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@ The notion of interpretability was explicitly introduced
by Tarski(1954) and systematically investigated by
Feferman and Orey(1960).

@ In this talk, we introduce a result about interpretability

proved by using the arithmetized completeness theorem
in Feferman(1960).
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Definition

L, L': languages, t: Fmlz — Fml.,.
t is a translation of £ into £’

. . g . -
L ¢ satisfies the following conditions:

tlx=y)=z=uy;
@ Vc € L: constant, In.(x): L'-formula s.t. t(z = ¢) = ne(x);

@ ..
o t(—p) = —t(p) for any L-formula o;

o t(p V) =t(p)Vit(y) for any L-formulas p, 1;
@ ...

e dd(x): L'-formula s.t.

t(Fzp(x)) = Fz(d(x) A t(e(x))) for any L-formula p(x).
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Definition

S, T: theories, t: translation of Lg into L.

t is an interpretation of S in T
def. . . ...
&' t satisfies the following conditions:

Q T+ Jxzd(x);
Q@ Vy: Lg-formula, (S+ ¢ = T t(p)).

Definition
S is interpretable in T' (S < T)
=g interpretation of S in T.
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It is easy to check the following propositions.

o If S < T and T is consistent, then S is consistent.
o If S < T and T is decidable, then S is decidable. J

e L4 :={0,S,+, X, <}: language of arithmetic.
e PA: Peano arithmetic (Basic axioms of arithmetic with
induction scheme for all £ 4-formulas).

o ZF: Zermelo-Fraenkel set theory (Inf: Axiom of infinity).

e ZF — Inf < PA.

o ZF £ PA.

o PA + Conpa £ PA.
o PA + —Conpp < PA.
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Interpretability

Is there any L 4-sentence ¢ s.t. ZF < PA+4 ¢ ?
Yes!

@ In fact,

ZF < PA + Congr l

by Feferman’s theorem.

o Feferman’s theorem is proved by using
the arithmetized completeness theorem.
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T: theory with a countable language L.
If T is consistent, then T has a model.

Proof(outline)

o C :={cn | n € w}: set of new constants.

e Lo:=LUC.

0 {pn(@n)}necw: primitive recursive(p.r.) enumeration of
all Lc-formulas with one free-variable.

e 37 := {Fxnpn(xn) — wnl(ci,) | n € w}: p.r. set s.t.
T + Z is a conservative extension of T'.

e Then T + Z is consistent (Henkin extension).
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First, we arithmetize the notion of the provability.
S: r.e. L-theory, T: L s-theory. (L: countable)

Jo(x): ¥; formula s.t. Vp: L-sentence,
peSSTEFo("p).

o(x) is called a numeration of S in T.

For 3; numeration o(x) of S in T,
we can construct a 31 formula Pr,(z) s.t. V¢: L-sentence,

Skep< TEPr,(T¢)).

Pr,(x) is called the provability predicate of o(x).
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o(x), o’ (x): numerations of S and S’ in T respectively.
Define
o (o|n)(x) :=0(x) ANx < n.
e (o Vo')(x) :=0o(x) Vo' (x).

(o|n)(x) is a numeration of {p € S | "' < n}. |

Con, := —Pr,("0=1").

T': consistent r.e. extension of PA,

o(x): numeration of T in T. Then
O (Godel, Feferman) If o is 34, then T ¥ Con,.
@ (Mostowski) Vn € w, T = Cong|y,.
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Lastly, we arithmetize the Henkin completeness.
For any L s-formula £(x), define Hcmg to be the conjunction
of the following L 4-sentences:
o Vo (Fmlo(z) — (§(-z) « —£(2)));
° Va,y(Fmlc(z) A Fmlo(y) — (§(z V y) < (§(z) V £(Y))));
PR

o Va,y(Fmlc(z) — (£(Fuz) o Jv(C(v) Aé(zlv/ul)))).

Hcmg states that the set defined by {(x) is Henkin complete.

The arithmetized completeness theorem

Vo (x): numeration of T', 3¢(x): L a-formula s.t.
Q@ PA+ Con, — Hcmg and
@ PA I Vz(Pry(x) — &(x)).
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@ {0, }necw: p-r. enumeration of all Lc-sentences.

e &£(x)--- “x is contained in the leftmost consistent path”.
e PAF Vz(Pry(x) — &(x)).
e PA F Congy¢ — Hemg.

/—'02 ’ /ez
—6; 6 —61

\/ N
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Theorem(Feferman, 1960)
T: extension of PA. o: numeration of S in T'.
Then S < T + Con,.

