倉橋 太志 (Taishi Kurahashi)

神戸大学 (Kobe University)

2011 年 12 月 09-11 日 数学基礎論若手の会

 Interpretability is used to prove relative consitency, decidability and undecidability of theories.

- Interpretability is used to prove relative consitency, decidability and undecidability of theories.
- The notion of interpretability was explicitly introduced by Tarski(1954) and systematically investigated by Feferman and Orey(1960).

- Interpretability is used to prove relative consitency, decidability and undecidability of theories.
- The notion of interpretability was explicitly introduced by Tarski(1954) and systematically investigated by Feferman and Orey(1960).
- In this talk, we introduce a result about interpretability proved by using the arithmetized completeness theorem in Feferman(1960).

Contents

- Interpretability
- The arithmetized completeness theorem
- An application
- More investigations

- Interpretability
- The arithmetized completeness theorem
- An application
- More investigations

Interpretability Interpretability

•000

Definition

 $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$.

t is a translation of \mathcal{L} into \mathcal{L}'

 $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions:

0000

Definition

 $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$.

t is a translation of \mathcal{L} into \mathcal{L}'

 $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions:

- \bullet $t(x=y) \equiv x=y$;
- $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$;
- · · · :

An application

0000

Definition

 $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$.

t is a translation of \mathcal{L} into \mathcal{L}'

 $\stackrel{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions:

- \bullet $t(x=y) \equiv x=y$;
- $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$;
- · · · :
- $t(\neg \varphi) \equiv \neg t(\varphi)$ for any \mathcal{L} -formula φ ;
- $t(\varphi \vee \psi) \equiv t(\varphi) \vee t(\psi)$ for any \mathcal{L} -formulas φ, ψ ;
- · · · :

Definition

 $\mathcal{L}, \mathcal{L}'$: languages, $t: \operatorname{Fml}_{\mathcal{L}} \to \operatorname{Fml}_{\mathcal{L}'}$.

t is a translation of \mathcal{L} into \mathcal{L}'

 $\overset{\text{def.}}{\Leftrightarrow} t$ satisfies the following conditions:

- $\bullet \ t(x=y) \equiv x=y;$
- $\forall c \in \mathcal{L}$: constant, $\exists \eta_c(x)$: \mathcal{L}' -formula s.t. $t(x=c) \equiv \eta_c(x)$;
- · · · ;
- $t(\neg \varphi) \equiv \neg t(\varphi)$ for any \mathcal{L} -formula φ ;
- $t(\varphi \lor \psi) \equiv t(\varphi) \lor t(\psi)$ for any \mathcal{L} -formulas φ, ψ ;
- · · · ;
- $\exists d(x)$: \mathcal{L}' -formula s.t. $t(\exists x \varphi(x)) \equiv \exists x (d(x) \land t(\varphi(x)))$ for any \mathcal{L} -formula $\varphi(x)$.

Interpretability Interpretability

0000

 $\mathcal{L}_T :=$ the language of T.

 $\mathcal{L}_T :=$ the language of T.

Definition

S,T: theories, t: translation of \mathcal{L}_S into \mathcal{L}_T .

t is an interpretation of S in T

 $\stackrel{\mathrm{def.}}{\Leftrightarrow} t \text{ satisfies the following conditions:}$

- \bigcirc $T \vdash \exists x d(x);$

An application

 $\mathcal{L}_T :=$ the language of T.

Definition

S,T: theories, t: translation of \mathcal{L}_S into \mathcal{L}_T .

t is an interpretation of S in T

 $\overset{\mathrm{def.}}{\Leftrightarrow} t$ satisfies the following conditions:

- \bullet $T \vdash \exists x d(x)$:
- $\Diamond \forall \varphi \colon \mathcal{L}_{S}$ -formula, $(S \vdash \varphi \Rightarrow T \vdash t(\varphi))$.

Definition

S is interpretable in T (S < T)

 $\stackrel{\text{def.}}{\Leftrightarrow} \exists t$: interpretation of S in T.

It is easy to check the following propositions.

- If $S \leq T$ and T is consistent, then S is consistent.
- If $S \leq T$ and T is decidable, then S is decidable.

It is easy to check the following propositions.

