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Abstract
This paper studies whether a sequence of myopic blockings leads to
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ing, there exists a finite sequence of successive myopic blockings leading
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form converges to a stable matching with probability one. This result
generalizes those of Roth and Vande Vate (1990) and Chung (2000)
under strict preferences.
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1 Introduction

This paper studies whether a decentralized process of successive myopic

blockings leads to the core in the roommate problem. Knuth (1976) addresses

the issue for the marriage problem and provides an example in which a sequence

of blockings generates a cycle. That is, he constructs a cycle of matchings such

that each matching is generated from the previous one by letting a blocking

pair form.

On the other hand, Roth and Vande Vate (1990) answer the question in the

affirmative for the marriage problem by showing that the process does converge

to a stable matching if the blocking pairs are chosen appropriately at each step

of the process. That is, they show that for any unstable matching, there exists

a finite sequence of successive blockings leading to a stable matching. This

result is interesting since it implies that if a blocking pair is chosen randomly

and every blocking pair is chosen with a positive probability, then the random

process converges to a stable matching with probability one.

Chung (2000) generalizes the result of Roth and Vande Vate (1990) to the

roommate problem. Chung identifies a condition, called the “no odd rings”

condition, that is sufficient for the existence of a stable matching when pref-

erences are not necessarily strict.1 Moreover, he shows that, under the same

condition, the core convergence of Roth and Vande Vate extends to the room-

mate problem. Chung’s result generalizes Roth and Vande Vate’s since the

“no odd rings” condition holds always in the marriage problem.

When preferences are strict, the “no odd rings” condition says that there

exists no ordered subset of agents (i1, . . . , iK) such that K ≥ 3 is odd and

(subscript modulo K) ik+1 �ik ik−1�ik ik for all k ∈ {1, . . . , K}. The follow-

ing four-agent example, taken from Chung (2000), shows that the “no odd

rings” condition is not necessary for either the non-emptiness of the core or

1For the roommate problem, Gale and Shapley (1962) show that there exists a preference
profile for which a stable matching does not exist. Tan (1991) identifies a necessary and
sufficient condition for the existence of a stable roommate matching when preferences are
strict.
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convergence to the core.

2 �1 1 �1 · · ·
1 �2 3 �2 4 �2 2

4 �3 2 �3 3 �3 1

2 �4 3 �4 4 �4 1.

While an odd ring exists, i.e., (2, 3, 4), there exists a stable roommate matching,

µ = [{1, 2}, {3, 4}]. Moreover, it is easy to see that starting from any other

matching, there exists a sequence of blocking pairs leading to µ. Indeed, 1 and

2 are each other’s top choices and they would block any matching that has

them apart. Once pair {1, 2} is formed, 3 and 4 will also get together (if not

already) since they prefer it to being alone.

We show that in the roommate problem, when a stable matching exists

and preferences are strict, the process of myopic blockings leads to a stable

matching whether or not the “no odd rings” condition is satisfied. This result

generalizes that of Chung (2000) (and Roth and Vande Vate (1990)) under the

assumption of strict preferences, since the “no odd rings” condition is suffi-

cient but not necessary for the existence of a stable matching. On the other

hand, while our result requires strict preferences, Chung’s holds with weak

preferences as long as the “no odd rings” condition is satisfied. It should be

noted that our result does not generalize to the roommate problem with indif-

ferences. Indeed, Chung (2000) shows that convergence does not necessarily

occur in the roommate problem when preferences are not strict and there exists

an odd ring.

The convergence result does not easily extend to the case in which coalitions

of any sizes can form, even when preferences are strict and satisfy reasonable

restrictions. Counter-examples are given in Section 3.

There are a few papers that study the same issue in more abstract settings.

Green (1974) and Feldman (1974) obtain convergence results for certain sub-

classes of NTU games, but their results do not apply to the roommate problem.

