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Abstract We give simple proofs of the Singular Cardinal Hypothesis from
the Weak Reflection Principle and the Fodor-type Reflection Principle which
do not use better scales.
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1 Introduction

The Singular Cardinal Hypothesis (SCH) below is a restriction of the Gen-
eralized Continuum Hypothesis to singular cardinals and has been studied
extensively by many set theorists:

SCH ≡ λcf(λ) = λ+ for every singular cardinal λ with 2cf(λ) < λ.

It is known that compactness properties tend to imply SCH. First it was
proved by Solovay [14] that if κ is a strongly compact cardinal, then SCH holds
above κ. Strong forcing axioms also imply SCH. Foreman-Magidor-Shelah [4]
showed that Martin’s Maximum (MM) implies SCH, and Viale [15] showed that
so does the Proper Forcing Axiom (PFA). Moreover several reflection princi-
ples, which follow from these forcing axioms, are also known to imply SCH.
For example, the Mapping Reflection Principle (MRP), the Weak Reflection
Principles (WRP) and the Fodor-type Reflection Principle (FRP) were shown
to imply SCH by Viale [15], Shelah [11] and Fuchino-Rinot [6], respectively.
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In this paper we present new proofs of SCH from WRP and FRP. First we
briefly review these reflection principles:

WRP is the assertion that WRP(λ) below holds for every cardinal λ ≥ ω2:

WRP(λ) ≡ For any stationary X ⊆ [λ]ω there is R ∈ [λ]ω1 such that ω1 ⊆ R
and X ∩ [R]ω is stationary in [R]ω.

It was proved in [4] that WRP follows from MM. Moreover, besides SCH,
WRP has many interesting consequences such as Chang’s Conjecture ([4]), the
presaturation of NSω1 ([4] and Feng-Magidor [3]) and 2ω ≤ ω2 (Todorčević).

Next we recall FRP. For regular cardinals λ and µ with µ < λ let

Eλ
µ := {α < λ | cf(α) = µ} .

FRP is the assertion that FRP(λ) below holds for every regular cardinal λ ≥ ω2:

FRP(λ) ≡ For any stationary S ⊆ Eλ
ω and any sequence ⟨bα | α ∈ S⟩ with

bα ∈ [α]ω, there is γ ∈ Eλ
ω1

such that for any function f on S∩γ
with f(α) ∈ bα there is β with f−1[{β}] stationary in γ.

FRP also follows fromMM and is known to have equivalent reflection principles
in terms of topological spaces, infinite graphs and boolean algebras. For details,
see Fuchino-Juhász-Soukup-Szentmiklóossy-Usuba [5], Fuchino-Rinot [6] and
Fuchino-Soukup-Sakai-Usuba [7].

Now we turn our attention to the original proofs of SCH from WRP and
FRP in [11] and [6]: Both proofs use the following theorem stating that the
failure of SCH implies the existence of a better scale:

Theorem 1.1 (Shelah [9] Ch. II Claim 1.3 & Ch. IX Conclusion 5.10). Assume
SCH fails, and let λ be the least singular cardinal at which SCH fails. (So
cf(λ) = ω by Silver’s theorem [13].) Then we have the following:

(⋆) There is an increasing sequence ⟨λn | n < ω⟩ of regular cardinals converging
to λ such that ⟨Πn<ωλn, <

∗⟩ has a better scale of length λ+.

In fact, what was proved in [11] and [6] is that (⋆) implies the failure of
WRP(λ+) and FRP(λ+).

Theorem 1.1 is a profound theorem in PCF Theory and is quite useful.
But its proof is long and complicated. In this paper we present proofs of SCH
from WRP and FRP without using better scales. In our proofs, Theorem 1.1
is replaced with some easy lemmata, and, as for WRP, the rest of the proof is
simpler than the original one. Our proofs use some ideas of the proof by [15]
of the fact that MRP implies SCH.

There is another motivation to give a proof of SCH from WRP without
using better scales. This is relevant to the Tree Property TP(κ, λ) and the
Ineffable Tree Property ITP(κ, λ) on Pκ(λ) introduced by Weiß [18].

