Continuum hypothesis and diamond principle

Kousuke Ogawa(小川孝典)

Department of Mathematics and Information Sciences Tokyo Metroporitan University (首都大学東京 理工学研究科 数理情報科学専攻)

「数学基礎論若手の会」2011

Contents

- 1 Continuum hypothesis
- 2 Diamond principle
- 3 Shelah's theorem
- 4 A problem about Shelah's theorem
- 5 Sketch of the proof of Shelah's theorem

Continuum hypothesis and diamond principle

Continuum hypothesis

Continuum hypothesis

Theorem (Cantor's theorem)

For every set X, we have

$$|X| < |\mathcal{P}(X)|$$
.

For a cardinal λ , we have

$$\lambda < 2^{\lambda}$$
.

Theorem (Cantor's theorem)

For every set X, we have

$$|X| < |\mathcal{P}(X)|$$
.

For a cardinal λ , we have

$$\lambda < 2^{\lambda}$$
.

 \Longrightarrow For an infinite cardinal $\lambda,$ does there exist a cardinal μ such that $\lambda<\mu<2^{\lambda}$?

Definition

The Continuum Hypothesis(CH) is the statement

$$2^{\omega}=\omega_1.$$

For an infinite cardinal λ , CH_{λ} is the statement

$$2^{\lambda} = \lambda^{+}$$
.

The statement

$$\forall \lambda \ \mathrm{CH}_{\lambda}$$

is called the Generalized Continuum Hypothesis(GCH).

Definition

The Continuum Hypothesis(CH) is the statement

$$2^{\omega}=\omega_1$$
.

For an infinite cardinal λ , CH_{λ} is the statement

$$2^{\lambda} = \lambda^{+}$$
.

The statement

$$\forall \lambda \text{ CH}_{\lambda}$$

is called the Generalized Continuum Hypothesis(GCH).

Theorem (Gödel, Cohen)

GCH is independent of the axioms of ZFC.

Continuum hypothesis and diamond principle

Diamond principle

Diamond principle

- $C \subset \kappa$ is a club set iff
 - $0 < \forall \delta < \kappa (sup(C \cap \delta) = \delta \rightarrow \delta \in C)$ (closed)
 - sup $C = \kappa$ (unbounded)

- $C \subset \kappa$ is a club set iff
 - $0 < \forall \delta < \kappa (sup(C \cap \delta) = \delta \rightarrow \delta \in C)$ (closed)
 - sup $C = \kappa$ (unbounded)
- $S \subset \kappa$ is a stationary set iff for every club set C, $S \cap C \neq \emptyset$.

- $C \subset \kappa$ is a club set iff
 - $0 < \forall \delta < \kappa (\sup(C \cap \delta) = \delta \rightarrow \delta \in C)$ (closed)
 - sup $C = \kappa$ (unbounded)
- $S \subset \kappa$ is a stationary set iff for every club set C, $S \cap C \neq \emptyset$.

club set : measure 1
stationary set : measure positive

- $C \subset \kappa$ is a club set iff
 - $0 < \forall \delta < \kappa (\sup(C \cap \delta) = \delta \rightarrow \delta \in C)$ (closed)
 - sup $C = \kappa$ (unbounded)
- $S \subset \kappa$ is a stationary set iff for every club set C, $S \cap C \neq \emptyset$.

club set: measure 1

stationary set: measure positive

Definition

Assume κ is a regular cardinal and $S \subset \kappa$ is a stationary set. Then, \lozenge_S is the following statement: there exists $\langle S_\delta : \delta \in S \rangle$ such that for every $A \subset \kappa$.

$$\{\delta \in S : A \cap \delta = S_{\delta}\}$$

is stationary.