Sengupta and Sengupta (1996) show that a similar convergence result holds

for any TU game with non-empty core.
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2 Main Result

We consider a roommate problem (Gale and Shapley, 1962), which is a list

(N, (�i)i∈N) where N is a finite set of agents and, for each i ∈ N , �i is a

complete and transitive preference relation defined over N . The strict prefer-

ence associated with �i is denoted by �i. We limit ourselves to a roommate

problem in which preferences are strict, i.e., k �i j and j �i k only if k = j.

Thus, k �i j means that either k �i j or k = j.

A matching is a function µ : N → N such that for all i, j ∈ N , if µ(i) = j,

then µ(j) = i. Here, µ(i) denotes the agent with whom agent i is matched. We

allow µ(i) = i, which means that agent i is alone. We sometimes write µ�i µ
′,

which means µ(i) �i µ′(i). A marriage problem (Gale and Shapley, 1962) is a

roommate problem (N, (�i)i∈N) such that N is the union of two disjoint sets

M and W , and each agent in M (respectively W ) prefers being alone to being

matched with any other agent in M (respectively W ).

A matching µ is blocked by a pair {i, j} ⊆ N (possibly i = j) if

j �i µ(i) and i �j µ(j). (1)

That is, i and j both prefer each other to their mates at µ. We allow i = j, in

which case (1) means that i�i µ(i), i.e., i prefers being alone to being matched

with µ(i). When (1) holds, we call {i, j} a blocking pair of µ. A matching is

stable if there exists no blocking pair. A matching is individually rational if

there exists no blocking pair {i, j} with i = j.

Given a blocking pair {i, j} of a matching µ, another matching µ′ is ob-

tained from µ by satisfying the pair if µ′(i) = j and for all k ∈ N \ {i, j},

µ′(k) =

{
k if µ(k) ∈ {i, j}
µ(k) otherwise.

That is, once i and j are matched, their mates (if any) at µ are alone in µ′,
and the other agents are matched as in µ.

The following is our main result.

Theorem 1. Consider any roommate problem in which preferences are strict

and a stable matching exists. Then for any unstable matching µ, there exists
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a finite sequence of matchings (µ = µ1, µ2, . . . , µK) such that for any k ∈
{1, 2, . . . , K − 1}, µk+1 is obtained from µk by satisfying a blocking pair of µk

and µK is stable.

Our proof differs significantly from those of Roth and Vande Vate (1990)

and Chung (2000). Roth and Vande Vate’s proof constructs a sequence of

myopic blockings in such a way that it can be associated with an increas-

ing (with respect to set inclusion) sequence of sets that contain no blocking

pair. Each step of their construction uses the fact that there are two genders.

Chung extends Roth and Vande Vate’s results by adapting their process to the

roommate problem under the “no odd rings” condition. The “no odd rings”

condition enables him to construct a process where each agent can be labeled

a certain gender.

Proof. Fix a stable matching µ′. Given any unstable matching µ, let n(µ)

denote the number of pairs (including singletons) that are common to both µ

and µ′. It suffices to show the following.

Claim. For any unstable matching µ, there exists a finite sequence of match-

ings (µ = µ1, µ2, . . . , µL) such that for each � ∈ {1, 2, . . . , L − 1}, µ�+1 is

obtained from µ� by satisfying a blocking pair of µ� and that n(µL) ≥ n(µ)+1.

To prove the claim, take an unstable matching µ.

Step 1. If µ is not individually rational for some agents, we first let these

agents (and their mates) become single, which can be done by a finite se-

quence of myopic blockings. Thus in what follows, we assume, without loss of

generality, that µ is actually individually rational.

Step 2. The claim is trivial if µ is blocked by a pair that is matched under µ′,
since then satisfying the pair induces a matching µ2 for which n(µ2) ≥ n(µ)+1.2

Thus in what follows, we assume otherwise. The following summarizes the two

assumptions on µ.

D1. Matching µ is individually rational and there exists no pair {i, j} ⊆ N

such that µ′(i) = j, µ′ �i µ, and µ′ �j µ.