First we briefly review known facts on these principles: ITP(κ, λ) is stronger
than TP(κ, λ). Let TP(κ) or ITP(κ) denotes the statement that TP(κ, λ) or
ITP(κ, λ) holds for every λ ≥ κ, respectively. Then TP(κ) and ITP(κ) charac-
terize the strong compactness and the supercompactness for an inaccessible κ.
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Namely, an inaccessible cardinal κ is strongly compact or supercompact if and
only if TP(κ) or ITP(κ) holds, respectively. On the other hand, [18] proved
that TP(κ) and ITP(κ) for small cardinals κ are also consistent. In particular,
the case when κ = ω2 is interesting. It was proved in [18] that PFA implies
ITP(ω2), and Sakai-Veličković [8] proved that WRP +MAω1 implies ITP(ω2).
These results show that ω2 is similar to a supercompact cardinal under PFA
or WRP + MAω1 . Moreover a result in Viale-Weiß [16] show that we need
a supercompact cardinal to force PFA or WRP + MAω1 by standard forcing
notions.

In consideration of the fact that SCH holds above a strongly compact cardi-
nal, it is natural to conjecture that TP(κ) and ITP(κ) imply SCH above κ. But
this is still open. Here note that ITP(ω2) is consistent with (⋆) for every sin-
gular cardinal λ of cofinality ω. This follows from the well-known facts below,
due to Magidor and Cummings-Foreman-Magidor [4] respectively, together
with the above mentioned fact that PFA implies ITP(ω2):

– PFA is consistent with □λ,ω2 for every uncountable cardinal λ.
– □λ,ω2 implies (⋆) for any singular cardinal λ of cofinality ω.

So we cannot prove the above conjecture by way of (⋆) as in the original proofs
of SCH from WRP and FRP. Then, because ITP(ω2) follows from WRP+MAω1 ,
it is natural to ask whether we can prove SCH from WRP (+MAω1) without
using better scales. We hope that our new proof has some contribution to the
solution of the above conjecture.

We give proofs of SCH from FRP and WRP in Section 2 and 3, respectively.
By modifying a proof from WRP slightly, we can also prove that the Semi-
stationary Reflection Principle (SSR) implies SCH, which was originally proved
in [8] using better scales. We give an outline of our proof in Section 4.

We will use Silver’s theorem in all of our proofs. Let us recall it before
proceeding to our proofs:

Theorem 1.2 (Silver [13]). Assume SCH fails, and let λ be the least singular
cardinal at which SCH fails. Then cf(λ) = ω.

2 FRP

Here we give a proof of the following without using better scales:

Theorem 2.1 (Fuchino-Rinot [6]). FRP implies SCH.

We prove the contraposition. Assume SCH fails, and let λ be the least
singular cardinal at which SCH fails. We prove that FRP(λ+) fails. Note that
cf(λ) = ω by Theorem 1.2. Note also that µω < λ for all µ < λ. In fact, by
induction on cardinals µ with 2ω ≤ µ < λ, we can easily prove that µω = µ if
cf(µ) > ω and that µω = µ+ if cf(µ) = ω.

In [5] it was proved that the following combinatorial principle on an almost
disjoint sequence implies the failure of FRP(λ+):
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ADS−(λ) ≡ There is a sequence ⟨bα | α < λ+⟩ in [λ]ω such that for any
γ < λ+ of uncountable cofinality there is a club c ⊆ γ and a
function g on c with the following properties:
(i) g(α) ∈ [bα]

<ω for each α ∈ c.
(ii) ⟨bα \ g(α) | α ∈ c⟩ is pairwise disjoint.

Lemma 2.2 (Fuchino et al. [5]). If ADS−(λ) holds, then FRP(λ+) fails.

Proof. Suppose that ⟨bα | α < λ+⟩ witnesses ADS−(λ). We show that FRP(λ+)

fails for S := Eλ+

ω \ λ and ⟨bα | α ∈ S⟩. For this it suffices to show that for

any γ ∈ Eλ+

ω1
\ λ there is a club c ⊆ γ and an injection f on c with f(α) ∈ bα.

