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Algebra

What is Universal Algebra

Study of the pair of a set A and a set of operations S on A. It
seems roughly classified 3 groups.

e Fix a language without relation symbols. Study possible
models of the language.

e Fix a set. Study possible sets of operations (closed under
composition).

e Study relations between different objects. (e.g. Stone
duality)

This talk is a topic in the second group.
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Algebra

Essentially “same” algebras

Example

- Let (B,0,1,A,V, ) be a Boolean lattice. We define
a-b:=aANb, a+b:=(aA-b)V(-aAb), —a:=-a.

Then (B, +,-, —,0,1) is a commutative ring which satisfies an

identity 2% = z (Boolean ring).

- Conversely, if (R,+,,—,0,1) is a Boolean ring and define

aANb:=a-b, aVb:=a+b+(a-b), —a:=-a
then (R,0,1,A,V, ) is a Boolean lattice.
These constructions are mutually inverse.

That means Boolean lattices and Boolean rings equal to each other.
It seems natural that, in general, the sets S, .S’ of operations on A
are said to be “the same” if all operations belong to S “are
written” by operations belongs to S’ and vice versa.
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Algebra

Definition

Let A be a set, C' be a set of operations on A. C'is a clone on A
if

- Projection (ay, -+, am) — a; belongs to C'.

I f € Cry g1, 9n € O then (a)1<<m — f(9i(a))1<j<m)1<i<n
belongs to C'.

0 C,, := m-ary operations belong to C'J

An operation f on A "“is written” by operations belong to S means
f € C(9) (clone generated by S). In particular, S and S’ are the
same means C'(S) = C(5").
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Algebra

@ We consider a pair (A, C') of a set A and a clone C' on A.
@ We only consider the case A is finite in this talk.

Definition
Algebra is a pair (A4, C) which A is a set and C is a clone on A.
Finite algebra is an algebra in which the universe A is finite.

Notation. We write “A is an algebra” for (A, C') is an algebra. The
clone C' on A is written Clo(A).
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2.[Reduction to smaller algebras]
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Idempotent retract and minimum cover

Quotation
The purpose of this lecture is to describe the intuition behind
tame congruence theory. (partly omitted) The theory is based
on a method for selecting small subsets of an algebra, restricting
structure to that subset, calculating locally, and piecing
together local data to solve globally stated problems.

Lecture note: Tame congruence theory is a localization theory,
Keith A. Kearnes

Tame Congruence: focus on Con(A) --- roughly speaking, catch
only information of less than 2-ary operations
Covering: focus on Inv(A) --- catch complete structure
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Idempotent retract and minimum cover

Definition
Let A be an algebra.
- e € Cloy(A) is said to be an idempotent term operation on A if
e? =e.
E(A): set of all idempotent term operations.
- If e € E(A), Alca) is an algebra such that
- The universe is e(A).

- Clon(Alew) = {eo f | f € Clon(A)}.

The structure of A|.(.) is determined by e(A).
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Idempotent retract and minimum cover

Definition
Let €1, -, e,,e € E(A).
{e1(A), -, en(A)} covers e(A) if
El)‘? fla T fl ) )‘<6i1f1(x)7 ) eilfl(a:)) = €($)
This case e(A) is “embedded” in e;,(A) x - x e;,(A) by term
operations.
“Embedding": = — (e;, fi(z), -, e;, fi())
“retraction”: (xy, -, 2;) — A(zq, -, x7)
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Idempotent retract and minimum cover

Example

If {Uy,--,U,} is a cover of an algebra A, then arbitrary
subalgebra of power of A is congruence permutable iff each Aly,
has the same property.

Definition

Algebra A is congruence permutable if for any congruence
relations a, 3 of A a0 § = o« (equivalent condition is
aof=aV ) holds.

Fact
Let A be an algebra. Arbitrary subalgebra of power of A is
congruence permutable iff A has a ternary term p which satisfies

plz,z,y) =vy,p(z,y,y) = .

(oooo) 000000000000 11 /22



Idempotent retract and minimum cover
Definition
Let A be an algebra. eq,-, ¢, € E(A). e;(A) K- K¢ (A) is an
algebra such that
- the universe is e;(A) x -+ X ¢;(A).
- Cloy,(e1(A) X --- K e (A)) is a set of tuples (eity, -+, e;t;) where
ti € ClOlm(A).

