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My Research History on NN, FS, and SVM

 Neural Networks (1988-)

— Conver gence characteristics of Hopfield networks
— Synthesis of multilayer neural networks

e Fuzzy Systems (1992-)
— Trainable fuzzy classifiers
— Fuzzy classifierswith ellipsoidal regions

e Support Vector Machines (1999-)

— Characteristics of solutions
— Multiclass problems
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‘ Multilayer Neural Networks I

Neural networksaretrained to output the target
values for the given input.
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‘ Multilayer Neural Networks I

Indirect decision functions. decision boundaries
change astheinitial weights are changed.

Class 1
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‘ Support Vector Machines |

Direct decision functions; decision boundaries are
deter mined to minimize the classification error of both
training data and unknown data.

Class 1

— QUM | fDX)>0, Class1

. Otherwise, Class?2

\\ Maximum margin

Class 2 _
Optimal hyperplane (OHP) D(x) =0



‘ Summary I

 When the number of training data is small,
SVM s outperform conventional classifiers.

By maximizing mar gins perfor mance of
conventional classifiers can beimproved.
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‘ Architecture of SVMs |

 Formulated for two-class classification problems
 Map theinput space into the feature space
 Determinetheoptimal hyperplanein thefeature space

a(x)

i —

"OHP

Input Space Featur e Space



‘ Typesof SVMs |

e Hard margin SVMs

— linearly separablein thefeature
space

— maximize generalization ability
e Soft margin SVMs \N

— Not separablein the feature space

— minimize classification error and
maximize generalization ability
o L1 soft margin SVMs (commonly used)

N\

Featur e Space

o L2 soft margin SVMs



‘ Hard Margin SVYMs I

We determine OHP so that |
the generalization region is Margin o
maximized:

Generalization

maximize o

subject to
wig(x;)+b = 1for Class 1
-wig(x.)—b = 1for Class?2

Combining the two:

y. (Wig(x;)+b) =1 OHP D(x) =wig(x;)+b=10




‘ Hard Margin SVM (2) I

Thedistancefrom x to OHP is
given by y. D(x) /||w||. Thusall
thetraining data must satisfy

y; D) /lIw]l = 3.
lmposing ||w|| 0= 1, the
problemisto

minimize ||w||4/2

subject to
y.D(x)=1 fori=1,... M.

Margin 0

Generalization

OHP D(x) =w'g(x;)+b=0



‘ Soft Margin SVMs I

If the problem isnon-
separ able, we introduce
slack variables ¢,.

Minimize

IW|[5/2 + Clp Zizym &F
subject to

yi D(x) 2 1-¢

where C: margin
parameter,
p=1.L1SVM,
=2. L2SVM

Margin o

OHP D(x) = 0



‘ Conversion to Dual Problems |

Introducing the L agrange multiplies a; and (3,

Q = WIP12 +Clp %, &P =, a(y,(wig(x;) + b) ~1+&)
% B&]

The Karush-Kuhn-Tacker (KK T) optimality conditions:

0Q/aw=0,00Q/0b=0,0Q/9¢ =0,
a>0 >0
KKT complementarity conditions
a(y;(w'g(x;) + b) —1+¢;) =0,
[(B¢i=0].

When p=2,teemsin | | arenot necessary.




‘ Dual Problemsof SVMs |

L1SVM
Maximize
2, 0; - CI2 % a; oy y; y; 9% )'9(X)
subject to

2y ai:O,CZ aiZO.

L2 SVM
Maximize
2 o —Cl2%;a;a,y Y (9(%)'9(x) + 9, /C)
subject to
2V a;, = 0, a; ZO,
whereg;: 1fori=jand Ofor i = J.




‘ KKT Complementarity Condition I

For L1 SVMs, from a;(y,(wig(x;) + b) —1+&) = O,
B& =(C—a) & =0,therearethreecasesfor a, :

1.a,=0. Then ¢ = 0. Thusx; iscorrectly classified,
2.0<qa;, <C.Then ¢ =0,andwig(x;)) +b =y,
3.a,=C.Then & = 0.

