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Abstract

We study the preservation under < x-closed forcing extensions and
the reflection of stationary subsets of P, A in the case when A is a singular
cardinal with c¢f()\) < k. In particular we discuss those under GCH.

1 Introduction

The following stationary reflection principle in P, A, which is often called the
weak reflection principle in P\, has been studied by many set theorists so far:

Definition 1.1. For a regular uncountable cardinal k, a cardinal X > k and a
stationary T C Py, let SR (T) be the following assertion:

SRuA(T) = For every stationary S C T there exists W C X\ such that
[W|=r CW and such that SNP,W is stationary in P, W.

We let SRy denote SRx(PiA).

(Nowadays there are two notions of stationary subsets of P,A. We adopt the
one introduced by Jech [8]. More precisely, see Section 2.)

The importance of the above stationary reflection principle was revealed by
Foreman-Magidor-Shelah [5]. They showed that SR, is implied by Martin’s
maximum for every A > w; and holds if a A-supercompact cardinal is Lévy
collapsed to ws. Moreover they showed that SR, » has interesting consequences
such as Chang’s conjecture and the presaturation of the nonstationary ideal over
wi. It is also known that SR, has the influence on the cardinal arithmetic.
Todor¢evi¢ [19] showed that SR,,,, implies 2 < wy, and Shelah [15] showed
that SR, » implies SCH below A. The stationary reflection principle in P, A
and its strengthening are studied also in [1], [2], [6], [20], etc.

The stationary reflection principle in P for kK > wo also have been studied
so far, for example, in [3], [4], [6], [16] and [17]. Now, due to Feng-Magidor
[3], Foreman-Magidor [4] and Shelah-Shioya [16], it is known that SR, is not



consistent if wy < kK < A. On the other hand it was already shown in [5]
that the above mentioned facts on SR, can be partially generalized to the
case when k > wy. More precisely, the stationary reflection principle in P, Hyg
below internally approachable sets is consistent for regular cardinals 8 > k,
and this partial stationary reflection principle implies the precipitousness of the
nonstationary ideal over k. Here we review this more closely in the context of
P . (Subsection 3.2 of this paper contains the proof of facts below.)

Let x be a regular uncountable cardinal, and ) be a cardinal > & with A<F =
A. Note that |[<*(P,A)| = A\. Hence we can take a bijection 9 : <*(P.\) — A.
Then x € P, A is said to be v-internally approachable (¢-i.a.) if there is a C-
increasing sequence (z¢ | £ < ¢) (¢ limit ordinal < k) such that J;_.z¢ =
and such that ¢¥((ze | £ < (') € « for every ¢’ < (. (We call such sequence
(xe | € < C) a Y-internally approaching sequence to x.) Moreover let SZA be the
set of all i-i.a. x € PA.

Note that S:f)\ is independent of the choice of a bijection i modulo the
nonstationary ideal over P,A. In fact, if ¢ and ¢ are both bijections from
<FP.\ to A, then being v-i.a. and being @-i.a. are equivalent for all z € P A
which is closed under @ o1 ~! and ¢o . We omit the superscript ¢ and write
S, for S}fA because the difference of a nonstationary set does not matter in our
context. What is important on Sy is the following:

Fact 1.2 ([5]). Let x be a regular uncountable cardinal, and X\ be a cardinal
> Kk with A% = X. Then all stationary subsets of S.n remain stationary in all
< k-closed forcing extensions.

It was also shown in [4] that the complement of S, becomes nonstationary
in the forcing extension by Col(k, A). Here Col(k, A) denotes the forcing notion
<# X ordered by reverse inclusions. Hence Col(k, \) is a < k-closed forcing notion
which forces that |\| = k.

We obtain the consistency of SR, (Ska) from Fact 1.2 and Fact 1.3 below.
In Fact 1.3 Col(x, <v) denotes the Lévy collapse forcing v to be ™.

Fact 1.3 ([5]). Let & be a regular uncountable cardinal and X be a cardinal > k.
Suppose that v is a \-supercompact cardinal with k < v < A. In VColK<v)
assume that T is a stationary subset of Py A such that all stationary subsets of

T remain stationary in all < k-closed forcing extensions. Then SR\ (T') holds
in VCOI(K7<V)'

Corollary 1.4 ([5]). Let & be a regular uncountable cardinal and X be a cardinal
> K with A<% = X. Suppose that v is a A-supercompact cardinal with k < v < \.
Then SR.x(Sw) holds in VN w<v),

Furthermore it was shown in [5] that if A is sufficiently large then SR, (Skx)
implies the precipitousness of the nonstationary ideal over k.

Above we have briefly reviewed the stationary reflection principle in P, A in
the case when A<%* = A. Then the question naturally arises. What about the
stationary reflection principle in P, in the case when A<® > X\ 7 Moreover
recall that Fact 1.2 was the key of Cor.1.4. What about the preservation of



stationary subsets of P, A under < k-closed forcing extensions when A<F > X\ ?
Note that if X is a singular cardinal with cf(\) < k < A, then A<* > X. Shioya
[18] asked how is the preservation and the reflection of stationary subsets of P A
when ) is a singular cardinal with c¢f()\) < k < .

In this paper we discuss the preservation and the reflection of stationary
subsets of P, A in the case when A is a singular cardinal with cf(A\) <k < A. In
particular we study those under GCH.

For this we introduce the notion of the semi-internally approachability:

Notation. Let x be a regular uncountable cardinal. A cardinal X is said to be
< k-strong limit if v<% < X for every v < \. Note that if \ is a <k-strong limit
cardinal, then |y o, <"(PxN)| = A.

Definition 1.5. Let k be a regular uncountable cardinal, and \ be a < k-strong
limit cardinal with cf(X) < k < A. Suppose that ¢ : Jy oy <F(PcN) — Ais a
bijection. Let x be an element of Pk .

For a limit ordinal ¢ < k, x is said to be p-semi-internally approachable
(p-s.i.a.) of length ¢ if there exists a C-increasing sequence (x¢ | £ < () in PeA
such that

(i) U§<( Te =T,
(it) p({xze NN | £ < (') €z for every ' < ¢ and every X < A.

A sequence (xe | & < €) as above is called a @-semi-internally approaching
sequence to x. x is said to be p-semi-internally approachable if x is @-s.i.a. of
length C for some limit ( < k.

It is easy to see that if 8 is a regular cardinal > A, M € P,Hy is internally
approachable of length ¢, and M < (Hg, € K, A, ), then M N X is p-s.i.a. of
length ¢. (See Lem.3.6.)

As in the case when A<" = X\, we consider the set of all ¢-s.i.a. sets. But we
need divide this set according to the length of approaching sequence:

Definition 1.6. Let k, A\ and ¢ be as in Def.1.5. Then let
79" = {z € P\ |z is p-s.i.a. of length cf(\)}
T,f)’\l = {x € P |z is p-s.i.a. but is not @-s.i.a. of length cf(\)}

As is the case with SZ’)\, both T, )’\0 and T ;\1 do not depend on the choice of
¢ modulo the nonstationary ideal over P,\. Hence we often write T, and T},
for T}fk’o and T}f/\’l, respectively.

As we see in Lem.3.7, if kK = wq, then TSM contains a club in P,, A\. Moreover
if K > wo, then Ty, T}, and P\ \ (T, UTL,) are all stationary in P, .

It will be proved in Cor.3.14 that P, A\ (%, UT?, )V becomes nonstationary
in VCol%A) - Ag for the preservation and the reflection below T, we will obtain
the following. In particular SR, (T?,) + GCH is consistent:

Theorem 1.7. Let k be a reqular uncountable cardinal and A be a < Kk-strong
limit cardinal with cf(\) < kK < A.



(1) All stationary subsets of T°, remain stationary in all < k-closed forcing
extensions.

(2) Suppose that v is a A-supercompact cardinal with k < v < X. Then
SRuA(T2,) holds in 1/ Col(k,<v)

On the other hand we will obtain the following as for the preservation and the
reflection below T, :

Theorem 1.8. Assume GCH. Let k be a regular cardinal > ws and X\ be a
singular cardinal with cf(\) <k < A.