- If $S \leq T$ and T is consistent, then S is consistent.
- If $S \leq T$ and T is decidable, then S is decidable.
- $\mathcal{L}_A := \{0, S, +, \times, <\}$: language of arithmetic.
- PA: Peano arithmetic (Basic axioms of arithmetic with induction scheme for all \mathcal{L}_A -formulas).
- ZF: Zermelo-Fraenkel set theory (Inf: Axiom of infinity).

It is easy to check the following propositions.

- If $S \leq T$ and T is consistent, then S is consistent.
- If $S \leq T$ and T is decidable, then S is decidable.
- $\mathcal{L}_A := \{0, S, +, \times, <\}$: language of arithmetic.
- PA: Peano arithmetic (Basic axioms of arithmetic with induction scheme for all \mathcal{L}_A -formulas).
- ZF: Zermelo-Fraenkel set theory (Inf: Axiom of infinity).
- \bullet ZF Inf < PA.
- ZF ≰ PA.
- PA + Con_{PA} $\not\leq$ PA.
- $PA + \neg Con_{PA} < PA$.
- • • .

Interpretability Interpretability

0000

Question

Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$?

Interpretability Interpretability

0000

Question

Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} \leq \mathsf{PA} + \varphi$?

Answer

Yes!

000

Question

Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$?

Answer

Yes!

In fact,

$$ZF \leq PA + Con_{ZF}$$

by Feferman's theorem.

Question

Is there any \mathcal{L}_A -sentence φ s.t. $\mathsf{ZF} < \mathsf{PA} + \varphi$?

Answer

Yes!

In fact.

$$ZF < PA + Con_{ZF}$$

by Feferman's theorem.

 Feferman's theorem is proved by using the arithmetized completeness theorem.

- Interpretability
- The arithmetized completeness theorem
- An application
- More investigations

Countable completeness theorem

Countable completeness theorem

T: theory with a countable language \mathcal{L} .

If T is consistent, then T has a model.

Countable completeness theorem

Countable completeness theorem

T: theory with a countable language \mathcal{L} .

If T is consistent, then T has a model.

Proof(outline)

- $C := \{c_n \mid n \in \omega\}$: set of new constants.
- $\mathcal{L}_C := \mathcal{L} \cup C$.

Interpretability

Countable completeness theorem

T: theory with a countable language \mathcal{L} .

If T is consistent, then T has a model.

Proof(outline)

- $C := \{c_n \mid n \in \omega\}$: set of new constants.
- $\mathcal{L}_C := \mathcal{L} \cup C$.
- $\{\varphi_n(x_n)\}_{n\in\omega}$: primitive recursive(p.r.) enumeration of all \mathcal{L}_C -formulas with one free-variable.
- $\exists Z:=\{\exists x_n \varphi_n(x_n) \to \varphi_n(c_{i_n}) \mid n \in \omega\}$: p.r. set s.t. T+Z is a conservative extension of T.

Interpretability

Countable completeness theorem

T: theory with a countable language \mathcal{L} .

If T is consistent, then T has a model.

Proof(outline)

- $C := \{c_n \mid n \in \omega\}$: set of new constants.
- $\mathcal{L}_C := \mathcal{L} \cup C$.
- $\{\varphi_n(x_n)\}_{n\in\omega}$: primitive recursive(p.r.) enumeration of all \mathcal{L}_C -formulas with one free-variable.
- $\exists Z := \{\exists x_n \varphi_n(x_n) \to \varphi_n(c_{i_n}) \mid n \in \omega\}$: p.r. set s.t. T + Z is a conservative extension of T.
- Then T + Z is consistent (Henkin extension).

 $Countable\ completeness\ theorem$

ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.

- $\{\theta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $X_0 := T + Z$;

$$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} ext{ is consistent;} \ X_n \cup \{
egh_n\} & ext{otherwise.} \end{array}
ight.$$

• $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete.

- $\{\theta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $X_0 := T + Z$;

$$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array}
ight.$$

- $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete.
- Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$.

Countable completeness theorem

- ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $X_0 := T + Z$;

$$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array}
ight.$$

- $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete.
- Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$.
- Define a structure $\mathcal M$ by $|\mathcal M|:=C/\sim$ and $R^{\mathcal M}([c_0],\ldots,[c_n]):\Leftrightarrow R(c_0,\ldots,c_n)\in X$ etc...

- ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $X_0 := T + Z$;

$$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array}
ight.$$

- $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete.
- Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$.
- Define a structure \mathcal{M} by $|\mathcal{M}| := C/\sim$ and $R^{\mathcal{M}}([c_0], \ldots, [c_n]) :\Leftrightarrow R(c_0, \ldots, c_n) \in X$ etc...
- $\forall \varphi$: \mathcal{L}_C -sentence, $(\mathcal{M} \models \varphi \Leftrightarrow \varphi \in X)$.
- \mathcal{M} is a model of T.

Countable completeness theorem

- ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $X_0 := T + Z$;

$$X_{n+1} := \left\{ egin{array}{ll} X_n \cup \{ heta_n\} & ext{if } X_n \cup \{ heta_n\} & ext{otherwise.} \end{array}
ight.$$

- $X := \bigcup_{n \in \omega} X_n$. X is Henkin complete.
- Define an equivalence relation \sim on C by $c \sim d :\Leftrightarrow c = d \in X$.
- Define a structure $\mathcal M$ by $|\mathcal M|:=C/\sim$ and $R^{\mathcal M}([c_0],\ldots,[c_n]):\Leftrightarrow R(c_0,\ldots,c_n)\in X$ etc...
- $\forall \varphi$: \mathcal{L}_C -sentence, $(\mathcal{M} \models \varphi \Leftrightarrow \varphi \in X)$.
- \bullet \mathcal{M} is a model of T.

First, we arithmetize the notion of the provability.

First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable)

First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable)

 $\exists \sigma(x) \colon \Sigma_1$ formula s.t. $\forall \varphi \colon \mathcal{L}$ -sentence,

$$\varphi \in S \Leftrightarrow T \vdash \sigma(\lceil \varphi \rceil).$$

 $\sigma(x)$ is called a numeration of S in T.

First, we arithmetize the notion of the provability. S: r.e. \mathcal{L} -theory, T: \mathcal{L}_A -theory. (\mathcal{L} : countable)

 $\exists \sigma(x) \colon \Sigma_1$ formula s.t. $\forall \varphi \colon \mathcal{L}$ -sentence,

$$\varphi \in S \Leftrightarrow T \vdash \sigma(\lceil \varphi \rceil).$$

 $\sigma(x)$ is called a numeration of S in T.

For Σ_1 numeration $\sigma(x)$ of S in T, we can construct a Σ_1 formula $\Pr_{\sigma}(x)$ s.t. $\forall \varphi$: \mathcal{L} -sentence,

$$S \vdash \varphi \Leftrightarrow T \vdash \Pr_{\sigma}(\lceil \varphi \rceil).$$

 $\Pr_{\sigma}(x)$ is called the provability predicate of $\sigma(x)$.

 $\sigma(x), \sigma'(x)$: numerations of S and S' in T respectively.

Define

- $\bullet (\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}.$
- $\bullet (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

Define

- $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$.
- $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

 $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$.

Define

- $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$.
- $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

$$(\sigma|n)(x)$$
 is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$.

$$\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$$

Define

- $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$.
- $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

 $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$.

$$\mathsf{Con}_{\sigma} :\equiv \neg \mathrm{Pr}_{\sigma}(\ulcorner 0 = \bar{1} \urcorner).$$

Theorem

T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then

Define

- $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$.
- $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

 $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$.

 $\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$

Theorem

T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then

① (Gödel, Feferman) If σ is Σ_1 , then $T \nvdash \mathsf{Con}_{\sigma}$.

Define

- $(\sigma|n)(x) := \sigma(x) \land x \leq \bar{n}$.
- $\bullet \ (\sigma \vee \sigma')(x) := \sigma(x) \vee \sigma'(x).$

 $(\sigma|n)(x)$ is a numeration of $\{\varphi \in S \mid \lceil \varphi \rceil \leq n\}$.

