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My Research History on NN, FS, and SVM
•  Neural Networks (1988-)

– Convergence characteristics of Hopfield networks
– Synthesis of multilayer neural networks

• Fuzzy Systems  (1992-)
– Trainable fuzzy classifiers
– Fuzzy classifiers with ellipsoidal regions

•  Support Vector Machines (1999-)
– Characteristics of solutions
– Multiclass problems
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Neural networks are trained to output the target 
values for the given input.

Multilayer Neural NetworksMultilayer Neural Networks
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Indirect decision functions: decision boundaries 
change as the initial weights are changed. 

Multilayer Neural NetworksMultilayer Neural Networks



SVM If D(x) > 0,  Class 1
Otherwise,  Class 2

Class 1

Class 2

Direct decision functions: decision boundaries are 
determined to minimize the classification error of both
training data and unknown data. 

Support Vector MachinesSupport Vector Machines

Maximum margin

Optimal hyperplane (OHP) D(x) = 0



SummarySummary

• When the number of training data is small,
SVMs outperform conventional classifiers.

• By maximizing margins performance of
conventional classifiers can be improved.
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Architecture of SVMsArchitecture of SVMs

• Formulated for two-class classification problems
• Map the input space into the feature space
• Determine the optimal hyperplane in the feature space

Input Space Feature Space

g(x)

Class 1

Class 2

OHP



Types of SVMsTypes of SVMs

• Hard margin SVMs
– linearly separable in the feature

space
– maximize generalization ability

• Soft margin SVMs
– Not separable in the feature space
– minimize classification error and

maximize generalization ability
• L1 soft margin SVMs (commonly used)
• L2 soft margin SVMs

Class 1

Class 2

Feature Space



Class 2
yi  = −−−− 1

Class 1
  yi  = 1

Hard Margin SVMsHard Margin SVMs
We determine OHP so that
the generalization region is
maximized:

maximize δδδδ

subject to
    wtg(xi ) + b ≧≧≧≧ 1 for Class 1
 −−−− wtg(xi ) −−−− b ≧≧≧≧ 1 for Class 2

Combining the two:

    yi (wtg( xi ) + b) ≧ 1 OHP D(x) = wtg(xi ) + b = 0 

Margin δδδδ

+ side

Generalization
 region



Class 2
yi  = −−−− 1

Class 1
  yi  = 1

Hard Margin SVM (2)Hard Margin SVM (2)
The distance from x to OHP is
given by  yi D(x) /||w||. Thus all
the training data must satisfy

    yi D(x) /||w||        ≧ δ . δ . δ . δ .

Imposing ||w|| δ  δ  δ  δ = 1, the
problem is to
minimize ||w||2/2

subject to
 yi D(xi) ≧ 1    for i = 1,…,M. OHP D(x) = wtg(xi ) + b = 0 

Margin δδδδ

+ side

Generalization
 region



Soft Margin SVMsSoft Margin SVMs
If the problem is non-
separable, we introduce
slack variables ξξξξi.

Minimize
     ||w||2/2 + C/p ΣΣΣΣi=1,M ξξξξi

p

subject to
     yi D(xi) ≧ 1 − ξξξξi

where C: margin
parameter,
            p = 1: L1 SVM,
               = 2: L2 SVM

Class 2
yi  = −−−− 1

Class 1
  yi  = 1

OHP D(x) = 0 

+ side

ξξξξk >1

Margin δδδδ

1>    ξξξξi > 0



Conversion to Dual ProblemsConversion to Dual Problems

Introducing the Lagrange multiplies αααα i and ββββi,

Q = ||w||2/2 +C/p ΣΣΣΣi ξξξξi
p −Σ−Σ−Σ−Σi αααα i(yi(wtg(xi) + b) −−−−1+ξξξξi)

       [−Σ−Σ−Σ−Σi ββββiξξξξi ]

The Karush-Kuhn-Tacker (KKT) optimality conditions:

                                                    ∂∂∂∂Q/∂∂∂∂w = 0,∂∂∂∂Q/∂∂∂∂b = 0,∂∂∂∂Q/∂∂∂∂ξξξξi = 0,
              αααα i > 0, ββββi > 0
KKT complementarity conditions
                                            αααα i(yi(wtg(xi) + b) −−−−1+ξξξξi) = 0,
           [(ββββiξξξξi = 0 ].
When p = 2, terms in [ ] are not necessary.