(1) T}, (defined in V') remains stationary in all < k-closed forcing extensions.
But for every stationary T C Té)\ there exists stationary S C T which
becomes nonstationary in VCI (A

(2) SRex(T) fails for every stationary T C T, .

Thm.1.7 and 1.8 will be proved in Section 4. In Section 3 we study the basic
relationship among the notion of s.i.a. and i.a. and the preservation and the
reflection of stationary subsets of P, A. As we mentioned before, Subsection 3.2
contains the proof of Fact 1.2 and 1.3.

2 Preliminaries

Here we present our notation and basic facts used in this paper. For those which
are not presented below, consult Jech [9] and Kanamori [10].

First we give our notation and basic facts on subsets of P,W. For a regular
cardinal k and a set W D &, P,W denotes the set {zx C W | |z] < k}. We follow
the notion of club and stationary subsets of P, W to that introduced by Jech [8].
C C P.W is said to be club if C'is C-cofinal in P, W and closed under unions
of C-increasing sequence of length < k. S C P,W is said to be stationary if
SN C # for every club C C P, W.

We use the following facts without any mention. The proof can be found in
Jech [9]:

Fact 2.1 (Kueker [11]). Let x be a regular uncountable cardinal, and W be a
set O k. The following are equivalent for S C P W :

(I) S is stationary in P, W.

(II) For every function F : [W]<¥ — P.W there exists x € S such that
F(a) Cz for all a € [x]<¥.

(III) For every function F : [W]|<“ — W there ezists x € S such that F(a) € x
for all a € [z]<¥ and such that Nk € K.

(IV) For every structure M of a countable language with its universe W there
exists x € S such that xt < M and xt N K € K.



Fact 2.2 (Menas [12]). Let  be a regular uncountable cardinal, and suppose
that k C W C W. Then S C P.W is stationary if and only if the set {z €
PW | z2NW € S} is stationary in P,W.

Next we present notation and a fact on structures. Suppose that M is
a structure for a countable language and that there is a well-ordering of the
universe of M which can be defined over M. For 2 C M let skull’™(z) denotes
the Skolem hull of x in M, i.e. the smallest M with x C M < M.

We often use the following lemma:

Lemma 2.3. Let k and 0 be regular uncountable cardinals with k < 6. Suppose
that M < (Hg, €) and that M Nk € k. Then y C M for every y € M NP Hy.

Proof. There is a bijection m € M from |y| to y by the elementarity of M. Note
that |y| € M because |y| € M Nk € k. Thus y = 7[|y|] C M. O

Next we give our notation on forcing notions for collapsing cardinalities. Let
k be a regular uncountable cardinal. For an ordinal A let Col(x, A) denotes the
forcing notion <%\ ordered by reverse inclusions. Note that Col(x, ) is a < k-
closed forcing notion and collapses the cardinality of A to be < x. For an ordinal
v let Col(k, < v) denotes the Lévy collapse which collapses the cardinality of
all ordinals < v to be < k. That is, Col(k, < v) is the < k-support product of
(Col(k,v) | v < ).

Next we present our notation on scales, which are the central notion of
Shelah’s PCF theory. Let A be a singular cardinal, and let X = (Ay | m < cf(N))
be an increasing sequence of regular cardinals converging to A. We let IIX denote
IT,<cf(x) A, that is, the set of all functions f on cf()\) such that f(n) € A, for

each n < cf(X). Moreover let J be an ideal over cf()). For g, h € IIX let

g<sh < {n<cf(N)|gn) =hm)}eJ
g<sh < {n<ct(N)|gn) >hn)iet

g<h & g(n) <h(n) for all n < cf(N)
g<h < g(n) <h(n) for all n < cf(N)

If v is a regular cardinal and h = (hq | @ < v) is a < j-increasing cofinal sequence
in I\, then we call h a (A, J)-scale of length v. For a regular cardinal v let

tef(IIX/J) = v 4 there exists a (X, J)-scale of length v.

At the end of this section we recall the ideal I[k] over a regular uncountable
cardinal &, introduced by Shelah [13]. Let k be a regular uncountable cardinal.
For a sequence b = (be | € < k) of bounded subsets of x and a limit ordinal { < &,
we say that ( is approachable with respect to b if there exists an unbounded b C ¢
of order-type cf(¢) such that bNp € {be | £ < ¢} for every p < (. For each
E Cklet

E € I[x] 4 there exist a sequence b = (be | € < k) of bounded subsets of K

and a club €' C k such that every ¢ € £ N C' is approachable
with respect to b.



It was shown in [13] that I[] is a normal ideal over x. I[k] is not proper, i.e.
k € I[k], in many cases. For example if p is a regular cardinal with u<* = p,
then it is easy to see that I[u*] is not proper. On the other hand there may
be a regular cardinal x with I[] proper. For example it is shown in [13] that if
w1 is a singular cardinal such that there exists a p-supercompact cardinal < p,
then I[u*] is proper.

Here note that the set of all regular cardinals < k belongs to I[x]. Hence
if I[x] is proper, then there exists a regular cardinal p < & such that {¢ < & |
cf(¢) = n} ¢ I[x] by the normality of I[k].

3 s.i.a, i.a, preservation and reflection

Here we overview the basic relationship among the notion of s.i.a. and i.a. and
the preservation and the reflection of stationary subsets of P, A. (Lem.3.6, 3.11
and Prop.3.15.)

In Subsection 3.1 we present basic facts on s.i.a. and i.a. sets and the re-
lationship between them. In Subsection 3.2 we review the basic relationship
among the notion of i.a and the preservation and the reflection of stationary
subsets of P \.

3.1 s.i.a. and i.a. sets

First we recall the notion of internally approachability:

Definition 3.1. Let x be a set. For a limit ordinal {, x is said to be internally
approachable (i.a.) of length { if there exists an C-increasing sequence (x¢ |
§ < Q) such that e ¢ = = and such that (z¢ | z¢ < ') € x for every (' < (.

A sequence (z¢ | € < () as above is called an internally approaching sequence
to x. x is said to be internally approachable if x is internally approachable of
length ¢ for some limit ordinal C.

Recall that there are stationary many i.a. sets:

Lemma 3.2. Let p, k and 6 be regular cardinals with p < k < 6. Then the set
{M € P.Ho | M is i.a. of length u} is stationary in P, He.

Proof. Take an arbitrary function F : [Hg]<“ — Hy. It suffices to find an i.a.
M € P Hp of length p such that M Nk € k and M is closed under F.

By induction on ¢ < p we can easily construct a C-increasing sequence
(M | € < p) in P, Hg such that (M, | n < &) € Me, Me Nk € k and M is
closed under F for each & < p.

Let M := U£<u M. Clearly M is closed under F', and M Nk € k. Moreover
(M | € < ) witnesses that M is i.a. of length p. O

Next we present easy lemmata on i.a. and s.i.a. sets, which we will use later
without any mention:



Lemma 3.3. Let k and 0 be regular cardinals with k < 6. Suppose that M €
PwHy is such that M Nk € k and M < (Hp, €,K). Suppose also that M is i.a.
of length ¢, where ¢ is a limit ordinal < k. Then cf(sup(M Nv)) = cf(¢) for
every regular cardinal v with k < v < 6.

Proof. Fix a regular cardinal v with k < v < 6. Let (M¢ | £ < () be an ia.
sequence to M. First note that M¢ € M for each { < ( because M is the last
element of (M, | n < §) € M. From this, it follows that sup(Me Nv) € M Nv
for each £ < (: First note that sup(M¢ Nv) < v because v is a regular cardinal
>k, and Mg € P, Hg. We show that sup(Me Nv) € M. Let v := min(M \ v)
if v < sup(M N @), and v := 6 otherwise. Note that M, N v = M Nv because
M¢ C M. Moreover sup(Me Nv) € M by the elementarity of M, the choice of
v and the fact that M € M. Thus sup(M: Nv) = sup(Me Nv) € M.