 $\mathsf{Con}_{\sigma} :\equiv \neg \mathsf{Pr}_{\sigma}(\lceil 0 = \bar{1} \rceil).$

Theorem

T: consistent r.e. extension of PA, $\sigma(x)$: numeration of T in T. Then

- **1** (Gödel, Feferman) If σ is Σ_1 , then $T \nvdash \mathsf{Con}_{\sigma}$.
- **2** (Mostowski) $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

Next we arithmetize the above construction of Henkin extension $T+{\cal Z}.$

Next we arithmetize the above construction of Henkin extension $T+{\cal Z}.$

• $C := \{c_n \mid n \in \omega\}$: set of new constants. $\mathcal{L}_C := \mathcal{L} \cup C$.

Next we arithmetize the above construction of Henkin extension $T+\mathbb{Z}$.

- $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C$.
- Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas.

Next we arithmetize the above construction of Henkin extension T+Z.

- $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C.$
- Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas.
- $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant".

Next we arithmetize the above construction of Henkin extension T+Z.

- $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C$.
- Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas.
- $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant".
- Define the p.r. set Z as above. Let $\zeta(x)$ be a suitable numeration of Z s.t.

$$\forall \varphi$$
, PA $\vdash \Pr_{\sigma \lor \zeta}(\lceil \varphi \rceil) \to \Pr_{\sigma}(\lceil \varphi \rceil)$.

Next we arithmetize the above construction of Henkin extension T+Z.

- $C:=\{c_n\mid n\in\omega\}$: set of new constants. $\mathcal{L}_C:=\mathcal{L}\cup C.$
- Extend Gödel numbering of \mathcal{L} -formulas to \mathcal{L}_C -formulas.
- $\operatorname{Fml}_C(x) \cdots$ "x is an \mathcal{L}_C -formula". $C(x) \cdots$ "x is a new constant".
- Define the p.r. set Z as above. Let $\zeta(x)$ be a suitable numeration of Z s.t.

$$\forall \varphi$$
, PA $\vdash \Pr_{\sigma \lor \zeta}(\lceil \varphi \rceil) \to \Pr_{\sigma}(\lceil \varphi \rceil)$.

• PA \vdash Con $_{\sigma} \rightarrow$ Con $_{\sigma \lor \zeta}$.

Lastly, we arithmetize the Henkin completeness.

Lastly, we arithmetize the Henkin completeness.

For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences:

- $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$
- $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \to (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$
- · · · ;
- $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$

Lastly, we arithmetize the Henkin completeness.

For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences:

- $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$
- $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \to (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$
- · · · ;
- $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$

 Hcm_{ξ} states that the set defined by $\xi(x)$ is Henkin complete.

Lastly, we arithmetize the Henkin completeness.

For any \mathcal{L}_A -formula $\xi(x)$, define Hcm_ξ to be the conjunction of the following \mathcal{L}_A -sentences:

- $\forall x (\operatorname{Fml}_C(x) \to (\xi(\neg x) \leftrightarrow \neg \xi(x)));$
- $\forall x, y(\operatorname{Fml}_C(x) \wedge \operatorname{Fml}_C(y) \rightarrow (\xi(x \vee y) \leftrightarrow (\xi(x) \vee \xi(y))));$
- • ;
- $\bullet \ \forall x, y(\mathrm{Fml}_C(x) \to (\xi(\exists ux) \leftrightarrow \exists v(C(v) \land \xi(x[v/u])))).$

 Hcm_{ξ} states that the set defined by $\xi(x)$ is Henkin complete.

The arithmetized completeness theorem

 $\forall \sigma(x)$: numeration of T, $\exists \xi(x)$: \mathcal{L}_A -formula s.t.

- **1** PA \vdash Con $_{\sigma} \rightarrow$ Hcm $_{\varepsilon}$ and
- **2** PA $\vdash \forall x (\Pr_{\sigma}(x) \rightarrow \xi(x)).$

- ullet $\{ heta_n\}_{n\in\omega}$: p.r. enumeration of all \mathcal{L}_C -sentences.
- $\xi(x) \cdots$ "x is contained in the leftmost consistent path".
- PA $\vdash \forall x (\Pr_{\sigma}(x) \rightarrow \xi(x)).$
- PA \vdash Con $_{\sigma \lor \zeta} \to$ Hcm $_{\xi}$.

0000000

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

Theorem(Feferman, 1960)

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

Proof.

