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Abstract

We study the preservation under < κ-closed forcing extensions and
the reflection of stationary subsets of Pκλ in the case when λ is a singular
cardinal with cf(λ) < κ. In particular we discuss those under GCH.

1 Introduction

The following stationary reflection principle in Pκλ, which is often called the
weak reflection principle in Pκλ, has been studied by many set theorists so far:

Definition 1.1. For a regular uncountable cardinal κ, a cardinal λ > κ and a
stationary T ⊆ Pκλ, let SRκλ(T ) be the following assertion:

SRκλ(T ) ≡ For every stationary S ⊆ T there exists W ⊆ λ such that
|W | = κ ⊆W and such that S ∩PκW is stationary in PκW .

We let SRκλ denote SRκλ(Pκλ).

(Nowadays there are two notions of stationary subsets of Pκλ. We adopt the
one introduced by Jech [8]. More precisely, see Section 2.)

The importance of the above stationary reflection principle was revealed by
Foreman-Magidor-Shelah [5]. They showed that SRω1λ is implied by Martin’s
maximum for every λ > ω1 and holds if a λ-supercompact cardinal is Lévy
collapsed to ω2. Moreover they showed that SRω1λ has interesting consequences
such as Chang’s conjecture and the presaturation of the nonstationary ideal over
ω1. It is also known that SRω1λ has the influence on the cardinal arithmetic.
Todorčević [19] showed that SRω1ω2 implies 2ω ≤ ω2, and Shelah [15] showed
that SRω1λ implies SCH below λ. The stationary reflection principle in Pω1λ
and its strengthening are studied also in [1], [2], [6], [20], etc.

The stationary reflection principle in Pκλ for κ ≥ ω2 also have been studied
so far, for example, in [3], [4], [6], [16] and [17]. Now, due to Feng-Magidor
[3], Foreman-Magidor [4] and Shelah-Shioya [16], it is known that SRκλ is not
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consistent if ω2 ≤ κ < λ. On the other hand it was already shown in [5]
that the above mentioned facts on SRω1λ can be partially generalized to the
case when κ ≥ ω2. More precisely, the stationary reflection principle in PκHθ

below internally approachable sets is consistent for regular cardinals θ > κ,
and this partial stationary reflection principle implies the precipitousness of the
nonstationary ideal over κ. Here we review this more closely in the context of
Pκλ. (Subsection 3.2 of this paper contains the proof of facts below.)

Let κ be a regular uncountable cardinal, and λ be a cardinal > κ with λ<κ =
λ. Note that |<κ(Pκλ)| = λ. Hence we can take a bijection ψ : <κ(Pκλ) → λ.
Then x ∈ Pκλ is said to be ψ-internally approachable (ψ-i.a.) if there is a ⊆-
increasing sequence ⟨xξ | ξ < ζ⟩ (ζ: limit ordinal < κ) such that

∪
ξ<ζ xξ = x

and such that ψ(⟨xξ | ξ < ζ ′⟩) ∈ x for every ζ ′ < ζ. (We call such sequence
⟨xξ | ξ < ζ⟩ a ψ-internally approaching sequence to x.) Moreover let Sψκλ be the
set of all ψ-i.a. x ∈ Pκλ.

Note that Sψκλ is independent of the choice of a bijection ψ modulo the
nonstationary ideal over Pκλ. In fact, if ψ and φ are both bijections from
<κPκλ to λ, then being ψ-i.a. and being φ-i.a. are equivalent for all x ∈ Pκλ
which is closed under φ◦ψ−1 and ψ ◦φ−1. We omit the superscript ψ and write
Sκλ for Sψκλ because the difference of a nonstationary set does not matter in our
context. What is important on Sκλ is the following:

Fact 1.2 ([5]). Let κ be a regular uncountable cardinal, and λ be a cardinal
> κ with λ<κ = λ. Then all stationary subsets of Sκλ remain stationary in all
<κ-closed forcing extensions.

It was also shown in [4] that the complement of Sκλ becomes nonstationary
in the forcing extension by Col(κ, λ). Here Col(κ, λ) denotes the forcing notion
<κλ ordered by reverse inclusions. Hence Col(κ, λ) is a <κ-closed forcing notion
which forces that |λ| = κ.

We obtain the consistency of SRκλ(Sκλ) from Fact 1.2 and Fact 1.3 below.
In Fact 1.3 Col(κ,<ν) denotes the Lévy collapse forcing ν to be κ+.

Fact 1.3 ([5]). Let κ be a regular uncountable cardinal and λ be a cardinal > κ.
Suppose that ν is a λ-supercompact cardinal with κ < ν < λ. In V Col(κ,<ν)

assume that T is a stationary subset of Pκλ such that all stationary subsets of
T remain stationary in all <κ-closed forcing extensions. Then SRκλ(T ) holds
in V Col(κ,<ν).