@ £(x): as in the arithmetized completeness theorem.
ed(z) =z =z, n(x):=C(x)ANE(c=27), ---

e By induction, Vi, PA + Hemg F t(p) < £(T¢ 7).

e Vo, T + Cong F t(p) «— E(TeT).

e t is a translation of Lg into L1 con, -

e p: Lg-sentences.t. S+ . TH Pry("¢).
T+ Congs F&("¢ ™). T + Con, - t(p).
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We can construct a model by interpretation.
t: interpretation of S in T\, M: model of T'.
Define an Lg-structure AN as follows:
o [N|:={a€|M]| : MEd(a)};
@ For c € Lg: constant,
cV := the unique a € | M| s.t. M |= d(a) A ne(a);

By induction, V¢: Lg-sentence, M = t(p) < N = .

@ Suppose S | .
@ Since ST, TF t(yp).

o M = t(p), so N = o.
e N is a model of S.
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M, N: models of arithmetic.
M is an initial segment of N (M C. N) &

Q@ M| C |N]|and
@ Vae |M|Vbe IN|, N Eb<a=be|M|).

def

Theorem(Orey(1961), Héjek (1971,1972))

For any consistent r.e. extensions S,T of PA, T.F.A.E.:
(i) SLT.
(i) YMET 3N ESst. MC. N.
(iii) V@: II, sentence, S+ 60 = T I 6.
)

(iv) Vo (x): 31 numeration of S Vn € w,
T Cong |-
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() S <T.
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@ Let O be an interpretation of S in T'.
e Let M be any model of T'.
e Let \V be a model of S defined by ¢ and M.
o Define a function f in M satisfying f(0™) = 0V and
f(8M(a)) = SN (f(a)).

e Then f is an isomorphism of an initial segment of N/.
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(i) VM ETIN E Sst. MC. N.
(iii) V@: II, sentence, S+ 60 = T I 6.
ERUD

o Let 0 be any II; sentence s.t. S I 6.

o Let M be any model of T'.

e By (ii), IV = S s.t. M EN.

o N E6.

e Since 6 is IT;, M = 6.

o By completeness theorem, T' I~ 6.
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(iii) V@: II; sentence, S+ 60 = T I 6.

(iv) YVo(x): ¥1 numeration of S Vn € w,
TH C0n0.|n.

(iii) = (iv)
e By Mostowski’s theorem, Vn € w, S+ Cong .
e By (iii), Vn € w, T I Cong .

(iv) = (i).

o Let o*(x) := o(x) A Cong|g.

@ Then o*(x) numerates S in T and PA - Cong~.
e By Feferman’s theorem, S < T + Congx.
e SLKT.
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@ Model theoretic proof of the second incompleteness
theorem
(Kreisel) (Kikuchi,1994)

Theorem

T, S: consistent r.e. extensions of PA. M: models of T.
If M = Cong, then
IN E Sst. M C. N and
3é(x): L a-formula s.t.
o Vi, (M EPrg("¢) = N E ),
o Vi, (M = £(T0 ) & N E o).

e Suppose VM =T, M = Conr.

o By using Theorem, lead a contradiction.
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e Faithful interpretability
(Feferman, Kreisel, Orey, 1960)(Lindstrom, 1984)

Definition
A interpretation t of S in T is faithful
E v, (T t(p) = S ).

S is faithful interpretable in T’
dé{’ 3t: faithful interpretation of S in T.

Theorem(Lindstrom)
S, T: r.e. extensions of PA. T.F.A.E.:

© S is faithful interpretable in T'.
Q@ S<TandVep, (TFEPry("e") = SE ).

© V0O : II, sentence, (S+60 = T+ 0) and
Vo : X, sentence, (T - o = S+ 0) and
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Definition
S, T': extensions of PA.
def.

s=rds<r&T<s.
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Equivalence classes are called degrees of interpretability.
@ D7 := the set of degrees of extensions of T'.

d(S) := degree of S.

d(S) <dT) & s<T.
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Degrees of interpretability

Theorem(Lindstrom)

T is an r.e. consistent extension of PA, then Dt is a

distributive lattice.

Open problem

S, T is X1-sound r.e. extensions of PA. Dg ~ Dp?
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@ Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990)

Intr(x,y)---“ T + « is interpretable in T + y.

Propositional modal logic ILM

ILM = GL+ the following axioms:
0(A — B) — Ap> B;

e A BAB>C — A C;

A>CAB>C — (AV B)>C,

A> B — (0A — OB);
o VA A;
Ap> B — (AANDOC) > (B ADOC)).

Theorem(Shavrukov,Berarducci)

VA, (ILM - A & A is arithmetically valid).
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