubs. Miravete (2003) looks for evidence of irrational behavior in consumers’ choices of
calling plans and finds that their behavior is consistent with rationality and learning. Oster
and Scott Morton (2005) find evidence that magazines that have a payoff in the future (e.g.,
intellectual magazines) are sold at a higher price.

There are a few papers that also prove full surplus extraction in the context of nonlinear
pricing. Hamilton and Slutsky (2004) show that if the number of consumers of each type is
common knowledge among the seller and consumers, the seller can use a type-revelation mech-
anism to achieve full surplus extraction. The mechanism offers a menu so that truth-telling is

2This paragraph is based on a comment from Ely (2005), to whom we are grateful.
3Gul–Pesendorfer preferences have been applied to a variety of contexts: e.g., Krusell, Kuruşcu, and Smith

(2000) to a neoclassical growth model; Krusell, Kuruşcu, and Smith (2002) and DeJong and Ripoll (2006) to an
asset-pricing problem; and Miao (2006) to an optimal stopping problem.
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a dominant action for the low types. Given this, if a single high-type consumer misrepresents
his type, the seller knows that someone lied. The seller then punishes all consumers who
announced themselves as the low type by giving them a trivial choice. Bagnoli, Salant, and
Swierzbinski (1995) consider a dynamic setting with complete information about preferences
and the number of consumers, and show that if the time horizon is infinite and the common dis-
count factor is sufficiently close to one, there is a subgame-perfect equilibrium where the seller
achieves full surplus extraction. Unlike these papers, we use the same informational structure
as the standard model of nonlinear pricing. We instead modify consumers’ preferences to allow
for temptation and show that full surplus extraction is possible if temptation is upward.

There are two companion papers. Esteban, Miyagawa, and Shum (2006) consider the same
problem as the present paper but examine the case in which the seller is restricted to offer a
single menu as in the standard model of nonlinear pricing. The assumption captures the case
where a menu represents a physical retail store and the setup cost for opening another store is
high. Esteban and Miyagawa (2006) study the firm’s optimal strategy in the presence of rival
firms that sell perfect substitutes.

2 Model

The model is a standard model of nonlinear pricing except that consumers’ preferences exhibit
temptation.4 The seller is a monopolist offering a collection of goods. Each good is indexed by
a number q∈R+, which, as usual, represents either quality or quantity. We will, however, refer
to q as quality. The good with q = 0 is the equivalent of nothing. Each consumer is interested
in buying at most one unit of at most one good.

An offer is a pair (q, t) ∈ R2
+. With the offer available, consumers can buy (one unit of)

good q for a total charge of t.
A menu is a compact set of offers M ⊆ R2

+ such that (0,0) ∈ M. The restriction that
(0,0) ∈ M represents our assumption that consumers who do not buy any good do not have
to pay. The assumption will be relaxed in Section 4. For simplicity, we often specify a
menu without noting that it includes (0,0): by writing M = {(q, t),(q′, t ′), . . .}, we mean
M = {(0,0),(q, t),(q′, t ′), . . .}.

2.1 Consumers

There are two types of consumers, high and low, denoted by H and L. The type of a consumer
is not observable to the seller. A generic type is denoted by γ . The fraction of consumers of
type γ is denoted nγ ∈ (0,1), with nL +nH = 1.

Consumers have preferences over menus. Using the utility representation by Gul and
Pesendorfer (2001), we assume that the utility function of a consumer of type γ is given by

Wγ(M)≡ max
(q,t)∈M

[
Uγ(q, t)+Vγ(q, t)

]− max
(q,t)∈M

Vγ(q, t), (2)

where Uγ and Vγ are functions from R2
+ to R. Function Uγ represents the preferences that

the consumer would like to commit to, while Vγ represents his temptation. The offer that the
consumer actually chooses is one that maximizes Uγ +Vγ , which is interpreted as the preference
relation resulting from the exercise of self-control. The relative power of each preference
ranking in determining the choice from a menu depends on the relative scale of Uγ and Vγ .

4For the standard model of nonlinear pricing, see, for example, Salanié (1998) and Fudenberg and Tirole (1992,
Chapter 7).
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For example, increasing the relative scale of Uγ (e.g., by multiplying it by a scaler α > 1)
increases the consumer’s “willpower.” We call Uγ +Vγ the ex-post utility and the associated
maximization problem the ex-post problem.

The role the second maximization problem in (2) can be seen by rearranging the entire
formula as follows:

Wγ(M) = Uγ(qγ , tγ)−
[

max
(q,t)∈M

Vγ(q, t)−Vγ(qγ , tγ)
]
,

where (qγ , tγ) denotes a maximizer of Uγ +Vγ . The term in square brackets measures the
utility that the consumer loses from self-control: the tempted part of the consumer would like
to maximize Vγ but ends up with (qγ , tγ) after self-control. This forgone utility quantifies his
disutility from self-control and is called the self-control cost. Then, the overall utility from
choosing the menu M equals Uγ(qγ , tγ) minus the self-control cost. The overall utility will be
called the ex-ante utility.

The second maximization in (2) is immaterial for the consumer’s choice within the menu
since the choice is determined by the first maximization. The second maximization matters
for the consumer’s choice of a menu. Because of the second maximization, the consumer may
dislike a larger menu. A menu that contains tempting items—those that give high values for the
second maximization—give a low ex-ante utility. A large menu need not be disliked, however,
since it may also attain a high value in the first maximization.

We place the following standard assumptions on the utility functions:

Assumption 1. For each γ ∈ {L,H}, Uγ and Vγ are continuous, strictly increasing in q, strictly
decreasing in t, quasi-concave, and satisfy Uγ(0,0) = Vγ(0,0) = 0.5

A convenient way to compute the ex-ante utility Wγ(M) is to identify y ∈ R2
+ such that

Uγ(y)+Vγ(y) = max
x∈M

[
Uγ(x)+Vγ(x)

]
,

Vγ(y) = max
x∈M

Vγ(x).

Graphically, y is the intersection of the highest-utility indifference curves of Uγ +Vγ and Vγ
given M.6 With this y, we have Wγ(M) = Uγ(y).

We now introduce a few binary relations between utility functions. Given two utility func-
tions U and Û (defined over R2

+), we write U % Û if at any point (q, t) ∈ R2
+, the indifference

curve of U is at least as steep as that of Û if we measure the first (resp. second) argument on
the horizontal (resp. vertical) axis. Formally, U % Û if and only if for all (q, t),(q′, t ′) ∈ R2

+
such that q′ > q,

Û(q′, t ′)≥ Û(q, t) implies U(q′, t ′)≥U(q, t), and

Û(q′, t ′) > Û(q, t) implies U(q′, t ′) > U(q, t).

If U % Û and Û % U , these functions have identical ordinal preferences, which we denote as
U ∼ Û .

5Assuming both Uγ (0,0) = 0 and Vγ (0,0) = 0 is a pure normalization without loss of generality.
6The existence of y can be shown as follows. Let xU+V ∈M be an offer that maximizes Uγ +Vγ and xV ∈M be

one that maximizes Vγ . For all q ≥ qU+V , let T (q) ∈ R+ be defined by Uγ (q,T (q))+Vγ (q,T (q)) = Uγ (xU+V )+
Vγ (xU+V ). The assumptions on Uγ +Vγ ensure that T (q) is well-defined and continuous. Since xV may not max-
imize Uγ +Vγ , tV ≥ T (qV ). Since xU+V may not maximize Vγ , Vγ (qU+V ,T (qU+V )) ≤ Vγ (xV ) ≤ Vγ (qV ,T (qV )).
Continuity then implies the existence of q between qU and qU+V such that (q,T (q)) is the desired offer.
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We also write U Â Û if the indifference curve of U is strictly steeper than that of Û at any
(q, t) ∈ R2

+. Formally, U Â Û if and only if for all (q, t),(q′, t ′) ∈ R2
+ such that q′ > q,

Û(q′, t ′)≥ Û(q, t) implies U(q′, t ′) > U(q, t).

We place the following additional assumptions on Uγ and Vγ .

Assumption 2. UH ÂUL, VH ÂVL, and UH +VH ÂUL +VL.

Assumption 3. For each γ ∈ {L,H}, either Vγ ÂUγ or Vγ ≺Uγ .

Assumption 4. For any pair of utility functions f ,g ∈ {Uγ ,Vγ ,Uγ +Vγ : γ ∈ {L,H}} such that
f ≺ g and any pair of offers x,y ∈ R2

+ such that f (x) > f (y), there exists an offer z ∈ R2
+ such

that f (z) = f (y) and g(z) = g(x).

Assumption 2 is a single-crossing property saying that the indifference curves of Uγ , Vγ ,
and Uγ +Vγ are steeper (in the strict sense) for the high-type consumers. Thus, the high types
have a higher marginal value from q than the low types in any of the preference relations.7

Assumption 3 says that each consumer is tempted in one direction or the other. For γ such
that Vγ Â Uγ (which implies Vγ Â Uγ +Vγ Â Uγ ), temptation raises the marginal value of q,
which means that the consumer is tempted towards goods of higher q. In this case, we say
that the consumer has upward temptation. On the other hand, for γ such that Vγ ≺Uγ (which
implies Vγ ≺Uγ +Vγ ≺Uγ ), temptation lowers the marginal value of q, and hence the consumer
has downward temptation.

Assumption 4 is a technical condition saying that if two utility functions f and g are such
that f ≺ g (or f Â g), any pair of indifference curves, one for f and the other for g, should cross
somewhere, except if the steeper one lies entirely above the flatter one. Intuitively speaking,
the assumption says that if the curves do not cross, they do cross in R2 \R2

+ if we extend the
curves naturally from R2

+ to R2.

2.2 Seller

The seller’s problem is to choose a set of menus that maximizes expected profits. The seller
can offer any number of menus, but since only two types of consumers exist, we can assume,
without loss of generality, that the seller offers at most two menus. Let ML and MH denote the
pair of menus offered by the seller, where MH is intended for the high-type consumers and ML

is intended for the low types. A consumer who is not choosing any of these menus is considered
to be choosing the trivial menu M0 ≡ {(0,0)}. We allow for ML = MH , in which case the seller
is offering a single menu.

Let xH = (qH , tH) denote the offer that the high-type consumers are expected to choose.
Since they are expected to choose MH , we require xH ∈MH . Similarly, let xL = (qL, tL) denote
the offer that the low types are expected to choose, and thus xL ∈ML. Formally, let a schedule
be an ordered list (ML,xL,MH ,xH) in which MH and ML are menus with xL ∈ML and xH ∈MH .
Given a schedule (ML,xL,MH ,xH), we say that Mγ is decorated if Mγ ) {xγ}. (Recall that {xγ}
really represents {xγ ,(0,0)}.)

7The third relation in Assumption 2 does not follow from the first two since the first two relations are about
ordinal preferences of each utility function and say nothing about the relative scale of Uγ and Vγ for each type. For
example, if VH Â VL ÂUH ÂUL and the scale of Vγ is small for H and large for L, then UL +VL ÂUH +VH is
possible.
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We let C(q) denote the per-consumer cost of producing good q. For a given (q, t), let
π(q, t) ≡ t−C(q) denote the per-consumer profit from the offer. We place the following as-
sumptions:

Assumption 5. C is differentiable, strictly increasing, convex, and satisfies C(0) = 0.

