Papers Included in Proceedings


  1. T. Kitamura and S. Abe, Subspace-Based L2 Support Vector Machines,Proc. ICONIP 2010, Australian Journal of Intelligent Information Processing Systems, vol. 12, no. 3, pp. 38-43, 2010 (presented at ICONIP 2010).

  2. Y. Tajiri, R. Yabuwaki, T. Kitamura, and S. Abe, Feature Extraction Using Support Vector Machines,Proc. ICONIP 2010, Part II, pp. 108-115, Sydney, Australia, 2010.

  3. S. Abe, Convergence Improvement of Active Set Training for Support Vector Regressors,Proc. ICANN 2010, Part II, LNCS 6353, pp. 1-10, Thessaloniki, Greece, September 2010.

  4. T. Kitamura, S. Takeuchi, and S. Abe, Feature Selection and Fast Training of Subspace Based Support Vector Machines, Proc. International Joint Conference on Neural Networks (IJCNN 2010), pp. 1967-1972, Barcelona, Spain, July 2010.

  5. R. Yabuwaki and S. Abe, Convergence Improvement of Active Set Support Vector Training, Proc. International Joint Conference on Neural Networks (IJCNN 2010), pp. 1426-1430, Barcelona, Spain, July 2010.

  6. S. Abe, Active Set Training of Support Vector Regressors, Proc. European Symposium on Artificial Neural Networks (ESANN 2010), pp. 117-122, Bruges, Belgium, April 2010.

  7. T. Ishii and S. Abe, Evaluation of Feature Selection by Multiclass Kernel Discriminant Analysis, Proc. Third IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2010), Cairo, Egypt, April, pp. 13-24, 2010.

  8. S. Abe, Is Primal Better than Dual, Proc. ICANN 2009, C. Alippi et al. (Eds.), Part I, LNCS 5768, pp. 854-863, Limassol, Cyprus, September 2009

  9. T. Ban, Y. Kadobayashi, and S. Abe, Sparse Kernel Feature Analysis by FastMap and Its Variants, Proc. International Joint Conference on Neural Network Networks (IJCNN 2009), pp. 256-263, Atlanta, June 2009.

  10. T. Kitamura, S. Abe, and K. Fukui, Subspace Based Least Squares Support Vector Machines for Pattern Classification, Proc. International Joint Conference on Neural Networks (IJCNN 2009), pp. 1640-1646, Atlanta, June 2009.

  11. S. Takeuchi, T. Kitamura, S. Abe, and K. Fukui, Subspace Based Linear Programming Support Vector Machines, Proc. International Joint Conference on Neural Networks (IJCNN 2009), pp. 3067-3073, Atlanta, June 2009.

  12. S. Muraoka and S. Abe, Sparse Support Vector Regressors Based on Forward Basis Selection, Proc. International Joint Conference on Neural Networks (IJCNN 2009), pp. 2183-2187, Atlanta, June 2009.

  13. K. Iwamura and S. Abe, Sparse Support Vector Machines by Kernel Discriminant Analysis, Proc. European Symposium on Artificial Neural Networks (ESANN 2009), pp. 367-372, Bruges, Belgium, April 2009.

  14. K. Morikawa and S. Abe, Improved Parameter Tuning Algorithms for Fuzzy Classifiers, Proc. ICONIP 2008, Part I, LNCS 5506, Auckland, New Zealand, pp. 937-944, 2009.

  15. S. Abe, Batch Support Vector Training Based on Exact Incremental Training, Proc. ICANN 2008, V. Kurkova, R. Neruda, and J. Koutnik (Eds), Part I, LNCS 5163, pp. 295-304, Prague, Czech Republic, September 2008.

  16. S. Abe, Sparse Least Squares Support Vector Machines by Forward Selection Based on Linear Discriminant Analysis, Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2008), Paris, France, pp. 54-65, July 2008.

  17. T. Ishii and S. Abe, Feature Selection Based on Kernel Discriminant Analysis for Multi-class Problems, Proc. International Joint Conference on Neural Networks (IJCNN 2008), pp. 2456-2461, Hong Kong, China, July 2008.