Training data x; with a; > 0 are called support
vector s and those with a, = C are called bounded
support vectors.

Theresulting decision function isgiven by
D(x) = 5, ay,9(x)! g(X) + b.




‘ Kerne Trick I

Since mapping function g(x) appearsin the form of
g(x)'g(x’), we can avoid treating the variablesin the
featur e space by introducing the kerndl:

H(x,X) = g(x)'g(x’);

Thefollowing kernels are commonly used:

=

Dot product kernels: H(x,x) = xiX’
Polynomial kernels: H(X,x') = (xtx’+1)¢
. RBF kernels: H(X,x’) = exp(= y||x = X’||?)

N

08




‘ Summary I

 Theglobal optimum solution by quadratic
orogramming (no local minima).

* Robust classification for outliersis possible by
oroper value selection of C.

o Adaptableto problemsby proper selection of
kernels.
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‘Han I\/IatrixI

Substituting a, = - y2Y; a; into the objective function,
Q=0a0'1-1/2a'Ha
we derive the Hessian matrix.

L1SVM
Hip = (v (90%) = 9(Xg) ) )W i (90%) —alxg) ) )

H, ,: positive semidefinite

L2 SVM
Ho=H +{vi v + 9)/C}

H ,: positive definite, which resultsin stabler training.




‘Non-unique Solutionsl

Strictly convex functions give unique solutions.

Table Unigueness

L1 SVM L2 SVM

Primal Non-uniqgue* Unique*
Dual Non-unique Unique*

*. Burges and Crisp (2000)

Convex objective function



‘Property 1|

For theL1 SVM, thevectorsthat satisfy
yi(wig(x;) + b) =1 are not always support
vectors. We call these boundary vectors.




‘IrreducibIeSet of Support Vectorsl

A set of support vectorsisirreducibleif
deletion of boundary vectorsand any
support vectorsresult in the change of the
optimal hyperplane.




‘Property 2|

For theL1 SVM, let all the support vectors
be unbounded. Then the Hessian matrix
associated with theirreducible set ispositive

definite.
‘ Property 3|

For theL1 SVM, if thereisonly one
iIrreducible set, and support vectorsare all
unbounded, the solution isunique.




|rreducible sets
{1, 3}, {2 4}

Thedual problemis
4 non-unique, but the
primal problem is

unique.

In general the number of support vectors of
L2 SVM islarger than that of L1 SV M.




‘Computer Simulationl

 Weused white blood cell data with 13
Inputs and 2 classes, each class having app.
400 data for training and testing.

« Wetrained SYMsusing the stegpest ascent
method (Abe et al. (2002))

 Weused a personal computer (Athlon
1.6Ghz) for training.



‘Recognition Rates for Polynomial Kernelsl

The differenceis small.

100
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‘ Support Vectorsfor Polynomial Ker nelsl

For poly4 and poly5 the numbersarethe same.
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‘ Training Time Comparison I

Asthe polynomial degreeincreases, the
difference becomes smaller.

60

50

40
() 30f EL1SVM
EL2 SVM

dot poly2 poly3d polyd polyd



‘ Summary I

e TheHessan matrix of an L1 SVM Ispositive

semi-definite, but that of an L2 SVM isalways
positive definite.

e Thusdual solutionsof an L1 SVM are non-
unique.

e When non-critical the difference between L1 and
L2 SVMsissmall.
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‘ Multiclass SVMs |

One-against-all SVMs

— Continuous decision functions

— Fuzzy SVMs

— Decision-tree-based SVMs

Pairwise SVMs

— Decision-tree-based SVMs (DDAGs, ADAGS)
— Fuzzy SVMs

ECOC SVMs

All-at-once SVMs



‘ One-against-all SVMs |

Deter minethe ith decision function D;(x) so that
classi isseparated from the remaining classes.

Classify x into the classwith D;(x) > 0.