Corollary 1.4 ([5]). Let κ be a regular uncountable cardinal and λ be a cardinal
> κ with λ<κ = λ. Suppose that ν is a λ-supercompact cardinal with κ < ν < λ.
Then SRκλ(Sκλ) holds in V Col(κ,<ν).

Furthermore it was shown in [5] that if λ is sufficiently large then SRκλ(Sκλ)
implies the precipitousness of the nonstationary ideal over κ.

Above we have briefly reviewed the stationary reflection principle in Pκλ in
the case when λ<κ = λ. Then the question naturally arises. What about the
stationary reflection principle in Pκλ in the case when λ<κ > λ ? Moreover
recall that Fact 1.2 was the key of Cor.1.4. What about the preservation of
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stationary subsets of Pκλ under <κ-closed forcing extensions when λ<κ > λ ?
Note that if λ is a singular cardinal with cf(λ) < κ < λ, then λ<κ > λ. Shioya
[18] asked how is the preservation and the reflection of stationary subsets of Pκλ
when λ is a singular cardinal with cf(λ) < κ < λ.

In this paper we discuss the preservation and the reflection of stationary
subsets of Pκλ in the case when λ is a singular cardinal with cf(λ) < κ < λ. In
particular we study those under GCH.

For this we introduce the notion of the semi-internally approachability:

Notation. Let κ be a regular uncountable cardinal. A cardinal λ is said to be
<κ-strong limit if ν<κ < λ for every ν < λ. Note that if λ is a <κ-strong limit
cardinal, then |

∪
λ′<λ

<κ(Pκλ′)| = λ.

Definition 1.5. Let κ be a regular uncountable cardinal, and λ be a <κ-strong
limit cardinal with cf(λ) < κ < λ. Suppose that φ :

∪
λ′<λ

<κ(Pκλ′) → λ is a
bijection. Let x be an element of Pκλ.

For a limit ordinal ζ < κ, x is said to be φ-semi-internally approachable
(φ-s.i.a.) of length ζ if there exists a ⊆-increasing sequence ⟨xξ | ξ < ζ⟩ in Pκλ
such that

(i)
∪
ξ<ζ xξ = x,

(ii) φ(⟨xξ ∩ λ′ | ξ < ζ ′⟩) ∈ x for every ζ ′ < ζ and every λ′ < λ.

A sequence ⟨xξ | ξ < ζ⟩ as above is called a φ-semi-internally approaching
sequence to x. x is said to be φ-semi-internally approachable if x is φ-s.i.a. of
length ζ for some limit ζ < κ.

It is easy to see that if θ is a regular cardinal > λ, M ∈ PκHθ is internally
approachable of length ζ, and M ≺ ⟨Hθ,∈ κ, λ, φ⟩, then M ∩ λ is φ-s.i.a. of
length ζ. (See Lem.3.6.)

As in the case when λ<κ = λ, we consider the set of all φ-s.i.a. sets. But we
need divide this set according to the length of approaching sequence:

Definition 1.6. Let κ, λ and φ be as in Def.1.5. Then let

Tφ,0κλ := {x ∈ Pκλ | x is φ-s.i.a. of length cf(λ)}
Tφ,1κλ := {x ∈ Pκλ | x is φ-s.i.a. but is not φ-s.i.a. of length cf(λ)}

As is the case with Sψκλ, both Tφ,0κλ and Tφ,1κλ do not depend on the choice of
φ modulo the nonstationary ideal over Pκλ. Hence we often write T 0

κλ and T 1
κλ

for Tφ,0κλ and Tφ,1κλ , respectively.
As we see in Lem.3.7, if κ = ω1, then T 0

ω1λ
contains a club in Pω1λ. Moreover

if κ ≥ ω2, then T 0
κλ, T

1
κλ and Pκλ \ (T 0

κλ ∪ T 1
κλ) are all stationary in Pκλ.

It will be proved in Cor.3.14 that Pκλ\ (T 0
κλ∪T 1

κλ)
V becomes nonstationary

in V Col(κ,λ). As for the preservation and the reflection below T 0
κλ we will obtain

the following. In particular SRκλ(T 0
κλ) + GCH is consistent:

Theorem 1.7. Let κ be a regular uncountable cardinal and λ be a <κ-strong
limit cardinal with cf(λ) < κ < λ.
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(1) All stationary subsets of T 0
κλ remain stationary in all < κ-closed forcing

extensions.

(2) Suppose that ν is a λ-supercompact cardinal with κ < ν < λ. Then
SRκλ(T 0

κλ) holds in V Col(κ,<ν).

On the other hand we will obtain the following as for the preservation and the
reflection below T 1

κλ:

Theorem 1.8. Assume GCH. Let κ be a regular cardinal ≥ ω2 and λ be a
singular cardinal with cf(λ) < κ < λ.

(1) T 1
κλ (defined in V ) remains stationary in all <κ-closed forcing extensions.