Assumption 6. For any type γ , any utility function fγ ∈ {Uγ ,Vγ ,Uγ +Vγ}, and any number
k ∈ R, an offer x that maximizes π(x) subject to fγ(x)≥ k exists uniquely and satisfies xÀ 0.

The seller’s problem is to choose a schedule (ML,xL,MH ,xH) that maximizes

nLπ(xL)+nHπ(xH) (3)

subject to, for all γ ∈ {L,H},

Wγ(Mγ)≥ 0 ( = Wγ({(0,0)})), (ex-ante IR)

Wγ(Mγ)≥Wγ(Ms) for all s ∈ {L,H}, (ex-ante IC)

Uγ(xγ)+Vγ(xγ)≥ 0 ( = Uγ(0,0)+Vγ(0,0)), (ex-post IR)

Uγ(xγ)+Vγ(xγ)≥Uγ(x)+Vγ(x) for all x ∈Mγ . (ex-post IC)

The first two conditions ensure that consumers have an incentive to choose the menu in-
tended for them, while the last two conditions ensure that consumers also have an incentive
to choose the offer intended for them. Of these, ex-ante IR comes from our assumption that
consumers can choose the trivial menu M0 ≡ {(0,0)} and our normalization of utilities, which
implies Wγ(M0) = 0. On the other hand, ex-post IR comes from our assumption that every menu
contains (0,0) and that the same normalization of utilities implies Uγ(0,0)+Vγ(0,0) = 0.8

A feasible schedule is a schedule (ML,xL,MH ,xH) that satisfies all the above constraints.
An optimal schedule is a feasible schedule that solves the maximization problem.

Notice that the profit in (3) depends only on the offers actually chosen, i.e., xL and xH . The
implicit assumption is that production costs realize only after a consumer makes a purchase:
there is no cost for listing offers in a menu. The issue is immaterial in the standard model
since the seller does not gain from listing offers that will not be chosen by consumers. In the
world with temptation, however, the seller may gain by listing offers that will not be chosen,
if they are tempting to consumers and affect their menu choices. Relaxing the assumption by
introducing a small cost of listing offers does not change the results.9

There are two useful benchmark problems. One benchmark is the standard nonlinear pric-
ing problem where the type-γ consumers have utility function Uγ +Vγ . In this problem, the
seller chooses a pair of offers {xL,xH} that maximizes its expected profits nLπ(xL)+nHπ(xH)
subject to IC and IR: for each γ ∈ {L,H},

Uγ(xγ)+Vγ(xγ)≥Uγ(x)+Vγ(x) for all x ∈ {xL,xH}, (4)

Uγ(xγ)+Vγ(xγ)≥ 0. (5)

This problem will be referred to as the standard problem with utility functions Uγ +Vγ . It is
well known that the binding constraints are IR for the low types and IC for the high types; and

8Ex-ante IR may appear to imply ex-post IR since the second maximization in the ex-ante utility gives a non-
positive value. However, ex-ante IR does not imply ex-post IR since ex-ante IR itself places no restriction on xγ .
What ex-ante IR implies is that any ex-post optimal choice gives a non-negative Uγ +Vγ utility. Ex-post IR and IC
ensure that an ex-post optimal choice is xγ .

9Another implicit assumption in the above formulation is that the creating a menu is also costless. Introducing
a small cost of creating menus (e.g., setup costs for retail stores) does not affect the results.
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the solution satisfies “efficiency at the top”: the marginal value for the high types equals the
marginal cost.

Another useful benchmark is the problem where consumers have no temptation: Vγ ∼Uγ
(e.g., Vγ = Uγ ). With no temptation, the ex-ante utility is Wγ(M) = maxx∈M Uγ(x) and thus the
seller’s problem reduces to the standard problem with utility functions Uγ , where Uγ +Vγ in
(4) and (5) is replaced with Uγ . Accordingly, the problem will be referred to as the standard
problem with utility functions Uγ .

2.3 Complete Information

As usual, it is useful to start with the case in which the seller can observe each consumer’s type.
Suppose that the seller can offer a personalized menu Mγ to a consumer of type γ . If the seller
expects that the consumer chooses an offer xγ ∈ Mγ , the pair (Mγ ,xγ) needs to satisfy ex-post
IR–IC and ex-ante IR, i.e.,

Uγ(xγ)+Vγ(xγ)≥ 0, (6)

Uγ(xγ)+Vγ(xγ)≥Uγ(y)+Vγ(y) for all y ∈Mγ , (7)

Wγ(Mγ)≥ 0. (8)

However, if (Mγ ,xγ) satisfies (6)–(8), so does ({xγ},xγ). Thus, the seller has no incentive to
offer Mγ ) {xγ}. For a menu Mγ = {xγ}, (7) is vacuous and (8) reduces to

Uγ(xγ)+Vγ(xγ)−max{0,Vγ(xγ)} ≥ 0. (9)

But, since (9) implies (6), the seller’s optimal strategy is to offer a menu {x∗γ} where x∗γ maxi-
mizes π(x) subject to (9). Thus, at the optimum,

Uγ(x∗γ)+Vγ(x∗γ)−max{0,Vγ(x∗γ)}= 0. (10)

We call x∗γ a complete-information offer for type γ .
The characterization of x∗γ depends on the direction of temptation. If the consumer has

upward temptation, (6) implies Vγ(x∗γ) ≥ 0 and thus (10) reduces to Uγ(x∗γ) = 0. Therefore,
x∗γ is the offer that maximizes π(x) subject to Uγ(x) = 0. By Assumption 6, x∗γ is unique and
x∗γ À 0. Since max{0,Vγ(x∗γ)}−Vγ(x∗γ) = 0, the menu {x∗γ} generates no self-control cost: it is
in the seller’s interest not to make consumers suffer from self-control.

Consider now consumers with downward temptation. If (6) holds with equality, then
Vγ(x∗γ) ≤ 0 and thus (10) holds. Therefore, x∗γ is the offer that maximizes π(x) subject to
Uγ(x)+Vγ(x) = 0. Again, x∗γ is unique and x∗γ À 0. Since x∗γ À 0, we have Vγ(x∗γ) < 0, which
implies that the consumer incurs a positive self-control cost equal to−Vγ(x∗γ) > 0: the consumer
is tempted by (0,0) but the seller cannot remove the choice from the menu.

To summarize, x∗γ maximizes π(x) subject to Fγ(x) = 0, where Fγ is defined by

Fγ ≡
{

Uγ if Uγ ≺Uγ +Vγ ,

Uγ +Vγ if Uγ ÂUγ +Vγ .

We conclude this section with a useful characterization of the incentive constraints for the
problem with complete information.

Lemma 1. For any type γ ,
(i) if a pair (Mγ ,xγ) satisfies ex-ante IR and ex-post IR–IC, then Fγ(xγ)≥ 0;
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(ii) if a pair (Mγ ,xγ) satisfies ex-ante IR and ex-post IR–IC, and Fγ(xγ) = 0, then Wγ(Mγ) =
0;

(iii) if an offer xγ satisfies Fγ(xγ)≥ 0, then ({xγ},xγ) satisfies ex-ante IR and ex-post IR.

Proof. If (Mγ ,xγ) satisfies ex-ante IR and ex-post IR–IC,

0≤Wγ(Mγ) = Uγ(xγ)+Vγ(xγ)−max
y∈Mγ

Vγ(y)

≤Uγ(xγ)+Vγ(xγ)−max{0,Vγ(xγ)}= min{Uγ(xγ)+Vγ(xγ),Uγ(xγ)}. (11)

The last line is non-negative if and only if Fγ(xγ) ≥ 0, which proves (i) and (ii).10 For (iii),
Fγ(xγ) ≥ 0 implies Uγ(xγ) +Vγ(xγ) ≥ 0, which proves ex-post IR. By ex-post IR, Wγ({xγ})
equals (11), which is non-negative since Fγ(xγ)≥ 0. Q.E.D.

We now turn to the incomplete information case, which is our main focus.

3 Optimal Menu of Menus

3.1 Upward Temptation

The first main result states that if the high-type consumers have upward temptation, the seller
can extract the entire surplus. That is, there exists a menu of menus that gives each consumer
an incentive to choose the complete-information offer for his true type.

Proposition 1 (Full surplus extraction). If the high-type consumers have upward temptation,
there exists a feasible schedule (ML,xL,MH ,xH) such that xL = x∗L and xH = x∗H .

To get the intuition, see Figure 1a, where the low types have no temptation (VL ∼ UL).
Setting ML = MH = {x∗L,x

∗
H} does not achieve full surplus extraction since the high types will

choose x∗L as UH(x∗L)+VH(x∗L) >UH(x∗H)+VH(x∗H). Dividing the menu into two separate menus
offering ML = {x∗L} and MH = {x∗H} does not work either, since

WH(ML) = UH(x∗L)+VH(x∗L)−VH(x∗L) = UH(x∗L) > 0 = WH(MH),

and hence the high types will choose ML.
A solution is to set ML = {x∗L,y} and MH = {x∗H}. In this schedule, y is not intended to be

chosen by consumers, but to tempt the high-type consumers who choose ML. Indeed, y is the
most tempting offer in ML for the high types and

WH(ML) = UH(y)+VH(y)−VH(y) = UH(y) = 0 = WH(MH).

The inequality ensures that the high types have an incentive to choose MH . The incentive can
be made strict by moving y slightly to the north-east along the indifference curve of UH +VH .
For a high-type consumer, x∗L is an appealing choice but if he chooses the menu ML, he will be
tempted by y. The offer y works a sorting device by eliminating the high types’ incentive to
mimic the low types.

The above choice of y may not work if the low types also have upward temptation (in
particular, VL ÂUH +VH), as in Figure 1b. For this preference configuration, offering ML =

10Note that Fγ (x) is not identical to min{Uγ (x),Uγ (x) +Vγ (x)}. For each type, Fγ is identical to either Uγ or
Uγ +Vγ , while min{Uγ (x),Uγ (x)+Vγ (x)} is not identical to either of them.
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Figure 1: Optimal schedules when the high types have upward temptation. In (a),
an optimal schedule offers ML = {x∗L,y} and MH = {x∗H}. In (b), an optimal schedule
offers ML = {x∗L,z} and MH = {x∗H}.

{x∗L,y} and MH = {x∗H} does not work, since y is also the low types’ most tempting choice in
ML and therefore

WL(ML) = UL(x∗L)+VL(x∗L)−VL(y) = UL(w) < 0.

Thus the ex-ante IR is violated. A solution in this case is to offer ML = {x∗L,z} and MH = {x∗H}.
Offer z does not tempt the low types but is as tempting as y for the high types and therefore
serves as a deterrent.

The two types of construction in Figure 1 suffice for the general proof (which is given in
Appendix A.1).

3.2 Robustness

We here discuss the robustness of the full surplus extraction result.

Almost Standard Preferences. A sufficient condition for full surplus extraction is VH ÂUH ,
which may hold even if VH is close to UH . This is interesting because as VH converges to
UH , temptation goes to zero. Therefore, if VL also converges to UL, the model converges to
the standard model where type-γ consumers have utility function Uγ . However, the optimal
schedule does not converge to the optimal schedule in the standard problem. By Proposition 1,
the seller can extract the entire surplus except in the limit. As VH converges to UH , the offer
y in Figure 1a keeps moving north-east along the UH = 0 curve and explodes to infinity in the
limit.

