倉橋 太志 (Taishi Kurahashi) 神戸大学 (Kobe University) 2011 年 12 月 09-11 日 数学基礎論若手の会 Interpretability is used to prove relative consitency, decidability and undecidability of theories. - Interpretability is used to prove relative consitency, decidability and undecidability of theories. - The notion of interpretability was explicitly introduced by Tarski(1954) and systematically investigated by Feferman and Orey(1960). - Interpretability is used to prove relative consitency, decidability and undecidability of theories. - The notion of interpretability was explicitly introduced by Tarski(1954) and systematically investigated by Feferman and Orey(1960). - In this talk, we introduce a result about interpretability proved by using the arithmetized completeness theorem in Feferman(1960). ## **Contents** - Interpretability - The arithmetized completeness theorem - An application - More investigations - Interpretability - The arithmetized completeness theorem - An application - More investigations Interpretability Interpretability •000 ## Definition $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$. t is a translation of \mathcal{L} into \mathcal{L}' $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions: 0000 ## Definition $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$. t is a translation of \mathcal{L} into \mathcal{L}' $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions: - \bullet $t(x=y) \equiv x=y$; - $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$; - · · · : An application 0000 ### Definition $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$. t is a translation of \mathcal{L} into \mathcal{L}' $\stackrel{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions: - \bullet $t(x=y) \equiv x=y$; - $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$; - · · · : - $t(\neg \varphi) \equiv \neg t(\varphi)$ for any \mathcal{L} -formula φ ; - $t(\varphi \vee \psi) \equiv t(\varphi) \vee t(\psi)$ for any \mathcal{L} -formulas φ, ψ ; - · · · : ### Definition $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$. t is a translation of \mathcal{L} into \mathcal{L}' $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions: - $\bullet \ t(x=y) \equiv x=y;$ - $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$; - · · · ; - $t(\neg \varphi) \equiv \neg t(\varphi)$ for any \mathcal{L} -formula φ ; - $t(\varphi \lor \psi) \equiv t(\varphi) \lor t(\psi)$ for any \mathcal{L} -formulas φ, ψ ; - · · · ; - $\exists d(x)$: \mathcal{L}' -formula s.t. $t(\exists x \varphi(x)) \equiv \exists x (d(x) \land t(\varphi(x)))$ for any \mathcal{L} -formula $\varphi(x)$. Interpretability Interpretability 0000 $\mathcal{L}_T :=$ the language of T. $\mathcal{L}_T :=$ the language of T. ### Definition S,T: theories, t: translation of \mathcal{L}_S into \mathcal{L}_T . t is an interpretation of S in T $\stackrel{\mathrm{def.}}{\Leftrightarrow} t \text{ satisfies the following conditions:}$ - \bigcirc $T \vdash \exists x d(x);$ An application $\mathcal{L}_T :=$ the language of T. ### Definition S,T: theories, t: translation of \mathcal{L}_S into \mathcal{L}_T . t is an interpretation of S in T $\overset{\mathrm{def.}}{\Leftrightarrow} t$ satisfies the following conditions: - \bullet $T \vdash \exists x d(x)$: - $\Diamond \forall \varphi \colon \mathcal{L}_{S}$ -formula, $(S \vdash \varphi \Rightarrow T \vdash t(\varphi))$. ### Definition S is interpretable in T (S < T) $\stackrel{\text{def.}}{\Leftrightarrow} \exists t$: interpretation of S in T. It is easy to check the following propositions. - If $S \leq T$ and T is consistent, then S is consistent. - If $S \leq T$ and T is decidable, then S is decidable. It is easy to check the following propositions. - If $S \leq T$ and T is consistent, then S is consistent. - If $S \leq T$ and T is decidable, then S is decidable. - $\mathcal{L}_A := \{0, S, +, \times, <\}$: language of arithmetic. - PA: Peano arithmetic (Basic axioms of arithmetic with induction scheme for all \mathcal{L}_A -formulas). - ZF: Zermelo-Fraenkel set theory (Inf: Axiom of infinity). It is easy to check the following propositions. - If $S \leq T$ and T is consistent, then S is consistent. - If $S \leq T$ and T is decidable, then S is decidable. - $\mathcal{L}_A := \{0, S, +, \times, <\}$: language of arithmetic. - PA: Peano arithmetic (Basic axioms of arithmetic with induction scheme for all \mathcal{L}_A -formulas). - ZF: Zermelo-Fraenkel set theory (Inf: Axiom