Hence sup(M¢ Nv) < sup(M Nv) for each £ < (. Moreover (sup(M¢ Nv) |
€ < () converges to sup(M Nv) because J; . Me = M. Thus cf(sup(M Nv)) =
cf(Q). O

Lemma 3.4. Let k be a regular uncountable cardinal, let X be a < k-strong limit
cardinal with cf(\) < kK < A, and let 0 be a regular cardinal > \. Moreover let
0 Uner SH(PeXN) — X be a bijection. Suppose that M € P,Hy is such that
MnNk €k and M < (Ho, €, 5, A\, ). Let ¢ be a limit ordinal < k, and suppose
that T = (x¢ | § < () is a C-increasing sequence with Je- e = M N A. Then
the following are equivalent:

(I) T is a @-s.i.a. sequence to M N A.
(II) (xe NN | €< ') € M for every ¢ < ¢ and N < A,

(III) For every N < A there exists N > X such that (xe NN | £ < ') € M for
every ¢’ < (.

Proof. (I1)=(II) follows from the fact that M is closed under ¢~1. (IT)=-(II1) is
clear. We prove (IIT)=(I).

Assume (III). It suffices to show that ¢({(ze NN | £ < (’)) € M N A for every
¢’ < Cand every N < A\ Fix (! < (and X < A

By (III) take X\ > X such that (ze N X" | & < ') € M. Moreover let
v := min(M N On\ X). Note that z¢ N X = (z¢ N N’) Nv for each { < (.
Hence (ze NN | £ < (') € M because v,(ze NN | £ < (') € M. Then
e({xe NN | €< (') € M N X because M is closed under o. O

Lemma 3.5. Let k, A\, 0, ¢ and M be as in Lem.3.4. Suppose also that M N\
is @-s.i.a. of length ¢, where ¢ is a limit ordinal < k. Then cf(sup(M Nv)) =
cf(M N k) for every regular cardinal v with k < v < A.

Proof. Similar as the proof of Lem.3.3 using Lem.3.4. O

Here we make a remark on the length of i.a. and s.i.a. sequences:
Let k and € be regular cardinals with k < 6, and suppose that M € P, Hy
and that M Nk € k. Then the cofinality of the length of i.a. sequences to M is



unique. It must be c¢f(M N k) by Lem.3.3. But the length of i.a. sequences to
M may not be uniquely determined.

For example, suppose that M N k is not regular and that M is i.a. of length
cf(MnNk). Then M is i.a. of length ¢ for every ( < M Nk with cf(¢) = cf(MNkK):
Take an arbitrary such ¢. Let (M, | n < cf(M N k)) be an i.a. sequence to M,
and take an increasing cofinal sequence (¢, | n < cf(M Nk)) € M. Moreover for
each £ < (, taking the least n < cf(M N k) with £ < ¢, let Mé := M,,. Then it
is easy to see that (M{ [ £ < () is an i.a. sequence to M.

The similar is the case for the length of s.i.a. sequences.

Next we present the relationship between the notion of s.i.a. and i.a:

Lemma 3.6. Let x, A\, 0, ¢ and M be as in Lem.3.4. Let { and p be limit
ordinals < K.

(1) If M is i.a. of length ¢, then M N\ is p-s.i.a. of length .

(2) If M is i.a. but is not i.a. of length p, then M N X\ is p-s.i.a. but is not
p-s.i.a. of length p.

Proof. (1) Let (Mg | £ < ¢) be an i.a. sequence to M. Then (M N X | € < () is
a p-s.i.a. sequence to M N A by Lem.3.4.

(2) By (1) it suffices to show that if M is i.a. but is not i.a. of length p, then
M N Ais not p-s.i.a. of length p. We prove that if M isi.a. and M N is p-s.i.a.
of length p, then M is i.a. of length p. Suppose that M is i.a. of length ¢, and
let (M¢ | £ < ¢) be an i.a. sequence to M. Moreover suppose that M N\ is
p-s.i.a. of length p, and let (z, | n < p) be a ¢-s.i.a. sequence to M N A.

Note that if n < p, then sup(z, N k) € M Nk, and so there exists £ < ¢
with sup(z, N k) < sup(Me N k). For each n < p let &, be the least £ < ¢ with
sup(z, N k) < sup(Me Nk). Then (&, | n < p) is increasing clearly. Moreover
it is cofinal in ¢ because Un<p xy, Nk = M N k. Here note that if p’ < p, then
(&, | n < p’) can be recovered from (x, Nk | n < p') and (M | £ < &,), both of
which belong to M. Hence (&, | n < p) € M for every p’ < p.

Then it is easy to see that (M, |n < p) is an i.a. sequence to M. Therefore
M is i.a. of length p. O

Combining above lemmata we obtain the following;:

Lemma 3.7. Let k be a regular uncountable cardinal and A be a < k-strong
limit cardinal with cf(\) < kK < A.

(1) If k = wi, then T?, contains a club in PyA.
(2) If k > wa, then T°\, T}, and P A\ (T2, UTL,) are all stationary in PyA.

Proof. Let ¢ : [y -y <"(PxX) — A be a bijection, and let T, and T}, denote
T ,f)’\o and T ;\1, respectively. Moreover let 6 be a regular cardinal > A, and let
M be the structure (Hg, €, &, A, ).



(1) Suppose k = w;. Note that cf(\) = w. Let T be the set of all M € P, He
with M < M. Note that if M € T, then M Nw; € w; and M is i.a. of length
w. Hence TY , 2 {M NX| M €T} by Lem.3.6 (1). Then T , contains a club
in P, A because T is a club in Pu, Ho.

(2) Suppose k > wy. Then there is a regular cardinal p < x with p # cf (). Let

T° {MePHo | MNer N M <M A M is ia. of length cf()) } ,
W = (MePHo|MNkEK AN M=<M A M isia. of length u} .

Then both 7° and 7" are stationary by Lem.3.2. First note that 72, D {MNA |
M € T°} by Lem.3.6 (1). Hence T?, is stationary. Next note that every M € T
is not i.a. of length cf (\) by Lem.3.3. Thus T}, D {MN\ | M € T'} by Lem.3.6.
Therefore T}, is stationary.

It is easy to see that the set S := {z € P\ | cf(sup(znk™)) # cf(sup(xnk))}
is stationary in P, A. But both SOTS/\ and SﬁT;/\ are nonstationary by Lem.3.5.
Hence P, A\ (T2, UTYL,) is stationary. O

At the end of this section we present lemmata on the length of i.a. and s.i.a.
sequences:

Lemma 3.8. Let k and 0 be regular uncountable cardinals with k < 0. Suppose
that M € P, Hyp is such that M Nk € k and M < (Hg, €, k). Suppose also that
M is i.a. Then M is either i.a. of length M Nk or i.a. of length cf(M N k).

Proof. We show that if M is not i.a. of length M Nk, then M is i.a. of length
cf(M N k). Assume that M is not i.a. of length M N &.

Suppose that M is i.a. of length ¢ and that (M | £ < () is an i.a. sequence to
M. Note that if (' < ¢, then ¢’ is the length of the sequence (M | £ < (') € M,
and thus ¢’ € M N k. Hence ( < M N k. But ( # M Nk by our assumption.
Therefore ( € M N k.

Note that cf(¢) = cf(M N k) by Lem.3.3. Because ( € M we can take an
increasing sequence (&, | n < cf(M N k)) € M converging to (. Then it is easy
to see that (Mg, | n < cf(M Nk)) is an i.a. sequence to M. Therefore M is i.a.
of length cf(M N k). O

Lemma 3.9. Let k, A, 0, ¢ and M be as in Lem.3.4. Suppose also that M N A
18 w-s.i.a. Then M N X is either p-s.i.a. of length M Nk or @-s.i.a. of length
cf(M N k).