Dual Problems of SVMsDual Problems of SVMs
L1 SVM

Maximize
 　　　　　　　　ΣΣΣΣi αααα i −−−− C/2 ΣΣΣΣi,j αααα i αααα j yi yj g(xi )tg(xj)
subject to
 　　　　　　　　ΣΣΣΣi yi αααα i = 0, C ≧ αααα i ≧0.

L2 SVM
Maximize
 　　　　　　　　ΣΣΣΣi  αααα i −−−− C/2 ΣΣΣΣi,j αααα i αααα j yi yj (g(xi )tg(xj) + δδδδij /C)
subject to
 　　　　　　　　ΣΣΣΣi yi αααα i = 0,  αααα i ≧0,
where δδδδij : 1 for i = j and 0000 for i ≠≠≠≠ j.



KKT Complementarity ConditionKKT Complementarity Condition
For L1 SVMs, from αααα i(yi(wtg(xi) + b) −−−−1+ξξξξi) = 0,
ββββiξξξξi = (C− − − − αααα i) ξξξξi = 0, there are three cases for ααααi :

1. αααα i = 0. Then ξξξξi = 0. Thus xi is correctly classified,
2. 0 < αααα i  < C. Then ξξξξi = 0, and wtg(xi) + b  = yi,
3. αααα i = C. Then ξξξξi ≧ 0.

Training data xi with α α α αi  > 0 are called support
vectors and those with αααα i = C are called bounded
support vectors.

The resulting decision function is given by
              D(x) = ΣΣΣΣi αααα iyig(xi)t g(x) + b.



Kernel TrickKernel Trick

Since mapping function g(x) appears in the form of
g(x)tg(x’), we can avoid treating the variables in the
feature space by introducing the kernel:

                   H(x,x’) = g(x)tg(x’).

The following kernels are commonly used:

1. Dot product kernels: H(x,x’) = xtx’
2. Polynomial kernels: H(x,x’) = (xtx’+1)d

3. RBF kernels : H(x,x’) = exp(− γ − γ − γ − γ ||x −−−− x’||2)



SummarySummary

• The global optimum solution by quadratic
programming (no local minima).

• Robust classification for outliers is possible by
proper value selection of C.

• Adaptable to problems by proper selection of
kernels.
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Hessian MatrixHessian Matrix

L1 SVM
HL1 = (… yi (g(xi) − g(xs) ) …)t(… yi (g(xi) − g(xs) ) …)

HL1: positive semidefinite

L2 SVM
HL2 = HL1 + {(yi  yj + δδδδij)/C}

HL2: positive definite, which results in stabler training.

Substituting ααααs = - ysΣΣΣΣyi αααα i into the objective function, 
 Q = αααα t 1 - 1/2 αααα t H αααα
we derive the Hessian matrix.



Non-unique SolutionsNon-unique Solutions

Strictly convex functions give unique solutions.

L1 SVML1 SVML1 SVML1 SVM L2 SVML2 SVML2 SVML2 SVM
PrimalPrimalPrimalPrimal Non-unique*Non-unique*Non-unique*Non-unique* Unique*Unique*Unique*Unique*
DualDualDualDual Non-uniqueNon-uniqueNon-uniqueNon-unique Unique*Unique*Unique*Unique*

*: Burges and Crisp (2000)

Table  Uniqueness

Convex objective function



Property 1Property 1

For the L1 SVM, the vectors that satisfy
yi(wtg(xi) + b) = 1 are not always support
vectors. We call these boundary vectors.

1

2

3



Irreducible Set of Support VectorsIrreducible Set of Support Vectors

A set of support vectors is irreducible if
deletion of boundary vectors and any
support vectors result in the change of the
optimal hyperplane.



Property 2Property 2

For the L1 SVM, let all the support vectors
be unbounded. Then the Hessian matrix
associated with the irreducible set is positive
definite.

Property 3Property 3

For the L1 SVM, if there is only one
irreducible set, and support vectors are all
unbounded, the solution is unique.



In general the number of support vectors of
L2 SVM is larger than that of L1 SVM.

1

2

3

4

Irreducible sets
{1, 3}, {2, 4}

The dual problem is
non-unique, but the
primal problem is
unique.



Computer SimulationComputer Simulation

• We used white blood cell data with 13
inputs and 2 classes, each class having app.
400 data for training and testing.

• We trained SVMs using the steepest ascent
method (Abe et al. (2002))

• We used a personal computer (Athlon
1.6Ghz) for training.



Recognition Rates for Polynomial KernelsRecognition Rates for Polynomial Kernels
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For poly4 and poly5 the numbers are the same.