Another feature of the condition VH ÂUH is that it depends only on the ordinal preferences
of the utility functions, making the scales of these functions immaterial. Therefore, full surplus
extraction is possible even if we scale down VH by multiplying it by a small number ε > 0.
As ε → 0, the ordinal preferences of UH +VH converge to those of UH , self-control becomes
complete, and the high types’ preferences converge to standard preferences with utility function
UH . However, again, even if the low types’ preferences also converge to standard preferences,
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the optimal schedule does not converge to the one in the associated standard problem.11

Many Types. The result of full surplus extraction generalizes to the case where there are
more than two types of consumers. For any finite number of types, the seller can extract the
entire surplus if all consumers have upward temptation. The basic structure of the optimal
scheme is the same: menu by menu, the seller adds an offer that deters all the higher types of
consumers (See Appendix A.10 for the proof).

A Different Model of Preferences with Temptation. The result of full surplus extraction is
not specific to the Gul–Pesendorfer utility formulation. The result extends to different formula-
tions of preferences with temptation. An example is to assume that consumers have temptation
but disregard self-control costs. Specifically, suppose that the ex-ante utility is given by Uγ(xγ)
where xγ ∈Mγ maximizes Uγ(x)+Vγ(x). That is, the consumer correctly foresees that he will
maximize Uγ +Vγ , but evaluates the outcome with his commitment utility. If preferences are
of this form and the high types’ temptation is upward, the seller can extract the entire surplus
by offering ML = {x∗L,y} and MH = {x∗H}, where y satisfies UH(y)+VH(y)≥UH(x∗L)+VH(x∗L)
and UH(y)≤ 0 (e.g., y in Figure 1a).

Stochastic Temptation. As another robustness check, we can consider the generalizations
of Gul and Pesendorfer (2001) proposed by Dekel, Lipman, and Rustichini (2005). A par-
ticularly interesting generalization is the one in which temptation preferences are determined
stochastically in the ex-post stage. Specifically, suppose that for each type γ , there is a finite
set of states Sγ and that the temptation utility function is V s

γ in state s ∈ Sγ . The state realizes
after the consumer chooses a menu. The consumer assigns a probability pγ(s) > 0 on state s.
Thus, the ex-ante utility function for a type-γ consumer is given by

Wγ(M) = ∑
s∈Sγ

pγ(s)W s
γ (M), where

W s
γ (M) = max

x∈M

[
Uγ(x)+V s

γ (x)
]−max

x∈M
V s

γ (x) for all s ∈ Sγ .

Under a weak additional assumption on utility functions, we can show that full surplus extrac-
tion is possible if there exists at least one state in which the high-type consumers have upward
temptation. Formally, a sufficient condition is that there exists a state ŝ∈ SH such that V ŝ

H ÂUH

and V ŝ
H Â V s

L for all s ∈ SL. The idea is simple: the seller can add to ML an offer y that is
sufficiently tempting for the high types in state ŝ. Since ŝ occurs with a positive probability,
the consumer will not choose ML if the self-control cost in the particular state is sufficiently
large. To see this more concretely, assume that the low types have no temptation in any state:
V s

L ∼UL for all s. Assume also that there exists a large enough t > 0 such that

pH(ŝ)UH(0, t)+(1− pH(ŝ))UH(x∗L) < 0. (12)
11The above argument can be made concrete by considering the following parameterization of VH . Fix a function

V ∗ such that V ∗ ÂUH and suppose that VH is given by

VH(x) =
[
iV ∗(x)+(1− i)UH(x)

]
/w,

where w > 0 represents the consumer’s willpower and i ∈ [0,1] represents the intensity of temptation. As i→ 0, the
ordinal preferences of VH converge to those of UH , while w does not affect the ordinal preferences of VH . Thus,
i is an index of how much temptation can possibly change preferences (i.e., UH → VH ). How much temptation
does indeed change preferences (i.e., UH →UH +VH ) is another issue, since the consumer has willpower to resist
temptation. As w→ ∞, UH +VH converges to UH and hence self-control becomes complete for a fixed i. With this
parameterization, Proposition 1 holds for all (w, i) such that w < ∞ and i > 0. Under the assumption that the low
types have no temptation, the standard result applies if and only if either i = 0 (no temptation) or w = ∞ (complete
self-control).
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Since UH(x∗L) > 0, we have t > 0. By Assumption 4, there exists an offer y such that

UH(y) = UH(0, t),

UH(y)+V ŝ
H(y) = UH(x∗L)+V ŝ

H(x∗L).

If we set ML ≡ {x∗L,y}, then

W ŝ
H(ML) = UH(0, t), and

W s
H(ML)≤UH(x∗L) for all s 6= ŝ.

Thus (12) yields WH(ML) < 0, as desired.12

Bounded Quality. We have assumed that any offer x ∈R2
+ is technologically feasible. The

assumption is important when the deviation from the standard model is small since the offer
that works as a deterrent (e.g., y in Figure 1a) goes to infinity as temptation vanishes. Once
we relax the assumption by placing an upper bound on the feasible levels of q, the optimal
schedule may not extract the entire surplus. The discontinuity at the standard model discussed
above also disappears. On the other hand, the basic qualitative features of the optimal schedule
remain unchanged in the presence of an upper bound. The optimal schedule continues to
offer a separate menu for each type of consumers and add an offer that will not be chosen by
consumers but deters the entry of higher types. This is true even if temptation is mild and the
upper bound on q is small.

To be specific, suppose that only q∈ [0, q̄] are feasible, where q̄ < ∞. For simplicity, assume
that the low types have no temptation. To characterize the optimal schedule, fix a feasible offer
xL such that UL(xL) = 0. Let z = (qz, tz) be the offer that has the highest quality subject to

UH(z)+VH(z) = UH(xL)+VH(xL), UH(z)≥ 0, and qz ≤ q̄.

Given this z, let xH be the offer that maximizes π(xH) subject to UH(xH) = UH(z). Then, given
xL, an optimal schedule is to offer ML = {xL,z} and MH = {xH}. The seller gains strictly from
offering two distinct menus and including z in ML.

An interesting implication of the presence of the quality limit is that the seller may prefer a
technology with a higher quality limit even if it is technologically inefficient. By raising q̄, the
seller gets more freedom in the choice of z and therefore can tempt consumers more severely.
As an illustration, suppose that the seller has two options for technological investments: A and
B. Option A leads to a technology with cost function CA(q) = cAq2/2 and the upper bound
q̄A. Option B leads to CB(q) = cBq2/2 and q̄B, where cB > cA and q̄B > q̄A. Then, although
technology A has lower costs, technology B may yield higher profits. For example, suppose
(cA, q̄A) = (2,0.8), (cB, q̄B) = (2.2,2.4), nL = nH = 0.5, and preferences are given by

UL(q, t) = VL(q, t) = q− t, UH(q, t) = 1.5q− t, and VH(q, t) = 1.6q− t.

Then, the maximum profit under technology A is 0.33 while technology B attains 0.34.

3.3 Downward Temptation

We now turn to the case where the high-type consumers have downward temptation. As men-
tioned in the introduction, downward temptation is not unusual. In a number of contexts,
downward temptation is actually the norm.

12The same result extends if stochastic temptation is introduced into the “different model of preferences with
temptation” introduced above.
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If the high types have downward temptation, the seller’s problem is considerably different.
In particular, the seller cannot achieve full surplus extraction. The reason is that there is no way
of decorating {x∗L} that completely eliminates the high types’ incentive to mimic the low types.
To see this, suppose, by contradiction, that full surplus extraction is possible: there exists a
feasible schedule of the form (ML,x∗L,MH ,x∗H). Since each consumer’s entire ex-ante surplus is
extracted, ex-ante IR binds. In particular, WH(MH) = 0. By ex-ante IC, WH(ML)≤WH(MH) =
0, i.e.,

max
x∈ML

[
UH(x)+VH(x)

]−max
x∈ML

VH(x)≤ 0. (13)

Let xU+V and xV denote the solution to the maximization problems in (13). Then

UH(xU+V )+VH(xU+V )≤VH(xV ). (14)

Since x∗L ∈ML and UH(x∗L)+VH(x∗L) > 0,13 the left-hand side of (14) is strictly positive. There-
fore VH(xV ) > 0. Now, a critical observation is that since VH ≺ UH , VH(xV ) > 0 implies
UH(xV ) > 0. In words, if a choice gives a positive utility when his valuation is low, then it surely
gives a positive value when the valuation is high. Therefore, VH(xV ) < UH(xV ) +VH(xV ) ≤
UH(xU+V )+VH(xU+V ), which is a contradiction with (14).

To characterize optimal schedules, it is useful to classify the high-type consumers further,
based on the intensity of their downward temptation.

Definition. The high-type consumers’ downward temptation is weak if VH Â UL + VL and
strong if VH ≺UL +VL.

Since the high types have downward temptation, their marginal value for quality is lower
under temptation. If the high types’ downward temptation is weak, their marginal value when
they are fully tempted is not as low as the marginal value of the low types who are exercising
self-control. We first examine the case where the high types have weak temptation.

3.3.1 Weak Downward Temptation

We first show that if the high types have weak downward temptation, the seller does not gain
from offering ML ) {xL}. The only reason for the seller to decorate ML is to lower WH(ML) and
weaken the ex-ante IC for the high types, but this is not possible. If the seller offers a “plain”
menu {xL} for the low types, the high types’ ex-ante utility from the menu is WH({xL}) =
UH(xL). We now show that there exists no menu ML ) {xL} that yields a lower value of ex-
ante utility. To see this, take any menu ML ) {xL} that preserves ex-post IC for the low types.
Let z ∈ ML be an offer that maximizes VH . Ex-post IC for the low types and weak downward
temptation imply z ≥ xL (the standard monotonicity argument with IC). This and UH Â VH

imply UH(z)≥UH(xL) and hence

WH(ML) = max
y∈ML

[
UH(y)+VH(y)

]
−VH(z)≥UH(z)≥UH(xL), (15)

which proves our claim.
To complete the characterization of optimal schedules, let (ML,xL,MH ,xH) be an optimal

schedule. By ex-ante IC, WH(ML)≤WH(MH). By WH(ML) = UH(xL) and (11),

UH(xL)≤UH(xH)+VH(xH)−max{0,VH(xH)}. (16)

13This is because UL(x∗L)+VL(x∗L)≥ 0, UH +VH ÂUL +VL, and x∗L À 0.
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Figure 2: Optimal schedule when the high types have weak downward temptation

By Lemma 1,
FL(xL)≥ 0. (17)

Therefore, (16) and (17) constitute a necessary condition for optimality. They are also suffi-
cient, as the following proposition shows.

Proposition 2. Suppose that the high-type consumers have weak downward temptation. Then,
for any optimal schedule (ML,xL,MH ,xH), the pair (xL,xH) is a solution of maximizing nLπ(xL)+
nHπ(xH) subject to (16) and (17). Conversely, if a pair (xL,xH) solves the constrained max-
imization, then ({xL},xL,{xH},xH) is an optimal schedule, (16) and (17) hold with equality,
and FL(xH) < 0.