Proof. Similar as the proof of Lem.3.8 using Lem.3.4. U

Note that there are stationary many M € P,Hy which is i.a. of length
cf(M N k) by Lem.3.2 and 3.3. Then there are also stationary many = € PyA
which is ¢-s.i.a. of length cf(x N k) by Lem.3.6 (1). Below we prove that if I[x)
is proper, then there are stationary many M € P,Hy which is i.a. of length
M Nk but is not i.a. of length c¢f (M N k). Then the similar holds for ¢-s.i.a. by
Lem.3.6:



Lemma 3.10. Let p and k are reqular cardinals with p < Kk, and suppose that

{¢<r[ct(() = n} & I[x].

(1) Suppose that 0 is a regular cardinal > . Then there are stationary many
M € P.Hg such that M Nk € k, cf(M N k) = p and M s i.a. of length
M Nk but is not i.a. of length p.

(2) Suppose that X is a < k-strong limit cardinal with cf(\) < k < A, and let
0 Uyer S"PeX — X be a bijection. Then there are stationary many
x € PuA such that xt Nk € K, cf(xNK) = p and x is p-s.i.a. of length xNK
but is not p-s.i.a. of length pu.

Proof. Note that (2) follows from (1) and Lem.3.6. We prove (1).
Take an arbitrary function F : [Hy|<“ — Hy. It suffices to find M € P, Hy
such that

(i) M is closed under F,
(i) MNk € k and cf(M Nk) = p,
(iii) M is i.a. of length M N & but is not i.a. of length p.

Take a well-ordering A of Hy, and let M be the structure (Hy, €, A, F). By
induction on ¢ < & define M¢ € P, 'Hy as follows: If £ is a limit ordinal, then let
M = Un<§ M,,. If £ is a successor ordinal, then let

Me = skullM(Me_y UEU{(M, | n<E)}).

Note that My < M for every £ < & and thus that M is closed under F' for
every £ < k. Note also that if ¢ is a limit ordinal < &, then (M | £ < () is an
i.a. sequence to M.

Let My, := ;. M, and take an enumeration (b¢ | { < &) of all bounded
subsets of k which belong to M. Moreover let C be the set of all limit { < k
such that M Nk = ¢ and such that {b¢ | £ < (} is equal to the set of all
bounded subsets of £ which are in M. It is easy to see that C is a club in .

By our assumption on I[k] we can take ( € C of cofinality p which is
not approachable with respect to (b¢ | £ < k). Then M := M, satisfies the
properties (i) and (ii) above and is i.a. of length ( = M N«x. Hence it suffices to
show that M is not i.a. of length pu.

Assume that M is i.a. of length y, and let (N, | 7 < p) is an i.a. sequence to
M. Let b := {sup(N,,Nk) | < p}. Then bis an unbounded subset of M Nk = ¢
of order-type p. Moreover all proper initial segments of b belong to M because
all proper initial segments of (N, | 7 < u) belong to M. Then all proper initial
segments of b belong to {b¢ | £ < (} because ¢ € C. This contradicts that ¢ is
not approachable with respect to (be | £ < k). O
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3.2 i.a, preservation and reflection

First we review the relationship between the notion of i.a. and the preservation
of stationary subsets of P, A under < k-closed forcing extensions, due to [4] and
[5]:

Lemma 3.11. Let k be a reqular uncountable cardinal and X\ be a cardinal > k.
The following are equivalent for a stationary S C PgA:

(I) S remains stationary for all <k-closed forcing extensions.
(II) S remains stationary in the forcing extension by Col(k, ).

(III) For every reqular cardinal @ > X the set of all M € P, Hy with the following
properties is stationary in Py Ho:

(i) there exist a limit ordinal { < k and a C-increasing sequence (x¢ | § <
) in P such that g 7¢ = M N and such that (z¢ | § < (') € M
for every ¢’ < C.

(ii) MNXeS.

(IV) For every regular cardinal 8 > X the set
{M ePHy| M isia NMNIeS}
18 stationary in Py Hp.
To prove the lemma above we need the following lemma:

Lemma 3.12. Let k be a regular uncountable cardinal and W be a set with
[W| =k C W. Then all stationary subset of P.W remain stationary in all
< k-closed forcing extensions.

Proof. Roughly speaking, the lemma follows from the facts that stationary sub-
sets of P, W can be identified with stationary subsets of x and that all stationary
subsets remain stationary in all < k-closed forcing extensions. But here we give
a direct proof of the lemma.

Suppose that S C P,W is stationary and that P is a < k-closed forcing
notion. We show that S remains stationary in V¥. Take an arbitrary P-name
F for a function from [W]<¢ to W and an arbitrary p € P. Tt suffices to find
p* < pand z € S such that z Nk € x and p* IF “z is closed under E”.

Using the facts that |IW| = k and that P is < k-closed, we can easily construct
a descending sequence (p¢ | £ < k) in P below p such that for every a € [W]<¥
some pg decides F'(a). For each a € [W]<¥ let &, be the least & < x such that
pe decides F(a). Moreover let F : [W]<¥ — W be such that F(a) is the value
of F'(a) decided by pe, .

Then there exists « € S such that xt Nk € k and x is closed under F' because
S is stationary. Take £* < k such that &, < &* for every a € [z]<*. Then
pe= < p. Moreover pe- - “x is closed under F” because z is closed under F
and pe- IF “F [[2]<¢ = F][2]<¥”. Thus pe- and z are what we seck. O
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Proof of Lem.3.11. We prove (IV)=-(III)=(II)=(I)=-(IV). Fix a stationary S C
P

(IV)=(11I):

Assume (IV). Let 6 be a regular cardinal > X. Let S be the set of all
M € P.Hp such that M < (Hg,€,\), M is i.a. and M N A € S. Then S is
stationary by (IV). Moreover if M € S and (Mg | € < ¢) is an i.a. sequence to
M, then it is easy to see that (M N\ | £ < ¢) witnesses that M satisfies (i) in
(IIT). Hence the set in (III) includes S, and therefore it is also stationary.

(IID)=(11):

Assume (IIT). To prove (I) take an arbitrary Col(x, A)-name F of a function
from [A]<“ to A and an arbitrary p € Col(k,\). It suffices to find € S and
p* < psuch that x Nk € Kk and p* IFcei(x,n) “@ is closed under F.

Take a sufficiently large regular cardinal § and a well-ordering A of Hy. Let
M be the structure (Hyg, €, A, k, A, p, F). Then, by (III), we can take M € P Hy
such that M < M, M N« € k and M satisfies (i) and (ii) in (III). It suffices to
find p* < p which forces that z := M N X is closed under F.

Suppose that a sequence (z¢ | £ < () witnesses (i) for M. By induction on
& < ( let pe € Col(k, A) be the A-least lower bound of {p} U {p, | n < &} such
that pe decides F(a) for all a € [z¢]<%. We can take such pg by the < k-closure
of Col(k, A).

Here note that p € M for each { < ( because p¢ can be definable in M
from a parameter (x, | n <€) € M. Hence p¢ decides F'(a) to be in M N\ =
for each a € [z¢]<*.

Now take a lower bound p* of {p¢ | £ < ¢}. Then p* < p, and p* forces that
z is closed under F'

(ID=(1):

Assume (II). Take an arbitrary < k-closed forcing notion P. We must show
that S remains stationary in V.

Let v be a regular cardinal with X, 2/Fl < v. In VCU=Y)  for every p € P,
there exists a P-generic filter over V' containing p. Hence it suffices to show
that S remains stationary in VC(%v) But note that Col(k,v) = Col(k, \) x
Col(k,v). So it suffices to show that S remains stationary in 1/ Col(s:A)xCol(k.v),

First, S remains stationary in V(A by (II). Here note that |\ = &
in V=) Moreover Col(k,v) is absolute between V' and V(%A " and so
Y Collr,A)xCol(r.v) i 5 < k-closed forcing extension of VCO%A)  Therefore S
remains stationary in V/ Col(x:A)xCol(r.v) by Tem 3.12.