- \blacksquare $C \subset \kappa$ is a club set iff
 - $0 < \forall \delta < \kappa (\operatorname{sup}(C \cap \delta) = \delta \to \delta \in C)$ (closed)
 - $\sup C = \kappa$ (unbounded)
- $S \subset \kappa$ is a stationary set iff for every club set C, $S \cap C \neq \emptyset$.

club set: measure 1

stationary set: measure positive

Definition

Assume κ is a regular cardinal and $S \subset \kappa$ is a stationary set. Then, \lozenge_S is the following statement: there exists $\langle S_\delta : \delta \in S \rangle$ such that for every $A \subset \kappa$.

$$\{\delta \in S : A \cap \delta = S_{\delta}\}$$

is stationary.

Remark

If
$$S \subset T$$
 then $\Diamond_S \to \Diamond_T$.

Proposition

Assume λ is an infinite cardinal and $S \subset \lambda^+$ is a stationary set. Then,

$$\Diamond_S \to 2^{\lambda} = \lambda^+.$$

Proposition

Assume λ is an infinite cardinal and $S \subset \lambda^+$ is a stationary set. Then,

$$\Diamond_S \to 2^{\lambda} = \lambda^+.$$

Proof.

Assume $\langle S_{\delta} : \delta \in S \rangle$ is a \Diamond_{S} -sequence.

Since $C := \{\delta < \lambda^+ : \delta > \lambda\} = (\lambda, \lambda^+)$ is club, for every $A \subset \lambda$, there exists $\delta \in S \cap C$ such that

$$A = A \cap \delta = S_{\delta}$$
.

Then

$$2^{\lambda} = |\mathcal{P}(\lambda)| \le |S \cap C| = \lambda^+.$$

Fact (Jensen)

$$(2^{\omega}=\omega_1)+\neg\lozenge_{\omega_1}$$
 is consistent.

Fact (Jensen)

$$(2^{\omega} = \omega_1) + \neg \lozenge_{\omega_1}$$
 is consistent.

Question 1

Assume λ is an uncountable cardinal. What kind of $S \subset \lambda^+$ entail

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$
 ?

Fact (Jensen)

$$(2^{\omega} = \omega_1) + \neg \Diamond_{\omega_1}$$
 is consistent.

Question 1

Assume λ is an uncountable cardinal. What kind of $S \subset \lambda^+$ entail

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$
 ?

Question 2

For every uncountable cardinal λ ,

$$2^{\lambda} = \lambda^+ \rightarrow \Diamond_{\lambda^+}$$

holds?

Assume $\mu < \kappa$ are regular cardinals.

$$S_{\neq\mu}^{\kappa} := \{ \alpha < \kappa : \mathrm{cf}(\alpha) \neq \mu \}.$$

Assume $\mu < \kappa$ are regular cardinals.

Lemma

Assume $\mu < \kappa$ are regular cardinals. Then S^{κ}_{μ} is stationary.

For uncountable cardinal λ , $S_{\neq cf(\lambda)}^{\lambda^+}$ is stationary.

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {\rm cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{\mathcal{S}}$$

holds.

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {\rm cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda}=\lambda^{+}\rightarrow\Diamond_{\mathcal{S}}$$

holds.

Corollary

For every uncountable cardinal λ ,

$$2^{\lambda} = \lambda^+ \rightarrow \Diamond_{\lambda^+}$$

holds.

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {
m cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Corollary

For every uncountable cardinal λ ,

$$2^{\lambda} = \lambda^+ \rightarrow \Diamond_{\lambda^+}$$

holds.

Question 2 is solved !!

Fact

If λ is a regular cardinal, then $(2^{\lambda} = \lambda^+) + \neg \lozenge_{\mathcal{S}^{\lambda^+}_{\mathrm{cf}(\lambda)}}$ is consistent.

Fact

If λ is a regular cardinal, then $(2^{\lambda} = \lambda^+) + \neg \lozenge_{S^{\lambda^+}_{\mathrm{cf}(\lambda)}}$ is consistent.

Question1-2

Assume λ is a singular cardinal. Then, For every stationary $S \subset S_{\mathrm{cf}(\lambda)}^{\lambda^+}$,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds?