Suppose that γ ∈ Eλ+

ω1
. Then we can take a club c ⊆ γ and a function g

on c satisfying (i) and (ii) of ADS−(λ). Let f be a function on c such that
f(α) ∈ bα \ g(α). Then c and f are as desired.

So it suffices to prove the following:

Lemma 2.3. ADS−(λ) holds.

For this we use the following lemma:

Lemma 2.4. For any A ⊆ [λ]<λ with |A| ≤ λ+ there is b ∈ [λ]ω such that
b ∩A is finite for any A ∈ A.

Proof. First take a bijection h : λ → [λ]<ω. By increasing if necessary, we may
assume that each element of A is closed under h.

Note that |
∪

A∈A[A]ω| ≤ λ+ < λω because µω < λ for all µ < λ. Then we
can take b′ ∈ [λ]ω such that b′ ̸⊆ A for any A ∈ A. Let ⟨β′

n | n < ω⟩ be an
enumeration of b′, and for each n < ω take βn < λ with h(βn) = {β′

m | m < n}.
Then b := {βn | n < ω} is as desired: Take an arbitrary A ∈ A. Then there is
m < ω with β′

m /∈ A. Then, because A is closed under h, it holds that βn /∈ A
for any n > m.

Proof of Lemma 2.3. Let E be the set of all γ < λ+ of uncountable cofinality,
and fix a club cγ ⊆ γ of order type cf(γ) for each γ ∈ E. By induction on
α < λ+, take bα ∈ [λ]ω as follows: Suppose that bβ has been taken for each
β < α. For each γ ∈ E let

Aα
γ :=

∪
{bβ | β ∈ cγ ∩ α} .

By Lemma 2.4 let bα ∈ [λ]ω be such that bα ∩Aα
γ is finite for any γ ∈ E.

Now it is easy to see that ⟨bα | α < λ+⟩ witnesses ADS−(λ): Suppose that
γ ∈ E. Recall that cγ is club in γ. For each α ∈ cγ let g(α) := bα ∩ Aα

γ . Then
g(α) ∈ [bα]

<ω for each α ∈ cγ , and ⟨bα \ g(α) | α ∈ cγ⟩ is pairwise disjoint.
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3 WRP

In this section we give a simple proof of the following without using better
scales:

Theorem 3.1 (Shelah [11]). WRP implies SCH.

As in the proof of Theorem 2.1 and the original proof of Theorem 3.1 in
[11], we prove the contraposition. Assume that SCH fails, and let λ be the least
singular cardinal at which SCH fails. We construct a non-reflecting stationary
X∗ ⊆ [λ+]ω. Note that cf(λ) = ω by Theorem 1.2.

First we present X∗: Fix a function h : Eλ+

ω → ω1 such that h−1[{ρ}] is
stationary in λ+ for all ρ < ω1. Moreover, for each γ ∈ Eλ+

ω1
fix a partition

⟨Aγ,n | n < ω⟩ of γ such that |Aγ,n| < λ. Then let

X∗ := the set of all x ∈ [λ+]ω such that
(I) sup(x) /∈ x,
(II) x ∩ ω1 ⊆ h(sup(x)),

(III) x ∩Aγ,n is bounded in x for any γ ∈ Eλ+

ω1
and any n < ω.

We claim the following:

Lemma 3.2. X∗ is stationary in [λ+]ω.

Lemma 3.3. X∗ is non-reflecting, that is, X∗ ∩ [R]ω is non-stationary for
any R ∈ [λ+]ω1 with ω1 ⊆ R.

Before proving these lemmata, we mention the roles of the properties (I)–
(III) in the definition of X∗ and the difference between our proof and the
original proof in [11]: First note that there are three types of elements R of
[λ+]ω1 : sup(R) ∈ R, cf(sup(R)) = ω or cf(sup(R)) = ω1. X

∗ does not reflect
to R with sup(R) ∈ R by (I). Moreover, as we will show below, (II) and (III)
assure thatX∗ does not reflect to R with cf(sup(R)) = ω and cf(sup(R)) = ω1,
respectively. [11] also constructed a non-reflecting stationary subset, say Y ∗,
of [λ+]ω for the same λ as ours, and (II) was used there for the same purpose.
A similar property as (II) can be found also in Shelah-Shioya [12]. What is
new in our proof is (III). In [11], another property employing a better scale
was used to assure that Y ∗ does not reflect to R with cf(sup(R)) = ω1. (III)
replaces it.