• $\xi(x)$: as in the arithmetized completeness theorem.

Theorem(Feferman, 1960)

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- \bullet $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}
 ceil)$, \cdots

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}
 ceil)$, \cdots
- By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}
 ceil)$, \cdots
- By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}
 ceil)$, \cdots
- By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$.

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}
 ceil)$, \cdots
- By induction, $\forall \varphi$, PA + Hcm $_{\xi} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$.
- φ : \mathcal{L}_S -sentence s.t. $S \vdash \varphi$. $T \vdash \Pr_{\sigma}(\lceil \varphi \rceil)$.

T: extension of PA. σ : numeration of S in T.

Then $S \leq T + \mathsf{Con}_{\sigma}$.

- $\xi(x)$: as in the arithmetized completeness theorem.
- $ullet d(x):\equiv x=x$, $\eta_c(x):\equiv C(x)\wedge \xi(\lceil c=\dot{x}\rceil)$, \cdots
- By induction, $\forall \varphi$, PA + Hcm_{ξ} $\vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- $\forall \varphi$, $T + \mathsf{Con}_{\sigma} \vdash t(\varphi) \leftrightarrow \xi(\lceil \varphi \rceil)$.
- t is a translation of \mathcal{L}_S into $\mathcal{L}_{T+\mathsf{Con}_\sigma}$.
- φ : \mathcal{L}_S -sentence s.t. $S \vdash \varphi$. $T \vdash \Pr_{\sigma}(\lceil \varphi \rceil)$.
- $T + \mathsf{Con}_{\sigma} \vdash \xi(\lceil \varphi \rceil)$. $T + \mathsf{Con}_{\sigma} \vdash t(\varphi)$.

- Interpretability
- The arithmetized completeness theorem
- An application
- More investigations

An application

We can construct a model by interpretation.

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

•0000

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $\bullet \mid \mathcal{N} \mid := \{ a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a) \};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$;
- • • •

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $\bullet \mid \mathcal{N} \mid := \{ a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a) \};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$;
- • • •

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $|\mathcal{N}| := \{a \in |\mathcal{M}| : \mathcal{M} \models d(a)\};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$;
- • • •

By induction, $\forall \varphi \colon \mathcal{L}_S$ -sentence, $\mathcal{M} \models t(\varphi) \Leftrightarrow \mathcal{N} \models \varphi$.

• Suppose $S \vdash \varphi$.

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $|\mathcal{N}| := \{a \in |\mathcal{M}| : \mathcal{M} \models d(a)\};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}} :=$ the unique $a \in |\mathcal{M}|$ s.t. $\mathcal{M} \models d(a) \land \eta_c(a)$;
- • • •

- Suppose $S \vdash \varphi$.
- Since S < T, $T \vdash t(\varphi)$.

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $\bullet \mid \mathcal{N} \mid := \{a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a)\};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}}:=$ the unique $a\in |\mathcal{M}|$ s.t. $\mathcal{M}\models d(a)\wedge \eta_c(a);$
- • • .

- Suppose $S \vdash \varphi$.
- Since $S \leq T$, $T \vdash t(\varphi)$.
- $\mathcal{M} \models t(\varphi)$, so $\mathcal{N} \models \varphi$.

We can construct a model by interpretation.

t: interpretation of S in T, \mathcal{M} : model of T.

Define an \mathcal{L}_S -structure \mathcal{N} as follows:

- $\bullet \mid \mathcal{N} \mid := \{a \in \mid \mathcal{M} \mid : \mathcal{M} \models d(a)\};$
- For $c \in \mathcal{L}_S$: constant, $c^{\mathcal{N}}:=$ the unique $a\in |\mathcal{M}|$ s.t. $\mathcal{M}\models d(a)\wedge \eta_c(a);$
- • • .

- Suppose $S \vdash \varphi$.
- Since $S \leq T$, $T \vdash t(\varphi)$.
- $\mathcal{M} \models t(\varphi)$, so $\mathcal{N} \models \varphi$.
- \bullet N is a model of S.

Definition

 \mathcal{M}, \mathcal{N} : models of arithmetic.