2The inequality can be strict. For example, if µ′ = [{1, 2}, {3}] and µ = [{1}, {2, 3}],
then satisfying {1, 2} directly generates µ′ and n(µ′) = 2 = n(µ) + 2.
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Since µ′ is stable, the symmetric condition holds for µ′, i.e.,

D2. Matching µ′ is individually rational and there exists no pair {i, j} ⊆ N

such that µ(i) = j, µ �i µ′, and µ �j µ′.

The symmetry between D1 and D2 simplifies the argument that follows.

Step 3. Let us define a function f : N → N by

f(i) =

{
µ(i) if µ �i µ′

µ′(i) otherwise.

That is, f(i) is whomever agent i prefers between µ(i) and µ′(i).
We now let each agent i “point” to f(i). Since the number of agents is

finite, there exists at least one “cycle.”3 A cycle is an ordered set of distinct

agents c = (i1, i2, . . . , im) such that i1 points to i2, i2 points to i3, . . . , and

im points to i1. If µ(i) = µ′(i) = i, then i alone forms a cycle of size 1. If

µ(i) = µ′(i) = j �= i, then {i, j} forms a cycle of size 2.

The following 9-agent example may be helpful to see the construction.

2 �1 7 �1 6 �1 3 �1 4 �1 8 �1 5 �1 1 �1 9

5 �2 3 �2 1 �2 4 �2 8 �2 7 �2 6 �2 2 �2 9

4 �3 2 �3 7 �3 5 �3 6 �3 1 �3 8 �3 3 �3 9

8 �4 5 �4 3 �4 6 �4 1 �4 2 �4 7 �4 4 �4 9

6 �5 4 �5 2 �5 8 �5 7 �5 3 �5 1 �5 5 �5 9

1 �6 8 �6 5 �6 7 �6 3 �6 4 �6 2 �6 6 �6 9

3 �7 1 �7 8 �7 2 �7 5 �7 6 �7 4 �7 7 �7 9

7 �8 6 �8 4 �8 1 �8 2 �8 5 �8 3 �8 8 �8 9

9 �9 1 �9 2 �9 3 �9 4 �9 5 �9 6 �9 7 �9 8.

In this example, one stable matching is µ′ = [{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9}].
Let the initial matching be µ = [{2, 3}, {4, 5}, {6, 1}, {7, 8}, {9}], which is un-

stable and is blocked by {1, 7}. It can be verified that {1, 7} is actually the

3This argument resembles one used in David Gale’s top trading cycles algorithm, which
identifies the unique core allocation in house allocation problems (Shapley and Scarf, 1974).
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unique blocking pair of µ. Since {1, 7} is not matched under µ′, it follows

that D1 is satisfied. Applying function f to µ and µ′ generates 3 cycles:

(1 → 2 → 3 → 4 → 5 → 6 → 1), (7 → 8 → 7), and (9 → 9).

We now proceed to prove a few facts on f .

Step 4. For all i ∈ N ,

f(i) = i ⇐⇒ µ(i) = µ′(i) = i.

The “⇐=” part is mentioned above. The converse follows from the individual

rationality of µ and µ′ and the assumption that preferences are strict.

Step 5. For all i ∈ N , if f(i) = j �= i, then

f(i) = µ(i) =⇒ f(j) = µ′(j)

f(i) = µ′(i) =⇒ f(j) = µ(j).

To show the first part, suppose, by way of contradiction, that f(j) = µ(j) �=
µ′(j). This implies µ �j µ′. Furthermore, since µ′(j) �= µ(j) = i, we have

µ(i) �= µ′(i). This and f(i) = µ(i) imply µ �i µ′. But then D2 is violated

since i and j are matched under µ. The second part follows from a symmetric

argument that leads to a violation of D1.

This step trivially implies that for all i ∈ N ,

µ �i µ′ =⇒ µ′ �f(i) µ

µ′ �i µ =⇒ µ �f(i) µ′.