Support Vectors for Polynomial KernelsSupport Vectors for Polynomial Kernels
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(s)

As the polynomial degree increases, the
difference becomes smaller.

Training Time ComparisonTraining Time Comparison
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• The Hessian matrix of an L1 SVM is positive
semi-definite, but that of an L2 SVM is always
positive definite.

• Thus dual solutions of an L1 SVM are non-
unique.

• When non-critical the difference between L1 and
L2 SVMs is small.

SummarySummary
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• One-against-all SVMs
– Continuous decision functions
– Fuzzy SVMs
– Decision-tree-based SVMs

• Pairwise SVMs
– Decision-tree-based SVMs (DDAGs, ADAGs)
– Fuzzy SVMs

• ECOC SVMs
• All-at-once SVMs

Multiclass SVMsMulticlass SVMs



One-against-all SVMsOne-against-all SVMs

Determine the ith decision function Di(x) so that 
class i is separated from the remaining classes.

Classify x into the class with Di(x) > 0. 

Class 1

Class 2

Class 3
Class 1

Class 2

Class 3

D1(x) = 0

D2(x) = 0

D3(x) = 0

Unclassifiable



Continuous SVMsContinuous SVMs

Classify x into the class with max Di(x). 

Class 1

Class 2

Class 3

D1(x) = 0

D2(x) = 0

D3(x) = 0

Class 1

Class 2

Class 3

D2(x) > D3(x) 

0 > D2(x) > D3(x) 
0 > D2(x) > D1(x)



Class 2

Fuzzy SVMsFuzzy SVMs

Class 1

0

1

D1(x) = 0

D1(x) = 1

We define a one-
dimensional membership
function in the direction
orthogonal to the
decision function Dij(x).

m11(x)

Membership function

Class 3



Class i MembershipClass i Membership

).(min)(
,...,1

xx ijnji mm
=

=

The region that satisfies  mi(x) > 0
corresponds to the classifiable
region for class i.

Class i membership function

Class 1

m1(x) =1

m1(x) = 0

m1(x) = 0.5



Class 1

Class 2

Class 3
Class 1

Class 2

Class 3

Resulting Class Boundaries by Fuzzy SVMsResulting Class Boundaries by Fuzzy SVMs

The generalization regions are the same
with those by continuous SVMs.



Class i

Class j
Class k

if )(x 0=

jf )(x 0=

Training step Classification step

if )(x

jf )(x

+

+ -

-

Class i

Class j Classk

At each node, determine
OHP.

Each node corresponds to the hyperplane.

Starting from the top node,
calculate the value until a
leaf node is reached.

Decision-tree-based SVMsDecision-tree-based SVMs



• Unclassifiable region can be resolved.
• The region of each class depends on the structure

of a decision tree.

How do we determine the decision tree?

Class i 

Class k 

if )(x 0=

jf )(x 0=

Class i

Class kjf )(x 0=

kf )(x 0=

The problem of the decision treeThe problem of the decision tree

Class j Class j



The separable classes need to be separated at the
upper node.

Euclidean distances between class centers
Classification errors by the Mahalanobis distance

? The overall classification 
performance becomes worse.

The separability measures:

1 vs. remaining classes
Some vs. remaining classes

Determination of the decision treeDetermination of the decision tree



 Separate the farthest class
 from remaining classes.

Class k

Class i

if )(x 0=

Class j

jf )(x 0=

Class l

lf )(x 0=

Calculate distances between class centers.
For each class, find the smallest value.
Separate the class with the largest value in step 2.
Repeat for remaining classes.

1 Class vs. Remaining Classes Using
Distances between Class Centers

1 Class vs. Remaining Classes Using
Distances between Class Centers



For all pairs of classes i, j, we define n(n-1)/2
decision functions and classify x into class

arg maxi Di(x) where Di(x) = ΣΣΣΣjsign Dij(x)

Class 1

Class 3
Class 2

Unclassifiable regions still exist.
     D1(x) = D2(x) = D3(x) = 1

D12 (x) = 0

D23(x) = 0

D31(x) = 0

Pairwise SVMsPairwise SVMs



Pairwise Fuzzy SVMsPairwise Fuzzy SVMs

P-SVM P-FSVM

The generalization ability of the P-FSVM
is better than the P-SVM.

Class 1

Class 3
class 2

Class 1

Class 3
Class 2



Decision-tree-based SVMs (DDAGs)Decision-tree-based SVMs (DDAGs)

D12(x)

D32(x)D13(x)

Class 1 Class 3 Class 2

1

213

2

3

Class 1

Class 3
class 2

Generalization regions change according
to the tree structure.