of infinity). - \bullet ZF Inf < PA. - ZF ≰ PA. - PA + Con_{PA} $\not\leq$ PA. - $PA + \neg Con_{PA} < PA$. - • • . Interpretability Interpretability 0000 # Question Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$? Interpretability Interpretability 0000 # Question Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} \leq \mathsf{PA} + \varphi$? ### Answer Yes! 000 # Question Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$? #### Answer #### Yes! In fact, $$ZF \leq PA + Con_{ZF}$$ by Feferman's theorem. ## Question Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$? ### Answer #### Yes! In fact. $$ZF < PA + Con_{ZF}$$ by Feferman's theorem. Feferman's theorem is proved by using the arithmetized completeness theorem. - Interpretability - The arithmetized completeness theorem - An application - More investigations Countable completeness theorem # Countable completeness theorem T: theory with a countable language \mathcal{L} . If T is consistent, then T has a model. Countable completeness theorem ## Countable completeness theorem T: theory with a countable language \mathcal{L} . If T is consistent, then T has a model. ## Proof(outline) - $C := \{c_n \mid n \in \omega\}$: set of new constants. - $\mathcal{L}_C := \mathcal{L} \cup C$. Interpretability ## Countable completeness theorem T: theory with a countable language \mathcal{L} . If T is consistent, then T has a model. ## Proof(outline) - $C := \{c_n \mid n \in \omega\}$: set of new constants. - $\mathcal{L}_C := \mathcal{L} \cup C$. - $\{\varphi_n(x_n)\}_{n\in\omega}$: primitive recursive(p.r.) enumeration of all \mathcal{L}_C -formulas with one free-variable. - $\exists Z:=\{\exists x_n \varphi_n(x_n) \to \varphi_n(c_{i_n}) \mid n \in \omega\}$: p.r. set s.t. T+Z is a conservative extension of T. Interpretability ### Countable completeness theorem T: theory with a countable language \mathcal{L} . If T is consistent, then T has a model. ## Proof(outline) - $C := \{c_n \mid n \in \omega\}$: set of new constants. - $\mathcal{L}_C := \mathcal{L} \cup C$. - $\{\varphi_n(x_n)\}_{n\in\omega}$: primitive recursive(p.r.) enumeration of all \mathcal{L}_C -formulas with one free-variable. - $\exists Z := \{\exists x_n \varphi_n(x_n) \to \varphi_n(c_{i_n}) \mid n \in \omega\}$: p.r. set s.t. T + Z is a conservative extension of T. - Then T + Z is consistent (Henkin extension). $Countable\ completeness\ theorem$ ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $\{\theta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $X_0 := T + Z$; $$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} ext{ is consistent;} \ X_n \cup \{ egh_n\} & ext{otherwise.} \end{array} ight.$$ • $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete. - $\{\theta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $X_0 := T + Z$; $$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array} ight.$$ - $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete. - Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$. Countable completeness theorem - ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $X_0 := T + Z$; $$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array} ight.$$ - $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete. - Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$. - Define a structure $\mathcal M$ by $|\mathcal M|:=C/\sim$ and $R^{\mathcal M}([c_0],\ldots,[c_n]):\Leftrightarrow R(c_0,\ldots,c_n)\in X$ etc... - ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $X_0 := T + Z$; $$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array} ight.$$ - $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete. - Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$. - Define a structure \mathcal{M} by $|\mathcal{M}| := C/\sim$ and $R^{\mathcal{M}}([c_0], \ldots, [c_n]) :\Leftrightarrow R(c_0, \ldots, c_n) \in X$ etc... - $\forall \varphi$: \mathcal{L}_C -sentence, $(\mathcal{M} \models \varphi \Leftrightarrow \varphi \in X)$. - \mathcal{M} is a model of T. Countable completeness theorem - ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $X_0 := T + Z$; $$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array} ight.