Step 6. For all i ∈ N ,

f(f(i)) = i ⇐⇒ µ(i) = µ′(i).

The “⇐=” part is mentioned prior to Step 4. To see the converse, note first that

if f(i) = i, then the conclusion follows from Step 4. So, suppose f(i) = j �= i.

Without loss of generality, assume j = µ(i). Then, Step 5 implies f(j) = µ′(j).
Since f(j) = i, we have µ′(j) = i, and this together with µ(i) = j implies that

i and j are matched with each other in both µ and µ′.
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Step 7. For all i ∈ N , there exists t ∈ {1, 2, . . .} such that f t(i) = i.4 To see

this, take any i ∈ N and consider the sequence of agents σi = (i, f 1(i), f 2(i), . . .).

Since the number of agents is finite, some agents appear more than once in

this sequence. Let t be the minimum number for which f t(i) = fm(i) for

some m < t. We show that f t(i) = i. Suppose, by way of contradiction, that

f t(i) �= i. Then the sequence looks like

σi = (i = i0, i1, i2, . . . , im−1, im, im+1, . . . , it−1, it = im, im+1, . . .),

where im �= i. By Step 4, ih �= ih+1 for all h. By the minimality of t, all agents

in {i, i1, . . . , it−1} and in particular, agents im−1, im, and it−1 are distinct.

Since f(im−1) = im = f(it−1), agent im is matched with im−1 in one of the

matchings and with it−1 in the other. Thus, f(im) is either im−1 or it−1. But

then, in either case, f(f(im)) = im and Step 6 implies µ(im) = µ′(im), which

is not possible since im−1 and it−1 are distinct.

This step shows that each agent belongs to a unique cycle. Thus, we let

ci denote the cycle that i belongs to and let Si ⊆ N denote the set of agents

who belong to the cycle. Since ci is a cycle, it follows that for all i, j ∈ N , if

j ∈ Si, then Sj = Si. Thus {Si}i∈N generates a partition of N .

Step 8.5 For all i ∈ N , if µ(i) �= µ′(i), then |Si| ≥ 4 and |Si| is even. Indeed,

if µ(i) �= µ′(i), then Steps 4 and 6 imply that |Si| is at least 3. The alternation

property proved in Step 5 then implies that |Si| is even.

Step 9. To complete the proof, let {i, j} ⊆ N (with i �= j) be a blocking pair

of µ. We first note that µ′ �h µ for some h ∈ {i, j}. Indeed, if µ �h µ′ for

all h ∈ {i, j}, then {i, j} also blocks µ′, in contradiction with the stability of

µ′. Thus we assume, without loss of generality, that agent i = 1 prefers µ′ to

4Here, fm+1(i) = f(fm(i)) for all m ∈ {1, 2, . . .} and f1(i) = f(i).
5Suppose that, in Steps 3–8, µ is also a stable matching. Then both D1 and D2 are

satisfied; hence, Steps 3–8 apply to any pair µ, µ′ of stable matchings. An implication of
these steps is that if µ and µ′ are stable and agent i prefers µ′ to µ, then both µ′(i) and µ(i)
prefer µ to µ′. This is a generalization of the decomposition lemma of Knuth (1976) (see
also Roth and Sotomayor (1990)) to the roommate problem. In fact, there are similarities
between our proof of Step 7 and Knuth’s proof of his decomposition lemma for the marriage
problem. A corollary of the lemma is that the set of agents who are single is the same in all
stable matchings.
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µ, and that the cycle that agent 1 belongs to is given by c1 = (1, 2, 3, . . . , m).

By Step 8, m ≥ 4 and m is even. Since agent 1 prefers µ′ to µ, Step 5 implies

that for all i ∈ {1, . . . , m}, i+1 = µ′(i) if i is odd, and i+1 = µ(i) if i is even.

Matchings µ and µ′ then look like

µ′ = [{1, 2}, {3, 4}, . . . , {m − 3,m − 2}, {m − 1,m}, . . .]
µ = [{2, 3}, {4, 5}, . . . , {m − 2,m − 1}, {m, 1}, . . .].