But for every stationary T ⊆ T 1
κλ there exists stationary S ⊆ T which

becomes nonstationary in V Col(κ,λ).

(2) SRκλ(T ) fails for every stationary T ⊆ T 1
κλ.

Thm.1.7 and 1.8 will be proved in Section 4. In Section 3 we study the basic
relationship among the notion of s.i.a. and i.a. and the preservation and the
reflection of stationary subsets of Pκλ. As we mentioned before, Subsection 3.2
contains the proof of Fact 1.2 and 1.3.

2 Preliminaries

Here we present our notation and basic facts used in this paper. For those which
are not presented below, consult Jech [9] and Kanamori [10].

First we give our notation and basic facts on subsets of PκW . For a regular
cardinal κ and a set W ⊇ κ, PκW denotes the set {x ⊆W | |x| < κ}. We follow
the notion of club and stationary subsets of PκW to that introduced by Jech [8].
C ⊆ PκW is said to be club if C is ⊆-cofinal in PκW and closed under unions
of ⊆-increasing sequence of length < κ. S ⊆ PκW is said to be stationary if
S ∩ C ̸= for every club C ⊆ PκW .

We use the following facts without any mention. The proof can be found in
Jech [9]:

Fact 2.1 (Kueker [11]). Let κ be a regular uncountable cardinal, and W be a
set ⊇ κ. The following are equivalent for S ⊆ PκW :

(I) S is stationary in PκW .

(II) For every function F : [W ]<ω → PκW there exists x ∈ S such that
F (a) ⊆ x for all a ∈ [x]<ω.

(III) For every function F : [W ]<ω →W there exists x ∈ S such that F (a) ∈ x
for all a ∈ [x]<ω and such that x ∩ κ ∈ κ.

(IV) For every structure M of a countable language with its universe W there
exists x ∈ S such that x ≺ M and x ∩ κ ∈ κ.
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Fact 2.2 (Menas [12]). Let κ be a regular uncountable cardinal, and suppose
that κ ⊆ W ⊆ W̄ . Then S ⊆ PκW is stationary if and only if the set {x̄ ∈
PκW̄ | x̄ ∩W ∈ S} is stationary in PκW̄ .

Next we present notation and a fact on structures. Suppose that M is
a structure for a countable language and that there is a well-ordering of the
universe of M which can be defined over M. For x ⊆ M let skullM(x) denotes
the Skolem hull of x in M, i.e. the smallest M with x ⊆M ≺ M.

We often use the following lemma:

Lemma 2.3. Let κ and θ be regular uncountable cardinals with κ ≤ θ. Suppose
that M ≺ ⟨Hθ,∈⟩ and that M ∩ κ ∈ κ. Then y ⊆M for every y ∈M ∩ PκHθ.

Proof. There is a bijection π ∈M from |y| to y by the elementarity of M . Note
that |y| ⊆M because |y| ∈M ∩ κ ∈ κ. Thus y = π[|y|] ⊆M .

Next we give our notation on forcing notions for collapsing cardinalities. Let
κ be a regular uncountable cardinal. For an ordinal λ let Col(κ, λ) denotes the
forcing notion <κλ ordered by reverse inclusions. Note that Col(κ, λ) is a <κ-
closed forcing notion and collapses the cardinality of λ to be ≤ κ. For an ordinal
ν let Col(κ,< ν) denotes the Lévy collapse which collapses the cardinality of
all ordinals < ν to be ≤ κ. That is, Col(κ,< ν) is the <κ-support product of
⟨Col(κ, υ) | υ < ν⟩.

Next we present our notation on scales, which are the central notion of
Shelah’s PCF theory. Let λ be a singular cardinal, and let λ⃗ = ⟨λη | η < cf(λ)⟩
be an increasing sequence of regular cardinals converging to λ. We let Πλ⃗ denote
Πη<cf(λ)λη, that is, the set of all functions f on cf(λ) such that f(η) ∈ λη for
each η < cf(λ). Moreover let J be an ideal over cf(λ). For g, h ∈ Πλ⃗ let

g <J h ⇔ {η < cf(λ) | g(η) ≥ h(η)} ∈ J

g ≤J h ⇔ {η < cf(λ) | g(η) > h(η)} ∈ J

g < h ⇔ g(η) < h(η) for all η < cf(λ)
g ≤ h ⇔ g(η) ≤ h(η) for all η < cf(λ)

If υ is a regular cardinal and h⃗ = ⟨hα | α < υ⟩ is a <J -increasing cofinal sequence
in Πλ⃗, then we call h⃗ a (λ⃗, J)-scale of length υ. For a regular cardinal υ let

tcf(Πλ⃗/J) = υ
def⇔ there exists a (λ⃗, J)-scale of length υ.