=7

>

D,(x)=0

Unclassifiable



‘ Continuous SVMs |

Classify x into the class with max D;(x).

0> D,(x) > D4(x)
0> D,(x) > D,(X

D,(x) > D5(x)

D3(XV
(Class2>

\T A D,(x) =0

\

D,(x)=0



‘ Fuzzy SVM SI
Dl()l():]-

' D,(x)=0

|+

function in the direction
orthogonal to the
decision function Dj(x).

@ We define a one-
; dimensional membership

1
m,,(X) .

M ember ship function



‘Classi I\/Iembershipl

Classi member ship function

Theregion that satisfies m;(x) >0 my(x) =0
correspondsto the classifiable
region for classi.



‘ Resulting Class Boundaries by Fuzzy SVM sl

The generalization regions are the same
with those by continuous SVMs.

/

@‘
//IJ’W//////
/




‘Decision-treebased SVM sl

Each node correspondsto the hyper plane.

_ Classification step

At each node, determine Starting from the top node,
OHP. calculatethe value until a

leaf node isreached.
- A k fi(X):O

Classk

casi L
A

fi(x) =0




‘The problem of the decision treel

* Unclassifiableregion can beresolved.
e Theregion of each class dependson the structure
of adecision tree.

o
Classk fig =0/
CClasi .

fix)=0

How do we determine the decision tree?



‘ Deter mination of the decision treel

’? . . .
/%'\% —) The overall classification
per for mance becomes wor se.

The separable classes need to be separated at the
upper node.

The separability measures.

B Euclidean distances between class centers
B Classification errorsby the Mahalanobis distance




1 Classvs. Remaining Classes Using
Distances between Class Centers

Separatethefarthest class
from remaining classes.

B Calculate distances between class centers.

B [or each class, find the smallest value.

B Separatetheclasswith thelargest valuein step 2.
B Repeat for remaining classes.




‘Pairwise SVM sl

For all pairsof classesi, j, we definen(n-1)/2
decision functions and classify x into class

arg max; D;(x) where D;(x) = Z;sign D;;(x)

D;,(X)=0

Unclassifiable regions still exist.
D,(X) =Dy(x) =D4(x) =1




‘ Pairwise Fuzzy SVM SI

The generalization ability of the P-FSVM
Is better than the P-SVM.

P-SVM P-FSVM



Decision-tree-based SVMs (DDAGS)

Generalization regions change according
tothetreestructure.

ysﬁ

Class 1 Class 3 Class 2




Decision-tree-based SVMs (ADAGS)

For three-class problems ADAGsand DDAGsare
equivalent. In general, DDAGs include ADAGs.

ADAG (Tennis Tournament) Class 1 Class 3 Class 2

Equivalent DDAG



‘ ECC Capabilityl

The maximum number of decision functions=2n-1-1,
wheren isthe number of classes.

Error correcting capability = (h-1)/2, where h isthe
Hamming distance.

For n=4, h=4and ecc of 1.

Classl1 1 1 1 -1 1 1 -1
Class2 1 1 -1 1 1 -1 1
Class3 1 -1 1 1 -1 1 1
Class4 -1 1 1 1 -1 -1 -1




‘Continuous Hamming Distancel

Pe)=1 Hamming Distance

' Di(x)=0

; } @ =2 ERl(X)

=2(1 —m;(x))

Equivalent to membership
1 )<'/ functions with sum
O \ operators

\I\/I embership

Error function function



‘All-at-once SVM sl

Decision functions

w; g(x) + by > w;g(x) + b,
for | #1,)=1,...,n

Original formulation
n XM variables
where n: number of classes
M: number of training data
Crammer and Singer (2000) 's
M variables



‘ Perfor mance Evaluation |

o« Comparerecognition ratesof test data for
one-against-all and pairwise SVMs.

e Data setsused:
— white blood cell data
— thyroid data
— hiragana data with 50 inputs
— hiragana data with 13 inputs

\ IKFE57

‘0 59—16

Japanese License Plate



‘ Data Sets Used for Evaluation |

Data | nputs Classes Train. Test
3lood Cell 13 12 3097 3100
Thyroid 21 3 3772 3428

H-50 20 39 4610 4610

H-13 13 38 8375 8356




(%0)
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Perfor mance | mprovement

B SVM B FSVM [ Tree

for 1-all SVMs

Blood Thyroid H-50

Perfor mance
Improves by fuzzy
SVMsand decision
trees.