Definition (revisited)
Let e, en,e € E(A). {e1(A), -, e,(A)} covers e(A) if
A, fr, o fus A fr(®), -, 6ilfl('r)) = e(z).

Fact
{e1(A), -, e, (A)} covers e(A) iff e(A) is an idempotent retract
of e;,(A) X --- N e;, (A) for some iy, -, 7.

embedding: = — (e;, fi(2), -, e;, fi(x)),
retraction: (xy, -, x;) — Az, -, xy).
(oooo) 000000000000 12 / 22



Idempotent retract and minimum cover

Definition
A finite algebra A is irreducible if {e;(A), -, e,(A)} does not
cover A except there is ¢ such that e;(A) = A.

Example
@ Any algebra with cardinality 1 or 2 is irreducible.

e A finite lattice (L, A, V) is irreducible.
@ A vector space over a finite field is irreducible.
e A group (G, -, e,*7!) is irreducible iff |G| is prime power.
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Idempotent retract and minimum cover

Definition
A cover {e;(A)}i1<i<n of A is minimum if e;(A) is irreducible for
any i and {e;(A)}; \ {ei,(A)} does not cover A for ig =1, n.

Definition

Let A be a finite algebra, {e;(A), -+, e,(A)} be a minimum cover
of A. We define essential part of A by

Ess(A) :=e1(A) X - Ke,(A).

Theorem

A finite algebra has unique minimum cover and essential part
“up to isomorphism”.
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Idempotent retract and minimum cover

Example
e Essential part of Primal algebra (P, Q) is P;.
@ One of minimum cover of M, = {0, 1, a,b} as bounded
lattice (A, V,0,1) is {{z | z < a},{z |z < b}}.
@ A group G is an idempotent retract of Ess(G). G = Ess(G)
iff G is nilpotent.

Definition (revisited)
Let ey, -, e,,e € E(A).
{e1(A), -, e,(A)} covers e(A) if

E|)\,f1, flv (€z1f( )7"'7€iz(x>>:€<x>'
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3.[“Reconstruction” from minimum cover]
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Possibility of essential parts

Theorem

Let A, B be finite algebras. Then Ess(A) ~ Ess(B) iff A is
categorically equivalent to B.

Fact

A is categorically equivalent to B iff there exist n > 1 and
o € E(A) such that

- {a(AM)} covers A",

- A[”HU(A[,L]) is isomorphic to B.

Definition

A" is the algebra

- the universe is A",

- Clo,,, (A" = (Clo,, (A))™. The action is

(t1, 5 tn) & ((@i5)1<ign)1<i<m = (Ei(@x)k.5)i-
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Possibility of essential parts

Example

1. Algebras categorically equivalent to n-dimensional F,-vector
space are left M(F,, m)-modules length n.

2. Algebras categorically equivalent to two element primal
algebra are primal algebras.

3. If L is a lattice, then {(a,b) € L? | a < b} is categorically
equivalent to L.
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Possibility of essential parts

Thus the way of classification of finite algebras is decomposed 3
steps.

- Classifying irreducible algebras.

- Classifying matrix products for given family of irr. algebras.

- Classifying algebras cat. eq. to given essential algebras.

We consider 2nd step.
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Proposition (Uniqueness of minimal idempotent retract)

Let A be a finite algebra. If U and V' are minimal idempotent
retracts of A then A|y is isomorphic to Ay .

Theorem (Characterization of existence of matrix product)

Let Uy, ---, U, be irreducible algebras. There exists a finite
algebra A such that the minimum cover of A is isomorphic to
{Uy, -+, U, } iff minimal idempotent retracts of Uy, ---, U,, are
isomorphic to each other.
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Proposition

Let G be a finite group, |G| = N = pi"* .-, p/*».

li € Nst. N|l;(l; = 1),p]"|l;. Then

-G ={re@ | =1} = [z — 2%](Q) is an idempotent
retract of G.

-{Gy, -, G,} is a minimum cover of G.

Proposition

- Any finite G is an idempotent retract of Ess(G).
- A finite group G is essential if and only if G is nilpotent.
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