DH=(1V):

Assume (I). Let 6 be a regular cardinal > X in V, let H := Hy", and let
|H|Y = v. Here note that P, H and the internally approachability of sets are
absolute between V and V%Y Moreover V C VCUEY)  Hence it suffices to
show that the set {M € P.H | M is i.a. A M N\ € S} is stationary in VI (%v),
But S remains stationary in V(%) by (1). So it suffices to prove that the set
{M € P.H | M is ia.} contains a club in VC!(*v) We work in VC0l(xv),

12



Let F : k — H be a surjection. Note that (F[{] | £ < ¢) € H for each ( < &
by the < k-closure of Col(k,v). Let C be the set of all limit { < x such that for
every ¢’ < ¢ there exists ¢ with F/({") = (F[¢] | € < ¢’). Then C is a club in &.
Hence the set {F[¢] | ¢ € C} contains a club in P, H. Moreover (F[£] | £ < () is
an i.a. sequence to F[(] for every ¢ € C. Thus F[(] is i.a. for every ( € C. O

Fact 1.2 and what we mentioned below Fact 1.2 easily follow from Lem.3.11:

Corollary 3.13. Let k be a regular uncountable cardinal and X be a cardinal
with A<F = \.

(1) All stationary subsets of Six remain stationary in all < k-closed forcing
extensions.

(2) P\ (Ser)Y becomes nonstationary in VA

Proof. Let ¥ : <"P,A — X be a bijection, and let S, denote S:f)\. Take an
arbitrary regular cardinal # > X. Let C be the set of all M € P, Hg with M <
(Ho, €, K, A\, ). Moreover for each S C P\ let S be the set of all M € P, He
satisfying the properties (i) and (ii) in (III) of Lem.3.11.

Note that for each M € C and each sequence (z¢ | € < ¢) in Py, (z¢ | € < ¢)
is a 1-i.a. sequence to M N A if and only if it witnesses that M satisfies (i) in
(ITI) of Lem.3.11. Hence

CNS = CN{M €P,Ho| MNAXESNSur}.

Here note that C' is a club. Thus S is stationary in P.H, if and only if the
set {M € P, Hyg | M N X € SN Sk} is stationary in P,Hy. But the latter is
equivalent to that S N S,y is stationary in P,\. Therefore S is stationary in
P..Hp if and only if SN S, is stationary in P, A. Both (1) and (2) easily follow
from this fact and Lem.3.11. O

The corollary below immediately follows from Lem.3.6 (1) and 3.11:

Corollary 3.14. Let k be a reqular uncountable cardinal, and A be a < k-
strong limit cardinal with cf(\) < & < X. Then P\ (T°, UTL )V becomes
nonstationary in VIR,

Finally we review the relationship between the preservation and the reflection
of stationary subsets of P,\. We give the proof of Fact 1.3:

Proposition 3.15 ([5]). Let k be a regular uncountable cardinal and A be a
cardinal > k. Suppose that v is a A-supercompact cardinal with k < v < X. In
Y Cols.<v) gssume that T is a stationary subset of Pu) such that all station-
ary subsets of T remain stationary in all < k-closed forcing extensions. Then
SRuA(T) holds in VCOI<v),

Proof. We make a remark before starting the proof. Several models of ZFC will
appear in the proof below. But <#*On is absolute among all models, and thus
notions such as Col(k, *) and P, * are absolute among them.
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Now we start the proof. In V'let j : V' — M be a A-supercompact embedding
with crit(j) = v, where crit denotes the critical point. Let G be a Col(k, <v)-
generic filter over V, and in V[G] let T be a stationary subset of P, A such that
all stationary subsets of T' remain stationary in all < k-closed forcing extensions
of V[G]. We show that SR.x(T") holds in V[G]. For this take an arbitrary
stationary S C T in V[G]. We must show that the following holds in V[G]:

(I) There exists W C X such that |W| = x C W and such that SNP,W is
stationary.

First note that
J(Col(k, < v)) = Col(k,< j(v)) = Col(k, < v) x Col(k, [v,j(v))),

where Col(k, [v, j(v))) is the < k-support product of (Col(k,v’) | v < V' < j(v)).
Let H be a Col(k, [v, j(v)))-generic filter over V[G]. We work in V|G H] below.

Note that G « H is j(Col(k, < v))-generic over M. Then by the standard
argument, 7 : V — M can be extended to the elementary embedding j* :
V[G] — M|G« H]. For proving (I) in V[G], it suffices to show that the following
holds in M[G % H] by the elementarity of j*:

(IT) There exists W C j*(\) such that |[W| =k C W and j*(S) NP, W is
stationary.

(Here note that k < v = crit(j*) and thus that j*(k) = &.)

We show that W := j*[\] € M[G * H] witnesses (II). Clearly |j*[A\]| = |A\| =
k C j*[A] in M[G« H]. We prove that j*(S)NP,.j*[A] is stationary in M[G = H].

First note that S remains stationary in P\ in V[G % H] by the assumption
on T. Hence the set {j*[z] | = € S} is stationary in P,j*[\] in V|G x H|.
But j*(xr) = j*[z] for each x € S because |z|] < K < v = crit(j*). Thus
{7*[z] | z € S} C j*(S)NPxj*[A]. So 7*(S)NP.j*[N is stationary in V|G * H|.
Then j*(S)NP,j*[)] is stationary also in M[G*H] because M[GxH] C V[|GxH]|.

This completes the proof. O

4 Preservation and reflection below 7°, and T,

In this section we prove Thm.1.7 and 1.8. We prove Thm.1.7 in Subsection 4.1
and prove Thm.1.8 in Subsection 4.2.

4.1 T;SA
Here we prove Thm.1.7:

Theorem 1.7. Let k be a regular uncountable cardinal and X be a < k-strong
limit cardinal with cf(\) < k < A.

(1) All stationary subsets of T°\ remain stationary in all < k-closed forcing
extensions.
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(2) Suppose that v is a A-supercompact cardinal with k < v < X. Then
SRuA(TP,) holds in 1/ Col(x,<v)

Note that Thm.1.7 (2) follows from Thm.1.7 (1) and Prop.3.15. We prove
Thm.1.7 (1). The point is that elements of T ,SA is essentially internally ap-
proachable:

Proof of Thm.1.7 (1). Let k be a regular uncountable cardinal and A be a <k~
strong limit cardinal with cf(\) < x < A. Fix a bijection ¢ : J,, ., <"(PxA') —
A, and let TV, be Tff/{o. Let S be an arbitrary stationary subset of TV,. It
suffices to show that S satisfies (III) in Lem.3.11.

Let 6 be a regular cardinal > ), and let S be the set of all M € P,Hg such
that M < (Hg, €, 5, \,0), MNX € S and M Nk € k. Then S is stationary
because S is stationary. We prove that if M € S, then M satisfies the properties
(i) and (ii) in (III) of Lem.3.11. Fix M € S. All we have to show is that M
satisfies (i).

Because M N A € S C TY, there exists a p-s.i.a. sequence (ye | € < cf(N)) to
MNA. Moreover take an increasing sequence (A¢ | £ < cf(\)) € M converging to
A. Note that cf(A\) C M because cf(A) € M Nk € k. Hence all initial segments
of (A\e | € < cf(A)) belong to M.

Let ¢ := ye N A¢ for each € < cf(A). Then (z¢ | £ < cf())) is a C-increasing
sequence in PuA with g ¢n) e = M NA. Moreover (z¢ | £ < () € M for
every ¢ < cf(X) because (z¢ | £ < {) can be recovered from (ye N A¢ | £ < ¢) and
(Ae | € < (), both of which belong to M. Therefore (¢ | £ < cf())) witnesses
that M satisfies (i) in (III) of Lem.3.11. O

4.2 TKI)\
Here we prove Thm.1.8:

Theorem 1.8. Assume GCH. Let k be a regular cardinal > wo and \ be a
singular cardinal with cf(\) < kK < A.

(1) T}, (defined in V') remains stationary in all < k-closed forcing extensions.
But for every stationary T C TF})\ there exists stationary S C T which
becomes nonstationary in VCI (A

(2) SRuA(T) fails for every stationary T C T, .