Performance | mprovement
for Pairwise Classification

H SVM B FSVM
[OADAG MX O ADAG Av
E ADAV MN

100
08
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FSVMsare
compar able with
ADAG MX.
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‘ Summary I

e One-against-all SVMswith continuous decision
functions are equivalent to 1-all fuzzy SVMs.

e Performance of pairwise fuzzy SVMsis
comparableto that of ADAGswith maximum
recognition rates.

e Thereisno so much difference between one-
against-all and pairwise SVMs.
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‘ Resear ch Status |

e Tooslow totrain by quadratic programming
for alarge number of training data.

e Several training methods have been developed:
— decomposition technique by Osuna (1997)
— Kernel-Adatron by Friesset al. (1998)

— SM O (Sequential Minimum Optimization) by Platt
(1999)

— Steepest Ascent Training by Abeet al. (2002)



‘ Decomposition Technique |

Decompose the index set into two: B and N.
Maximize

Qla)=2icg a0, —Cl22 e 0 aiyiy H(X;, Xj)

—C2iep,jen O, Q)Y H(x;, Xj)

_C/Z Zi’jeN ai ajyiyjH(Xi,Xj)'i'ZieN ai
subject to
ZieByi ai — _ZieNyi ai y C ; ai ;Ofor| EB

fixing a; for i €N.



‘ Solution Framework I

Outer Loop
|nner Loop

|
Violation of KKT Cond

Solvefor |« ‘/ Eixed Set
working Set {a|i €N}
{a,|i € B} ‘s

Use of QP Package
e.g., LOQO (1998)



‘ Solution without Using QP Package |

« SMO

— |B| =2, I.e,, solve the problem for two variables
— The subproblem is solvable without matrix calculations

o Steepest Ascent Training

— Speedup SM O by solving subproblemswith variables
mor e than two



Solution Framework for
Steepest Ascent Training

Outer Loop
|
Inner L oop Violation of KKT Cond
_Update a, TOF Working Set [« / Fixed Set
all ainBare B' OB > -
updated.




‘ Solution Procedure |

Set the index set B.

Select 0 and eliminate the equality constraint by
substituting Oy = — Y2 Y; O] into the objective
function.

Calculate corrections by
ag =—(02Q/ 9 a%.)™ 8 Q/ 3 ap
whereB” =B’ -{s}.

Correct variablesif possible.



‘Calculation of Correctionsl

 Wecalculate corrections by the Cholesky

decomposition.

 For theL2SVM, sincethe Hessian matrix is positive

definite, it isregular.

 For theL1lSVM, sincethe Hessian matrix is positive

semi-definite, it may be singular.

If D, < n,wediscard
thevariables a, j = .



‘ Update of Variablesl

e Casel
Variables are updated.

e Case?

./. Correctionsarereduced to
1

satisfy constraints.

e Cased
Variables are not corrected.




‘ Perfor mance Evaluation |

o Comparetraining time by the stegpest
ascent method, SM O, and theinterior point
method.

e Data satsused:

— white blood cell data
— thyroid data
— hiragana data with 50 inputs

— hiragana data with 13 inputs
g\ JKF57

‘0 59—16

Japanese License Plate



‘ Data Sets Used for Evaluation |

Data | nputs Classes Train. Test
3lood Cell 13 12 3097 3100
Thyroid 21 3 3772 3428

H-50 20 39 4610 4610

H-13 13 38 8375 8356
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Effect of Working Set Sizefor
Blood Cell Data

Dot product kernels
are used.