At the end of this section we recall the ideal I[κ] over a regular uncountable
cardinal κ, introduced by Shelah [13]. Let κ be a regular uncountable cardinal.
For a sequence b⃗ = ⟨bξ | ξ < κ⟩ of bounded subsets of κ and a limit ordinal ζ < κ,
we say that ζ is approachable with respect to b⃗ if there exists an unbounded b ⊆ ζ
of order-type cf(ζ) such that b ∩ ρ ∈ {bξ | ξ < ζ} for every ρ < ζ. For each
E ⊆ κ let

E ∈ I[κ] def⇔ there exist a sequence b⃗ = ⟨bξ | ξ < κ⟩ of bounded subsets of κ
and a club C ⊆ κ such that every ζ ∈ E ∩ C is approachable
with respect to b⃗.
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It was shown in [13] that I[κ] is a normal ideal over κ. I[κ] is not proper, i.e.
κ ∈ I[κ], in many cases. For example if µ is a regular cardinal with µ<µ = µ,
then it is easy to see that I[µ+] is not proper. On the other hand there may
be a regular cardinal κ with I[κ] proper. For example it is shown in [13] that if
µ is a singular cardinal such that there exists a µ-supercompact cardinal < µ,
then I[µ+] is proper.

Here note that the set of all regular cardinals < κ belongs to I[κ]. Hence
if I[κ] is proper, then there exists a regular cardinal µ < κ such that {ζ < κ |
cf(ζ) = µ} /∈ I[κ] by the normality of I[κ].

3 s.i.a, i.a, preservation and reflection

Here we overview the basic relationship among the notion of s.i.a. and i.a. and
the preservation and the reflection of stationary subsets of Pκλ. (Lem.3.6, 3.11
and Prop.3.15.)

In Subsection 3.1 we present basic facts on s.i.a. and i.a. sets and the re-
lationship between them. In Subsection 3.2 we review the basic relationship
among the notion of i.a and the preservation and the reflection of stationary
subsets of Pκλ.

3.1 s.i.a. and i.a. sets

First we recall the notion of internally approachability:

Definition 3.1. Let x be a set. For a limit ordinal ζ, x is said to be internally
approachable (i.a.) of length ζ if there exists an ⊆-increasing sequence ⟨xξ |
ξ < ζ⟩ such that

∪
ξ<ζ xξ = x and such that ⟨xξ | xξ < ζ ′⟩ ∈ x for every ζ ′ < ζ.

A sequence ⟨xξ | ξ < ζ⟩ as above is called an internally approaching sequence
to x. x is said to be internally approachable if x is internally approachable of
length ζ for some limit ordinal ζ.

Recall that there are stationary many i.a. sets:

Lemma 3.2. Let µ, κ and θ be regular cardinals with µ < κ ≤ θ. Then the set
{M ∈ PκHθ |M is i.a. of length µ} is stationary in PκHθ.

Proof. Take an arbitrary function F : [Hθ]<ω → Hθ. It suffices to find an i.a.
M ∈ PκHθ of length µ such that M ∩ κ ∈ κ and M is closed under F .

By induction on ξ < µ we can easily construct a ⊆-increasing sequence
⟨Mξ | ξ < µ⟩ in PκHθ such that ⟨Mη | η < ξ⟩ ∈ Mξ, Mξ ∩ κ ∈ κ and Mξ is
closed under F for each ξ < µ.

Let M :=
∪
ξ<µMξ. Clearly M is closed under F , and M ∩κ ∈ κ. Moreover

⟨Mξ | ξ < µ⟩ witnesses that M is i.a. of length µ.

Next we present easy lemmata on i.a. and s.i.a. sets, which we will use later
without any mention:
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Lemma 3.3. Let κ and θ be regular cardinals with κ ≤ θ. Suppose that M ∈
PκHθ is such that M ∩ κ ∈ κ and M ≺ ⟨Hθ,∈, κ⟩. Suppose also that M is i.a.
of length ζ, where ζ is a limit ordinal < κ. Then cf(sup(M ∩ ν)) = cf(ζ) for
every regular cardinal ν with κ ≤ ν ≤ θ.

Proof. Fix a regular cardinal ν with κ ≤ ν ≤ θ. Let ⟨Mξ | ξ < ζ⟩ be an i.a.
sequence to M . First note that Mξ ∈ M for each ξ < ζ because Mξ is the last
element of ⟨Mη | η ≤ ξ⟩ ∈ M . From this, it follows that sup(Mξ ∩ ν) ∈ M ∩ ν
for each ξ < ζ: First note that sup(Mξ ∩ ν) < ν because ν is a regular cardinal
≥ κ, and Mξ ∈ PκHθ. We show that sup(Mξ ∩ ν) ∈ M . Let υ := min(M \ ν)
if ν < sup(M ∩ θ), and υ := θ otherwise. Note that Mξ ∩ ν = Mξ ∩ υ because
Mξ ⊆ M . Moreover sup(Mξ ∩ υ) ∈ M by the elementarity of M , the choice of
υ and the fact that Mξ ∈M . Thus sup(Mξ ∩ ν) = sup(Mξ ∩ υ) ∈M .