Let µ2 denote the matching that is obtained from µ1 ≡ µ by satisfying {1, j}.
Note that j �= 2 since f(2) = µ(2) = 3 and so 2 prefers 3 to 1. Thus, satisfying

{1, j} does not create a pair in µ′. Specifically,

n(µ2) =

{
n(µ) if µ(j) �= µ′(j)

n(µ) − 1 if µ(j) = µ′(j).

The second case follows from the fact that if µ(j) = µ′(j), then satisfying

{1, j} breaks pair {j, µ′(j)}.
Under µ2, agent m is alone. Since µ′ is stable, it is individually ratio-

nal, which implies that m prefers being matched with m − 1 to being alone.

Moveover, since f(m − 1) = m, agent m − 1 prefers m to m − 2. Hence,

{m− 1,m} blocks µ2 provided that m− 1 �= j. Thus we distinguish two cases.

Case 1. m − 1 �= j. Then, {m − 1,m} blocks µ2 as we just noted. Let µ3

denote the matching obtained from µ2 by satisfying this blocking pair. Then

n(µ3) = n(µ2) + 1. If µ(j) �= µ′(j), then n(µ3) = n(µ) + 1 as desired.

So, suppose µ(j) = µ′(j), which implies j /∈ {1, . . . , m}. Then n(µ3) = n(µ)

and µ3 looks like

µ3 = [{2, 3}, {4, 5}, . . . , {m − 2}, {m − 1,m}, {1, j}, . . . , {µ′(j)}, . . .].

In this matching, m − 2 is alone.

It suffices to show that µ3 is blocked by {m − 3,m − 2}. This is easy if

m ≥ 6. Indeed, m − 2 prefers being matched with m − 3 to being alone since

µ′(m− 2) = m− 3, and m− 3 prefers m− 2 to m− 4 since f(m− 3) = m− 2.

Before we proceed to the case when m < 6, we note that the argument

in this step up to this point applies to the example given before Step 4. In
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the example, the unique blocking pair of µ is {1, 7}. The argument in the

preceding paragraph applies to the example because agents 1 and 7 belong

to different cycles (thus m − 1 �= j), the blocking of {1, 7} breaks a pair in

µ′ (i.e., µ′(7) = µ(7)), and agent 1 belongs to a cycle of size 6 (i.e., m = 6).

The associated sequence of blockings is as follows. Starting with µ, satisfying

{1, 7} generates

µ2 = [{2, 3}, {4, 5}, {6}, {1, 7}, {8}, {9}].

Since {7, 8} is broken, the number of common pairs decreases by 1, i.e., n(µ2) =

n(µ)− 1 = 1. Now, under µ2, agent 6 is alone and prefers being matched with

5. On the other hand, agent 5 is “pointing” to 6 and prefers 6 to 4. Thus

{5, 6} blocks µ2 and we are in Case 1 of Step 9. Satisfying {5, 6} generates

µ3 = [{2, 3}, {4}, {5, 6}, {1, 7}, {8}, {9}].

Since 4 is alone and 3 is pointing to 4, {3, 4} blocks µ3, which generates

µ4 = [{2}, {3, 4}, {5, 6}, {1, 7}, {8}, {9}].

For this matching, the number of common pairs is n(µ4) = 3 = n(µ) + 1, as

our claim implies. In fact, it is straightforward to complete the sequence that

leads to µ′: µ4 is blocked by {1, 2}, which generates

µ5 = [{1, 2}, {3, 4}, {5, 6}, {7}, {8}, {9}].

This matching is in turn blocked by {7, 8}, which generates µ′.
We now return to the proof and proceed to the case when m < 6, i.e.,

c1 = (1, 2, 3, 4). Then

µ′ = [{1, 2}, {3, 4}, . . . , {j, µ′(j)}, . . .]
µ = [{2, 3}, {4, 1}, . . . , {j, µ′(j)}, . . .]