  18. K. Iwamura and S. Abe, Sparse Support Vector Machines Trained in the Reduced Empirical Feature Space, Proc. International Joint Conference on Neural Networks (IJCNN 2008), pp. 2399-2405, Hong Kong, China, July 2008.

  19. S. Abe, Comparison of Sparse Least Squares Support Vector Regressors Trained in Primal and Dual, Proc. European Symposium on Artificial Neural Networks (ESANN 2007), Bruges, Belgium, April 2008.

  20. R. Hosokawa and S. Abe, Fuzzy Classifiers Based on Kernel Discriminant Analysis, Proc. International Conference on Artificial Neural Networks (ICANN 2007), Part II, LNCS 4669, pp. 180-189, Porto, Portugal, September 2007.

  21. S. Abe and K. Onishi, Sparse Least Squares Support Vector Regressors Trained in the Reduced Empirical Feature Space, Proc. International Conference on Artificial Neural Networks (ICANN 2007), Part II, LNCS 4669, pp. 527-536, Porto, Portugal, September 2007.

  22. Y. Takeuchi, S. Ozawa, and S. Abe, An Efficient Incremental Kernel Principal Component Analysis for Online Feature Selection, Proc. International Joint Conference on Neural Networks (IJCNN 2007), pp. 1603-1608, Orlando, FL, August 2007.

  23. T. Nagatani and S. Abe, Backward Variable Selection of Support Vector Regressors by Block Deletion, Proc. International Joint Conference on Neural Networks (IJCNN 2007), pp. 1540-1545, Orlando, FL, August 2007.

  24. S. Abe, Optimizing Kernel Parameters by Second-Order Methods, Proc. European Symposium on Artificial Neural Networks (ESANN 2007), pp. 259-264, Bruges, Belgium, April 2007.

  25. M. Ashihara and S. Abe, Feature Selection Based on Kernel Discriminant Analysis, Proc. International Conference on
    Artificial Neural Networks (ICANN 2006)
    , Part II, pp. 282-291, Athens, Greece, September 2006.

  26. Y. Kamada and S. Abe, Support Vector Regression Using Mahalanobis Kernels, Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2006), pp. 144-152, Gunzburg, Germany, August/September 2006.

  27. Y. Torii and S. Abe, Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques, Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2006), pp. 165-176, Gunzburg, Germany, August/September 2006.

  28. Shinya Katagiri and Shigeo Abe, Incremental Training of Support Vector Machines Using Truncated Hypercones, Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2006), pp. 153-164, Gunzburg, Germany, August/September 2006.

  29. T. Kidera, S. Ozawa and S. Abe, An Incremental Learning Algorithm of Ensemble Classifier Systems, Proc. International Joint Conference on Neural Networks, pp. 6453-6459, Vancouver, Canada, July 2006.

  30. T. Ban and S. Abe, Implementing Multi-class Classifiers by One-class Classification Methods, Proc. International Joint Conference on Neural Networks, pp. 719-724, Vancouver, Canada, July 2006.

  31. S. Abe, Training of Kernel Fuzzy Classifiers by Dynamic Cluster Generation, Proc. IEEE ICDM 2005 Workshop on Computational Intelligence in Data Mining, pp. 13-20, Houston, Texas, November 2005. (pdf)

  32. S. Katagiri and Shigeo Abe, Selecting Support Vector Candidates for Incremental Training, Proc. 2005 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1258-1263, Hawaii, October 2005.

  33. T. Ban and S. Abe, SVM Ensembles for Selecting the Relevant Feature Subsets, Proc. International Joint Conference on Neural Networks (IJCNN 2005), pp. 943-948, Montreal, Canada, July, August 2005.

  34. S. Ozawa, S. Toh, S. Abe, S. Pang, and N. Kasabov, Incremental Learning for Online Face Recognition, Proc. International Joint Conference on Neural Networks (IJCNN 2005), pp. 3174-3179, Montreal, Canada, July, August 2005.

  35. S. Abe, Training of Support Vector Machines with Mahalanobis Kernels, Proc. International Conference on Artificial Neural Networks (ICANN 2005), pp. 571-576, Warsaw, Poland, September 2005.