Now we start to prove Lemmata 3.2 and 3.3. First we prove Lemma 3.3:

Proof of Lemma 3.3. Take an arbitrary R ∈ [λ+]ω1 with ω1 ⊆ R. If sup(R) ∈
R, then clearly X∗ ∩ [R]ω is non-stationary by (I) in the definition of X∗. So
assume that sup(R) /∈ R. Then cf(sup(R)) is ω or ω1.

First suppose that cf(sup(R)) = ω. Let Y0 be the set of all x ∈ [R]ω

with sup(x) = sup(R) and x ∩ ω1 ̸⊆ h(sup(R)). Then Y0 is club in [R]ω, and
X∗ ∩ Y0 = ∅ by (II).

Next suppose that cf(sup(R)) = ω1. Let γ := cf(sup(R)). Then we can
take n < ω such that Aγ,n ∩ R is unbounded in R. Let Y1 be the set of all
x ∈ [R]ω such that x ∩ Aγ,n is unbounded in x. Then Y1 is club in [R]ω, and
X∗ ∩ Y1 = ∅ by (III).
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Next we prove Lemma 3.2. For this we need some preparations. The first
one is a variant of Lemma 2.4. We call a sequence ⟨Iξ | ξ < λ+⟩ an interval
partition of λ+ if Iξ = δξ+1\δξ for some increasing continuous cofinal sequence
⟨δξ | ξ < λ+⟩ in λ+ with δ0 = 0.

Lemma 3.4. For any A ⊆ [λ+]<λ with |A| ≤ λ+, any stationary S ⊆ Eλ+

ω

and any interval partition ⟨Iξ | ξ < λ+⟩ of λ+, there is a strictly increasing
sequence ⟨ξn | n < ω⟩ in λ+ such that B :=

∪
n<ω Iξn has the following

properties:

(i) sup(B) ∈ S.
(ii) B ∩A is bounded in B for any A ∈ A.

Proof. Let A, S and ⟨Iξ | ξ < λ+⟩ be as in the lemma. Take a surjection
f : λ+ → λ such that f−1[{β}] is unbounded in λ+ for each β < λ, and
let g : λ+ → λ be the function such that g(α) = f(ξ) for each α ∈ Iξ. By
increasing if necessary, we may assume that each A ∈ A is closed under g.

By the choice of f , we can take η ∈ Eλ+

ω such that
∪

ξ<η Iξ ∈ S and such

that f−1[{β}]∩η is unbounded in η for every β < λ. Moreover, by Lemma 2.4,
we can take b ∈ [λ]ω such that b∩A is finite for any A ∈ A. Let ⟨βn | n < ω⟩ be
an injective enumeration of b. Then we can take an increasing cofinal sequence
⟨ξn | n < ω⟩ in η such that f(ξn) = βn.

We show that ⟨ξn | n < ω⟩ is as desired: Let B :=
∪

n<ω Iξn . (i) holds
because ⟨ξn | n < ω⟩ is cofinal in η, and

∪
ξ<η Iξ ∈ S. To check (ii), take an

arbitrary A ∈ A. Then there is m < ω such that βn /∈ A for all n ≥ m. Here
note that g(α) = f(ξn) = βn if α ∈ Iξn . So Iξn ∩A = ∅ for all n ≥ m because
A is closed under g, and βn /∈ A. Thus B ∩A is bounded in B.

To prove Lemma 3.2 we use a game, which is a combination of games
introduced in [12] and Veličković [17]. For a function F : [λ+]<ω → λ+ and an
ordinal ρ < ω1 let ⅁(F, ρ) be the following two players game of length ω:

I J0 J1 J2 · · · Jn · · ·
II α0 α1 α2 · · · αn · · ·

At the n-th stage, first I chooses a non-empty bounded interval Jn ⊆ λ+, and
then II chooses αn < λ+. If n ≥ 1, then I must choose Jn so that αn−1 <
min(Jn). Suppose that ⟨Jn, αn | n < ω⟩ is a play of ⅁(F, ρ), and let x be the
closure of the set {min(Jn) | n < ω} under F . I wins if x ⊆

∪
n<ω Jn, and

x ∩ ω1 ⊆ ρ. Otherwise, II wins.
The following lemma can be proved by combining the proofs of the corre-

sponding lemmata in [12] and [17]:

Lemma 3.5. For any function F : [λ+]<ω → λ+ there is ρ < ω1 such that I
has a winning strategy for ⅁(F, ρ).