 \mathcal{M} is an initial segment of \mathcal{N} $(\mathcal{M} \subseteq_e \mathcal{N}) \stackrel{\mathrm{def.}}{\Leftrightarrow}$

- ullet $|\mathcal{M}| \subset |\mathcal{N}|$ and

Definition

 \mathcal{M}, \mathcal{N} : models of arithmetic.

 \mathcal{M} is an initial segment of \mathcal{N} $(\mathcal{M} \subseteq_e \mathcal{N}) \stackrel{\mathrm{def.}}{\Leftrightarrow}$

- ullet $|\mathcal{M}| \subseteq |\mathcal{N}|$ and

Theorem(Orey(1961), Hájek (1971,1972))

For any consistent r.e. extensions S, T of PA, T.F.A.E.:

- (i) $S \leq T$.
- (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$
- (iii) $\forall \theta \colon \Pi_1$ sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}.$

(i)
$$S \leq T$$
.

(ii)
$$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$

$(i) \Rightarrow (ii)$

- Let θ be an interpretation of S in T.
- Let \mathcal{M} be any model of T.

- (i) S < T.
- (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$

- Let θ be an interpretation of S in T.
- Let \mathcal{M} be any model of T.
- Let \mathcal{N} be a model of S defined by t and \mathcal{M} .

- (i) S < T.
- (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$

- Let θ be an interpretation of S in T.
- Let \mathcal{M} be any model of T.
- Let \mathcal{N} be a model of S defined by t and \mathcal{M} .
- Define a function f in \mathcal{M} satisfying $f(0^{\mathcal{M}}) = 0^{\mathcal{N}}$ and $f(S^{\mathcal{M}}(a)) = S^{\mathcal{N}}(f(a)).$

(ii)
$$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$

- Let θ be an interpretation of S in T.
- Let \mathcal{M} be any model of T.
- Let $\mathcal N$ be a model of S defined by t and $\mathcal M$.
- Define a function f in $\mathcal M$ satisfying $f(0^{\mathcal M})=0^{\mathcal N}$ and $f(S^{\mathcal{M}}(a)) = S^{\mathcal{N}}(f(a)).$
- Then f is an isomorphism of an initial segment of \mathcal{N} .

(ii)
$$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$

(iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.

- Let θ be any Π_1 sentence s.t. $S \vdash \theta$.
- Let \mathcal{M} be any model of T.

- (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.

- Let θ be any Π_1 sentence s.t. $S \vdash \theta$.
- Let \mathcal{M} be any model of T.
- By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$.

(ii)
$$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$

(iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.

- Let θ be any Π_1 sentence s.t. $S \vdash \theta$.
- Let \mathcal{M} be any model of T.
- By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$.
- $\mathcal{N} \models \theta$.

- (ii) $\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.

- Let θ be any Π_1 sentence s.t. $S \vdash \theta$.
- Let \mathcal{M} be any model of T.
- By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$.
- $\mathcal{N} \models \theta$.
- Since θ is Π_1 , $\mathcal{M} \models \theta$.

(ii)
$$\forall \mathcal{M} \models T \exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N}.$$

(iii) $\forall \theta \colon \Pi_1$ sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.

- Let θ be any Π_1 sentence s.t. $S \vdash \theta$.
- Let \mathcal{M} be any model of T.
- By (ii), $\exists \mathcal{N} \models S$ s.t. $\mathcal{M} \models \mathcal{N}$.
- $\mathcal{N} \models \theta$.
- Since θ is Π_1 , $\mathcal{M} \models \theta$.
- By completeness theorem, $T \vdash \theta$.

An application

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x)$: Σ_1 numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$$(iii) \Rightarrow (iv)$$

• By Mostowski's theorem, $\forall n \in \omega$, $S \vdash \mathsf{Con}_{\sigma|n}$.

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$$(iii) \Rightarrow (iv)$$

- By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$.
- By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$.

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$(iii) \Rightarrow (iv)$

- By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$.
- By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$.

$$(iv) \Rightarrow (i)$$
.

• Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$.

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$(iii) \Rightarrow (iv)$

- By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$.
- By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$.

$(iv) \Rightarrow (i)$.

- Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$.
- Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$.

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$(iii) \Rightarrow (iv)$

- By Mostowski's theorem, $\forall n \in \omega$, $S \vdash \mathsf{Con}_{\sigma|n}$.
- By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$.