This result allows us to describe the optimal schedule graphically. See Figure 2. Since
FL(xL) = 0 at the optimum, one option for the seller is to set xL = x∗L. With this choice, the
set of feasible choices of xH is given by the kinked curve that follows the indifference curve of
UH from x∗L to y and then follows the indifference curve of UH +VH to the right. This kinked
curve is the set of offers xH that satisfy (16) with equality. Let xH denote the offer that is most
profitable on the kinked curve. To consider the interesting case, suppose, as in the figure, that
this offer xH lies on the indifference curve of UH .

We now decrease the quality level offered to the low types along FL = 0. Then, the kinked
curve shifts upwards and therefore the most profitable offer that can be given to the high types
moves up (straight if preferences are quasi-linear). However, it eventually hits the VH = 0
curve. At this point, the offer for the high types is at the kink and remains so for a while as we
continue moving xL. For example, if x′L is the offer to the low types, the most profitable offer
that can be given to the high types is y′. As we continue, the offer to the high types eventually
moves on to the indifference curve of UH +VH , as depicted by x′′H . The pair of thick lines
in the figure show the paths of the offers. Then the seller’s problem is to choose an offer x̂L

between the origin and x∗L on FL = 0, to maximize the profits nLπ(x̂L)+nHπ(x̂H), where x̂H is
the associated offer for the high types. Then ({x̂L}, x̂L,{x̂H}, x̂H) is an optimal schedule.
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The figure also illustrates why the seller offers multiple menus. If the seller offers a single
menu, then by ex-post IC, xH has to be on the indifference curve of UH +VH that passes through
xL. Since the indifference curves of UH +VH are flatter than those of UH , one can see from the
figure that by offering two menus, the seller expands the set of offers that can be assigned to
the high types for any given xL 6= 0 on FL = 0.

Important properties of optimal schedules are summarized as follows.

Proposition 3. If the high-type consumers have weak downward temptation, any optimal sched-
ule satisfies the following properties:

(i) The low types get a zero ex-ante surplus: WL(ML) = 0.
(ii) The high types get a strictly positive ex-ante surplus (i.e., information rent): if xL 6= 0,

then WH(MH) > 0.
(iii) The offer xH is not ex-post socially efficient in the sense that, at xH , the iso-profit curve

is not necessarily tangent with the indifference curve of UH +VH .
(iv) The seller offers different menus to different types: if xL 6= 0, then ML 6= MH .

An implication of the characterization is that, in contrast with the upward temptation case,
no discontinuity arises from the introduction of downward temptation. First, as in the standard
case, the seller has no incentive to decorate menus. Second, the profile of offers that the con-
sumers choose, i.e., (xL,xH), is close to that in the standard problem if the preferences are close
to being standard. Indeed, (16) and (17) can be rewritten as

UH(xL)≤min
{

UH(xH)+VH(xH), UH(xH)
}
,

0≤min
{

UL(xL)+VL(xL), UL(xL)
}
.

As Vγ converges to Uγ , the pair of inequalities converges to the critical pair of incentive con-
straints in the standard problem with utility functions Uγ .

3.3.2 Strong Downward Temptation

We now examine the case where the high types have strong downward temptation: VH ≺UL +
VL. Since VL ≺VH , we have VL ≺UL +VL, i.e., the low types also have downward temptation.

If the high types have strong downward temptation, the seller can bunch all the consumers
into a single menu without any loss. To see this, suppose, for the moment, that ex-post IR binds
for the low types:

UL(xL)+VL(xL) = 0. (18)

Since VH ≺UL +VL, we obtain VH(xL)≤ 0, i.e., xL is not as tempting as (0,0) for the low types.
Furthermore, ex-post IC for the low types implies that no other offer in ML is more tempting
than (0,0) and thus maxx∈ML VH(x) = 0. This implies

WH(ML)≥UH(xL)+VH(xL). (19)

Since maxx∈MH VH(x)≥ 0, we have WH(MH)≤UH(xH)+VH(xH). This, together with (19) and
ex-ante IC, implies

UH(xH)+VH(xH)≥UH(xL)+VH(xL).

The inequality implies that even if xH and xL are offered in the same menu, the high types
continue to have an incentive to choose xH . This and (18) imply that {xL,xH} satisfies the
critical pair of incentive constraints in the standard problem with utility functions Uγ +Vγ ,
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suggesting that the optimal schedule in the standard problem is also optimal here. However, to
establish this claim, there are two issues to be resolved.

First, the above argument starts by assuming (18). What if the seller sets xL such that
UL(xL)+VL(xL) > 0? The advantage of doing so is that it enables the seller to decorate ML

with a low quality good and reduce the high types’ ex-ante utility for ML. The most effective
decoration is (q̂,0) defined by UL(q̂,0) +VL(q̂,0) = UL(xL) +VL(xL). The offer (q̂,0) is the
most tempting offer that the seller can include in ML without disturbing ex-post IC for the low
types. This offer gives VH(q̂,0) > 0, and thus lowers the high types’ ex-ante utility from ML

and enables the seller to charge more for xH in a separate menu. Therefore, by choosing xL

for which ex-post IR does not bind, the seller earns less from the low types but can earn more
from the high types. We next show that despite being feasible, this decoration strategy does not
increase the overall profit if preferences are quasi-linear. That is, with the restricted domain of
preferences, (18) is satisfied at any optimal schedule.

Lemma 2. Suppose that the high-type consumers have strong downward temptation and the
ordinal preferences induced by Uγ +Vγ and Vγ are quasi-linear for each γ .14 Then, for any
optimal schedule, UL(xL)+VL(xL) = 0.

With this result and the restricted domain of preferences, the previous argument implies
that for any optimal schedule (ML,xL,MH ,xH), the simplified menu {xL,xH} satisfies all of the
ex-post incentive constraints. Therefore, to conclude that offering a single menu {xL,xH} is
optimal, it remains to show that the menu satisfies ex-ante IR for each type. To this end, we
show that ex-ante IR is vacuous under downward temptation.

Lemma 3. For consumers with downward temptation, any menu satisfies ex-ante IR.

This yields the following characterization of optimal schedules.

Proposition 4. Suppose that the high-type consumers have strong downward temptation and
the ordinal preferences of Uγ +Vγ and Vγ are quasi-linear for each γ . Then, for any optimal
schedule (ML,xL,MH ,xH), the pair (xL,xH) is a solution to the standard problem with utility
functions Uγ +Vγ . Conversely, if (xL,xH) is a solution to the standard problem with utility
functions Uγ +Vγ , ({xL,xH},xL,{xL,xH},xH) is an optimal schedule.

This result implies that, if the temptation is downward and strong, the optimal schedule is
qualitatively the same as that in the standard model. With strong downward temptation, all that
the analyst has to do is use the consumers’ utility functions under self-control (Uγ +Vγ ) within
the standard model.

4 Entry Fees

We have so far assumed that consumers who do not buy any good do not have to pay. While
this is a reasonable assumption for retail stores and restaurants, a number of services charge
fees that are independent of service usage. In this section, we extend our analysis to the case
where the seller can charge such fees.

In terms of formal modeling, allowing for entry fees is equivalent to removing the assump-
tion that each menu contains (0,0). Thus, a menu is now a non-empty compact subset M⊆R2

+.
Removing (0,0) from a menu can raise profits in two ways. First, by removing (0,0), the

seller can eliminate ex-post IR from the incentive constraints. Note, however, that ex-ante IR

14For the ordinal definition of quasi-linearity, see, e.g., Mas-Colell, Whinston, and Green (1995).
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remains a constraint, since consumers continue to have the option of not choosing any of the
menus offered by the seller. Second, the seller may gain from deleting (0,0) since doing so
may also reduce self-control costs for consumers who are tempted by (0,0). Since this raises
the consumers’ ex-ante utility, the seller can charge more.

As in the standard analysis, schedules list only the offers that consumers can choose and
do not necessarily specify the price for all q. If the price for a quality level q is not specified, it
means that either the seller does not offer the quality, or the price for the quality is prohibitive.
For this reason, the entry fee, defined as the price for q = 0, may not appear explicitly in
the characterization of optimal schedules. Entry fees can be made explicit since any high
enough entry fee will preserve all the incentives. To gain more insight, we will characterize
the minimum entry fees that support the optimal schedule (Section 4.5). As we will show, the
minimum entry fees are sometimes positive, while they are always zero in the standard model
of nonlinear pricing.

4.1 Complete Information

We again start with the complete information case. Since ex-post IR is no longer a constraint,
x∗γ is the most profitable offer subject only to the constraint that {x∗γ} satisfies ex-ante IR. Since
{x∗γ} is truly a singleton (does not contain the origin) and does not induce any temptation,
Wγ({x∗γ}) = Uγ(x∗γ). Thus x∗γ is simply the offer that maximizes π(x) subject to Uγ(x) = 0.
Therefore, the feasibility of entry fees changes x∗γ only for consumers with downward tempta-
tion. Indeed, for these consumers, ex-post IR is a binding constraint when entry fees are not
feasible.

4.2 Upward Temptation

If the high types have upward temptation, full surplus extraction remains possible. The con-
struction of the optimal schedule is identical, except that, as just discussed, the feasibility of
entry fees changes x∗L if the low types have downward temptation. The proof is thus omitted.

Proposition 5. If entry fees are feasible and the high-type consumers have upward temptation,
there exists a feasible schedule (ML,xL,MH ,xH) such that xL = x∗L and xH = x∗H .

4.3 Weak Downward Temptation

If the high types have weak downward temptation, the feasibility of entry fees changes the basic
form of the optimal schedule. Recall that without entry fees, the seller offers two menus and
separates the types, and ex-post IR binds for the low types if they have downward temptation.
If entry fees are feasible, on the other hand, ex-post IR does not have to be satisfied.

Figure 2 shows another reason why entry fees can increase profits. Without entry fees, xH

is on the indifference curve of either UH +VH or UH . If xH is on the UH +VH curve, the high
types are tempted by (0,0) and incur a positive self-control cost. If entry fees are feasible, the
seller can remove (0,0) from the menu and raise the high types’ ex-ante utility.

To characterize optimal schedules, let (ML,xL,MH ,xH) be any optimal schedule. The proof
for (15) remains valid and therefore the seller can set ML = {xL} without any loss. Hence
WH(ML) = UH(xL). By ex-ante IC, WH(MH) ≥WH(ML). Since the self-control cost is non-
negative, WH(MH)≤UH(xH). These inequalities together imply

UH(xH)≥UH(xL). (20)
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For the low types, non-negative self-control cost implies WL(ML) ≤ UL(xL) and ex-ante IR
implies WL(ML)≥ 0, yielding

UL(xL)≥ 0. (21)

Inequalities (20) and (21) are nothing but the pair of critical incentive constraints in the standard
problem with utility functions Uγ . That is to say, the standard problem with utility functions Uγ
faces fewer constraints.