Hence sup(Mξ ∩ ν) < sup(M ∩ ν) for each ξ < ζ. Moreover ⟨sup(Mξ ∩ ν) |
ξ < ζ⟩ converges to sup(M ∩ν) because

∪
ξ<ζMξ = M . Thus cf(sup(M ∩ν)) =

cf(ζ).

Lemma 3.4. Let κ be a regular uncountable cardinal, let λ be a <κ-strong limit
cardinal with cf(λ) < κ < λ, and let θ be a regular cardinal > λ. Moreover let
φ :

∪
λ′<λ

<κ(Pκλ′) → λ be a bijection. Suppose that M ∈ PκHθ is such that
M ∩ κ ∈ κ and M ≺ ⟨Hθ,∈, κ, λ, φ⟩. Let ζ be a limit ordinal < κ, and suppose
that x⃗ = ⟨xξ | ξ < ζ⟩ is a ⊆-increasing sequence with

∪
ξ<ζ xξ = M ∩ λ. Then

the following are equivalent:

(I) x⃗ is a φ-s.i.a. sequence to M ∩ λ.

(II) ⟨xξ ∩ λ′ | ξ < ζ ′⟩ ∈M for every ζ ′ < ζ and λ′ < λ.

(III) For every λ′ < λ there exists λ′′ ≥ λ′ such that ⟨xξ ∩ λ′′ | ξ < ζ ′⟩ ∈M for
every ζ ′ < ζ.

Proof. (I)⇒(II) follows from the fact that M is closed under φ−1. (II)⇒(III) is
clear. We prove (III)⇒(I).

Assume (III). It suffices to show that φ(⟨xξ ∩ λ′ | ξ < ζ ′⟩) ∈M ∩ λ for every
ζ ′ < ζ and every λ′ < λ. Fix ζ ′ < ζ and λ′ < λ.

By (III) take λ′′ ≥ λ′ such that ⟨xξ ∩ λ′′ | ξ < ζ ′⟩ ∈ M . Moreover let
ν := min(M ∩ On \ λ′). Note that xξ ∩ λ′ = (xξ ∩ λ′′) ∩ ν for each ξ < ζ ′.
Hence ⟨xξ ∩ λ′ | ξ < ζ ′⟩ ∈ M because ν, ⟨xξ ∩ λ′′ | ξ < ζ ′⟩ ∈ M . Then
φ(⟨xξ ∩ λ′ | ξ < ζ ′⟩) ∈M ∩ λ because M is closed under φ.

Lemma 3.5. Let κ, λ, θ, φ and M be as in Lem.3.4. Suppose also that M ∩ λ
is φ-s.i.a. of length ζ, where ζ is a limit ordinal < κ. Then cf(sup(M ∩ ν)) =
cf(M ∩ κ) for every regular cardinal ν with κ ≤ ν < λ.

Proof. Similar as the proof of Lem.3.3 using Lem.3.4.

Here we make a remark on the length of i.a. and s.i.a. sequences:
Let κ and θ be regular cardinals with κ ≤ θ, and suppose that M ∈ PκHθ

and that M ∩ κ ∈ κ. Then the cofinality of the length of i.a. sequences to M is
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unique. It must be cf(M ∩ κ) by Lem.3.3. But the length of i.a. sequences to
M may not be uniquely determined.

For example, suppose that M ∩ κ is not regular and that M is i.a. of length
cf(M∩κ). Then M is i.a. of length ζ for every ζ < M∩κ with cf(ζ) = cf(M∩κ):
Take an arbitrary such ζ. Let ⟨Mη | η < cf(M ∩ κ)⟩ be an i.a. sequence to M ,
and take an increasing cofinal sequence ⟨ζη | η < cf(M ∩κ)⟩ ∈M . Moreover for
each ξ < ζ, taking the least η < cf(M ∩ κ) with ξ ≤ ζη, let M ′

ξ := Mη. Then it
is easy to see that ⟨M ′

ξ | ξ < ζ⟩ is an i.a. sequence to M .
The similar is the case for the length of s.i.a. sequences.
Next we present the relationship between the notion of s.i.a. and i.a:

Lemma 3.6. Let κ, λ, θ, φ and M be as in Lem.3.4. Let ζ and ρ be limit
ordinals < κ.

(1) If M is i.a. of length ζ, then M ∩ λ is φ-s.i.a. of length ζ.

(2) If M is i.a. but is not i.a. of length ρ, then M ∩ λ is φ-s.i.a. but is not
φ-s.i.a. of length ρ.