$(iv) \Rightarrow (i)$.

- Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$.
- Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$.
- By Feferman's theorem, $S \leq T + \mathsf{Con}_{\sigma^*}$.

- (i) S < T.
- (iii) $\forall \theta$: Π_1 sentence, $S \vdash \theta \Rightarrow T \vdash \theta$.
- (iv) $\forall \sigma(x) \colon \Sigma_1$ numeration of $S \ \forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma|n}$.

$\underline{\text{(iii)}} \Rightarrow \text{(iv)}$

- By Mostowski's theorem, $\forall n \in \omega, S \vdash \mathsf{Con}_{\sigma|n}$.
- By (iii), $\forall n \in \omega$, $T \vdash \mathsf{Con}_{\sigma \mid n}$.

$(iv) \Rightarrow (i)$.

- Let $\sigma^*(x) :\equiv \sigma(x) \wedge \mathsf{Con}_{\sigma|x}$.
- Then $\sigma^*(x)$ numerates S in T and PA \vdash Con $_{\sigma^*}$.
- By Feferman's theorem, $S \leq T + \mathsf{Con}_{\sigma^*}$.
- \bullet S < T.

- Interpretability
- The arithmetized completeness theorem
- An application
- More investigations

 Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994) Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994)

Theorem

T,S: consistent r.e. extensions of PA. \mathcal{M} : models of T.

If $\mathcal{M} \models \mathsf{Con}_S$, then

 $\exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N} \text{ and }$

 $\exists \xi(x)$: \mathcal{L}_A -formula s.t.

- $\forall \varphi$, $(\mathcal{M} \models \Pr_S(\lceil \varphi \rceil) \Rightarrow \mathcal{N} \models \varphi)$,
- $\forall \varphi$, $(\mathcal{M} \models \xi(\lceil \varphi \rceil) \Leftrightarrow \mathcal{N} \models \varphi)$.

 Model theoretic proof of the second incompleteness theorem (Kreisel)(Kikuchi,1994)

$\mathsf{Theorem}$

T, S: consistent r.e. extensions of PA. \mathcal{M} : models of T.

If $\mathcal{M} \models \mathsf{Con}_S$, then

 $\exists \mathcal{N} \models S \text{ s.t. } \mathcal{M} \subseteq_e \mathcal{N} \text{ and }$

 $\exists \xi(x) \colon \mathcal{L}_A$ -formula s.t.

- $\forall \varphi$, $(\mathcal{M} \models \Pr_S(\lceil \varphi \rceil) \Rightarrow \mathcal{N} \models \varphi)$,
- $\forall \varphi$, $(\mathcal{M} \models \xi(\lceil \varphi \rceil) \Leftrightarrow \mathcal{N} \models \varphi)$.
- Suppose $\forall \mathcal{M} \models T$, $\mathcal{M} \models \mathsf{Con}_T$.
- By using Theorem, lead a contradiction.

Definition

A interpretation t of S in T is faithful \Leftrightarrow $\forall \varphi$, $(T \vdash t(\varphi) \Rightarrow S \vdash \varphi)$.

Definition

A interpretation t of S in T is faithful

$$\stackrel{\text{def.}}{\Leftrightarrow} \forall \varphi \text{, } (T \vdash t(\varphi) \Rightarrow S \vdash \varphi).$$

S is faithful interpretable in T

 $\overset{\text{def.}}{\Leftrightarrow} \exists t$: faithful interpretation of S in T.

Definition

A interpretation t of S in T is faithful

 $\overset{\text{def.}}{\Leftrightarrow} orall arphi$, ($T \vdash t(arphi) \Rightarrow S \vdash arphi$).

S is faithful interpretable in T

 $\overset{\mathrm{def.}}{\Leftrightarrow} \exists t \text{: faithful interpretation of } S \text{ in } T.$

$\mathsf{Theorem}(\mathsf{Lindstr\"om})$

S,T: r.e. extensions of PA. T.F.A.E.:

- S is faithful interpretable in T.
- $S \leq T$ and $\forall \varphi$, $(T \vdash \Pr_{\phi}(\lceil \varphi \rceil) \Rightarrow S \vdash \varphi)$.
- **3** $\forall \theta : \Pi_1$ sentence, $(S \vdash \theta \Rightarrow T \vdash \theta)$ and $\forall \sigma : \Sigma_1$ sentence, $(T \vdash \sigma \Rightarrow S \vdash \theta)$ and

Degrees of interpretability

 Degrees of interpretability of extensions of PA (Lindström, 1979) Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S \leq T \& T \leq S.$$

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

S, T: extensions of PA.