Conversely, let {xH ,xL} denote an optimal menu in the standard problem with utility func-
tions Uγ (possibly xL = 0). We claim that ({xL},xL,{xH},xH) is an optimal schedule. Indeed,
since these menus do not induce any temptation, consumers evaluate them with Uγ . Therefore

WH({xH}) = UH(xH) = UH(xL) = WH({xL})≥ 0,

WL({xL}) = UL(xL) = 0≥UL(xH) = WL({xH}).
This shows that the proposed schedule satisfies ex-ante IR and IC. Since the menus are sin-
gletons, ex-post IC holds vacuously. Since (xL,xH) maximizes profits subject to (20) and (21),
there is no schedule that generates more profits. Thus we have shown

Proposition 6. Suppose that entry fees are feasible and the high-type consumers have weak
downward temptation. Then for any optimal schedule (ML,xL,MH ,xH), the pair (xL,xH) solves
the standard problem with utility functions Uγ . Conversely, if a pair (xL,xH) solves the standard
problem with utility functions Uγ , then ({xL},xL,{xH},xH) is an optimal schedule.

By comparing this result with Figure 2, we can see how entry fees affect the optimal sched-
ule. First, if the low types have downward temptation, then UL Â FL and thus the feasibility
of entry fees moves up the curve on which xL has to be located. In this case, therefore, ML

charges a positive entry fee. Note that if xL 6= 0, then UL(xL)+VL(xL) < 0. Therefore, ex post,
a low-type consumer prefers to buy nothing, but (0,0) is no longer an option because he has
committed to an entry fee. Having made the commitment, he finds xL to be an optimal choice.

As Figure 2 shows, another effect of the feasibility of entry fees is that the set of offers
xH that can be assigned to the high types faces no constraint from the indifference curves of
UH +VH . Since UH ÂUH +VH , this effect is also favorable to the seller. If the optimal xH falls
in the expanded part of the constraint set, MH also charges an entry fee.

4.4 Strong Downward Temptation

If the high types’ downward temptation is strong, the optimal schedule differs from that in the
case of weak downward temptation. The firm now gains from decorating ML. To see why, let
({xL},xL,{xH},xH) be the optimal schedule in Proposition 6. Suppose further that the scale of
the function VL is small and therefore UL +VL and UL induce similar indifference curves (i.e.,
the low types have almost infinite willpower). The seller can then offer a pair of menus given
by M′

L = {x′L,z = (0,0)} and M′
H = {x′H} depicted in Figure 3a. Then

WH(M′
L) = UH(y)+VH(y)−VH(y) = UH(y) < UH(xL) = WH({xL}).

The inequality implies that the presence of (0,0) in M′
L decreases the high types’ ex-ante utility

from the menu for the low types. This allows the seller to extract more surplus from the high
types. In the figure, x′H is indeed located above xH . The difference between x′H and xH is
bounded away from zero as x′L converges to xL.

An optimal schedule can be identified as follows. See Figure 3b. Pick an offer z = (qz, tz)
such that either UL(z) = 0 or tz = 0. Then pick another offer xL that is indifferent to z for
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Figure 3: Entry fees are feasible and the high types have strong downward temptation

UL +VL and such that xL ≥ z (so that UL(xL) ≥ 0). Given a choice of z and xL, compute the
high types’ ex-ante utility from {xL,z}, which equals UH(y). Then, among the offers xH such
that UH(xH) = UH(y), choose one that maximizes π(xH). Then let Π(z,xL) ≡ nHπ(xH) +
nLπ(xL) denote the expected profit given (z,xL). To identify an optimal schedule, first choose
xL between z and wz on the UL +VL indifference curve, to maximize Π(z,xL). This gives an
optimal offer xL(z) as a function of z. Finally, choose z to maximize Π(z,xL(z)). Given a
maximizer z, let (xL,xH) be the associated pair of offers. Then ({z,xL},xL,{xH},xH) is an
optimal schedule.

Formally, let Z be the set of offers z = (qz, tz) such that either [UL(z) = 0 and 0 ≤ z ≤ x∗L]
or tz = 0. For any z ∈ Z, let wz be the offer that maximizes π(wz) subject to UL(wz)+VL(wz) =
UL(z)+VL(z) and wz ≥ z. For any z ∈ Z, let XL(z) be the set of offers xL such that UL(xL)+
VL(xL) = UL(z)+VL(z) and z≤ xL ≤ wz. For any z ∈ Z and xL ∈ XL(z), let XH(z,xL) denote the
offer xH that maximizes π(xH) subject to UH(xH) = UH(xL)+VH(xL)−VH(z). Then

Proposition 7. Suppose that entry fees are feasible and the high-type consumers have strong
downward temptation. Let (z,xL) be a pair that maximizes nLπ(xL)+nHπ(XH(z,xL)) subject to
z∈ Z and xL ∈ XL(z). Then ({z,xL},xL,{xH},xH) with xH = XH(z,xL) is an optimal schedule.15

4.5 Supporting Entry Fees

In this section, we explicitly compute the entry fees that appear only implicitly in the character-
ization of optimal schedules. That is, given an optimal schedule, we identify the entry fee level
for each menu so that the incentive constraints are preserved. We say that a pair of entry fees
(eL,eH) ∈ R2

+ supports the optimal schedule if adding the offers (0,eL) and (0,eH) to ML and
MH , respectively, preserves the feasibility of the schedule. Here, eγ is the fee that consumers
are asked to pay if they choose Mγ and end up buying nothing. Since any pair of sufficiently
high entry fees preserve feasibility, we look for the “minimal” such pairs.

15The proposition allows for z such that qz > 0 and tz = 0, in which case UL(z)+VL(z) > 0. However, this case
can be ruled out if preferences are quasi-linear. Since this can be proved with a straightforward modification of the
proof of Lemma 2, the proof is omitted.
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Formally, for a given feasible schedule (ML,xL,MH ,xH), a supporting entry-fee profile is
a pair (eL,eH) ∈ R2

+ such that (ML ∪{(0,eL)},xL,MH ∪{(0,eH)},xH) is feasible. It can be
shown that for any feasible schedule, there exists a unique minimum supporting entry-fee profile
e∗ = (e∗L,e

∗
H), which is the supporting entry-fee profile such that for any other supporting entry-

fee profile e, we have e≥ e∗. See Appendix A.7 for the proof of the uniqueness.
Adding (0,eγ) to Mγ affects the incentive constraints in three ways. First, if eγ is too low,

type γ may prefer (0,eγ) to xγ ex post: ex-post IC for γ may be disturbed. Second, if eγ is too
low, (0,eγ) may be more tempting than other items in Mγ for γ . Then the type’s self-control
cost goes up, which may induce the type to switch to another menu: the ex-ante IC for γ may
be disturbed. Third, if eγ is too low, the other type (γ ′ 6= γ) may find (0,eγ) better than the
other items in Mγ . This may increase the type’s ex-ante utility from Mγ and induce the type to
choose Mγ over Mγ ′ : ex-ante IC for γ ′ may be disturbed.

Proposition 8. For any optimal schedule (ML,xL,MH ,xH) in Propositions 5–7, the minimum
supporting entry-fee profile is (êL, êH) defined by

Vγ(0, êγ) = min{0,max
x∈Mγ

Vγ(x)}, γ = L,H.

In words, if type γ’s most tempting offer in Mγ is more tempting than the option of no
purchase and no payment (maxVγ ≥ 0), then êγ = 0. If the option of no purchase and no
payment is even more tempting than the most tempting offer in Mγ (maxVγ ≤ 0), then êγ is
such that (0, êγ) is exactly as tempting as the most tempting offer.

Notice that êγ is independent of Uγ and the other type’s preferences. This implies that,
among the three effects discussed above, only the second one is binding: êγ is determined
solely by the constraint of not affecting γ’s most tempting choice. Intuitively, the reason is as
follows. First, if type γ has upward temptation, ex-post IC is not a binding constraint for êγ
since an offer of the form (0,eγ) is not a serious choice in the ex-post self-controlled decision.
Since the untempted part prefers xγ to (0,0) (otherwise the type would not choose the menu),
no amount of upward temptation makes (0,0), let alone (0,eγ), an appealing choice. Second, if
the consumer has downward temptation, an offer of the form (0,eγ) is more important when the
consumer is fully tempted (i.e., when he maximizes Vγ ) than when the consumer is exercising
self-control (when he maximizes Uγ +Vγ ). This allows us to ignore the effect on the optimal
choice in the Uγ +Vγ problem. Finally, to see that ex-ante IC for the other type (γ ′ 6= γ) is not
a binding constraint for êγ , note that if (0, êγ) does increase the ex-ante utility of γ ′ in Mγ , then
(0, êγ) has to be the ex-post optimal choice for γ ′ in Mγ . But, if the outcome of choosing the
menu Mγ is to buy nothing and pay a non-negative entry fee, the consumer prefers not choosing
the menu. Thus the constraint of not inducing γ ′ to enter Mγ is not binding for êγ .

While Proposition 8 gives the exact level of the minimum supporting entry fee for each
menu, one may be particularly interested in whether entry fees are positive at the optimal
schedule. As Table 1 summarizes, Proposition 8 has a few implications: (i) for each type,
êγ = 0 if γ has upward temptation, (ii) êL > 0 if the low types have downward temptation and
the high types do not have strong downward temptation, and (iii) êH > 0 if the high types have
strong downward temptation.

Among these implications, (i) might be particularly interesting since it says that if êγ > 0,
type γ has downward temptation. Thus, if the data for a particular service category show
that positive entry fees are charged consistently in menus targeted for a certain segment of
consumers, this may be an indication of êγ > 0 for these consumers. Our theory then implies
that these consumers have downward temptation.

It is thus worth noting that implication (i) discussed above extends to all feasible schedules.
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High Type’s Temptation

Low Type’s Temptation Upward Weak Downward Strong Downward

Upward êL = 0, êH = 0 êL = 0, êH ≥ 0
Downward êL > 0, êH = 0 êL > 0, êH ≥ 0 êL ≥ 0, êH > 0

Table 1: Signs of minimum supporting entry fees at the optimal schedule

Proposition 9. Let (ML,xL,MH ,xH) be any feasible schedule and (e∗L,e
∗
H) be the minimum

supporting entry-fee profile for the schedule. Then for any type γ , if e∗γ > 0, then type γ has
downward temptation.

5 Conclusion

Consumers’ temptation and self-control appear extremely relevant for firms’ pricing decisions.
By using a recent advance in decision theory together with the classical framework of nonlinear
pricing, we provide a formal theoretical analysis of a firm’s optimal response to consumers with
temptation. Because of costly self-control, the number of menus and entry fees matter for the
seller’s problem and thus our theory provides a link between these decisions of the seller and
the demand side of the market. Since the standard nonlinear pricing problem is subsumed as a
special case, we were also able to clarify whether the introduction of slight temptation affects
the firm’s behavior qualitatively.

The extreme result of full surplus extraction depends on our assumptions. For instance, as
mentioned before, we assumed that the cost of creating a menu is zero, which is problematic if
each menu represents the entire selection of a single physical retail store. If the setup cost of a
store is high, the firm may find it too costly to have multiple stores. In a companion paper, we
studied the case where the seller is restricted to offer a single menu (Esteban, Miyagawa, and
Shum, 2006). Another critical assumption is that the seller is a monopolist. The presence of
competitors who sell identical products changes the result completely since profits are driven
down to zero (Esteban and Miyagawa, 2006). However, the results in the present paper would
survive to some degree in markets where sellers are heterogeneous and have some market
power.
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A Appendix

A.1 Proof of Proposition 1

Let y be the intersection of the UH = 0 curve and the indifference curve of UH +VH through x∗L:

UH(y)+VH(y) = UH(x∗L)+VH(x∗L), (22)

UH(y) = 0.