  36. S. Abe, Modified Backward Feature Selection by Cross Validation, Proc. 13th European Symposium on Artificial Neural Networks (ESANN 2005), Bruges, Belgium, April 2005. (pdf)

  37. T. Ban and S. Abe, Spatially Chunking Support Vector Clustering Algorithm, Proc. International Joint Conference on Neural Networks (IJCNN 2004),Vol. 1, pp. 413-418, July 2004.

  38. D. Tsujinishi, Y. Koshiba, and Shigeo Abe, Why Pairwise Is Better than One-against-All or All-at-Once, Proc. International Joint Conference on Neural Networks (IJCNN 2004), Vol. 1, pp. 693-698, July 2004.

  39. S. Abe, Fuzzy LP-SVMs for Multiclass Problems, Proc. 12th European Symposium on Artificial Neural Networks (ESANN 2004), pp. 429-434, Bruges, Belgium, April 2004. (pdf)

  40. T. Kikuchi and S. Abe, Error Correcting Output Codes vs. Fuzzy Support Vector Machines, Proc. Artificial Neural Networks in Pattern Recognition, pp. 192-196, Florence, Italy, September 2003. (pdf)

  41. F. Takahashi and S. Abe, Optimizing Directed Acyclic Graph Support Vector Machines, Proc.Artificial Neural Networks in Pattern Recognition, pp. 166-170, Florence, Italy, September 2003. (pdf)

  42. K. Okamoto, S. Ozawa, and S. Abe, Fast Incremental Learning Algorithm of RBF Networks with Long-Term Memory, Proc. International Joint Conference on Neural Networks (IJCNN 2003), Vol. 1, pp. 102-107, Portland, Oregon, July 2003.

  43. K. Kaieda and S. Abe, A Kernel Fuzzy Classifier with Ellipsoidal Regions, Proc. International Joint Conference on Neural Networks (IJCNN 2003), Vol. 3, 2043-2048, Portland, Oregon, July 2003.

  44. Y. Koshiba and S. Abe, Comparison of L1 and L2 Support Vector Machines, Proc. International Joint Conference on Neural Networks (IJCNN 2003), Vol. 3, pp. 2054-2059, Portland, Oregon, July 2003

  45. D. Tsujinishi and S. Abe, Fuzzy Least Squares Support Vector Machines, Proc. International Joint Conference on Neural Networks (IJCNN 2003), Vol. 2, pp. 1559-1604, Portland, Oregon, July 2003.

  46. S. Abe, On Invariance of Support Vector Machines, Fourth International  Conference on Intelligent Data Engineering and Automated Learning (IDEAL'03), Hong Kong, March 2003. (pdf)

  47. S. Abe, Analysis of Multiclass Support Vector Machines, Proc. International  Conference on Computational Intelligence for Modelling Control and Automation   (CIMCA’2003), pp. 385-396, Vienna, Austria, February 2003.

  48. T. Nishikawa and S. Abe, Maximizing Margins of Multilayer Neural Networks, Proc. 9th International Conference on Neural Information  Processing, Singapore, Vol. 1, pp. 322-326, November 2002.

  49. F. Takahashi and S. Abe, Decision-tree-based Multiclass Support Vector  Machines, Proc. 9th International Conference on Neural Information Processing, Singapore, Vol. 3, pp. 1418-1422, November 2002.

  50. Y. Hirokawa and S. Abe, Training of Support Vector Regressors Based on the Steepest Ascent Method, Proc. 9th International Conference on Neural   Information Processing, Vol. 2, pp. 552-555, Singapore, November 2002.

  51. S. Abe, Y. Hirokawa, and S. Ozawa, Steepest Ascent Training of Support Vector Machines, KES'2002 Sixth International Conference on Knowledge-Based Intelligent Information & Engineering Systems, Part 2, pp. 1301-1305, Crema, Italy, September 2002.

  52. S. Abe, Analysis of Support Vector Machines, 2002 IEEE  International Workshop on Neural Networks for Signal Processing, Martigny,  Switzerland, September 4-6, 2002.  