For alarger size, L2
SVMsaretraned
faster.



700
600
500

(9 400
300
200
100

BHL1 SVM BL2 SVM

Effect of Working Set Sizefor
Blood Cell Data (Cond.)

Polynomial kernels
with degree4 are
used.

No much difference
for LI1and L2 SVMs.



‘Training Time Comparison I

HLOQO BSMO O SAM

LOQO: LOQO is

10000 combined with

decomposition
1000 technique.
(S) _
100 SMOQO isthe

slowest. LOQO

107 and SAM are
compar able for

‘ hiragana data.

Thyroid Blood H-50 H-13



‘Summaryl

 The stegpest ascent method isfaster than SMO
and compar able for some caseswith theinterior-
point method combined with decomposition
technique.

e For thecritical cases, L2 SVMsaretrained faster
than L1 SVMs, but for normal casesthey are
almost the same.
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‘ SVM-inspired Methods I

o Kerne-based Methods
— Kerned Perceptron
— Kernel Least Squares
— Kernel Mahalanobis Distance
— Kernd Principal Component Analysis

« Maximum Margin Classifiers
— Fuzzy Classifiers
— Neural Networks



‘ Contents |

1. Direct and Indirect Decision Functions

2. Architecture of SVMs

3. Characteristicsof L1 and L2 SVMs

4. Multiclass SVMs

5. Training M ethods

6. SVM-inspired Methods
6.1 Kernel-based Methods
6.2 Maximum Margin Fuzzy Classifiers
6.3 Maximum Margin Neural Networks



Fuzzy Classifier with Ellipsoidal Regions

M ember ship function
m(x) = exp(- h*(x))

h4(x) = d4(x)/a, hi(x)
d(x) = (x-c)' Q™" (x—c)

where a;: a tuning par ameter, €i
d?(x): a M ahalanobis distance.

hj(x)




‘ Training I

1. For each class calculate
the center and the
covariance matrix.

2. Tune the membership
function so that
misclassification is
r esolved.

[Ty
| |

Degree of membership

—

Datum



Comparison of Fuzzy Classifierswith
Support Vector Machines

e Training of fuzzy classifiersisfaster than support
vector machines.

e Comparable performancefor the overlapping
classes.

* Inferior performance when data are scarce since
the covariance matrix Q; becomes singular.



| mprovement of Generalization Ability
When Data Are Scarce

* by Symmetric Cholesky factorization,

e by maximizing margins.



‘ Symmetric Cholesky Factorization |

In factorizing Q; into two triangular matrices:
Q=LL},

If thediagonal element |__ Is
aa

laa < 1

namely, Q. issingular, weset |__ = n.



‘ Concept of Maximizing Margins |

ftherearenooverlap ~ >ovndary

between classes, we set T
theboundary at the

middle of two classes, %

by tuning a;.



‘ Upper Bound of o |

Theclassi datum
remainscorrectly
classified for the

Increase of q;.

Classi

-
|

We calculatethe
upper bound for all /5 1\

Degree of membership

—

the classi data. Datum



‘ L ower Bound of o |

Theclass| datum
remainscorrectly
classified for the

decrease of a,.

Classj

(-

We calculatethe
lower bound for all
the data not
belonging to classi.

Degree of membership




‘ Tuning Procedure |

1. Calculate the upper bound L; and lower bound U, of
a,.

2. Set a, = (L + U)/2.

3. Iterate the above procedure for all the classes.



‘ Data Sets Used for Evaluation |

Data Inputs Classes Train. Test

H-50 50 39 4610 4610

H-105 105 38 8375 8356

H-13 13 38 8375 8356




Recognition Rate of Hiragana-50 Data
(Cholesky Factorization)

[ Test W Train.

Therecognition
rate improved as
n was increased.

100
90
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60
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40 1
301
201
10

(%0)

105 104 10® 102 10! n



Recognition Rate of Hiragana-50 Data
(Maximizing M argins)

[ Test M Train.