The offer y is well defined by Assumption 4. Since FL(x∗L) = 0, x∗LÀ 0, and FL≺UH ≺UH +VH ,
we have yÀ x∗L.

If VL(y) ≤ VL(x∗L) (which happens if VL ≺ UH +VH), let z = y. Otherwise, let z be the
intersection of the indifference curve of VL through x∗L and the indifference curve of VH through
y:

VL(z) = VL(x∗L),
VH(z) = VH(y). (23)

We claim that a schedule ({x∗L,z},x∗L,{x∗H},x∗H) is feasible and thus optimal. By the defi-
nition of complete-information offers, ex-post IR is satisfied for each type and {x∗H} satisfies
ex-ante IR. Since {x∗H} contains only x∗H and (0,0), ex-post IC is vacuous for the high types.
Thus, it remains to prove ex-ante IC for each type and ex-ante IR and ex-post IC for the low
types.

Ex-ante IC for H: We first show that the high types’ ex-post optimal choice from {x∗L,z} is
x∗L. Indeed, FL(x∗L) = 0 and FL ≺UH +VH imply

UH(x∗L)+VH(x∗L)≥ 0. (24)

Further, z≥ y, VH(z) = VH(y), and VH ÂUH +VH imply

UH(z)+VH(z)≤UH(y)+VH(y) = UH(x∗L)+VH(x∗L). (25)

This and (24) imply that x∗L is an optimal choice from {x∗L,z} for UH +VH .
We show next that the most tempting choice in {x∗L,z} is z. Indeed, we have VH(y)≥VH(x∗L)

by (22), y À x∗L, and VH ÂUH +VH . Thus by (23), VH(z) ≥ VH(x∗L). Further, FL(x∗L) = 0 and
FL ≺VH imply VH(x∗L)≥ 0 and hence VH(z)≥ 0.

These facts together imply

WH({x∗L,z}) = UH(x∗L)+VH(x∗L)−VH(z) = UH(y)+VH(y)−VH(y) = 0 = WH({x∗H}).

Ex-post IC for L: By z ≥ x∗L, (25), and UH +VH ÂUL +VL, we have UL(x∗L) +VL(x∗L) ≥
UL(z)+VL(z).
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Ex-ante IR for L: By the construction of z, VL(x∗L)≥VL(z). This and ex-post IC imply that
the inclusion of z does not affect the low types’ ex-ante utility: WL({x∗L,z}) = WL({x∗L}). Since
x∗L is a complete-information offer, WL({x∗L}) = 0.

Ex-ante IC for L: Suppose, by contradiction, that WL({x∗H}) > 0. This is possible only if
UL(x∗H)+VL(x∗H) > 0, which implies

WL({x∗H}) = UL(x∗H)+VL(x∗H)−max{0,VL(x∗H)}. (26)

But since x∗H À 0 and UH Â FL, we have FL(x∗H) < 0, which implies that (26) is negative, a
contradiction. This proves WL({x∗H})≤ 0, as desired. Q.E.D.

A.2 Proof of Proposition 2

The proof consists of a few lemmas.

Lemma 4. If a schedule (ML,xL,MH ,xH) is feasible, (xL,xH) satisfies

FL(xL)≥ 0, (27)

UH(xL)≤UH(xH)+VH(xH)−max{0,VH(xH)}. (28)

Proof. See the main text.

Lemma 5. If a pair (xL,xH) satisfies (27), (28), and FL(xH) < 0, then ({xL},xL,{xH},xH) is a
feasible schedule.

Proof. We start with the low type. Since FL(xL) ≥ 0, ex-post IR and ex-ante IR follow from
Lemma 1. Thus, it remains to prove ex-ante IC. For this, it suffices to prove WL({xH}) ≤ 0.
So, suppose WL({xH}) > 0. This is possible only if UL(xH)+VL(xH) > 0. Thus WL({xH}) =
UL(xH)+VL(xH)−max{0,VL(xH)}, which is negative since FL(xH) < 0, a contradiction.

Now, consider the high type. Since FL(xL)≥ 0 and FL ≺UH , we obtain UH(xL)≥ 0. Thus,
the right-hand side of (28) is non-negative. This implies UH(xH)+VH(xH) ≥ 0, so ex-post IR
is satisfied. Thus

WH({xH}) = UH(xH)+VH(xH)−max{0,VH(xH)} ≥UH(xL)≥ 0,

which proves ex-ante IR. In the main text, we proved WH({xL}) = UH(xL). Thus WH({xL})≤
WH({xH}), which proves ex-ante IC. Q.E.D.

Lemma 6. If a pair (xL,xH) satisfies (27), (28), and FL(xH) ≥ 0, then there exists a pair
(x′L,x

′
H) that satisfies (27), (28), FL(x′H) < 0, and nLπ(x′L)+nHπ(x′H) > nLπ(xL)+nHπ(xH).

Proof. Let (xL,xH) be as in the lemma. Then FL(xH)≥ 0 and FL(xL)≥ 0. Since x∗L is the most
profitable offer satisfying FL ≥ 0,

π(x∗L)≥max{π(xL),π(xH)}. (29)

Since the curve FL = 0 is tangent with the (differentiable) iso-profit curve at x∗L and VH Â FL,
there exists an offer x′H À x∗L such that

VH(x′H) > VH(x∗L),
π(x′H) > π(x∗L). (30)

23



We claim that (x∗L,x
′
H) is a desired pair. Since UH ÂVH , UH(x′H) > UH(x∗L). Since VH Â FL and

FL(x∗L) = 0, we have VH(x∗L)≥ 0, and hence VH(x′H) > 0. Thus

UH(x′H)+VH(x′H)−max{0,VH(x′H)}= UH(x′H) > UH(x∗L).

This implies that (x∗L,x
′
H) satisfies (28). Since x∗L maximizes π subject to FL ≥ 0, (30) implies

FL(x′H) < 0. By (30) and (29), (x∗L,x
′
H) generates larger profits than (xL,xH). Q.E.D.

Lemma 7. For any optimal schedule (ML,xL,MH ,xH), the pair (xL,xH) maximizes nLπ(xL)+
nHπ(xH) subject to (27) and (28).

Proof. If not, there exists a pair (x′L,x
′
H) that dominates (xL,xH). Lemma 6 implies that, among

such pairs, there exists one that also satisfies FL(x′H)< 0. Then by Lemma 5, ({x′L},x′L,{x′H},x′H)
is feasible. But this schedule generates more profits than (ML,xL,MH ,xH), a contradiction.

Q.E.D.

Lemma 8. If a pair (xL,xH) maximizes nLπ(xL) + nHπ(xH) subject to (27) and (28), then
({xL},xL,{xH},xH) is an optimal schedule.

Proof. By Lemma 6, FL(xH)< 0. Thus by Lemma 5, ({xL},xL,{xH},xH) is a feasible schedule.
Suppose that this schedule is not optimal. Then there exists a feasible schedule (M′

L,x
′
L,M

′
H ,x′H)

that dominates it. But by Lemma 4, (x′L,x
′
H) satisfies (27) and (28). Since (xL,xH) maximizes

profits subject to (27) and (28), we obtained a contradiction. Q.E.D.

Lemma 9. If a pair (xL,xH) maximizes nLπ(xL)+nHπ(xH) subject to (27) and (28), then (27)
and (28) hold with equality and FL(xH) < 0.

Proof. If (28) is not binding, xH can be replaced with xH +(0,ε) for a small ε > 0. If (27) is
not binding, xL can be replaced with xL +(0,ε). Lemma 6 implies FL(xH) < 0. Q.E.D.

A.3 Proof of Proposition 3

(i) Since FL(xL) = 0, Lemma 1 implies WL(ML) = 0.

(ii) Since (16) binds, WH(MH) = UH(xL). Since FL(xL) = 0 and FL ≺UH , we have UH(xL) > 0
if xL 6= 0.

(iii) In Figure 2, if the optimal schedule offers a pair like ({x′L},{x′H}), then at x′H , the iso-profit
curve is not tangent with the indifference curve of UH +VH . The same holds if the optimal
schedule offers ({x∗L},{xH}).16

(iv) Suppose, by contradiction, that xL 6= 0 and ML = MH . There are two possible cases. First,
suppose VH(xH)≥ 0. Then (16) with equality implies UH(xL) = UH(xH). Since FL(xH) < 0 =
FL(xL) and UH Â FL, we have xH À xL. Since UH +VH ≺UH , we obtain UH(xL)+VH(xL) >
UH(xH)+VH(xH), a contradiction with ex-post IC. Next, consider the case where VH(xH)≤ 0.
Then (16) with equality implies UH(xL) = UH(xH)+VH(xH). Since FL(xL) = 0, xL 6= 0, and
VH Â FL, we obtain VH(xL) > 0. Thus UH(xL)+VH(xL) > UH(xL) = UH(xH)+VH(xH), which
is again a contradiction with ex-post IC. Q.E.D.

16One can easily find a numerical example where the optimal schedule offers a pair like ({x′L},{x′H}) or
({x∗L},{xH}).
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A.4 Proof of Lemma 2

It suffices to prove the following.

Lemma 10. Suppose that the high-type consumers have strong downward temptation and
the ordinal preferences of Uγ +Vγ and Vγ are quasi-linear for each γ . Then, for any feasi-
ble schedule (ML,xL,MH ,xH) such that UL(xL)+VL(xL) > 0, there exists a feasible schedule
(M′

L,x
′
L,M

′
H ,x′H) such that

nLπ(x′L)+nHπ(x′H) > nLπ(xL)+nHπ(xH),
UL(x′L)+VL(x′L) = 0.

To prove Lemma 10, fix a feasible schedule (ML,xL,MH ,xH) (possibly ML = MH) such
that UL(xL)+VL(xL) > 0. See Figure 4. (For simplicity, xH is not shown in the figure.) Since
UL(xL)+VL(xL) > 0, there exists t ′ > 0 such that x′L ≡ xL +(0, t ′) satisfies

UL(x′L)+VL(x′L) = 0. (31)

First, consider the case where UL(xH) +VL(xH) ≥ 0. Then π(xH) ≤ π(x∗L) and π(xL) <
π(x∗L). Hence ({x∗L},x∗L,{x∗L},x∗L) is a feasible schedule and generates more profits than (ML,xL,MH ,xH).
Since UL(x∗L)+VL(x∗L) = 0, we obtained the desired result.

Thus, in the remainder of the proof, assume UL(xH)+VL(xH) < 0. We now consider the
following schedule:

({x′L},x′L,{xH},xH).

Since x′L satisfies (31) and π(x′L)− π(xL) = t ′ > 0, it remains to show that this schedule is
feasible. By Lemma 3 (which is independent of Lemma 10), ex-ante IR is vacuous. By (31),
ex-post IR holds for L. Since the initial schedule is feasible, ex-post IR also holds for H.
Since UL(xH)+VL(xH) < 0 and the low types have downward temptation, WL({xH}) = 0. This
implies that ex-ante IC holds for L. It remains to show ex-ante IC for H, i.e., WH({xH}) ≥
WH({x′L}). This is proved in the reminder of the proof.

