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Theorem (Cantor’s theorem)

For every set X , we have

|X | < |P(X )|.

For a cardinal λ, we have
λ < 2λ.

=⇒ For an infinite cardinal λ, does there exist a cardinal µ such that
λ < µ < 2λ ?
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Continuum hypothesis

Definition

The Continuum Hypothesis(CH) is the statement

2ω = ω1.

For an infinite cardinal λ, CHλ is the statement

2λ = λ+.

The statement
∀λ CHλ

is called the Generalized Continuum Hypothesis(GCH).

Theorem (Gödel, Cohen)

GCH is independent of the axioms of ZFC.



Continuum hypothesis and diamond principle

Continuum hypothesis

Continuum hypothesis

Definition

The Continuum Hypothesis(CH) is the statement

2ω = ω1.

For an infinite cardinal λ, CHλ is the statement

2λ = λ+.

The statement
∀λ CHλ

is called the Generalized Continuum Hypothesis(GCH).

Theorem (Gödel, Cohen)
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Diamond principle

Diamond principle

C ⊂ κ is a club set iff
0 < ∀δ < κ

(
sup(C ∩ δ) = δ → δ ∈ C

)
(closed)

supC = κ (unbounded)

S ⊂ κ is a stationary set iff for every club set C, S ∩ C ̸= ∅.

club set : measure 1
stationary set : measure positive

Definition

Assume κ is a regular cardinal and S ⊂ κ is a stationary set. Then, ♢S is
the following statement: there exists ⟨Sδ : δ ∈ S⟩ such that for every
A ⊂ κ,

{δ ∈ S : A ∩ δ = Sδ}

is stationary.

Remark

If S ⊂ T then ♢S → ♢T .
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Proposition

Assume λ is an infinite cardinal and S ⊂ λ+ is a stationary set. Then,

♢S → 2λ = λ+.

Proof.

Assume ⟨Sδ : δ ∈ S⟩ is a ♢S -sequence.
Since C := {δ < λ+ : δ > λ} = (λ, λ+) is club, for every A ⊂ λ, there
exists δ ∈ S ∩ C such that

A = A ∩ δ = Sδ.

Then
2λ = |P(λ)| ≤ |S ∩ C | = λ+.
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Fact (Jensen)

(2ω = ω1) + ¬♢ω1 is consistent.

Question 1

Assume λ is an uncountable cardinal. What kind of S ⊂ λ+ entail

2λ = λ+ → ♢S ?

Question 2

For every uncountable cardinal λ,

2λ = λ+ → ♢λ+

holds？
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Shelah’s theorem

Assume µ < κ are regular cardinals.

Sκ
µ := {α < κ : cf(α) = µ},

Sκ
̸=µ := {α < κ : cf(α) ̸= µ}.

Lemma

Assume µ < κ are regular cardinals. Then Sκ
µ is stationary.

For uncountable cardinal λ, Sλ+

̸=cf(λ) is stationary.
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Theorem (Shelah)

Assume λ is an uncountable cardinal and S ⊂ Sλ+

̸=cf(λ) is a stationary set.
Then,

2λ = λ+ → ♢S

holds.

Corollary

For every uncountable cardinal λ,

2λ = λ+ → ♢λ+

holds.

Question 2 is solved !!
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Fact

If λ is a regular cardinal, then (2λ = λ+) + ¬♢Sλ+

cf(λ)
is consistent.

Question1-2

Assume λ is a singular cardinal. Then, For every stationary S ⊂ Sλ+

cf(λ),

2λ = λ+ → ♢S

holds？



Continuum hypothesis and diamond principle

A problem about Shelah’s theorem

A problem about Shelah’s theorem

Fact

If λ is a regular cardinal, then (2λ = λ+) + ¬♢Sλ+

cf(λ)
is consistent.

Question1-2

Assume λ is a singular cardinal. Then, For every stationary S ⊂ Sλ+

cf(λ),

2λ = λ+ → ♢S

holds？



Continuum hypothesis and diamond principle

A problem about Shelah’s theorem

A problem about Shelah’s theorem

Fact

If λ is a regular cardinal, then (2λ = λ+) + ¬♢Sλ+

cf(λ)
is consistent.

Question1-2

Assume λ is a singular cardinal. Then, For every stationary S ⊂ Sλ+

cf(λ),

2λ = λ+ → ♢S

holds？



Continuum hypothesis and diamond principle

A problem about Shelah’s theorem

A problem about Shelah’s theorem

Definition

Assume λ is a singular cardinal and S ⊂ λ+ is a stationary set. I [S ;λ] is
a set such that

T ∈ I [S ;λ] ↔T ⊂ Tr(S) and

∃d : [λ+]2 → cf(λ) normal, subadditive

∃C ⊂ λ+ club

∀γ ∈ T ∩ C ∩ Sλ+

>cf(λ) ∃Sγ ⊂ γ ∩ S stationary(
sup d

[
[Sγ ]

2
]
< cf(λ)

)
.