µ2 = [{2, 3}, {4}, {1, j}, . . . , {µ′(j)}, . . .]
µ3 = [{2}, {3, 4}, {1, j}, . . . , {µ′(j)}, . . .].

Since {1, j} blocks µ, agent j prefers 1 to µ(j) = µ′(j). On the other hand,
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{1, j} does not block µ′ since µ′ is stable. It follows that agent 1 prefers

µ′(1) = 2 to j, which implies that {1, 2} blocks µ3. This blocking generates

a matching µ4 = [{1, 2}, {3, 4}, . . . , {j}, {µ′(j)}, . . .] and n(µ4) = n(µ) + 1, as

desired.

Case 2. m− 1 = j. Since ci is a cycle, we can use the above argument letting

agent m − 1 play the role of agent 1.6 We then conclude that the desired

result follows if m − 3 �= 1 or, equivalently, m ≥ 6. Indeed, if m ≥ 6, then

{m− 2,m− 3} blocks µ2 inducing a matching µ3 such that n(µ3) = n(µ) + 1.

Thus, we are left with the case in which m = 4. That is, c1 = (1, 2, 3, 4)

and {i, j} = {1, 3}. Then

µ′ = [{1, 2}, {3, 4}, . . .]
µ = [{2, 3}, {4, 1}, . . .]

µ2 = [{1, 3}, {2}, {4}, . . .].

Since µ′ is stable, it is not blocked by {1, 3}, which implies that either agent 1

prefers µ′(1) = 2 to 3 or agent 3 prefers µ′(3) = 4 to 1. Without loss of gener-

ality, assume that agent 1 prefers 2 to 3. Since 2 is alone in µ2, it follows that

{1, 2} blocks µ2. This blocking generates a matching µ3 = [{1, 2}, {3}, {4}, . . .]
and n(µ3) = n(µ) + 1.

Theorem 1 differs from the result of Chung (2000, Lemma 1) in two re-

spects. First, when preferences are strict, Chung’s result holds under the “no

odd rings” condition, while our result holds as long as a stable matching exists.

As mentioned in the introduction, the “no odd rings” condition is sufficient

but not necessary for the existence of a stable matching.

Second, Chung’s result holds with weak preferences provided that the “no

odd rings” condition is satisfied, while we consider only strict preferences.

In fact, our result cannot be generalized to the roommate problem with in-

differences. Indeed, if preferences are not strict and an odd ring exists, then

convergence does not hold necessarily. This is shown by Chung (2000) through

6Note that, by Step 5, agent m − 1 also prefers µ′ to µ.
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the following four-agent example:

2 ∼1 1 �1 · · ·
1 �2 3 �2 4 �2 2

4 �3 2 �3 3 �3 1

2 �4 3 �4 4 �4 1.

Note that agent 1 is indifferent between being matched with 2 and being alone.

In this example, (2, 3, 4) is an odd ring and there exists a unique stable match-

ing, µ = [{1, 2}, {3, 4}]. It can be easily checked that, starting with any

matching where 1 is alone, no sequence of myopic blockings leads to µ since

being alone is a top choice for 1.

Recall that the class of roommate problems subsumes marriage problems

and that a stable matching exists for any marriage problem (Gale and Shapley,

1962). Thus we obtain the following corollary.

Corollary 1. Consider any marriage problem with strict preferences. Then

for any unstable matching µ, there exists a finite sequence of matchings (µ =

µ1, µ2, . . . , µK) such that for any k ∈ {1, 2, . . . , K − 1}, µk+1 is obtained from

µk by satisfying a blocking pair of µk and µK is stable.