First, WH({x′L}) is given by

WH({x′L}) = UH(x′L)+VH(x′L)−max{0,VH(x′L)}= UH(x′L)+VH(x′L) (32)

since VH ≺UL +VL. On the other hand, since offers in MH \{xH} may be tempting,

WH({xH})≥WH(MH). (33)

Since the initial schedule satisfies ex-ante IC,

WH(MH)≥WH(ML). (34)

The ex-post IC for the low types in the initial schedule implies that none of the offers in
ML is below the indifference curve of UL +VL that passes through xL. Since VH ≺UL +VL, no
offer in ML is more tempting for the high types than the offer (q̂,0) defined by

UL(q̂,0)+VL(q̂,0) = UL(xL)+VL(xL). (35)

That is,
VH(q̂,0)≥ max

x∈ML
VH(x). (36)
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Figure 4: Proof of Lemma 2

Since the right-hand side of (35) is strictly positive, q̂ > 0. By quasi-linearity, UL(q̂, t ′) +
VL(q̂, t ′) = 0. Let t ′′ > 0 be defined by VH(q̂, t ′′) = 0. Since VH ≺UL +VL, we have t ′′ < t ′.

Let y be the offer defined by

VH(y) = VH(q̂,0), (37)

UH(y)+VH(y) = UH(xL)+VH(xL). (38)

Then

WH(ML)≥UH(xL)+VH(xL)−VH(q̂,0) by (36)

= UH(y)+VH(y)−VH(y) by (37) and (38)

= UH(y)+VH(q̂, t ′′) since VH(q̂, t ′′) = 0

= UH(y)+VH(y+(0, t ′′)) by (37)

> UH(y+(0, t ′))+VH(y+(0, t ′)) by t ′ > t ′′ > 0

= UH(x′L)+VH(x′L) by (38).

This, together with (32)–(34), implies WH({xH}) > WH({x′L}), as desired. Q.E.D.

A.5 Proof of Lemma 3

Let γ be any type with downward temptation. Let M be any menu and let x ∈ M be such that
Vγ(x)≥ 0. By downward temptation, Vγ(x)≥ 0 implies Uγ(x)≥ 0, and hence

Uγ(x)+Vγ(x)≥Vγ(x),

which implies
max
y∈M

[
Uγ(y)+Vγ(y)

]≥Vγ(x).

Since this holds for all x ∈M such that Vγ(x)≥ 0 and M includes (0,0), we obtain

max
y∈M

[
Uγ(y)+Vγ(y)

]≥max
y∈M

Vγ(y),

which means Wγ(M)≥ 0. Q.E.D.
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A.6 Proof of Proposition 7

Let ({z,xL},xL,{xH},xH) be as stated in the proposition. We first show that this schedule
is feasible. For the low types, ex-post IC is trivial by construction. Ex-ante IR holds since
WL({xL,z}) = UL(z) ≥ 0. For ex-ante IC, it suffices to show that UL(xH) < 0. So, sup-
pose UL(xH) ≥ 0. Note that UL(xL) ≥ 0. Since x∗L maximizes π subject to UL ≥ 0, we have
π(x∗L) ≥ max{π(xL),π(xH)}. Thus, the pair (z′,x′L) = (x∗L,x

∗
L) dominates (z,xL) strictly since

π(XH(x∗L,x
∗
L)) > π(x∗L), which is a contradiction with the optimality of (z,xL). For the high

types, ex-post IC is trivial. Ex-ante IC holds since WH({xH}) = WH({xL,z}) by construction.
For ex-ante IR, note WH({xL,z})≥UH(z)+VH(z)−VH(z) = UH(z). Since UL(z)≥ 0, we have
UH(z)≥ 0.

To finish the proof, suppose that ({z,xL},xL,{xH},xH) is not optimal. Thus it is dominated
by another schedule (M′

L,x
′
L,M

′
H ,x′H). Since self-control costs are non-negative, UL(x′L) ≥ 0.

Let z′ = (q′z, t ′z) be the offer defined by

UL(z′)+VL(z′) = UL(x′L)+VL(x′L),
either UL(z′) = 0 or t ′z = 0.

We claim that VH(z′) ≥ maxx∈M′
L
VH(x). If t ′z = 0, this follows from ex-post IC for L and

strong downward temptation. If UL(z′) = 0, then ex-ante IR implies

0≤WL(M′
L) = VL(z′)−max

x∈M′
L

VL(x).

The inequality together with UL +VL Â VH Â VL and ex-post IC for L yields the desired in-
equality.

The claim implies
WH(M′

L)≥UH(x′L)+VH(x′L)−VH(z′). (39)

Let x′′L = x′L if x′L ≤ wz′ and x′′L = wz′ otherwise. Then x′′L and x′L lie on the same indifference
curve of UL +VL. Since UL +VL ≺UH +VH , we obtain

UH(x′′L)+VH(x′′L)≤UH(x′L)+VH(x′L). (40)

By ex-ante IC and non-negative self-control costs, WH(M′
L) ≤WH(M′

H) ≤UH(x′H). This, to-
gether with (39) and (40), implies

UH(x′H)≥UH(x′′L)+VH(x′′L)−VH(z′).

This implies π(x′H)≤ π(x′′H), where x′′H = XH(z′,x′′L). Since π(x′′L)≥ π(x′L), the pair (x′′L,x
′′
H) is

at least as profitable as (x′L,x
′
H), which is strictly more profitable than (xL,xH). Hence, the pair

(z′,x′′L) strictly dominates (z,xL), a contradiction with the initial choice of (z,xL). Q.E.D.

A.7 Uniqueness of Minimum Supporting Entry Fees

This section proves that for any feasible schedule, there exists a unique minimum support-
ing entry-fee profile. To show this, we prove the following property: for any feasible sched-
ule (ML,xL,MH ,xH), if e = (eL,eH) and e′ = (e′L,e

′
H) are supporting entry-fee profiles, so is

the coordinate-wise minimum emin ≡ (min{eL,e′L},min{eH ,e′H}). This property implies the
uniqueness since the set of supporting entry-fee profiles is a non-empty closed subset of R2

+.
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So, we show that the schedule (ML ∪{(0,emin
L )},xL,MH ∪{(0,emin

H )},xH) is feasible. For
each type, ex-post IC and ex-ante IR are trivially satisfied since e and e′ are supporting entry-
fee profiles. Thus, it remains to prove ex-ante IC for each type. We prove only for the low type,
since the proof for the high type works similarly. Suppose, by way of contradiction, that the
low types prefer the menu intended for the high types, i.e.,

WL
(
ML∪{(0,emin

L )}) < WL
(
MH ∪{(0,emin

H )}). (41)

Since the left-hand side is non-negative by ex-ante IR, the right-hand side is positive. Assume,
without loss of generality, that emin

H = eH . Then

WL
(
MH ∪{(0,eH)}) > 0≥UL(0,eH)≥UL(0,eH)+VL(0,eH)− max

MH∪{(0,eH)}
VL(x).

Looking at the both ends of these inequalities, we see that in the menu MH ∪{(0,eH)}, the
offer (0,eH) does not maximize UL +VL. Thus

WL
(
MH ∪{(0,eH)}) = max

MH

[
UL(x)+VL(x)

]− max
MH∪{(0,eH)}

VL(x)

≤max
MH

[
UL(x)+VL(x)

]− max
MH∪{(0,e′H)}

VL(x)

≤WL
(
MH ∪{(0,e′H)}).

This and (41) imply that at least one of the following holds:

WL
(
ML∪{(0,e′L)}

)
< WL

(
MH ∪{(0,e′H)}), or

WL
(
ML∪{(0,eL)}

)
< WL

(
MH ∪{(0,eH)}).

This is a contradiction since e and e′ are both supporting entry-fee profiles. Q.E.D.

A.8 Proof of Proposition 8

We first prove the following result, which holds for any feasible schedule:

Lemma 11. For any feasible schedule, (êL, êH) is a supporting entry-fee profile.

Proof. Let (ML,xL,MH ,xH) be any feasible schedule. We show that the modified schedule
(ML ∪ {(0, êL)},xL,MH ∪ {(0, êH)},xH) is also feasible. So, take any type γ ∈ {L,H}. The
following proof works in the same way for each type.

(Ex-post IC) We first show that the modified schedule satisfies ex-post IC for γ . Since the
initial schedule is feasible, it suffices to show that the added item (0, êγ) is not strictly preferred
to xγ by Uγ +Vγ . To show this, first consider the case where type γ has upward temptation.
Since the initial schedule is feasible,

0≤Wγ(Mγ) = Uγ(xγ)+Vγ(xγ)−max
x∈Mγ

Vγ(x)≤Uγ(xγ).

Then, since Uγ +Vγ ÂUγ , we obtain Uγ(xγ)+Vγ(xγ) ≥ 0. Since Uγ(0, êγ)+Vγ(0, êγ) ≤ 0, we
have Uγ(xγ)+Vγ(xγ)≥Uγ(0, êγ)+Vγ(0, êγ), as desired.

Now, consider the case when γ has downward temptation. Suppose, by way of contradic-
tion,

Uγ(0, êγ)+Vγ(0, êγ) > Uγ(xγ)+Vγ(xγ). (42)
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Then there exists e′γ > êγ such that Uγ(0,e′γ)+Vγ(0,e′γ) equals the right-hand side of (42). Since
xγ satisfies ex-post IC in the initial schedule, for all x ∈Mγ ,

Uγ(x)+Vγ(x)≤Uγ(0,e′γ)+Vγ(0,e′γ).

Since Vγ ≺Uγ +Vγ , it follows that for all x ∈Mγ , Vγ(x)≤Vγ(0,e′γ). But then

max
x∈Mγ

Vγ(x)≤Vγ(0,e′γ) < Vγ(0, êγ) = min{0,max
x∈Mγ

Vγ(x)},

which is a contradiction.
(Ex-ante IR) Ex-post IC just proved and Vγ(0, êγ)≤maxx∈Mγ Vγ(x) imply

Wγ(Mγ ∪{(0, êγ)}) = Uγ(xγ)+Vγ(xγ)− max
Mγ∪{(0,êγ )}

Vγ(x)

= Uγ(xγ)+Vγ(xγ)−max
Mγ

Vγ(x) = Wγ(Mγ)≥ 0.
(43)

(Ex-ante IC) Suppose, by way of contradiction, that for θ 6= γ , Wγ(Mγ ∪ {(0, êγ)}) <
Wγ(Mθ ∪{(0, êθ )}). Then

max
Mθ

[
Uγ(x)+Vγ(x)

]−max
Mθ

Vγ(x)

= Wγ(Mθ )≤Wγ(Mγ)
= Wγ(Mγ ∪{(0, êγ)}) by (43)

< Wγ(Mθ ∪{(0, êθ )})
= max

Mθ∪{(0,êθ )}
[
Uγ(x)+Vγ(x)

]− max
Mθ∪{(0,êθ )}

Vγ(x)

≤ max
Mθ∪{(0,êθ )}

[
Uγ(x)+Vγ(x)

]−max
Mθ

Vγ(x).