Decision-tree-based SVMs (ADAGs)Decision-tree-based SVMs (ADAGs)

For three-class problems ADAGs and DDAGs are
equivalent. In general, DDAGs include ADAGs.

1        2        3

ADAG (Tennis Tournament)

D12(x)

D32(x)D13(x)

Class 1 Class 3 Class 2

1

213

2

3

Equivalent DDAG



ECC CapabilityECC Capability

The maximum number of decision functions = 2n-1 -1,
where n is the number of classes.

Error correcting capability = (h-1)/2, where h is the
Hamming distance.

For n = 4, h = 4 and ecc of 1.

Class 1    1    1    1   -1    1    1   -1
Class 2    1    1   -1    1    1   -1    1
Class 3    1   -1    1    1   -1    1    1
Class 4   -1    1    1    1   -1   -1   -1



Continuous Hamming DistanceContinuous Hamming Distance

Class lClass k

0

1

Di(x) = 0

Di(x) = 1

Error function
Membership 
function

Hamming Distance

=  ΣΣΣΣ ERi(x)

= Σ(1 −Σ(1 −Σ(1 −Σ(1 − mi(x))

Equivalent to membership
functions with sum
operators



All-at-once SVMsAll-at-once SVMs

Decision functions

wi g(x) + bi > wjg(x) + bj
               for j ≠≠≠≠ i, j=1,…,n

Original formulation
       n ××××M variables
   where n: number of classes
             M: number of training data
CrammerCrammerCrammerCrammer and Singer (2000)  and Singer (2000)  and Singer (2000)  and Singer (2000) ’’’’ssss
       M variables
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Performance EvaluationPerformance Evaluation

• Compare recognition rates of test data for
one-against-all and pairwise SVMs.

• Data sets used:
– white blood cell data
– thyroid data
– hiragana data with 50 inputs
– hiragana data with 13 inputs

Japanese License Plate



Data Inputs Classes Train. Test

Blood Cell 13 12 3097 3100

Thyroid 21 3 3772 3428

H-50 50 39 4610 4610

H-13 13 38 8375 8356

Data Sets Used for EvaluationData Sets Used for Evaluation
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improves by fuzzy
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trees.

Performance Improvement
for 1-all SVMs

Performance Improvement
for 1-all SVMs
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Performance Improvement
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Performance Improvement
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• One-against-all SVMs with continuous decision
functions are equivalent to 1-all fuzzy SVMs.

• Performance of pairwise fuzzy SVMs is
comparable to that of ADAGs with maximum
recognition rates.

• There is no so much difference between one-
against-all and pairwise SVMs.

SummarySummary
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Research StatusResearch Status

• Too slow to train by quadratic programming
for a large number of training data.

• Several training methods have been developed:
– decomposition technique by Osuna (1997)
– Kernel-Adatron by Friess et al. (1998)
– SMO (Sequential Minimum Optimization) by Platt

(1999)
– Steepest Ascent Training by Abe et al. (2002)



Decomposition TechniqueDecomposition Technique

Decompose the index set into two: B and N.

Maximize

 　　　　　　　　Q(αααα) = ΣΣΣΣi∈∈∈∈B ααααi −−−− C/2 ΣΣΣΣi,j∈∈∈∈B αααα i ααααj yi yj H(xi, xj)
                  −−−− C ΣΣΣΣi∈∈∈∈B, j∈∈∈∈N ααααi ααααj yi yj H(xi, xj)
                  −−−− C/2 ΣΣΣΣi,j∈∈∈∈N ααααi αααα j yi yj H(xi, xj) + ΣΣΣΣi∈∈∈∈N ααααi

subject to

 　　　　　　　　ΣΣΣΣi∈∈∈∈B yi ααααi = −−−− ΣΣΣΣi∈∈∈∈N yi ααααi , C ≧ ααααi ≧0 for i ∈ΒΒΒΒ

fixing ααααi for i ∈ΝΝΝΝ.



Solution FrameworkSolution Framework

Fixed Set
 {ααααi | i ∈ N}

Solve for
working Set
{ααααi | i ∈ B}

Inner Loop

ααααi = 0

Violation of KKT Cond

Outer Loop Use of QP Package
e.g., LOQO (1998) 



Solution without Using QP PackageSolution without Using QP Package

• SMO
– |B| = 2, i.e., solve the problem for two variables
– The subproblem is solvable without matrix calculations

• Steepest Ascent Training
– Speedup SMO by solving subproblems with variables

more than two



Solution Framework for
Steepest Ascent  Training
Solution Framework for

Steepest Ascent  Training

Fixed Set
 {ααααi | i ∈ N}

Working Set
{ααααi | i ∈ B’}

B’ ⊇⊇⊇⊇B

Update ααααi for
i ∈ B’ until
all ααααi in B are
updated.