Proof. Fix a function F : [λ+]<ω → λ+. For the contradiction assume that I
does not have a winning strategy for ⅁(F, ρ) for any ρ < ω1. First note that
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⅁(F, ρ) is a closed game for I for each ρ < ω1. So it is determined. Hence II
has a winning strategy τρ for ⅁(F, ρ) for each ρ < ω1.

Take a strictly increasing sequence ⟨βn | 1 ≤ n < ω⟩ in Eλ+

ω1
such that

each βn is closed under F and τρ for all ρ < ω1. Here we say that β is closed
under τρ if τρ(⟨Jm | m ≤ n⟩) < β whenever each Jm is a bounded interval in
β. We can take such ⟨βn | 1 ≤ n < ω⟩ because λ+ is a regular cardinal > ω1.
Let β0 := 0, and let x be the closure of the set {βn | n < ω} under F . Then
x ⊆ supn<ω βn, and x is countable. Take ρ∗ < ω1 with x ∩ ω1 ⊆ ρ∗. Moreover
for each n < ω let γn, Jn and αn be as follows:

γn := sup(x ∩ βn+1) + 1 , Jn := γn \ βn , αn := τρ∗(⟨Jm | m ≤ n⟩) .
Note that βn < γn < βn+1 because βn ∈ x, x is countable, and cf(βn+1) =

ω1. So Jn is a non-empty interval bounded in βn+1. Hence αn < βn+1 by the
closure of βn+1 under τρ∗ . Then ⟨Jn, αn | n < ω⟩ is a legal play of ⅁(F, ρ∗)
in which II has moved according to the winning strategy τρ∗ . So II wins with
this play. But x is the closure of {min(Jn) | n < ω} under F , x∩ω1 ⊆ ρ∗, and
x ⊆

∪
n<ω Jn. Therefore I wins with this play. This is a contradiction.

Now we prove Lemma 3.2:

Proof of Lemma 3.2. Take an arbitrary function F : [λ+]<ω → λ+. It suffices
to find x ∈ X∗ closed under F .

By Lemma 3.5 take ρ < ω1 such that I has a winning strategy τ for ⅁(F, ρ).
Let D be the set of all δ < λ+ which is closed under τ . Note that D is club
in λ+. Let ⟨δξ | ξ < λ+⟩ be the increasing enumeration of D ∪ {0}, and let
Iξ := δξ+1 \ δξ for each ξ < λ+.

By Lemma 3.4 we can take a strictly increasing sequence ⟨ξn | n < ω⟩ such
that, letting B :=

∪
n<ω Iξn , we have the following:

(i) sup(B) ∈ h−1[{ρ}].
(ii) B ∩Aγ,n is bounded in B for any γ ∈ Eλ+

ω1
and any n < ω.

We may assume that ξ0 = 0. For each n < ω let αn := δξn+1 and Jn := τ(⟨αm |
m < n⟩). Then let x be the closure of the set {min(Jn) | n < ω} under F . It
suffices to show x ∈ X∗.

For this we claim the following:

(iii) x ⊆ B.
(iv) sup(x) = sup(B).
(v) x ∩ ω1 ⊆ ρ.

First note that x ⊆
∪

n<ω Jn =: C and x ∩ ω1 ⊆ ρ because τ is a winning
strategy of I for ⅁(F, ρ). In particular, (v) holds. For (iii) and (iv) note that
Jn ⊆ δξn+1 \ δξn = Iξn for each n < ω because δξn = αn−1 < min(Jn) if
n ≥ 1, and δξn+1 is closed under τ . So C ⊆ B. Then (iii) holds because x ⊆ C.
Moreover (iv) follows from (iii) and the fact that min(Jn) ∈ x for all n < ω.