  53. S. Abe and T. Inoue, Fuzzy Support Vector Machines for Multiclass  Problems, Proc. ESANN 2002, pp. 113-118, Bruges, Belgium, April 2002. (pdf)

  54. S. Abe and K. Sakaguchi, Generalization Improvement of a Fuzzy  Classifier with Ellipsoidal Regions, Proc. The 10th IEEE International  Conference on Fuzzy Systems (FUZZ-IEEE 2001), pp. 207-210, Melbourne, Australia,  December 2001. (pdf)

  55. S. Abe and T. Inoue, Fast Training of Support Vector Machines  by Extracting Boundary Data, Proc. International Conference on Artificial  Neural Networks, pp. 308-313, Vienna, Austria, August 2001.

  56. M. Kobayashi, A. Zamani, S. Ozawa, and S. Abe, Reducing Computations  in Incremental Learning for Feedforward Neural Network with Long-Term    Memory,   Proc. International Joint Conference on Neural Networks, pp. 1989-1994, Washington,  D.C., July 2001.

  57. T. Takigawa, T. Shimozaki, and S. Abe, Training of a Fuzzy Classifier  with Polyhedral Regions, Proc. International Joint Conference on Neural Networks, pp. 1350-1355, Washington, D.C., July 2001. (pdf)

  58. K. Sakaguchi and S. Abe, Tuning Membership Locations of a Fuzzy  Classifier with Ellipsoidal Regions, Proc. International Joint Conference  on Neural Networks, pp. 1356-1361, Washington, D.C., July 2001. (pdf)

  59. T. Inoue and S. Abe, Fuzzy Support Vector Machines for Pattern  Classification, Proc. International Joint Conference on Neural Networks,  pp. 1449-1454, Washington, D.C., July 2001.

  60. S. Abe, Generalization Improvement of a Fuzzy Classifier with Pyramidal   Membership Functions, Proc. International Conference on Pattern Recognition, Vol. 2, pp. 211-214, Barcelona, Spain, September 2000. (pdf)

  61. N. Tsuchiya, S. Ozawa, and S. Abe, Training Three-layer Neural Network  Classifiers by Solving Inequalities, Proc. International Joint Conference  on Neural Networks, Vol. 3, pp. 555-560, Como, Italy, June 2000. (pdf)

  62. K. Kawaratani and S. Abe, Fast Feature Selection by Analyzing Class  Regions Approximated by Ellipsoids, Proc. International Joint Conference on Neural Networks, Vol. 3, pp. 549-554, Como, Italy, June 2000. (pdf)

  63. H. Kubota, H. Tamaki, and S. Abe, Robust Function Approximation Using Fuzzy Rules with Ellipsoidal Regions, Proc. International Joint Conference on Neural Networks, Vol. 6, pp. 529-534, Como, Italy, June 2000. (pdf)

  64. S. Abe, Fast Training of a Fuzzy Classifier with Pyramidal Membership Functions, Proc. SCI ’99/ISAS ’99, Vol. 3, pp. 487-492, Orlando, FL, August 1999.

  65. S. Abe, A Fuzzy Function Approximator with Ellipsoidal Regions, Proc. 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT ‘98), Vol. 1, pp. 613-617, Aachen, Germany, September, 1998.

  66. S. Abe, Training of a Fuzzy Classifier with Ellipsoidal Regions by Dynamic Cluster Generation, Proc. Second International Conference on Knowledge-Based Intelligent Electronic Systems (KES '98), Vol. 1, pp. 126-131, Adelaide, Australia, April 1998.

  67. R. Thawonmas and S. Abe, Rule Acquisition Based on Hyperbox Representation and Their Applications, Proc. Second International Conference on Knowledge-Based Intelligent Electronic Systems (KES '98), Vol. 1, pp. 120-125, Adelaide, Australia, April 1998.

  68. R. Thawonmas and S. Abe, Function Approximation with Partitioned Ellipsoidal Regions, Proc. ICONIP/ANZIIS/ANNES'97 Conference, pp. 380-383, Dunedin, New Zealand, November, 1997.

  69. S. Abe, R. Thawonmas, and Y. Kobayashi, Feature Selection by Analyzing Ellipsoidal Class Regions, Proc. 5th European Congress on Intelligent Techniques & Soft Computing (EUFIT ‘97), Vol. 3, pp. 1789-1793, Aachen, Germany, September, 1997.