Proof. (1) Let ⟨Mξ | ξ < ζ⟩ be an i.a. sequence to M . Then ⟨Mξ ∩ λ | ξ < ζ⟩ is
a φ-s.i.a. sequence to M ∩ λ by Lem.3.4.

(2) By (1) it suffices to show that if M is i.a. but is not i.a. of length ρ, then
M ∩λ is not φ-s.i.a. of length ρ. We prove that if M is i.a. and M ∩λ is φ-s.i.a.
of length ρ, then M is i.a. of length ρ. Suppose that M is i.a. of length ζ, and
let ⟨Mξ | ξ < ζ⟩ be an i.a. sequence to M . Moreover suppose that M ∩ λ is
φ-s.i.a. of length ρ, and let ⟨xη | η < ρ⟩ be a φ-s.i.a. sequence to M ∩ λ.

Note that if η < ρ, then sup(xη ∩ κ) ∈ M ∩ κ, and so there exists ξ < ζ
with sup(xη ∩ κ) ≤ sup(Mξ ∩ κ). For each η < ρ let ξη be the least ξ < ζ with
sup(xη ∩ κ) ≤ sup(Mξ ∩ κ). Then ⟨ξη | η < ρ⟩ is increasing clearly. Moreover
it is cofinal in ζ because

∪
η<ρ xη ∩ κ = M ∩ κ. Here note that if ρ′ < ρ, then

⟨ξη | η < ρ′⟩ can be recovered from ⟨xη ∩ κ | η < ρ′⟩ and ⟨Mξ | ξ ≤ ξρ′⟩, both of
which belong to M . Hence ⟨ξη | η < ρ′⟩ ∈M for every ρ′ < ρ.

Then it is easy to see that ⟨Mξη | η < ρ⟩ is an i.a. sequence to M . Therefore
M is i.a. of length ρ.

Combining above lemmata we obtain the following:

Lemma 3.7. Let κ be a regular uncountable cardinal and λ be a < κ-strong
limit cardinal with cf(λ) < κ < λ.

(1) If κ = ω1, then T 0
κλ contains a club in Pκλ.

(2) If κ ≥ ω2, then T 0
κλ, T

1
κλ and Pκλ \ (T 0

κλ ∪ T 1
κλ) are all stationary in Pκλ.

Proof. Let φ :
∪
λ′<λ

<κ(Pκλ′) → λ be a bijection, and let T 0
κλ and T 1

κλ denote
Tφ,0κλ and Tφ,1κλ , respectively. Moreover let θ be a regular cardinal > λ, and let
M be the structure ⟨Hθ,∈, κ, λ, φ⟩.
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(1) Suppose κ = ω1. Note that cf(λ) = ω. Let T̄ be the set of all M ∈ Pω1Hθ

with M ≺ M. Note that if M ∈ T̄ , then M ∩ ω1 ∈ ω1 and M is i.a. of length
ω. Hence T 0

ω1λ
⊇ {M ∩ λ |M ∈ T̄} by Lem.3.6 (1). Then T 0

ω1λ
contains a club

in Pω1λ because T̄ is a club in Pω1Hθ.

(2) Suppose κ ≥ ω2. Then there is a regular cardinal µ < κ with µ ̸= cf(λ). Let

T̄ 0 := {M ∈ PκHθ |M ∩ κ ∈ κ ∧ M ≺ M ∧ M is i.a. of length cf(λ) } ,
T̄ 1 := {M ∈ PκHθ |M ∩ κ ∈ κ ∧ M ≺ M ∧ M is i.a. of length µ } .

Then both T̄ 0 and T̄ 1 are stationary by Lem.3.2. First note that T 0
κλ ⊇ {M ∩λ |

M ∈ T̄ 0} by Lem.3.6 (1). Hence T 0
κλ is stationary. Next note that every M ∈ T̄ 1

is not i.a. of length cf(λ) by Lem.3.3. Thus T 1
κλ ⊇ {M∩λ |M ∈ T̄ 1} by Lem.3.6.

Therefore T 1
κλ is stationary.

It is easy to see that the set S := {x ∈ Pκλ | cf(sup(x∩κ+)) ̸= cf(sup(x∩κ))}
is stationary in Pκλ. But both S∩T 0

κλ and S∩T 1
κλ are nonstationary by Lem.3.5.

Hence Pκλ \ (T 0
κλ ∪ T 1

κλ) is stationary.

At the end of this section we present lemmata on the length of i.a. and s.i.a.
sequences:

Lemma 3.8. Let κ and θ be regular uncountable cardinals with κ ≤ θ. Suppose
that M ∈ PκHθ is such that M ∩ κ ∈ κ and M ≺ ⟨Hθ,∈, κ⟩. Suppose also that
M is i.a. Then M is either i.a. of length M ∩ κ or i.a. of length cf(M ∩ κ).

Proof. We show that if M is not i.a. of length M ∩ κ, then M is i.a. of length
cf(M ∩ κ). Assume that M is not i.a. of length M ∩ κ.