Note that the first statement of Thm.1.8 (1) follows from Lem.3.2, 3.6 and
3.11. In fact we do not need the assumption of GCH for the first statement of
Thm.1.8 (1):

Proposition 4.1. Let k be a regular cardinal > ws and \ be a < k-strong limit
cardinal with cf(\) < k < X\. Then (T},)V remains stationary in P.\ in all
< k-closed forcing extensions.

Below we prove the remaining part of Thm.1.8. In fact we prove it from a
weaker assumption than GCH. We use the following assumption:

15



Definition 4.2. For a singular cardinal \ let Uy be the following assertion:

U\ = 2% is a regular cardinal, and there exist an increasing sequence X =
Ay | m < ct(N)) of regular cardinals converging to A and a cf(X)-
complete proper ideal J over cf(\) such that tcf(IIX/J) = 2>

Note that if 2 = A1, then th(HX/BDDCf(A)) = 2* for every increasing

sequence X of regular cardinals converging to A. Here BDDg¢(y) denotes the
bounded ideal over cf(}), i.e. the ideal consisting of all bounded subsets of
cf(N\). Hence if GCH holds, then ¥y holds for every singular cardinal .

W, holds in some other situation. Suppose that A = w,, is strong limit. Then

2% = cf(Py,ww,C) = maxpcf({w, |n € w}).

The former equality follows from the fact that w, is strong limit. The latter
is due to Shelah [14], and its proof can be also found in Holz-Steffens-Weitz [7]
§8.4. Hence there exists a maximal ideal J over w such that tcf(Il{w, | n €
w)/J) = 2¥~. Here note that every ideal is w-complete. Therefore ¥, holds if
w,, is strong limit. See [14] for other situation in which ¥y holds.

We prove the following proposition which implies Thm.1.8:

Proposition 4.3. Let k be a reqular uncountable cardinal, and let \ be a < k-
strong limit cardinal such that cf(\) < & < X and such that Uy holds. Then the
following hold:

1) For every stationary T C T, there exists a stationary S C T such that S
KA
becomes nonstationary in VA

(2) Assume also that k<" = k. Then SR\ (T) fails for every stationary T C
T .
The rest of this subsection is devoted to the proof of Prop.4.3. We need
some preliminaries. First we fix our notation in the rest of this subsection. Let
k: regular uncountable cardinal,
A: < k-strong limit cardinal with c¢f(A) < K < A and U,.
Note that if X = (Ap | m < cf(N)) and J witnesses Wy, then J O BDDcy(y), i.e.
p € J for every p < cf(A). This is because if J 2 BDDc¢(y), then there exists

n* < cf(N) with {n*} ¢ J by the cf(\)-completeness of J, and then there are no
< j-increasing sequence of length > A,-. Hence we can take a pair of witness

X= (Ay | m < cf(A)) and J of ¥y so that A\g > «. Let

X= (Ay | m < cf(A)): increasing sequence of regular cardinals converging
to A with \g > &,
J: cf(\)-complete proper ideal over cf()),
h=(he|a<2)): (X,J)-scale.
For each x € P A let
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ch, := the characteristic function for z with respect to X,
i.e. the function on cf(\) such that ch,(n) = sup(znA,) for each

n < cf(A),
B, = theleast 8 < 2* with ch, <, hg.
Finally let
©:Uyex S5(PcX) — X bijection, TY = T%,
6: regular cardinal > 2%, A: well-ordering of Hy,

M = (Hg, €, Ak, N X, J, 1, ).
T = {zeT, |znker A skull™(z)N =z}

Note that T}, \ 7 is nonstationary. Note also that cf(\),{\, | n < cf(\)} C =
for every x € 7 by Lem.2.3.
Next we present lemmata on elements of 7 :

Lemma 4.4. Let M be an element of P.Hg such that M N\ € T and M <
M. Suppose that (x¢ | € < () is a p-s.i.a. sequence to M N A, and let v* :=
SUpg ¢ fre < 22, Moreover let g be an element of IIX such that glpe M for
every p < cf(X). Then g <j h~.

Proof. First of all note that g(n) € M N\ for every n < cf(A) by the assumption
on g. Thus for every n < cf(X) there exists £ < ¢ with g(n) € ze.
The proof of the lemma splits into two cases by the cofinality of (:

Case 1: cf(() < cf(N).

Take an increasing sequence (& | k < cf(¢)) cofinal in ¢. For each k < cf(()
let Ay = {n < cf(A) | g(n) € z¢,}. Note that cf(A) = Ugcerc) Ar by the
remark at the beginning of the proof.

Moreover let By, := {n € Ay | g(n) > h,=(n)} for each k < cf(¢). Note that
By, € J for every k < cf(¢). This follows from the facts that g(n) < chy,, (n)
for every n € Ay and that Chmgk <j hy~. Thus B := Uk<cf(<) By € J by the
cf(A)-completeness of J.

Here note that B = {n < cf(n) | g(n) > hy~(n)} because Uy cpc) Ak =
cf(A). Therefore B € J means that g <j hy-.

Case 2: cf({) > cf(N).

In this case we claim that there exists £* < ¢ with g[cf(A)] C z¢-. Note that
if such &* exists, then g < ch%* <j hy«, and so g <5 hy~. Thus it suffices to
show that such £* exists.

First note that for each n < cf(X) there exists £ < ¢ with g[n] C z¢. This
follows from the remark at the beginning of this proof and the fact that cf(¢) >
cf(N). For each 1 < cf(X) let &, be the least £ < ¢ with g[n] C xe.

Clearly (&, | n < cf(\)) is an increasing sequence below . Moreover note
that (&, | n < p) € M for every p < cf(A) because (&, | n < p) can be
recovered from g [ p and (ze N A, | € < &,) both of which belong to M. Hence
(we, NN | < p) € M for every p < cf(\) and every X' < .
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Thus if sup, .y &y = ¢, then it is easy to see that (zg, | n < cf(}))
becomes a ¢-s.i.a. sequence to x, which contradicts that z € T!,. Therefore
£ 1= sup, cop(n) &y < €. Then glef(N)] C we-. O

Lemma 4.5. Suppose that x € T and that both (z¢ | £ < () and (y, | ¢ < €) are
p-s.1.a. sequence to x. Then supe ¢ Bz, = sup,.. By,

Proof. 1t suffices to show that supg. 8z, > sup,. By,. Let v* := supg¢ Ba,
and let M := skull™(z). Note that M N A = x and thus that (z¢ | £ < ¢) is a
p-s.i.a. sequence to M N A. Note also that if ¢ < ¢, then chy, [p € M for every
p < cf(X) because (A, | n < p), y. N\, € M. Hence chy, <;j hy~, ie. (B, <%,
for every ¢ < € by Lem.4.4. Therefore sup, . 8y, < v*. O

For each = € 7, taking a ¢-s.i.a. sequence (z¢ | £ < () to z, let
Yo = supfy, < M
§<¢

v, is independent of the choice of a ¢-s.i.a. sequence to x by the above lemma.
Note that if z € 7 and (z¢ | £ < () is a p-s.i.a. sequence to z, then 3, < 83,
for each & < (. Hence

Vo < B
for every x € 7.

Lemma 4.6. Let M be an element of PcHe such that M N Ae T, M < M
and M is i.a. Then sup(M N2*) = yasnx.

Proof. Suppose that (M | £ < ¢) is an i.a. sequence to M. Note that (M N A |
§ < () is a p-s.i.a. sequence to M N A. Hence yanx = supg.¢ Burnr- Moreover
Bymenx € M N 2* for every ¢ < ¢ because M N A € M < M. Therefore
Yaraa < sup(M N 27).

To see the converse inequality, take an arbitrary 3 € M N 2*. It suffices to
show that G < yprAa-

First note that hg € M because 8 € M < M. Hence hg [ p € M for every
p < cf(A). Then hg <; h by Lem.4.4. Therefore 8 < varna. O

YMNX

Lemma 4.7. {, |z € T} is unbounded in 2* for every stationary T C T.