Definition

Assume λ is a singular cardinal and $S \subset \lambda^+$ is a stationary set. $I[S; \lambda]$ is a set such that

$$T \in I[S;\lambda] \leftrightarrow T \subset \operatorname{Tr}(S)$$
 and
$$\exists d: [\lambda^+]^2 \to \operatorname{cf}(\lambda) \text{ normal, subadditive} \\ \exists C \subset \lambda^+ \text{ club} \\ \forall \gamma \in T \cap C \cap S^{\lambda^+}_{> \operatorname{cf}(\lambda)} \ \exists S_\gamma \subset \gamma \cap S \text{ stationary} \\ \Big(\sup d \big[[S_\gamma]^2 \big] < \operatorname{cf}(\lambda) \Big).$$

Definition

Assume λ is a singular cardinal and $S \subset \lambda^+$ is a stationary set. $I[S; \lambda]$ is a set such that

$$T \in I[S;\lambda] \leftrightarrow T \subset \operatorname{Tr}(S)$$
 and
$$\exists d: [\lambda^+]^2 \to \operatorname{cf}(\lambda) \text{ normal, subadditive} \\ \exists C \subset \lambda^+ \text{ club} \\ \forall \gamma \in T \cap C \cap S^{\lambda^+}_{>\operatorname{cf}(\lambda)} \ \exists S_\gamma \subset \gamma \cap S \text{ stationary} \\ \Big(\sup d \big[[S_\gamma]^2 \big] < \operatorname{cf}(\lambda) \Big).$$

■
$$\operatorname{Tr}(S) = \{ \alpha < \lambda^+ : \operatorname{cf}(\alpha) > \omega, S \cap \alpha \text{ is stationary in } \alpha \},$$

Definition

Assume λ is a singular cardinal and $S \subset \lambda^+$ is a stationary set. $I[S; \lambda]$ is a set such that

$$T \in I[S;\lambda] \leftrightarrow T \subset \operatorname{Tr}(S)$$
 and
$$\exists d: [\lambda^+]^2 \to \operatorname{cf}(\lambda) \text{ normal, subadditive} \\ \exists C \subset \lambda^+ \text{ club} \\ \forall \gamma \in T \cap C \cap S^{\lambda^+}_{>\operatorname{cf}(\lambda)} \ \exists S_\gamma \subset \gamma \cap S \text{ stationary} \\ \Big(\sup d \big[[S_\gamma]^2 \big] < \operatorname{cf}(\lambda) \Big).$$

- $\operatorname{Tr}(S) = \{ \alpha < \lambda^+ : \operatorname{cf}(\alpha) > \omega, S \cap \alpha \text{ is stationary in } \alpha \},$
- For $d: [\lambda^+]^2 \to \operatorname{cf}(\lambda),$
 - d is subadditive

$$\leftrightarrow \forall \alpha \leq \forall \beta \leq \forall \gamma < \lambda^+ (d(\alpha, \gamma) \leq \max\{d(\alpha, \beta), d(\beta, \gamma)\}),$$

d is normal $\leftrightarrow \forall \beta < \lambda^+ \forall i < \mathrm{cf}(\lambda) (|\{\alpha < \beta : d(\alpha, \beta) \leq i\}| < \lambda).$

Theorem (Rinot)

Assume λ is a singular cardinal and $S \subset \lambda^+$ is a stationary set. Then, if $I[S;\lambda]$ contains a stationary set,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Theorem (Rinot)

Assume λ is a singular cardinal and $S \subset \lambda^+$ is a stationary set. Then, if $I[S;\lambda]$ contains a stationary set,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Question1-3

Assume λ is a singular cardinal. Then for every stationary $S \subset S^{\lambda^+}_{\mathrm{cf}(\lambda)}$, does $I[S;\lambda]$ contain stationary sets?