$$ - $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete. - Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$. - Define a structure $\mathcal M$ by $|\mathcal M|:=C/\sim$ and $R^{\mathcal M}([c_0],\ldots,[c_n]):\Leftrightarrow R(c_0,\ldots,c_n)\in X$ etc... - $\forall \varphi$: \mathcal{L}_C -sentence, $(\mathcal{M} \models \varphi \Leftrightarrow \varphi \in X)$. - \bullet \mathcal{M} is a model of T. First, we arithmetize the notion of the provability. First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable) First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable) $\exists \sigma(x) \colon \Sigma_1$ formula s.t. $\forall \varphi \colon \mathcal{L}$ -sentence, $$\varphi \in S \Leftrightarrow T \vdash \sigma(\lceil \varphi \rceil).$$ $\sigma(x)$ is called a numeration of S in T. First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable) $\exists \sigma(x) \colon \Sigma_1$ formula s.t. $\forall \varphi \colon \mathcal{L}$ -sentence, $$\varphi \in S \Leftrightarrow T \vdash \sigma(\lceil \varphi \rceil).$$ $\sigma(x)$ is called a numeration of S in T. For Σ_1 numeration $\sigma(x)$ of S in T, we can construct a Σ_1 formula $\Pr_{\sigma}(x)$ s.t. $\forall \varphi$: \mathcal{L} -sentence, $$S \vdash \varphi \Leftrightarrow T \vdash \Pr_{\sigma}(\lceil \varphi \rceil).$$ $\Pr_{\sigma}(x)$ is called the provability predicate of $\sigma(x)$. $\sigma(x), \sigma'(x)$: numerations of S and S' in T respectively. ### **Define** - $\bullet (\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}.$ - $\bullet (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ ### **Define** - $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$. - $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$. ### **Define** - $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$. - $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ $$(\sigma|n)(x)$$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$. $$\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$$ ### **Define** - $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$. - $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$. $$\mathsf{Con}_{\sigma} :\equiv \neg \mathrm{Pr}_{\sigma}(\ulcorner 0 = \bar{1} \urcorner).$$ #### **Theorem** T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then ### **Define** - $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$. - $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$. $\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$ ### **Theorem** T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then **①** (Gödel, Feferman) If σ is Σ_1 , then $T \nvdash \mathsf{Con}_{\sigma}$. ### **Define** - $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$. - $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$ $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$. $\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$ ### **Theorem** T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then - **1** (Gödel, Feferman) If σ is Σ_1 , then $T \nvdash \mathsf{Con}_{\sigma}$. - **2** (Mostowski) $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. Next we arithmetize the above construction of Henkin extension $T+{\cal Z}.$ Next we arithmetize the above construction of Henkin extension $T+{\cal Z}.$ • $C := \{c_n \mid n \in \omega\}$: set of new constants. $\mathcal{L}_C := \mathcal{L} \cup C$. Next we arithmetize the above construction of Henkin extension $T+\mathbb{Z}$. - $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C$. - Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas. Next we arithmetize the above construction of Henkin extension T+Z. - $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C.$ - Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas. - $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant". Next we arithmetize the above construction of Henkin extension T+Z. - $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C$. - Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas. - $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant". - Define the p.r. set Z as above. Let $\zeta(x)$ be a suitable numeration of Z s.t. $$\forall \varphi$$, PA $\vdash \Pr_{\sigma \lor \zeta}(\lceil \varphi \rceil) \to \Pr_{\sigma}(\lceil \varphi \rceil)$. Next we arithmetize the above construction of Henkin extension T+Z. - $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C.$ - Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas. - $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant". - Define the p.r. set Z as above. Let $\zeta(x)$ be a suitable numeration of Z s.t. $$\forall \varphi$$, PA $\vdash \Pr_{\sigma \lor \zeta}(\lceil \varphi \rceil) \to \Pr_{\sigma}(\lceil \varphi \rceil)$. • PA \vdash Con $_{\sigma} \rightarrow$ Con $_{\sigma \lor \zeta}$. Lastly, we arithmetize the Henkin completeness. # Lastly, we arithmetize the Henkin completeness. For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences: - $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$ - $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \to (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$ - · · · ; - $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$ Lastly, we arithmetize the Henkin completeness. For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences: - $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$ - $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \to (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$ - · · · ; - $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$ Hcm_{ξ} states that the set defined by $\xi(x)$ is Henkin complete. Lastly, we arithmetize the Henkin completeness. For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences: - $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$ - $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \rightarrow (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$ - • ; - $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$ Hcm_{ξ} states that the set defined by $\xi(x)$ is Henkin complete. ## The arithmetized completeness theorem $\forall \sigma(x)$: numeration of T, $\exists \xi(x)$: \mathcal{L}_A -formula s.t. - **1** PA \vdash Con $_{\sigma} \rightarrow$ Hcm $_{\varepsilon}$ and - **2** PA $\vdash \forall x (\Pr_{\sigma}(x) \rightarrow \xi(x)).$ - ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences. - $\xi(x) \cdots$ "x is contained in the leftmost consistent path". - PA $\vdash \forall x (\Pr_{\sigma}(x) \rightarrow \xi(x)).$ - PA \vdash Con $_{\sigma \lor \zeta} \to$ Hcm $_{\xi}$. 0000000 T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. # Theorem(Feferman, 1960) T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. #### Proof. • $\xi(x)$: as in the arithmetized completeness theorem. # Theorem(Feferman, 1960) T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - \bullet $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x} ceil)$, \cdots T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x} ceil)$, \cdots - By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x} ceil)$, \cdots - By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x} ceil)$, \cdots - By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$. T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x} ceil)$, \cdots - By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$. - φ : \mathcal{L}_S -sentence s.t. $S \vdash \varphi$. $T \vdash \Pr_{\sigma}(\lceil \varphi \rceil)$. T: extension of PA. σ : numeration of S in T. Then $S \leq T + \mathsf{Con}_{\sigma}$. - $\xi(x)$: as in the arithmetized completeness theorem. - $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}\rceil)$, \cdots - By induction, $\forall \varphi$, PA + Hcm_{ξ} $\vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$. - t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$. - φ : \mathcal{L}_S -sentence s.t. $S \vdash \varphi$. $T \vdash \Pr_{\sigma}(\lceil \varphi \rceil)$. - $T + \mathsf{Con}_{\sigma} \vdash \xi(\lceil \varphi \rceil)$. $T + \mathsf{Con}_{\sigma} \vdash t(\varphi)$. - Interpretability - The arithmetized completeness theorem - An application - More investigations An application We can construct a model by interpretation. We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. •0000 We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $\bullet \mid \mathcal{N} \mid := \{ a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a) \};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$; - • • • We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $\bullet \mid \mathcal{N} \mid := \{ a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a) \};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$; - • • • We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $|\mathcal{N}| := \{a \in |\mathcal{M}| : \mathcal{M} \models d(a)\};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$; - • • • By induction, $\forall \varphi \colon \mathcal{L}_S$ -sentence, $\mathcal{M} \models t(\varphi) \Leftrightarrow \mathcal{N} \models \varphi$. • Suppose $S \vdash \varphi$. We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $|\mathcal{N}| := \{a \in |\mathcal{M}| : \mathcal{M} \models