Proof. Let T be a stationary subset of 7. Take an arbitrary a < 2*. We must
find x € T with v, > «.

Because T is stationary, we can take M € P,Hy such that M N\ € T,
M < Mand a € MN2* Then hy [ p € M for every p < cf(\). Then
ha <5 hyyny by Lem.4.4. Therefore @ < varnx. This completes the proof
because M NA e T. O
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To prove Prop.4.3 (1), for each stationary T C 7 we must construct a
stationary S C T which becomes nonstationary in V(%) To prove (2) we
must construct a nonreflecting stationary S C T for each stationary T' C 7.
The constructions of such S are the same. Here we present the construction.
For each stationary T' C 7 define St C T as follows:

First let (F, | a € 2}) be the A-least enumeration of all functions from [\]<¥
to P.A. By induction on a < 2* let 2T be the A-least z € T such that

e z is closed under F,, i.e. F,(a) C z for every a € [2]<¥,

® Yz > Supa’<a ﬁza"

Note that the set {z € T | z is closed under F,} is stationary. Hence we can
take such zI € T by Lem.4.7. Then let

Sr o= {27 |a<2}.
Here we present basic properties of Sp:
Lemma 4.8. Let T be a stationary subset of T .
(1) St is a stationary subset of T.
(2) The set {7, | z € St} is nonstationary in 2*.

(8) Suppose that ¢ is a limit ordinal < k and that (ye | £ < () is a strictly
C-increasing sequence of elements of Sp. Then there are no z € St with

Yz = SUP¢<¢ 6y5 .
Proof. Throughout this proof we let z, denote 21 for each @ < 2*.

(1) For every function F': [A\|<“ — P, A there exists z € St closed under F' by
the first property of the choice of each z,. This means that St is stationary.
Clearly Sp C T.

(2) First of all recall that v, < 3, for every z € 7. Hence 7., > sup, ., V-,
for every a < 2* by the second property of the choice of z,.
Thus the set {7, | @ <2} = {y. | z € Sy} is nonstationary in 2*.

(3) First of all note that if o/ < a < 2*, then Veor < Bepr < Vzo < Bz, by the
choice of z, and the fact that v, < g, for every z € 7.

For each £ < (let ag < 2* be such that ye¢ = zq,. Then (a¢ | £ < () is strictly
increasing because both (ye | € < ¢) and (3., | a < 2*) are strictly increasing.
Let o™ := supg . a¢. If a > a”, then 7., > supe. 3, by the second property
of the choice of z,. On the other hand if o < a*, then 7., < sup,.. 3, by the
remark above. Therefore there are no z € Sy with v, = supg.¢ By, O

Below we prove that Sz becomes nonstationary in V(%) and is nonreflect-

ing for each stationary 7' C 7. First we prove that S becomes nonstationary
in VCol%A) | This implies Prop.4.3 (1):
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Lemma 4.9. Sp becomes nonstationary in VCISA) for all stationary T C T .

Proof. Fix a stationary T'C 7. Let S be the set of all M € P.Hy such that
MnNAe Sy, M < M and M is i.a. By Lem.3.11 it suffices to show that S is
nonstationary in P, Hy.

Note that {sup(M N2*) | M € S} C {7, | z € Sy} by Lem.4.6 and that
{. | z € St} is nonstationary in 2* by Lem.4.8 (2). Hence {sup(M N2*) | M €
S} is nonstationary. This implies that S is nonstationary in P, Hs. O

Now we have proved Prop.4.3 (1). For (2) we must prove that Sp is nonre-
flecting. We prove this by splitting 7 into the following two sets:

Ty := the set of all z € 7 which is @-s.i.a. of length ¢ for some ( < &
with cf(¢) = cf(N).

T, := the set of all x € 7 which is ¢-s.i.a. of length ¢ for some { < K
with cf(¢) # cf(N).

Note that 77 is stationary because k > ws. In fact we proved that 77 is stationary

in the proof of Lem.3.7 (2). On the other hand, note that elements of 7y are

p-s.i.a. of length ¢ for some ¢ with cf(¢) = cf(A) but are not i.a. of length cf(X).

By Lem.3.10, 7p is stationary if the set {¢ < & | ¢f({) = cf(A)} does not belong

to I[k]. Note also that if z € T, then z is ¢-s.i.a. of length x N x by Lem.3.9.
Clearly the following two lemmata imply Prop.4.3 (2):

Lemma 4.10. Assume that k<% = k, and suppose that T C Ty is stationary.
Then St N'P.W is nonstationary for every W C X\ with |W|=x CW.

Lemma 4.11. Suppose that T' C Ty is stationary. Then St NP.W is nonsta-
tionary for every W C X with |[W|=r CW.

First we prove Lem.4.11. We use the following lemma, due to Shelah:

Lemma 4.12 (Shelah). Suppose that ¢ is a limit ordinal < k with cf(() # cf(X)
and that (¢ | £ < () is a C-increasing sequence. Let x := \J; . x¢. Then
Be = Supe¢ Bae-

supg ¢ Bz, All we have to show is that ch, <j h.«. The proof splits into two
cases:
Case 1: cf({) < cf(N).

Take an increasing cofinal sequence (§; | k& < cf(¢)) in ¢. Note that
By = {n < cf(A) | chy, (1) > hy<(n)} € J because B, < 7*. Then
B = Ug<ct(c) Br € J by the cf(A)-completeness of J.

Here note that chy(n) = supyccg(c) cha, (n) for every n < cf(A). Thus
{n < ct(N) | chy(n) > hy«(n)} = B € J. Therefore chy <j hy«.

Case 2: cf(() > cf(N).

Proof. Clearly 3, > supe . 3z.. We prove that 8, < supg ;.. Let v* :=
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Assume that ch, €7 hy-. Then A := {n < cf(\) | chy(n) > hy=(n)} & J.
For each n € A we can take §, < ( such that ch,, () > hy-(n) because

chy (1) = supg¢ chy, (1).
Then £ := sup,c4 &, < ¢ because cf(¢) > cf(A). Moreover {n < cf(}) |
chy.. (n) > hy<(n)} = A ¢ J. Hence ch,,. £; hy-. This contradicts that

Bre- < SUPece Boe =7 O
The following is immediate from the above lemma:

Corollary 4.13. (3, = vy, for every x € 7.
Now we prove Lem.4.11:

Proof of Lem.4.11. Suppose that T' C 7; is stationary. We claim the following:

Claim. Suppose that ¢ is a limit ordinal < k and that (ye | £ < () is a
C-increasing sequence in Sp with (ye Nk | & < () strictly increasing. Then
U§<< Ye ¢ St
F Let y:= U£ <¢ Ye- The proof splits into two cases by the cofinality of ¢.
First suppose that cf(¢) = cf(\). Then cf(y N k) = cf(\), and thus y ¢ T;
by Lem.3.5. Therefore y ¢ St because S C T C T5.
Next suppose that cf(¢) # cf(A). Assume that y € St. Then

Supﬂyg = 53; = Yy
£<¢

by Lem.4.12 and Cor.4.13. This contradicts Lem.4.8 (3) because y € St and
(ye | € < () is a strictly C-increasing sequence in Sy. Therefore y ¢ Sp. =

Take an arbitrary W C X\ with [W| =k C W. We show that Sy NP, W is
nonstationary.

We can take a C-increasing continuous cofinal sequence (z¢ | £ < k) in P, W
with (z¢ Nk | £ < k) strictly increasing. Let E := {{ < k | ¢ € St}. By the
claim above, if ¢ is a limit ordinal < x with sup(E N¢) = ¢, then ¢ ¢ E. This
implies that FE is nonstationary in k. Therefore S NP, W is nonstationary. [

We turn our attention to Lem.4.10. First we extend the notion of the -
semi-internally approachability to subsets of A\ of cardinality «:

Definition 4.14. Suppose that W is a subset of X with |W| = k. Then W
is said to be p-semi-internally approachable of length k if there exists a C-
increasing sequence (we | € < k) in P such that J, ., we =W and such that
e({we NN | €< () €W for every ( < k and every X < X\. We call a sequence
(we | € < K) as above a p-semi-internally approaching sequence to W.