  70. R. Thawonmas, S. Abe, and A. Cichocki, A Fuzzy Function Approximator  Based on Partitioned Hyperboxes, Proc. Joint Pacific Asian Conference on Expert Systems/ Singapore International Conference on Intelligent Systems  (PACES/SPICIS ‘97), pp. 537-544, Singapore, February 1997.

  71. S. Abe and R. Thawonmas, Fast Training of a Fuzzy Classifier with Ellipsoidal  Regions, Proc. Fifth IEEE International Conference on Fuzzy Systems, New Orleans, Vol. 3, pp. 1875-1880, September 1996.

  72. R. Thawonmas and S. Abe, A Fuzzy Classifier Based on Partitioned Hyperboxes, Proc. International Conference on Neural Networks (ICNN '96),  Vol. 2, pp. 1097-1102, Washington, D.C, June 1996.

  73. S. Abe, Fuzzy Classifiers with Learning Capability, Proc. International Workshop on Soft Computing in Industry ‘96, pp. 235-240, Muroran, Japan, May 1996.

  74. R. Thawonmas and S. Abe, Feature Reduction Based on Analysis of Fuzzy Regions, Proc. 1995 IEEE International Conference on Neural Networks (ICNN '95), Vol. IV, pp. 2130-2133, Perth, Australia, March 1995.

  75. S. Abe, LSI Module Placement by the Hopfield Neural Network, Proc. Fourth International Conference on Artificial Neural Networks, Churchill College, Cambridge, UK, June 1995.

  76. R. Thawonmas, S. Abe, and M.-S. Lan, Tuning of a Fuzzy Classifier by Solving Inequalities, Proc. International Joint Conference of 4th IEEE International Conference on Fuzzy Systems and International Fuzzy Engineering Symposium (FUZZ-IEEE/IFES '95), Vol. III, pp. 1657-1664, Yokohama, Japan, March 1995.

  77. S. Abe, M.-S. Lan, and R. Thawonmas, Tuning of a Fuzzy Classifier Derived  from Data, Proc. 3nd IEEE International Conference on Fuzzy Systems, Vol. II, pp. 786 - 791, Orlando, Florida, June 1994.

  78. M.-S. Lan, H. Takenaga, and S. Abe, Character Recognition Using Fuzzy Rules Extracted from Data, Proc. 3nd IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 415-420, Orlando, Florida, June 1994.

  79. V. Uebele, S. Abe, and M.-S. Lan, Extracting Fuzzy Rules from Pattern  Classification Neural Networks, Proc. IEEE SMC'93 Conference,  Vol.  2, pp. 578-583, Le Touquet, France, October 1993.

  80. S. Abe and M-S Lan, A Function Approximator Using Fuzzy Rules Extracted Directly from Numerical Data, Proc. International Joint Conference on Neural Networks (IJCNN'93), pp. 1887-1892, Nagoya, October 1993.

  81. M.-S. Lan and S. Abe, A Method for Fuzzy Rules Extraction Directly from Numerical Data, Proc. The First IEEE Regional Conference on Aerospace Control Systems, pp. 127-131, Westlake Village, California, May 1993.

  82. S. Abe and M.-S. Lan, A Classifier Using Fuzzy Rules Extracted Directly  from Numerical Data, Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco, pp. 1191-1198, March 1993.

  83. S. Abe, M. Kayama, and H. Takenaga, Optimizing Composite Neural Networks for Pattern Classification, Proc. Neuro-Nimes 92, pp. 287-296, Nimes, France, November 1992.

  84. S. Abe, M. Kayama, H. Takenaga, and T. Kitamura, Determining Convergence of Pattern Classification Neural Networks prior to Learning, Proc. International Joint Conference on Neural Networks (IJCNN-92), Vol. 2, pp. 799-804, Beijing, November 1992.

  85. M. Kayama, S. Abe, H. Takenaga, and Y. Morooka, Modeling Generalization Capability for a Multi-layered Neural Network Classifier and Optimizing Its Number of Hidden Units, Proc. International Joint Conference on Neural Networks (IJCNN-92), Vol. 1, pp. 429-434, Beijing, November 1992.