Now we check that x satisfies (I)–(III) in the definition of X∗. First x
satisfies (I) by (iii), (iv) and the fact that sup(B) /∈ B by the construction of
B. Next x satisfies (II) by (i), (iv) and (v). Finally x satisfies (III) by (ii), (iii)
and (iv).



8 H. Sakai

4 SSR

By modifying the proof of SCH from WRP slightly, we can prove that the Semi-
Stationary Reflection Principle (SSR) implies SCH. Here we give an outline of
the proof.

First we recall SSR: For countable sets x and y we let x ⊑ y denote that
x ⊆ y and x∩ω1 = y∩ω1. For a set W ⊇ ω1, a subset X of [W ]ω is said to be
semi-stationary in [W ]ω if the set {y ∈ [W ]ω | (∃x ∈ X) x ⊑ y} is stationary.
SSR is the assertion that SSR(λ) below holds for every cardinal λ ≥ ω2:

SSR(λ) ≡ For any semi-stationary X ⊆ [λ]ω there is R ∈ [λ]ω1 such that
ω1 ⊆ R and X ∩ [R]ω is semi-stationary in [R]ω.

It is easy to see that SSR follows from WRP, and SSR is known, due to She-
lah [10], to be equivalent to the assertion that every ω1-stationary preserving
forcing notion is semi-proper. It is also known, due to Doebler-Schindler [2],
that SSR is equivalent to a variant of the Strong Chang’s Conjecture CC∗∗.

As we promised above, we give an outline of the proof of the following
theorem which was proved in [8] using better scales:

Theorem 4.1 (Sakai-Veličković [8]). SSR implies SCH.

We will use a lemma in [8]. First we recall it: For sets x and y of ordinals,
we write x ⊑∗ y if x ⊑ y, x is unbounded in y, and x∩γ is unbounded in y∩γ
for all γ ∈ x of cofinality ω1.

Lemma 4.2 (Sakai-Veličković [8] Lemma 2.2). Let µ be a cardinal ≥ ω2, and
assume SSR(µ). Then for any stationary X ⊆ [µ]ω which is upward closed
under ⊑∗ there is R ∈ [µ]ω1 such that ω1 ⊆ R and X ∩ [R]ω is stationary in
[R]ω.

Now we start an outline of the proof of Theorem 4.1. Assume SCH fails,
and let λ, h and ⟨Aγ,n | γ ∈ Eλ+

ω1
, n < ω⟩ be as in the proof of Theorem 3.1.

By modifying X∗ in the proof of Theorem 3.1, define Y ∗ as follows:

Y ∗ := the set of all x ∈ [λ+]ω with the following properties:
(I) sup(x) /∈ x.
(II) x ∩ ω1 ⊆ h(sup(x)).

(III) For any γ ∈ Eλ+

ω1
and any n < ω, there is β < sup(x) such

that x ∩ Aγ,n ⊆ β and such that cf(min(x \ α)) = ω1 for any
α ∈ Aγ,n \ β with α < sup(x).

We claim that Y ∗ is a counter-example of SSR(λ+) in the sense of Lemma
4.2. First note that Y ∗ ⊆ X∗. So Y ∗∩[R]ω is non-stationary for any R ∈ [λ+]ω1

with ω1 ⊆ R by Lemma 3.3. Moreover it is easy to check that Y ∗ is upward
closed under ⊑∗. So it suffices to prove that Y ∗ is stationary. This can be
proved by almost the same way as Lemma 3.2:

Take an arbitrary F : [λ+]<ω → λ+. We must find x ∈ Y ∗ closed under F .
For each ρ < ω1 let ⅁′(F, ρ) be the game obtained from ⅁(F, ρ) by additionally
requiring I to choose Jn with cf(min(Jn)) = ω1 for n ≥ 1. The proof of
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Lemma 3.5 actually shows that I has a winning strategy for ⅁′(F, ρ) for some
ρ < ω1. Let ρ be such an ordinal and τ ′ be a winning strategy of I for ⅁′(F, ρ).
Construct x as in the proof of Lemma 3.2 using τ ′ instead of τ . Then it is easy
to see that x is as desired.
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