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

 $\bullet \equiv$ is an equivalence relation on extensions of PA.

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- ullet is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- $\bullet \equiv$ is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.
- $D_T :=$ the set of degrees of extensions of T.

Interpretability

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- $\bullet \equiv$ is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.
- $D_T :=$ the set of degrees of extensions of T.
- \bullet d(S) :=degree of S.

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- $\bullet \equiv$ is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.
- $D_T :=$ the set of degrees of extensions of T.
- \bullet d(S) :=degree of S.
- $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$.

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- $\bullet \equiv$ is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.
- $D_T :=$ the set of degrees of extensions of T.
- \bullet d(S) :=degree of S.
- $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$.
- $\mathcal{D}_T := (D_T, <).$

 Degrees of interpretability of extensions of PA (Lindström, 1979)

Definition

$$S \equiv T \stackrel{\text{def.}}{\Leftrightarrow} S < T \& T < S.$$

- $\bullet \equiv$ is an equivalence relation on extensions of PA.
- Equivalence classes are called degrees of interpretability.
- $D_T :=$ the set of degrees of extensions of T.
- \bullet d(S) :=degree of S.
- $d(S) < d(T) \stackrel{\text{def.}}{\Leftrightarrow} S < T$.
- $\mathcal{D}_T := (D_T, <).$

Degrees of interpretability

Theorem(Lindström)

T is an r.e. consistent extension of PA, then \mathcal{D}_T is a distributive lattice.

Open problem

S,T is Σ_1 -sound r.e. extensions of PA. $\mathcal{D}_S \simeq \mathcal{D}_T$?

Interpretability logic

• Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990)

Interpretability logic

Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990)

 $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y.

Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990)

 $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y.

Propositional modal logic ILM

ILM = GL+ the following axioms:

- $\bullet \Box (A \to B) \to A \rhd B$:
- $A \triangleright B \land B \triangleright C \rightarrow A \triangleright C$:
- $A \triangleright C \land B \triangleright C \rightarrow (A \lor B) \triangleright C$;
- $A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B)$:
- $\bullet \Diamond A \rhd A$:
- $A \triangleright B \rightarrow ((A \land \Box C) \triangleright (B \land \Box C)).$

Interpretability logic (Visser, 1990)(Shavrukov, 1988)(Berarducci, 1990)

 $\operatorname{Int}_T(x,y)\cdots$ " T+x is interpretable in T+y.

Propositional modal logic **ILM**

ILM = GL+ the following axioms:

- $\bullet \Box (A \to B) \to A \rhd B$:
- $A \triangleright B \land B \triangleright C \rightarrow A \triangleright C$:
- $A \triangleright C \land B \triangleright C \rightarrow (A \lor B) \triangleright C$;
- $A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B);$
- $\bullet \Diamond A \rhd A$:
- $A \triangleright B \rightarrow ((A \land \Box C) \triangleright (B \land \Box C)).$

Theorem(Shavrukov, Berarducci)

 $\forall A$, (ILM $\vdash A \Leftrightarrow A$ is arithmetically valid).

References

- S. Feferman. Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic 27 (1962) 259–316.
- R. Kaye. Models of Peano arithmetic, Oxford Logic Guides, 15. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
- P. Lindström. Aspects of incompleteness. Lecture Notes in Logic, 10. Springer-Verlag, Berlin, 1997.
- S. Orey. Relative interpretations. Z. Math. Logik Grundlagen Math. 7 (1961) 146-153.
- C. Smoryński. The incompleteness theorems. Handbook of Mathematical Logic (J. Barwise, ed), North-Holland, Amsterdam (1977), 821–865.
- A. Tarski. Undecidable theories. In collaboration with Andrzej Mostowski and Raphael M. Robinson. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1953.