This result has been obtained by Roth and Vande Vate (1990). Their result

holds even when preferences are not strict. On the other hand, they consider

the marriage problem only.7

It should also be noted that our result as well as those of Roth and

Vande Vate (1990) and Chung (2000) say that myopic blockings can lead to

some stable matching. It is not the case that myopic blockings can lead to

7The result of Roth and Vande Vate (1990) is used by Jackson and Watts (2002) to
show that, for a random process of myopic blockings with trembles, the support of the
long-run stationary distribution coincides with the set of stable marriage matchings. It
would be interesting to study whether the result of Jackson and Watts (2002) extends to
the roommate problem.
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any stable matching, as the following 3 × 3 marriage example shows.

w1 �m1 w2 �m1 m1 �m1 w3 m2 �w1 m1 �w1 w1 �w1 m3

w2 �m2 w1 �m2 m2 �m2 w3 m1 �w2 m2 �w2 w2 �w2 m3

w3 �m3 m3 �m3 · · · m3 �w3 w3 �w3 · · ·

There exist only two stable matchings: µ1 = [{m1, w1}, {m2, w2}, {m3, w3}]
and µ2 = [{m1, w2}, {m2, w1}, {m3, w3}]. It is easy to see that, starting

from µ = [{m1, w1}, {m2, w2}, {m3}, {w3}], there exists no sequence of my-

opic blockings leading to µ2. The only blocking pair of µ is {m3, w3} and

satisfying this pair leads to µ1.
8

3 General Coalition Formation

Our result does not easily extend to the case in which coalitions of any

sizes can form. To see this, we consider “hedonic games” (Banerjee et al.,

2001; Bogomolnaia and Jackson, 2002), where arbitrary coalitions can form

and each agent has preferences over coalitions he belongs to. Consider the

following example with N = {1, 2, 3}, taken from Bogomolnaia and Jackson

(2002):

{1, 2} �1 N �1 {1, 3} �1 {1}
{2, 3} �2 N �2 {1, 2} �2 {2}
{1, 3} �3 N �3 {2, 3} �3 {3}.

This preference profile satisfies a condition of ordinal balancedness in Bogomol-

naia and Jackson (2002). The core is a singleton and consists of the partition

in which the grand coalition forms. Myopic blockings generate the following

cycle: [{1, 2}, {3}] → [{2, 3}, {1}] → [{1, 3}, {2}] → [{1, 2}, {3}]. Moreover,

for each partition in the cycle, there exists only one blocking coalition. Hence

there exists no path coming out of the cycle.

8Ma (1996) considers a variant of the random matching process used in the proof of Roth
and Vande Vate (1990) and shows that the random process does not necessarily reach every
stable matching, even though the process starts from singletons.
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Separable preferences do not guarantee convergence either.9 Consider the

following example with N = {1, 2, 3, 4}.

{1, 2, 3} �1 N �1 {1, 2} �1 {1, 2, 4} �1 {1, 3} �1 {1, 3, 4} �1 {1} �1 {1, 4}
{2, 3, 4} �2 N �2 {2, 3} �2 {1, 2, 3} �2 {2, 4} �2 {1, 2, 4} �2 {2} �2 {1, 2}
{1, 3, 4} �3 N �3 {3, 4} �3 {2, 3, 4} �3 {1, 3} �3 {1, 2, 3} �3 {3} �3 {2, 3}
{1, 2, 4} �4 N �4 {1, 4} �4 {1, 3, 4} �4 {2, 4} �4 {2, 3, 4} �4 {4} �4 {3, 4}.

The core is a singleton consisting of the partition in which the grand coali-

tion forms. Myopic blockings generate the following cycle: [{1, 2, 3}, {4}] →
[{2, 3, 4}, {1}] → [{1, 3, 4}, {2}] → [{1, 2, 4}, {3}] → [{1, 2, 3}, {4}]. Again, for

every partition in the cycle, there exists only one blocking coalition.

It is also easy to construct examples that satisfy the weak top coalition

property of Banerjee et al. (2001) where myopic blockings do not lead to the

core.

9Agent i’s strict preferences over {S ⊆ N : i ∈ S} are separable if for all S ⊆ N such
that i ∈ S and for all j ∈ N \ S, S ∪ {j} �i S if and only if {i, j} �i {i}.
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