  86. S. Abe, M. Kayama, and H. Takenaga, Neural Networks as a Tool to Generate Pattern Classification Algorithms, Proc. International Joint Conference on Neural Networks (IJCNN-92), Vol. 1, pp. 619-624, Baltimore, June 1992.

  87. S. Abe, Global Convergence and Suppression of Spurious States of the Hopfield Neural Networks, Proc. International Joint Conference on Neural Networks (IJCNN-91), pp. 934-940, Singapore, November 1991.

  88. S. Abe, M. Kayama, and H. Takenaga, Synthesizing Neural Networks for Pattern Recognition, Proc. International Joint Conference on Neural Networks (IJCNN-91), pp. 1104-1110, Singapore, November 1991.

  89. S. Abe, Determining Weights of the Hopfield Neural Networks, Proc.  International Conference on Artificial Neural Networks (ICANN-91),  pp.   1507-1510, Helsinki, Finland, June 1991.

  90. H. Takenaga, S. Abe, M. Takatoo, M. Kayama, T. Kitamura, and Y. Okuyama, Optimal Input Selection of Neural Networks by Sensitivity Analysis, Proc. IAPR Workshop on Machine Vision Applications, pp. 117-120, Tokyo, Japan, Nov. 28-30, 1990.

  91. M. Kayama, S. Abe, H. Takenaga, and Y. Morooka, Constructing Optimal Neural Networks by Linear Regression Analysis, Proc. Neuro-Nimes  '90, pp. 363-376, Nimes, France, November 1990.

  92. S. Abe, Learning by Parallel Forward Propagation, Proc. International Joint Conference on Neural Networks (IJCNN-90), Vol. 3, pp. 99-104, San Diego, June 1990.

  93. S. Abe, Convergence of the Hopfield Neural Networks with Inequality  Constraints, Proc. International Joint Conference on Neural Networks  (IJCNN-90), Vol. 3, pp. 869-873.

  94. S. Abe and J. Kawakami, Theories on the Hopfield Neural Networks with Inequality Constraints, Proc. International Joint Conference on Neural Networks (IJCNN-90-WASH-DC), Vol. 1, pp. 349-352, Washington, D.C., January 1990.

  95. S. Abe, Theories on the Hopfield Neural Networks, Proc. International Joint Conference on Neural Networks (IJCNN-89), Vol. 1, pp. 557-564, Washington, D.C., June 1989.

  96. K. Kurosawa, S. Yamaguchi, S. Abe and T. Bandoh, Instruction Architecture for a High Performance Prolog Processor IPP, Proc. 5th International Conference and Symposium on Logic Programming, pp. 1506-1530, October 1988.

  97. S. Abe, T. Bandoh, S. Yamaguchi, K. Kurosawa, and K. Kiriyama, High Performance Integrated Prolog Processor IPP, Proc. 14th International Symposium on Computer Architecture, pp. 100-107, Pittsburgh, June 1987.

  98. S. Abe, K. Kurosawa, and K. Kiriyama, A New Optimization Technique for a Prolog Compiler, Proc. Compcon 86, pp. 241-245, San Francisco, March 1986.

  99. S. Abe, R. Hiraoka, Y. Fukunaga, T. Bandoh, K. Hirasawa, and Y. Kawamoto, Preliminary Performance Evaluation of Data Flow Computers, Proc. Compcon Spring 82, pp. 224-227, San Francisco, February 1982.

  100. S. Abe, N. Hamada, K. Hirasawa, Y. Kawamoto, K. Okuda, Y. Hirakochi, and H. Kitanosono, Problem Oriented Language and Software Architecture for Energy Control Computer Systems, Proc. 6th Power System Computer Conference, pp. 348-355, Darumstadt, August 1978.

  101. S. Abe, M. Goto, A. Isono and Hiracochi, Interactive Switching System for Power Networks, IEEE PES Summer Meeting, Paper No. A. 77 620-8, Mexico City, July 1977.

  102. S. Abe, J. Makino, A. Isono, U. Moroe, and O. Nagasaki, Criteria for Power System Voltage Stability by Steady State Analysis, IEEE PES Summer Meeting, Paper No. A 75 435-8, San Francisco, July 1975.