d(a)\};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$; - • • • - Suppose $S \vdash \varphi$. - Since S < T, $T \vdash t(\varphi)$. We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $\bullet \mid \mathcal{N} \mid := \{a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a)\};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}}:=$ the unique $a\in |\mathcal{M}|$ s.t. $\mathcal{M}\models d(a)\wedge \eta_c(a);$ - • • . - Suppose $S \vdash \varphi$. - Since $S \leq T$, $T \vdash t(\varphi)$. - $\mathcal{M} \models t(\varphi)$, so $\mathcal{N} \models \varphi$. We can construct a model by interpretation. t: interpretation of S in T, \mathcal{M} : model of T. Define an \mathcal{L}_S -structure \mathcal{N} as follows: - $\bullet \mid \mathcal{N} \mid := \{a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a)\};$ - For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}}:=$ the unique $a\in |\mathcal{M}|$ s.t. $\mathcal{M}\models d(a)\wedge \eta_c(a);$ - • • . - Suppose $S \vdash \varphi$. - Since $S \leq T$, $T \vdash t(\varphi)$. - $\mathcal{M} \models t(\varphi)$, so $\mathcal{N} \models \varphi$. - \bullet N is a model of S. # Definition \mathcal{M}, \mathcal{N} : models of arithmetic. \mathcal{M} is an initial segment of \mathcal{N} $(\mathcal{M} \subseteq_e \mathcal{N}) \stackrel{\mathrm{def.}}{\Leftrightarrow}$ - ullet $|\mathcal{M}| \subset |\mathcal{N}|$ and ### Definition \mathcal{M}, \mathcal{N} : models of arithmetic. \mathcal{M} is an initial segment of \mathcal{N} $(\mathcal{M} \subseteq_e \mathcal{N}) \stackrel{\mathrm{def.}}{\Leftrightarrow}$ - ullet $|\mathcal{M}| \subseteq |\mathcal{N}|$ and ## Theorem(Orey(1961), Hájek (1971,1972)) For any consistent r.e. extensions S, T of PA, T.F.A.E.: - (i) $S \leq T$. - (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$ - (iii) $\forall \theta \colon \Pi_1$ sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}.$ (i) $$S \leq T$$. (ii) $$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$ # $(i) \Rightarrow (ii)$ - Let θ be an interpretation of S in T. - Let \mathcal{M} be any model of T. - (i) S < T. - (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$ - Let θ be an interpretation of S in T. - Let \mathcal{M} be any model of T. - Let \mathcal{N} be a model of S defined by t and \mathcal{M} . - (i) S < T. - (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$ - Let θ be an interpretation of S in T. - Let \mathcal{M} be any model of T. - Let \mathcal{N} be a model of S defined by t and \mathcal{M} . - Define a function f in \mathcal{M} satisfying $f(0^{\mathcal{M}}) = 0^{\mathcal{N}}$ and $f(S^{\mathcal{M}}(a)) = S^{\mathcal{N}}(f(a)).$ (ii) $$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$ - Let θ be an interpretation of S in T. - Let \mathcal{M} be any model of T. - Let $\mathcal N$ be a model of S defined by t and $\mathcal M$. - Define a function f in $\mathcal M$ satisfying $f(0^{\mathcal M})=0^{\mathcal N}$ and $f(S^{\mathcal{M}}(a)) = S^{\mathcal{N}}(f(a)).$ - Then f is an isomorphism of an initial segment of \mathcal{N} . (ii) $$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$ (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - Let θ be any Π_1 sentence s.t. $S \vdash \theta$. - Let \mathcal{M} be any model of T. - (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$ - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - Let θ be any Π_1 sentence s.t. $S \vdash \theta$. - Let \mathcal{M} be any model of T. - By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$. (ii) $$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$ (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - Let θ be any Π_1 sentence s.t. $S \vdash \theta$. - Let \mathcal{M} be any model of T. - By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$. - $\mathcal{N} \models \theta$. - (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$ - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - Let θ be any Π_1 sentence s.t. $S \vdash \theta$. - Let \mathcal{M} be any model of T. - By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$. - $\mathcal{N} \models \theta$. - Since θ is Π_1 , $\mathcal{M} \models \theta$. (ii) $$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$ (iii) $\forall \theta \colon \Pi_1$ sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - Let θ be any Π_1 sentence s.t. $S \vdash \theta$. - Let \mathcal{M} be any model of T. - By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$. - $\mathcal{N} \models \theta$. - Since θ is Π_1 , $\mathcal{M} \models \theta$. - By completeness theorem, $T \vdash \theta$. An application - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x)$: Σ_1 numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. $$(iii) \Rightarrow (iv)$$ • By Mostowski's theorem, $\forall n \in \omega$, $S \vdash \mathsf{Con}_{\sigma|n}$. - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. $$(iii) \Rightarrow (iv)$$ - By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$. - By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$. - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. # $(iii) \Rightarrow (iv)$ - By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$. - By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$. $$(iv) \Rightarrow (i)$$. • Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$. - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. # $(iii) \Rightarrow (iv)$ - By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$. - By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$. # $(iv) \Rightarrow (i)$. - Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$. - Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$. - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. ## $(iii) \Rightarrow (iv)$ - By Mostowski's theorem, $\forall n \in \omega$, $S \vdash \mathsf{Con}_{\sigma|n}$. - By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$. # $(iv) \Rightarrow (i)$. - Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$. - Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$. - By Feferman's theorem, $S \leq T + \mathsf{Con}_{\sigma^*}$. - (i) S < T. - (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$. - (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$. ## $\underline{\text{(iii)}} \Rightarrow \text{(iv)}$ - By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$. - By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$. # $(iv) \Rightarrow (i)$. - Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$. - Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$. - By Feferman's theorem, $S \leq T + \mathsf{Con}_{\sigma^*}$. - \bullet S < T. - Interpretability - The arithmetized completeness theorem - An application - More investigations Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994) Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994) ### Theorem T,S: consistent r.e. extensions of PA. \mathcal{M} : models of T. If $\mathcal{M} \models \mathsf{Con}_S$, then $\exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N} \text{ and }$ $\exists \xi(x)$: \mathcal{L}_A -formula s.t. - $\forall \varphi$, $(\mathcal{M} \models \Pr_S(\lceil \varphi \rceil) \Rightarrow \mathcal{N} \models \varphi)$, - $\forall \varphi$, $(\mathcal{M} \models \xi(\lceil \varphi \rceil) \Leftrightarrow \mathcal{N} \models \varphi)$. Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994) #### $\mathsf{Theorem}$ T, S: consistent r.e. extensions of PA. \mathcal{M} : models of T. If $\mathcal{M} \models \mathsf{Con}_S$, then $\exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N} \text{ and }$ $\exists \xi(x) \colon \mathcal{L}_A$ -formula s.t. - $\forall \varphi$, $(\mathcal{M} \models \Pr_S(\lceil \varphi \rceil) \Rightarrow \mathcal{N} \models \varphi)$, - $\forall \varphi$, $(\mathcal{M} \models \xi(\lceil \varphi \rceil) \Leftrightarrow \mathcal{N} \models \varphi)$. - Suppose $\forall \mathcal{M} \models T$, $\mathcal{M} \models \mathsf{Con}_T$. - By using Theorem, lead a contradiction. ### Definition A interpretation t of S in T is faithful \Leftrightarrow $\forall \varphi$, $(T \vdash t(\varphi) \Rightarrow S \vdash \varphi)$. ### Definition A interpretation t of S in T is faithful $$\stackrel{\text{def.}}{\Leftrightarrow} \forall \varphi \text{, } (T \vdash t(\varphi) \Rightarrow S \vdash \varphi).$$ S is faithful interpretable in T $\overset{\text{def.}}{\Leftrightarrow} \exists t$: faithful interpretation of S in T. #### Definition A interpretation t of S in T is faithful $\overset{\text{def.}}{\Leftrightarrow} orall arphi$, ($T \vdash t(arphi) \Rightarrow S \vdash arphi$). S is faithful interpretable in T $\overset{\mathrm{def.}}{\Leftrightarrow} \exists t \text{: faithful interpretation of } S \text{ in } T.