100
08
96
(%) 94
92+
90+
88+
86
84

The better
recognition rate
for small n.

105 104 103 102 101 p



Performance Comparison

EHCF ECF+MM OOSVD O SVM

100
99
987
977
96 1
957
94
937
927
91

Performance
excluding SVD
IS compar able.

(%0)

H-50 H-105 H-13



‘Summaryl

 When the number of training data issmall, the
generalization ability of the fuzzy classifier
with ellipsoidal regionsisimproved by
— the Cholesky factorization with singular avoidance,
— tuning member ship functionswhen thereisno

overlap between classes.

e Simulation results show the improvement of

the generalization ability.
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‘ Maximum Margin Neural Networks I

e Training of multilayer neural networks (NNs)
» Back propagation algorithm (BP)
- Slow training
e Support vector machine (SVM) with sigmoid kernels

- High generalization ability by maximizing margins

- Restriction to parameter values

« CARVE Algorithm(Young & Downs 1998)

- Efficient training method not developed yet



‘ CARVE Algorithm I

o A constructive method of training NNs

« Any pattern classification problems can be
synthesized in 3-layers (input layer included)

 Needsto find hyperplanesthat separate data of
one classfrom the others



‘ CARVE Algorithm (hidden layer) |

A .
A A - ® . Theclassfor separation
A 0
O
XA @ o PY - * Only ® data are separ ated
o o ° S
> ° ¢
x, | Input space

Xl
X, 57‘ Theweights between input layer and
Bias hidden layer represent the hyperplane

Input layer
Hidden layer



‘ CARVE Algorithm (hidden layer) |

m . Theclassfor separation

* Only ® data ar e separ ated
» Separated data arenot used in next
training

> [ nout soace * When only data of one classremain,
X [ NPUE S the hidden layer training isfinished

Theweights between input layer and
hidden layer represent the hyperplane

Bias

Input layer
Hidden layer



‘ CARVE Algorithm (output layer) |

1

_/
0

| nput space

. ..

@B. (1,1,0)
o

(0,0,0)

Hidden layer output space

by the output layer

All data can belinearly separable




‘ Proposed Method |

NN training based on CARVE algorithm
« Maximizing marginsat each layer

Optimal hyperplane

« On the positive side, data of other
classes may exist by SVM training

4

Not appropriate hyper planes
Input space for CARVE algorithm

Extend DirectSVM method in hidden layer training
and use conventional SVM training in output layer




‘ Extension of DirectSVM I

» Theclasslabelsare set so that the

Nearest data classfor separation are +1, and other
classesare-1
L argest violation _
m o+l
® ex. '
- target vaJues{. : _1}

* Deter minethe initial hyper plane by
DirectSVM method

| nput space

» Check theviolation of the data with
label -1



‘ Extension of DirectSVM I

Nearest data « Update the hyper plane so that
® the misclassified datum with -1
o ¢ Isclassified correctly
L argest violation
RNCE L;' B
= \’®

|f there areno violating data
with label -1, we stop updating the

| nput space hyperplane




‘ Training of output layer |

* Apply conventional SVM training

Maximum| Set weights by SVM with dot product kernels

. ) _-" .
B m margin

Bias

Input layer Output layer

Bias

Hidden layer output space

Hidden layer




‘ Data Sets Used for Evaluation |

Data | nputs Classes Train. Test
3lood Cell 13 12 3097 3100
Thyroid 21 3 3772 3428

H-50 50 39 4610 4610

H-13 13 38 8375 8356




(%0)

‘ Perfor mance Comparison |

100
98
96
94
92
90
88
86

0 BP B FSVM 1 MM—-NN

Blood Thyroid H-50

FSVM: 1vs. all

MM-NN is better
than BP and
comparableto
FSVMs.



‘Summaryl

 NNsaregenerated layer by layer by the
CARVE algorithm and by maximizing
mar gins.

o Generalization ability isbetter than that
of BP NN and compar ableto that of
SVMs.

N N