Does $I[S_{cf(\lambda)}^{\lambda^+}; \lambda]$ contain stationary sets?

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {
m cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {\rm cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Sketch of proof (Komjáth).

Theorem (Shelah)

Assume λ is an uncountable cardinal and $S\subset S^{\lambda^+}_{
eq {\rm cf}(\lambda)}$ is a stationary set. Then,

$$2^{\lambda} = \lambda^{+} \rightarrow \Diamond_{S}$$

holds.

Sketch of proof (Komjáth).

Claim

There exist a sequence $\langle A^{\delta} \in [\delta]^{<\lambda} : \delta \in S \rangle$ and an enumeration of $[\lambda \times \lambda^+]^{\leq \lambda}$, $\langle X_{\beta} : \beta < \lambda^+ \rangle$, such that for every $Z \subset \lambda \times \lambda^+$,

$$S_Z := \left\{ \delta \in S : \sup \left\{ lpha \in A^\delta : \exists eta \in A^\delta (Z \cap (\lambda imes lpha) = X_eta)
ight\} = \delta
ight\}$$

is stationary.

Now, we define a sequence of subsets of λ^+ , $\langle Y_\gamma : \gamma < \lambda \rangle$, and a decreasing sequence of clubs, $\langle C_\gamma : \gamma < \lambda \rangle$.

Now, we define a sequence of subsets of λ^+ , $\langle Y_\gamma : \gamma < \lambda \rangle$, and a decreasing sequence of clubs, $\langle C_\gamma : \gamma < \lambda \rangle$. Put $Y_0 := C_0 := \lambda^+$.

Now, we define a sequence of subsets of λ^+ , $\langle Y_\gamma : \gamma < \lambda \rangle$, and a decreasing sequence of clubs, $\langle C_\gamma : \gamma < \lambda \rangle$.

Put
$$Y_0 := C_0 := \lambda^+$$
.

Assume $\langle Y_{\tau} : \tau < \gamma \rangle$ and $\langle C_{\tau} : \tau < \gamma \rangle$ are defined for some $\gamma < \lambda$.

■ If there exist $Y \subset \lambda^+$ and club $C \subset \bigcap_{\tau < \gamma} C_\tau$ such that for every $\delta \in S \cap C$, we have

$$\delta = \bigcup \left\{ \alpha \in A^{\delta} : \exists \beta \in A^{\delta} \forall \tau < \gamma \big(Y_{\tau} \cap \alpha = (X_{\beta})_{\tau} \big) \right\} \text{ then}$$

$$\exists \langle \alpha, \beta \rangle \in A^{\delta} \times A^{\delta} \left[\forall \tau < \gamma \big(Y_{\tau} \cap \alpha = (X_{\beta})_{\tau} \big) \wedge Y \cap \alpha \neq (X_{\beta})_{\gamma} \right],$$
then, put $Y_{\gamma} = Y$, $C_{\gamma} = C$.

Otherwise, terminate the recursion.

$$(X_{\beta})_{\gamma} := \{ \xi : \langle \gamma, \xi \rangle \in X_{\beta} \} \subset \lambda^+.$$

Claim

There exists $\gamma^* < \lambda$ such that the recursion terminates in γ^* .

Then, for every $Y \subset \lambda^+$ and club $C \subset \bigcap_{\gamma < \gamma^*} C_{\gamma}$, there exists $\delta \in S \cap C$, such that

$$\begin{split} \delta &= \bigcup \left\{\alpha \in A^\delta : \exists \beta \in A^\delta \forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big)\right\} \text{ and} \\ \forall \left<\alpha,\beta\right> &\in A^\delta \times A^\delta \left[\forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big) \to {\color{red} Y} \cap \alpha = ({\color{red} X_\beta})_{\gamma^*}\right]. \end{split}$$

Claim

There exists $\gamma^* < \lambda$ such that the recursion terminates in γ^* .