$ ### $\mathsf{Theorem}(\mathsf{Lindstr\"om})$ S,T: r.e. extensions of PA. T.F.A.E.: - S is faithful interpretable in T. - $S \leq T$ and $\forall \varphi$, $(T \vdash \Pr_{\phi}(\lceil \varphi \rceil) \Rightarrow S \vdash \varphi)$. - **3** $\forall \theta : \Pi_1$ sentence, $(S \vdash \theta \Rightarrow T \vdash \theta)$ and $\forall \sigma : \Sigma_1$ sentence, $(T \vdash \sigma \Rightarrow S \vdash \theta)$ and Degrees of interpretability Degrees of interpretability of extensions of PA (Lindström, 1979) Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S \leq T \& T \leq S.$$ Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition S, T: extensions of PA. $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ $\bullet \equiv$ is an equivalence relation on extensions of PA. Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - ullet is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - $\bullet \equiv$ is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. - $D_T :=$ the set of degrees of extensions of T. Interpretability Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - $\bullet \equiv$ is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. - $D_T :=$ the set of degrees of extensions of T. - \bullet d(S) :=degree of S. Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - $\bullet \equiv$ is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. - $D_T :=$ the set of degrees of extensions of T. - \bullet d(S) :=degree of S. - $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$. Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - $\bullet \equiv$ is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. - $D_T :=$ the set of degrees of extensions of T. - \bullet d(S) :=degree of S. - $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$. - $\mathcal{D}_T := (D_T, <).$ Degrees of interpretability of extensions of PA (Lindström, 1979) ### Definition $$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$ - $\bullet \equiv$ is an equivalence relation on extensions of PA. - Equivalence classes are called degrees of interpretability. - $D_T :=$ the set of degrees of extensions of T. - \bullet d(S) :=degree of S. - $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$. - $\mathcal{D}_T := (D_T, <).$ Degrees of interpretability # Theorem(Lindström) T is an r.e. consistent extension of PA, then \mathcal{D}_T is a distributive lattice. ### Open problem S,T is Σ_1 -sound r.e. extensions of PA. $\mathcal{D}_S \simeq \mathcal{D}_T$? Interpretability logic • Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990) Interpretability logic Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990) $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y. Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990) $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y. ### Propositional modal logic ILM ILM = GL+ the following axioms: - $\bullet \Box (A \to B) \to A \rhd B$: - $A \triangleright B \land B \triangleright C \rightarrow A \triangleright C$: - $A \triangleright C \land B \triangleright C \rightarrow (A \lor B) \triangleright C$; - $A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B)$: - $\bullet \Diamond A \rhd A$: - $A \triangleright B \rightarrow ((A \land \Box C) \triangleright (B \land \Box C)).$ Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990) $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y. ### Propositional modal logic **ILM** ILM = GL+ the following axioms: - $\bullet \Box (A \to B) \to A \rhd B$: - $A \triangleright B \land B \triangleright C \rightarrow A \triangleright C$: - $A \triangleright C \land B \triangleright C \rightarrow (A \lor B) \triangleright C$; - $A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B);$ - $\bullet \Diamond A \rhd A$: - $A \triangleright B \rightarrow ((A \land \Box C) \triangleright (B \land \Box C)).$ ### Theorem(Shavrukov, Berarducci) $\forall A$, (ILM $\vdash A \Leftrightarrow A$ is arithmetically valid). References - S. Feferman. Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic 27 (1962) 259–316. - R. Kaye. Models of Peano arithmetic, Oxford Logic Guides, 15. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. - P. Lindström. Aspects of incompleteness. Lecture Notes in Logic, 10. Springer-Verlag, Berlin, 1997. - S. Orey. Relative interpretations. Z. Math. Logik Grundlagen Math. 7 (1961) 146-153. - C. Smoryński. The incompleteness theorems. Handbook of Mathematical Logic (J. Barwise, ed), North-Holland, Amsterdam (1977), 821–865. - A. Tarski. Undecidable theories. In collaboration with Andrzej Mostowski and Raphael M. Robinson. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1953.