(44)

Looking at the both ends of these inequalities, we see that (0, êθ ) maximizes Uγ +Vγ in the
menu Mθ ∪{(0, êθ )}. Thus,

Wγ(Mθ ∪{(0, êθ )}) = Uγ(0, êθ )+Vγ(0, êθ )− max
Mθ∪{(0,êθ )}

Vγ(x)

≤Uγ(0, êθ )≤ 0.

But then, (44) implies Wγ(Mγ)< 0. This is a contradiction since the initial schedule (ML,xL,MH ,xH)
is feasible. Q.E.D.

Lemma 12. Let (ML,xL,MH ,xH) be an optimal schedule.
(i) If the high types have upward temptation, WL(ML) = 0.

(ii) If the high types have weak downward temptation, WL(ML) = 0 and WH(MH) =WH(ML).
(iii) If the high types have strong downward temptation and the schedule is the one in Propo-

sition 7, then WH(MH) = WH(ML). In addition, if tz > 0, then WL(ML) = 0.

Proof. (i) This is trivial since full surplus extraction is possible.
(ii) Since (xL,xH) is a solution to the standard problem with Uγ , (20) and (21) bind. The

proof for those inequalities then implies WL(ML) = 0 and WH(MH) = WH(ML).
(iii) By the construction of the schedule, WH(MH) = WH(ML). If tz > 0, then WL(ML) =

UL(z) = 0. Q.E.D.
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The following lemma completes the proof of Proposition 8.

Lemma 13. For any optimal schedule (ML,xL,MH ,xH) in Propositions 5–7, if a pair (eL,eH)
is a supporting entry-fee profile for the schedule, then eL ≥ êL and eH ≥ êH .

Proof. To prove eL≥ êL, suppose, by way of contradiction, that êL > eL≥ 0. Then maxML VL(x)=
VL(0, êL) < VL(0,eL). Thus

WL(ML∪{(0,eL)}) = UL(xL)+VL(xL)− max
ML∪{(0,eL)}

VL(x)

= UL(xL)+VL(xL)−VL(0,eL)
< UL(xL)+VL(xL)−VL(0, êL) = WL(ML) = 0,

(45)

where the last equality follows from Lemma 12 and êL > 0; note that if the high types have
strong downward temptation and tz = 0, then êL = 0. By (45), ML∪{(0,eL)} violates ex-ante
IR, which is a contradiction since (eL,eH) is a supporting entry-fee profile.

To prove eH ≥ êH , suppose, by contradiction, that êH > eH ≥ 0. Then, as in the previous
paragraph,

WH(MH ∪{(0,eH)}) = UH(xH)+VH(xH)− max
MH∪{(0,eH)}

VH(x)

< WH(MH) = WH(ML),
(46)

where the last equality follows from Lemma 12 and êH > 0; note that if the high types have
upward temptation, then x∗H ∈MH and hence êH = 0.

We now claim
VH(0,eL)≤ max

x∈ML
VH(x). (47)

Suppose that this does not hold. Then there exists e′L > eL such that VH(0,e′L) equals the right-
hand side of (47). Thus, for all x ∈ML, VH(x) ≤ VH(0,e′L). Since VL ≺ VH , we obtain that for
all x ∈ML, VL(x)≤VL(0,e′L). But then

max
x∈ML

VL(x)≤VL(0,e′L) < VL(0,eL)≤VL(0, êL)≤ max
x∈ML

VL(x).

This contradiction proves (47).
By (47),

WH(ML∪{(0,eL)}) = max
ML∪{(0,eL)}

[
UH(x)+VH(x)

]−max
ML

VH(x)≥WH(ML).

This and (46) imply WH(MH ∪{(0,eH)}) < WH(ML∪{(0,eL)}). Thus ex-ante IC is violated,
which is a contradiction since (eL,eH) is a supporting entry-fee profile. Q.E.D.

A.9 Proof of Proposition 9

Let (ML,xL,MH ,xH) be any feasible schedule. By Lemma 11 in Appendix A.8, (êL, êH) is a
supporting entry-fee profile. Let γ ∈ {L,H} be a type that has upward temptation. By ex-ante
IR and ex-post IC, Uγ(xγ)≥ 0. Since Vγ ÂUγ , it follows that Vγ(xγ)≥ 0. Thus êγ = 0. Then, if
(e∗L,e

∗
H) is the minimum supporting entry-fee profile, e∗γ ≤ êγ = 0, hence e∗γ = 0. Q.E.D.
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A.10 Many Types

We here generalize Propositions 1 and 5 to many types. Let Γ = {1,2, . . . ,T} be a finite set
of types. Let nγ denote the fraction of consumers whose type is γ (thus ∑γ∈Γ nγ = 1). It is
straightforward to generalize Assumptions 1–6 and other definitions to many types.

Proposition 10. Assume that each type has upward temptation. Then, whether entry fees are
feasible or not, there exists a feasible schedule (Mγ ,xγ)γ∈Γ such that xγ = x∗γ for each γ ∈ Γ.

Proof. It suffices to consider the case where entry fees are not feasible (note that x∗γ is not
affected by whether entry fees are feasible). To construct a desired schedule, fix a type θ ∈ Γ.
We construct a sequence of menus (Mγ

θ )T
γ=θ such that all the menus are finite sets and Mγ

θ ⊆
Mγ+1

θ for all γ . The first menu is Mθ
θ ≡ {x∗θ}. To specify the remainder, let γ > θ and assume

that we have specified finite menus up to Mγ−1
θ . Let yγ

θ be the offer such that

Uγ(y
γ
θ )+Vγ(y

γ
θ ) = max

Mγ−1
θ

[
Uγ(x)+Vγ(x)

]
,

Uγ(y
γ
θ ) = 0.

The offer yγ
θ is well-defined since Uγ +Vγ Â Uγ and the right-hand side of the first line is

positive (because Uγ(x∗θ )+Vγ(x∗θ ) > 0).
Now, if maxMγ−1

θ
Vγ(x)≥Vγ(y

γ
θ ), then we set Mγ

θ = Mγ−1
θ . If not, let zγ

θ be the offer defined
by

Vγ(z
γ
θ ) = Vγ(y

γ
θ ),

Vθ (zγ
θ ) = min{Vθ (yγ

θ ),Vθ (x∗θ )}, (48)

and set Mγ
θ = Mγ−1

θ ∪{zγ
θ}. Since Vθ ≺Vγ and zγ

θ and yγ
θ are on the same indifference curve of

Vγ , we have zγ
θ ≥ yγ

θ . This and Uγ +Vγ ≺Vγ imply

Uγ(z
γ
θ )+Vγ(z

γ
θ )≤Uγ(y

γ
θ )+Vγ(y

γ
θ ) = max

Mγ−1
θ

[
Uγ(x)+Vγ(x)

]
.

Hence,

Wγ(M
γ
θ ) = max

Mγ
θ

[
Uγ(x)+Vγ(x)

]−max
Mγ

θ

Vγ(x)

= max
Mγ−1

θ

[
Uγ(x)+Vγ(x)

]−max{Vγ(y
γ
θ ),max

Mγ−1
θ

Vγ(x)}

≤Uγ(y
γ
θ )+Vγ(y

γ
θ )−Vγ(y

γ
θ ) = 0.

Given (Mγ
θ )T

γ=θ , let Mθ ≡MT
θ . We claim that (Mθ ,x∗θ )θ∈Γ is a feasible schedule.

We begin by proving ex-ante IC for the “downward” direction. To this end, we first show
that for any triple k > γ ≥ θ ,

max
Mk

θ

[
Uγ(x)+Vγ(x)

]
= max

Mk−1
θ

[
Uγ(x)+Vγ(x)

]
. (49)

To see this, assume Mk
θ 6= Mk−1

θ (otherwise, there is nothing to prove). Let w be such that

w ∈ Argmax
Mk−1

θ

[
Uk(x)+Vk(x)

]
.
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Since Mk
θ 6= Mk−1

θ ,
Vk(yk

θ ) > max
Mk−1

θ

Vk(x)≥Vk(w).

Since Vk ÂUk +Vk, and w and yk
θ are on the same indifference curve of Uk +Vk, we have yk

θ Àw.
Recall zk

θ ≥ yk
θ and they lie on the same indifference curve of Vk. Since Vk ÂUk +Vk ÂUγ +Vγ ,

max
Mk−1

θ

[
Uγ(x)+Vγ(x)

]≥Uγ(w)+Vγ(w) > Uγ(yk
θ )+Vγ(yk

θ )≥Uγ(zk
θ )+Vγ(zk

θ ).

This and Mk
θ = Mk−1

θ ∪{zk
θ} imply (49).

(49) implies that for any pair γ ≥ θ ,

max
Mθ

[
Uγ(x)+Vγ(x)

]
= max

Mγ
θ

[
Uγ(x)+Vγ(x)

]
. (50)

Therefore, for any pair γ ≥ θ ,

Wγ(Mθ ) = max
Mγ

θ

[
Uγ(x)+Vγ(x)

]−max
Mθ

Vγ(x)

≤max
Mγ

θ

[
Uγ(x)+Vγ(x)

]−max
Mγ

θ

Vγ(x) = Wγ(M
γ
θ )≤ 0.

Thus, consumers have no ex-ante incentive to mimic lower types, i.e., ex-ante IC is satisfied
for the downward direction.

Since (50) also holds for γ = θ , ex-post IC is satisfied. By construction, for all x ∈ Mθ ,
x≥ x∗θ . This and ex-post IC imply

Uθ (x)≤ 0 for all x ∈Mθ . (51)

This implies that for any pair γ < θ , Wγ(Mθ )≤ 0. This implies that ex-ante IC is also satisfied
for the upward direction.

By (48),
max

Mθ
Vθ (x) = Vθ (x∗θ ).

This and ex-post IC, Wθ (Mθ ) = Uθ (x∗θ )+Vθ (x∗θ )−Vθ (x∗θ ) = 0, hence ex-ante IR is also satis-
fied. This proves that (Mθ ,x∗θ )θ∈Γ is a feasible schedule. Q.E.D.

If not all types have upward temptation, the seller can still achieve full surplus extraction
for an upper end of consumers, as the following corollary shows.

Corollary 1. Let γ̂ ∈ Γ be such that all types γ ≥ γ̂ have upward temptation. Then there exists
a feasible schedule that earns ∑γ≥γ̂ nγπ(x∗γ).

Proof. Use the construction of Proposition 10 to the types γ ≥ γ̂ , ignoring all types γ < γ̂ . We
then obtain a list of menus (Mγ)γ≥γ̂ . If the seller offers these menus, by Proposition 10, each
type γ ≥ γ̂ has an incentive to choose Mγ and then x∗γ . By (51), for any pair γ,θ such that
γ < γ̂ ≤ θ , we have Uγ(x) ≤ 0 for all x ∈ Mθ and hence Wγ(Mθ ) ≤ 0. This implies that types
γ < γ̂ have no incentive to choose any of the menus offered by the seller. Therefore, a schedule
(M̂γ , x̂γ)γ∈Γ defined by (M̂γ , x̂γ) = ({(0,0)},(0,0)) for all γ < γ̂ and (M̂γ , x̂γ) = (Mγ ,x∗γ) for all
γ ≥ γ̂ , is feasible. Q.E.D.
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