Clearly Lem.4.10 follows from the two lemmata below:

Lemma 4.15. Suppose that T C T is stationary. If [ W| =k CW C X and W
s p-s.i.a. of length k, then Sp NP, W is nonstationary.
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Lemma 4.16. Assume that k<" = k. If [W| =k CW C X and To NP, W is
stationary, then W is p-s.i.a. of length k.

First we prove Lem.4.15:

Proof of Lem.4.15. Suppose that |W| =k C W C X and that W is ¢-s.i.a. of
length x. Assume that St NP, W is stationary. We work for a contradiction.
First note that skull™ (W) N X = W because skull™(z) N A = z for each
x € Sp and Sy NP,W is stationary. Then we can take a (-s.i.a. sequence
(we | € < k) to W which is strictly C-increasing continuous. (First take a
p-s.ia. sequence (wg | £ < k) to W. Let B be the set of all £ < k such that
we Nk 2wy, Nk for every n < £ Note that B is a club in . Let (p¢ | £ < k) be

the increasing enumeration of B, and let w¢ := {J, pe wy, for each £ < k. Note

that if ¢ < k and k < N < A, then (we NN | € < ¢) € skull™ (W) because this
sequence can be recovered from (w; N\ | § < p¢) € skull™(W). Then it is easy
to see that (we | £ < k) is a ¢-s.i.a. sequence to W which is strictly C-increasing
continuous.)

Next let E := {£ < k | wg € Sp}. Then E is stationary in k. Moreover
define a club C C k as follows:

First, for each n < cf(X), let C), be the set of all limit ( < & such that
e({weN A, | € < (")) € we for every ¢! < ¢. Note that C), is a club in & for each
n < cf(A). Next let €’ be the set of all ¢ < & such that skull™ (we)NA = we. C’
is also a club because skull’™ (W) N A = W. Finally let C := C' N My<ctr) Cn-
Then C'is a club in k. Here note that (we | £ < ¢) is a ¢-s.i.a. sequence to w¢
for every ¢ € C' by Lem.3.4.

Because F is stationary we can take ¢ € E N C such that sup(E N ¢) = .
Then (we | £ < () is a ¢-s.i.a. sequence to w¢, and so

Ywe = SUp Py, = Sup Bu, -
£<¢ €EENC

But we € Sr, and (we | £ € EN() is a strictly C-increasing sequence in St.
Hence this contradicts Lem.4.8 (3). O

For Lem.4.16 we introduce the notion of ¢-semi-internally unboundedness:

Definition 4.17. Let W be a subset of A with |W|=x C W. We say that W
is M-semi-internally unbounded (M-s.i.u.) if it satisfies the following:

(i) skull™(W)nx=W.

(i) For any y € P,W there exists v € P.W such that y C x and such that
zN N € skull™(W) for every N < A.

Lem.4.16 splits into the following two lemmata:

Lemma 4.18. If |[W| =k C W C X and To N P.W is stationary, then W is
M-s.i.u.
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Lemma 4.19. Assume that s<" = k. If [ W| =k CW C X and W is M-s.i.u,
then W is p-s.i.a. of length k.

First we prove Lem.4.18. Lem.4.18 easily follows from the lemma below.
Recall that if x € 7p, then x is p-s.i.a. of length x Nk by Lem.3.9:

Lemma 4.20. Suppose that z,y € To, y Cz and yNk < zNk. Let (xe | § €
z N k) be a p-s.i.a. sequence to x. Then y C x¢ for some & < zN K.

Proof. Let (y, | © < yN k) be a p-si.a. sequence to y. Moreover let M :=
skull™ (). Note that (y, "X | ¢ < ¢) € M for every ¢ < y Nk and X < X
because y C .

We use the following claim:

Claim. For every N < X and every ¢ < y N Kk there exists £ < x N Kk with
Y. N )\/ g Te¢.

F Fix X < Aand ¢ < y N k. Assume that y, NN & x¢ for every £ < k. We
work for a contradiction.

Note that y, N\ € M. In M take a bijection 7 : |y, NN| — y,NN. Moreover
let ¢ be the least ordinal < |y, N X| such that 7[¢] € x¢ for every £ < z N k.
Note that cf(¢) = cf(xNk) = cf(N). Moreover ( € M Nk because ¢ < |y, NN €
M Nk € k. Hence we can take an increasing sequence (¢, | n < cf(\)) € M
converging to (. For each n < cf()) let &, be the least £ < & N« such that
7[Cy] € e

Then (&, | n < cf(\)) is an increasing cofinal sequence in x N k. Moreover
(&, | m < p) € M for every p < cf(\) because (&, | n < p) can be recovered from
(xe NN | € <&,) and (1](,] | n < p) both of which belong to M. From these
it is easy to see that (z¢, | 7 < cf())) is a p-s.i.a. sequence to x. Hence z is
-s.i.a. of length cf(X\). This contradicts that = € 7. =

We proceed to the proof of the lemma. Assume that there are no £ < x Nk
with y C z¢. We work for a contradiction.

First note that yNx € M N« and that cf(y N k) = cf(A). Take an increasing
sequence (i, | n < cf(X\)) € M converging to y N k. By the claim above, for each
n < cf(A), let &, be the least £ < x N« such that y,, N A, C x¢.

Here note that (y,, N A, | n < cf())) is a C-increasing sequence with its
union y. Note also that (y,, N\, | n < p) € M for each p < cf()\) because
(Yo, " Ay | m < p) can be recovered from (y, N\, | ¢ < ¢p), (ty | 7 < p) and
(Ay | m < p), all of which belong to M.

Then (&, | n < cf(\)) is an increasing cofinal sequence in Nk by the remark
above and the fact that there are no ¢ < x Nk with y C z¢. Note also that
(&, | m < p) € M for each p < cf(\) because (&, | n < p) can be recovered from
(e A, | € <Ep) and (y,, N Ay | 1 < p) both of which belong to M.

Then it is easy to see that (z¢, | n < cf())) is a p-s.i.a. sequence to 2. Thus
x is ¢-s.i.a. of length cf(A). This contradicts that z € 7. O

Now we prove Lem.4.18:
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Proof of Lem.4.18. Suppose that [W| = k C W C X and that 7o N P, W is
stationary. First note that skull’™ (W) N A = W because skull™(z) N A = = for
each = € 7.

To prove (ii) in Def.4.17 take an arbitrary y € P,W. We will find z* € P, W
such that y C z* and such that z* N\ € skullM(W) for every \' < A. Because
To NP, W is stationary we may assume that y € 7.

We can take © € ToNP. W with y C z and yNk < zNk. Let (z¢ | £ < zNkK)
be a ¢-s.i.a. sequence to x. By Lem.4.20 there exists £ < xNk with y C z¢. Note
that x¢ N\ € skull™(z) C skull™ (W) for every N < A. Therefore * := x¢ is
what we seek. O

Finally we prove Lem.4.19:

Proof of Lem.4.19. Assume that k<" = k. Suppose that [W| =k C W C X and
that W is M-s.i.u. Take an arbitrary C-increasing cofinal sequence (wg | £ < k)
in P,W. We show that (we | £ < k) is a ¢-s.i.a. sequence to W. For this it
suffices to show that (we N\ | € < ¢) € skull™ (W) for every ¢ < & and every
N < A Let M := skull™(W).

Fix ( < k and M < X. Then there exists z € P, \ such that U§<< we NN C
x € M by the @-s.iu. of W. Here note that (we NN | € < () € <#P(x). Note
also that |<®*P(z)| = k because k<" = k. Moreover <*P(z) € M and k C M.
Therefore <"P(z) C M. Thus (we NN | < () € M. O

This completes the proof of Prop.4.3.
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