Suppose that M is i.a. of length ζ and that ⟨Mξ | ξ < ζ⟩ is an i.a. sequence to
M . Note that if ζ ′ < ζ, then ζ ′ is the length of the sequence ⟨Mξ | ξ < ζ ′⟩ ∈M ,
and thus ζ ′ ∈ M ∩ κ. Hence ζ ≤ M ∩ κ. But ζ ̸= M ∩ κ by our assumption.
Therefore ζ ∈M ∩ κ.

Note that cf(ζ) = cf(M ∩ κ) by Lem.3.3. Because ζ ∈ M we can take an
increasing sequence ⟨ξη | η < cf(M ∩ κ)⟩ ∈ M converging to ζ. Then it is easy
to see that ⟨Mξη | η < cf(M ∩ κ)⟩ is an i.a. sequence to M . Therefore M is i.a.
of length cf(M ∩ κ).

Lemma 3.9. Let κ, λ, θ, φ and M be as in Lem.3.4. Suppose also that M ∩ λ
is φ-s.i.a. Then M ∩ λ is either φ-s.i.a. of length M ∩ κ or φ-s.i.a. of length
cf(M ∩ κ).

Proof. Similar as the proof of Lem.3.8 using Lem.3.4.

Note that there are stationary many M ∈ PκHθ which is i.a. of length
cf(M ∩ κ) by Lem.3.2 and 3.3. Then there are also stationary many x ∈ Pκλ
which is φ-s.i.a. of length cf(x ∩ κ) by Lem.3.6 (1). Below we prove that if I[κ]
is proper, then there are stationary many M ∈ PκHθ which is i.a. of length
M ∩ κ but is not i.a. of length cf(M ∩ κ). Then the similar holds for φ-s.i.a. by
Lem.3.6:
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Lemma 3.10. Let µ and κ are regular cardinals with µ < κ, and suppose that
{ζ < κ | cf(ζ) = µ} /∈ I[κ].

(1) Suppose that θ is a regular cardinal ≥ κ. Then there are stationary many
M ∈ PκHθ such that M ∩ κ ∈ κ, cf(M ∩ κ) = µ and M is i.a. of length
M ∩ κ but is not i.a. of length µ.

(2) Suppose that λ is a <κ-strong limit cardinal with cf(λ) < κ < λ, and let
φ :

∪
λ′<λ

<κPκλ′ → λ be a bijection. Then there are stationary many
x ∈ Pκλ such that x∩κ ∈ κ, cf(x∩κ) = µ and x is φ-s.i.a. of length x∩κ
but is not φ-s.i.a. of length µ.

Proof. Note that (2) follows from (1) and Lem.3.6. We prove (1).
Take an arbitrary function F : [Hθ]<ω → Hθ. It suffices to find M ∈ PκHθ

such that

(i) M is closed under F ,

(ii) M ∩ κ ∈ κ and cf(M ∩ κ) = µ,

(iii) M is i.a. of length M ∩ κ but is not i.a. of length µ.

Take a well-ordering ∆ of Hθ, and let M be the structure ⟨Hθ,∈,∆, F ⟩. By
induction on ξ < κ define Mξ ∈ PκHθ as follows: If ξ is a limit ordinal, then let
Mξ :=

∪
η<ξMη. If ξ is a successor ordinal, then let

Mξ := skullM(Mξ−1 ∪ ξ ∪ {⟨Mη | η < ξ⟩}) .

Note that Mξ ≺ M for every ξ < κ and thus that Mξ is closed under F for
every ξ < κ. Note also that if ζ is a limit ordinal < κ, then ⟨Mξ | ξ < ζ⟩ is an
i.a. sequence to Mζ .

Let Mκ :=
∪
ξ<κMξ, and take an enumeration ⟨bξ | ξ < κ⟩ of all bounded

subsets of κ which belong to Mκ. Moreover let C be the set of all limit ζ < κ
such that Mζ ∩ κ = ζ and such that {bξ | ξ < ζ} is equal to the set of all
bounded subsets of κ which are in Mζ . It is easy to see that C is a club in κ.

By our assumption on I[κ] we can take ζ ∈ C of cofinality µ which is
not approachable with respect to ⟨bξ | ξ < κ⟩. Then M := Mζ satisfies the
properties (i) and (ii) above and is i.a. of length ζ = M ∩κ. Hence it suffices to
show that M is not i.a. of length µ.