Inner Loop

ααααi = 0

Violation of KKT Cond

Outer Loop



Solution ProcedureSolution Procedure

• Set the index set B.

• Select ααααs and eliminate the equality constraint by
substituting ααααs = −−−−  ysΣΣΣΣ yj ααααj into the objective
function.

• Calculate corrections by
ααααB” = −−−−(∂∂∂∂2222Q/∂∂∂∂αααα2222

B”)−−−−1 ∂∂∂∂Q/∂∂∂∂ααααB”
where B” = B’ -{s}.

• Correct variables if possible.



Calculation of correctionsCalculation of corrections

• We calculate corrections by the Cholesky
decomposition.

• For the L2 SVM, since the Hessian matrix is positive
definite, it is regular.

• For the L1 SVM, since the Hessian matrix is positive
semi-definite, it may be singular.

If Dii < η, we discard 
the variables ααααj, j≧ i.Dii

= 



Update of VariablesUpdate of Variables

1
2

3

• Case 1
Variables are updated.

• Case 2
Corrections are reduced to
satisfy constraints.

• Case 3
Variables are not corrected.
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Performance EvaluationPerformance Evaluation

• Compare training time by the steepest
ascent method, SMO, and the interior point
method.

• Data sets used:
– white blood cell data
– thyroid data
– hiragana data with 50 inputs
– hiragana data with 13 inputs

Japanese License Plate



Data Inputs Classes Train. Test

Blood Cell 13 12 3097 3100

Thyroid 21 3 3772 3428

H-50 50 39 4610 4610

H-13 13 38 8375 8356

Data Sets Used for EvaluationData Sets Used for Evaluation
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Dot product kernels
are used.

For a larger size, L2
SVMs are trained
faster.
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Polynomial kernels
with degree 4 are
used.

No much difference
for L1 and L2 SVMs.
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combined with
decomposition
technique.

SMO is the
slowest. LOQO
and SAM are
comparable for
hiragana data.

Training Time ComparisonTraining Time Comparison



• The steepest ascent method is faster than SMO
and comparable for some cases with the interior-
point method combined with decomposition
technique.

• For the critical cases, L2 SVMs are trained faster
than L1 SVMs, but for normal cases they are
almost the same.

SummarySummary
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SVM-inspired MethodsSVM-inspired Methods

• Kernel-based Methods
– Kernel Perceptron
– Kernel Least Squares
– Kernel Mahalanobis Distance
– Kernel Principal Component Analysis

• Maximum Margin Classifiers
– Fuzzy Classifiers
– Neural Networks
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Membership function

mi(x) = exp(- hi
2(x))

hi
2(x) = di

2(x)/α i

di
2(x) = (x – ci)t Qi

-1 (x – ci)

where α i: a tuning parameter,
di

2(x): a Mahalanobis distance.

Fuzzy Classifier with Ellipsoidal RegionsFuzzy Classifier with Ellipsoidal Regions



1. For each class calculate
    the center and the
    covariance matrix.
2. Tune the membership
    function so that
    misclassification is
    resolved.

TrainingTraining



• Training of fuzzy classifiers is faster than support
vector machines.

• Comparable performance for the overlapping
classes.

• Inferior performance when data are scarce since
the covariance matrix Qi becomes singular.

Comparison of Fuzzy Classifiers with
Support Vector Machines

Comparison of Fuzzy Classifiers with
Support Vector Machines



• by Symmetric Cholesky factorization,

• by maximizing margins.

Improvement of Generalization Ability
When Data Are Scarce

Improvement of Generalization Ability
When Data Are Scarce



In factorizing Qi into two triangular matrices:

Qi = Li Li
t,

if the diagonal element laa is

laa < η

namely, Qi is singular, we set laa = η.

laa

Symmetric Cholesky FactorizationSymmetric Cholesky Factorization



If there are no overlap 
between classes, we set 
the boundary at the 
middle of two classes,
by tuning αi.

Concept of Maximizing MarginsConcept of Maximizing Margins



The class i datum
remains correctly
classified for the
increase of αi.

We calculate the
upper bound for all
the class i data.