Then, for every $Y\subset \lambda^+$ and club $C\subset \bigcap_{\gamma<\gamma^*} C_\gamma$, there exists $\delta\in S\cap C$, such that

$$\begin{split} \delta &= \bigcup \left\{\alpha \in A^\delta : \exists \beta \in A^\delta \forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big)\right\} \text{ and} \\ \forall \left<\alpha,\beta\right> &\in A^\delta \times A^\delta \left[\forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big) \to {\color{red} Y} \cap \alpha = ({\color{red} X_\beta})_{\gamma^*}\right]. \end{split}$$

Put
$$C^* := \bigcap_{\gamma < \gamma^*} C_{\gamma}$$
.

Claim

There exists $\gamma^* < \lambda$ such that the recursion terminates in γ^* .

Then, for every $Y \subset \lambda^+$ and club $C \subset \bigcap_{\gamma < \gamma^*} C_{\gamma}$, there exists $\delta \in S \cap C$, such that

$$\begin{split} \delta &= \bigcup \left\{\alpha \in A^\delta : \exists \beta \in A^\delta \forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big)\right\} \text{ and} \\ \forall \left<\alpha,\beta\right> &\in A^\delta \times A^\delta \left[\forall \gamma < \gamma^* \big(Y_\gamma \cap \alpha = (X_\beta)_\gamma\big) \to {\color{red} Y} \cap \alpha = ({\color{red} X_\beta})_{\gamma^*}\right]. \end{split}$$

Put
$$C^* := \bigcap_{\gamma < \gamma^*} C_{\gamma}$$
.
For $\delta \in \mathcal{S} \cap C^*$, define

$$\mathcal{S}_\delta := igcup_{\langle lpha, eta
angle \in \mathsf{A}^\delta imes \mathsf{A}^\delta} ig\{ (\mathsf{X}_eta)_{\gamma^*} : orall \gamma < \gamma^* ig(\mathsf{Y}_\gamma \cap lpha = (\mathsf{X}_eta)_\gamma ig) ig\} \,.$$

Then, for every $Y \subset \lambda^+$ and club $C \subset \lambda^+$, there exists $\delta \in S \cap C^* \cap C$, we have

$$Y \cap \delta = Y \cap \bigcup \left\{ \alpha \in A^{\delta} : \exists \beta \in A^{\delta} \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= \bigcup_{\langle \alpha, \beta \rangle \in A^{\delta} \times A^{\delta}} \left\{ Y \cap \alpha : \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= \bigcup_{\langle \alpha, \beta \rangle \in A^{\delta} \times A^{\delta}} \left\{ (X_{\beta})_{\gamma^{*}} : \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= S_{\delta}.$$

Then, for every $Y \subset \lambda^+$ and club $C \subset \lambda^+$, there exists $\delta \in S \cap C^* \cap C$, we have

$$Y \cap \delta = Y \cap \bigcup \left\{ \alpha \in A^{\delta} : \exists \beta \in A^{\delta} \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= \bigcup_{\langle \alpha, \beta \rangle \in A^{\delta} \times A^{\delta}} \left\{ Y \cap \alpha : \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= \bigcup_{\langle \alpha, \beta \rangle \in A^{\delta} \times A^{\delta}} \left\{ (X_{\beta})_{\gamma^{*}} : \forall \gamma < \gamma^{*} (Y_{\gamma} \cap \alpha = (X_{\beta})_{\gamma}) \right\}$$

$$= S_{\delta}.$$

$$\langle S_{\delta} : \delta \in S \cap C^* \rangle$$
 is $\Diamond_{S \cap C^*}$ -sequence. Then, \Diamond_S holds. \square

References

- S.Shelah, *Diamonds*, Proceedings of the American Mathematical Society, vol.138 (2010).
- P.Komjáth, Shelah's proof of diamond, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica, vol.51 (2008).
- A.Rinot, A relative of the approachability ideal, diamond and non-saturation, Journal of Symbolic Logic, vol.75 (2010).