Tr(S) = {α < λ+ : cf(α) > ω, S ∩ α is stationary in α},
For d : [λ+]2 → cf(λ),

d is subadditive
↔ ∀α ≤ ∀β ≤ ∀γ < λ+

(
d(α, γ) ≤ max{d(α, β), d(β, γ)}

)
,

d is normal ↔ ∀β < λ+∀i < cf(λ)
(
|{α < β : d(α, β) ≤ i}| < λ

)
.
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A problem about Shelah’s theorem

Theorem (Rinot)

Assume λ is a singular cardinal and S ⊂ λ+ is a stationary set. Then, if
I [S ;λ] contains a stationary set,

2λ = λ+ → ♢S

holds.

Question1-3

Assume λ is a singular cardinal. Then for every stationary S ⊂ Sλ+

cf(λ),

does I [S ;λ] contain stationary sets？
Does I [Sλ+

cf(λ);λ] contain stationary sets？
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Sketch of the proof of Shelah’s theorem

Theorem (Shelah)

Assume λ is an uncountable cardinal and S ⊂ Sλ+

̸=cf(λ) is a stationary set.
Then,

2λ = λ+ → ♢S

holds.

Sketch of proof (Komjáth).

Claim

There exist a sequence
⟨
Aδ ∈ [δ]<λ : δ ∈ S

⟩
and an enumeration of

[λ× λ+]≤λ, ⟨Xβ : β < λ+⟩ , such that for every Z ⊂ λ× λ+,

SZ :=
{
δ ∈ S : sup

{
α ∈ Aδ : ∃β ∈ Aδ(Z ∩ (λ× α) = Xβ)

}
= δ

}
is stationary.
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Now, we define a sequence of subsets of λ+, ⟨Yγ : γ < λ⟩, and a
decreasing sequence of clubs, ⟨Cγ : γ < λ⟩.

Put Y0 := C0 := λ+.
Assume ⟨Yτ : τ < γ⟩ and ⟨Cτ : τ < γ⟩ are defined for some γ < λ.

If there exist Y ⊂ λ+ and club C ⊂
∩

τ<γ Cτ such that for every
δ ∈ S ∩ C , we have

δ =
∪{

α ∈ Aδ : ∃β ∈ Aδ∀τ < γ
(
Yτ ∩ α = (Xβ)τ

)}
then

∃ ⟨α, β⟩ ∈ Aδ × Aδ
[
∀τ < γ

(
Yτ ∩ α = (Xβ)τ

)
∧ Y ∩ α ̸= (Xβ)γ

]
,

then, put Yγ = Y ,Cγ = C .

Otherwise, terminate the recursion.

(Xβ)γ := {ξ : ⟨γ, ξ⟩ ∈ Xβ} ⊂ λ+.
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Claim

There exists γ∗ < λ such that the recursion terminates in γ∗.
Then, for every Y ⊂ λ+ and club C ⊂

∩
γ<γ∗ Cγ , there exists δ ∈ S ∩ C ,

such that

δ =
∪{

α ∈ Aδ : ∃β ∈ Aδ∀γ < γ∗(Yγ ∩ α = (Xβ)γ
)}

and

∀ ⟨α, β⟩ ∈ Aδ × Aδ
[
∀γ < γ∗(Yγ ∩ α = (Xβ)γ

)
→ Y ∩ α = (Xβ)γ∗

]
.

Put C∗ :=
∩

γ<γ∗ Cγ .
For δ ∈ S ∩ C∗, define

Sδ :=
∪

⟨α,β⟩∈Aδ×Aδ

{
(Xβ)γ∗ : ∀γ < γ∗(Yγ ∩ α = (Xβ)γ

)}
.
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Then, for every Y ⊂ λ+ and club C ⊂ λ+, there exists δ ∈ S ∩ C∗ ∩ C ,
we have

Y ∩ δ = Y ∩
∪{

α ∈ Aδ : ∃β ∈ Aδ∀γ < γ∗(Yγ ∩ α = (Xβ)γ
)}

=
∪

⟨α,β⟩∈Aδ×Aδ

{
Y ∩ α : ∀γ < γ∗(Yγ ∩ α = (Xβ)γ

)}
=

∪
⟨α,β⟩∈Aδ×Aδ

{
(Xβ)γ∗ : ∀γ < γ∗(Yγ ∩ α = (Xβ)γ

)}
= Sδ.

⟨Sδ : δ ∈ S ∩ C∗⟩ is ♢S∩C∗-sequence.
Then, ♢S holds. �
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