Upper Bound of αiUpper Bound of αi



The class j datum
remains correctly
classified for the
decrease of αi.

We calculate the
lower bound for all
the data not
belonging to class i.

Lower Bound of αiLower Bound of αi



1. Calculate the upper bound Li and lower bound Ui of
   αααα i.

2. Set αααα i  = (Li + Ui)/2.

3. Iterate the above procedure for all the classes.

Tuning ProcedureTuning Procedure



Data Inputs Classes Train. Test

H-50  50 39 4610 4610

H-105 105 38 8375 8356

 H-13  13 38 8375 8356

Data Sets Used for EvaluationData Sets Used for Evaluation



Recognition Rate of Hiragana-50 Data
(Cholesky Factorization)
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The recognition
rate improved as
η was increased.



Recognition Rate of Hiragana-50 Data
(Maximizing Margins)
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The better
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for small η.



Performance Comparison
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Performance
excluding SVD
is comparable.



• When the number of training data is small, the
generalization ability of the fuzzy classifier
with ellipsoidal regions is improved by
– the Cholesky factorization with singular avoidance,
– tuning membership functions when there is no

overlap between classes.
• Simulation results show the improvement of

the generalization ability.

SummarySummary
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• Back propagation algorithm (BP)

• Support vector machine (SVM) with sigmoid kernels

• CARVE Algorithm(Young & Downs 1998)

- High generalization ability by maximizing margins

- Restriction to parameter values

- Slow training

• Training of multilayer neural networks (NNs)

- Efficient training method not developed yet

Maximum Margin Neural NetworksMaximum Margin Neural Networks



• A constructive method of training NNs

• Any pattern classification problems can be
synthesized in 3-layers (input layer included)

• Needs to find hyperplanes that separate data of
one class from the others

CARVE AlgorithmCARVE Algorithm



Input space

: The class for separation

Hidden layer
Input layer

• Only     data are separated 

Bias 

1x
2x The weights between input layer and

hidden layer represent the hyperplane

1x

2x

CARVE Algorithm (hidden layer)CARVE Algorithm (hidden layer)



Input space

: The class for separation

Hidden layer

The weights between input layer and
hidden layer represent the hyperplane

• Only     data are separated
• Separated data are not used in next
  training
• When only data of one class remain, 
  the hidden layer training is finished

Bias 

1x
2x

Input layer

: The class for separation: The class for separation

1x

2x

CARVE Algorithm (hidden layer)CARVE Algorithm (hidden layer)



1

Sigmoid function

Input space

)1,0,0(

Hidden layer output space

0

All data can be linearly separable
by the output layer

)0,0,0(

)0,1,0(

)0,0,1(

)0,1,1(

)0,0,1()0,0,0(

)1,0,0(

CARVE Algorithm (output layer)CARVE Algorithm (output layer)



• NN training based on CARVE algorithm
• Maximizing margins at each layer

Input space

• On the positive side, data of other
  classes may exist by SVM training

Extend DirectSVM method in hidden layer training
and use conventional SVM training in output layer

Optimal hyperplane

Not appropriate hyperplanes
               for CARVE algorithm

Proposed MethodProposed Method



Input space

Nearest data

• Check the violation of the data with
  label –1

Largest violation
target values : ‐‐‐‐1

: +1

• The class labels are set so that the
class for separation are +1, and other
classes are -1

ex.

• Determine the initial hyperplane by 
  DirectSVM method

Extension of DirectSVMExtension of DirectSVM



Largest violation

• Update the hyperplane so that 
  the misclassified datum with -1 
  is classified correctly

Nearest data

Input space

If there are no violating data
with label –1, we stop updating the
hyperplane

Extension of DirectSVMExtension of DirectSVM



• Apply conventional SVM training

Maximum
margin

Hidden layer output space

Set weights by SVM with dot product kernels 

Hidden layer

Bias 

1x
2x

Input layer Output layer
Bias 

Training of output layerTraining of output layer



Data Inputs Classes Train. Test

Blood Cell 13 12 3097 3100

Thyroid 21 3 3772 3428

H-50 50 39 4610 4610

H-13 13 38 8375 8356

Data Sets Used for EvaluationData Sets Used for Evaluation
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FSVM: 1 vs. all

MM-NN is better
than BP and
comparable to
FSVMs.

Performance ComparisonPerformance Comparison



• NNs are generated layer by layer by the
CARVE algorithm and by maximizing
margins.

• Generalization ability is better than that
of BP NN and comparable to that of
SVMs.

SummarySummary