Assume that M is i.a. of length µ, and let ⟨Nη | η < µ⟩ is an i.a. sequence to
M . Let b := {sup(Nη∩κ) | η < µ}. Then b is an unbounded subset of M∩κ = ζ
of order-type µ. Moreover all proper initial segments of b belong to M because
all proper initial segments of ⟨Nη | η < µ⟩ belong to M . Then all proper initial
segments of b belong to {bξ | ξ < ζ} because ζ ∈ C. This contradicts that ζ is
not approachable with respect to ⟨bξ | ξ < κ⟩.
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3.2 i.a, preservation and reflection

First we review the relationship between the notion of i.a. and the preservation
of stationary subsets of Pκλ under <κ-closed forcing extensions, due to [4] and
[5]:

Lemma 3.11. Let κ be a regular uncountable cardinal and λ be a cardinal ≥ κ.
The following are equivalent for a stationary S ⊆ Pκλ:

(I) S remains stationary for all <κ-closed forcing extensions.

(II) S remains stationary in the forcing extension by Col(κ, λ).

(III) For every regular cardinal θ ≥ λ the set of all M ∈ PκHθ with the following
properties is stationary in PκHθ:

(i) there exist a limit ordinal ζ < κ and a ⊆-increasing sequence ⟨xξ | ξ <
ζ⟩ in Pκλ such that

∪
ξ<ζ xξ = M∩λ and such that ⟨xξ | ξ < ζ ′⟩ ∈M

for every ζ ′ < ζ.

(ii) M ∩ λ ∈ S.

(IV) For every regular cardinal θ ≥ λ the set

{M ∈ PκHθ |M is i.a. ∧ M ∩ λ ∈ S}

is stationary in PκHθ.

To prove the lemma above we need the following lemma:

Lemma 3.12. Let κ be a regular uncountable cardinal and W be a set with
|W | = κ ⊆ W . Then all stationary subset of PκW remain stationary in all
<κ-closed forcing extensions.

Proof. Roughly speaking, the lemma follows from the facts that stationary sub-
sets of PκW can be identified with stationary subsets of κ and that all stationary
subsets remain stationary in all <κ-closed forcing extensions. But here we give
a direct proof of the lemma.

Suppose that S ⊆ PκW is stationary and that P is a < κ-closed forcing
notion. We show that S remains stationary in V P. Take an arbitrary P-name
Ḟ for a function from [W ]<ω to W and an arbitrary p ∈ P. It suffices to find
p∗ ≤ p and x ∈ S such that x ∩ κ ∈ κ and p∗ 
 “x is closed under Ḟ ”.

Using the facts that |W | = κ and that P is <κ-closed, we can easily construct
a descending sequence ⟨pξ | ξ < κ⟩ in P below p such that for every a ∈ [W ]<ω

some pξ decides Ḟ (a). For each a ∈ [W ]<ω let ξa be the least ξ < κ such that
pξ decides Ḟ (a). Moreover let F : [W ]<ω → W be such that F (a) is the value
of Ḟ (a) decided by pξa .

Then there exists x ∈ S such that x∩κ ∈ κ and x is closed under F because
S is stationary. Take ξ∗ < κ such that ξa ≤ ξ∗ for every a ∈ [x]<ω. Then
pξ∗ ≤ p. Moreover pξ∗ 
 “x is closed under Ḟ ” because x is closed under F
and pξ∗ 
 “ Ḟ � [x]<ω = F � [x]<ω ”. Thus pξ∗ and x are what we seek.

11



Proof of Lem.3.11. We prove (IV)⇒(III)⇒(II)⇒(I)⇒(IV). Fix a stationary S ⊆
Pκλ.

(IV)⇒(III):
Assume (IV). Let θ be a regular cardinal ≥ λ. Let S̄ be the set of all

M ∈ PκHθ such that M ≺ ⟨Hθ,∈, λ⟩, M is i.a. and M ∩ λ ∈ S. Then S̄ is
stationary by (IV). Moreover if M ∈ S̄ and ⟨Mξ | ξ < ζ⟩ is an i.a. sequence to
M , then it is easy to see that ⟨Mξ ∩ λ | ξ < ζ⟩ witnesses that M satisfies (i) in
(III). Hence the set in (III) includes S̄, and therefore it is also stationary.

(III)⇒(II):
Assume (III). To prove (II) take an arbitrary Col(κ, λ)-name Ḟ of a function

from [λ]<ω to λ and an arbitrary p ∈ Col(κ, λ). It suffices to find x ∈ S and
p∗ ≤ p such that x ∩ κ ∈ κ and p∗ 
Col(κ,λ) “x is closed under Ḟ ”.

Take a sufficiently large regular cardinal θ and a well-ordering ∆ of Hθ. Let
M be the structure ⟨Hθ,∈,∆, κ, λ, p, Ḟ ⟩. Then, by (III), we can takeM ∈ PκHθ

such that M ≺ M, M ∩ κ ∈ κ and M satisfies (i) and (ii) in (III). It suffices to
find p∗ ≤ p which forces that x := M ∩ λ is closed under Ḟ .

Suppose that a sequence ⟨xξ | ξ < ζ⟩ witnesses (i) for M . By induction on
ξ < ζ let pξ ∈ Col(κ, λ) be the ∆-least lower bound of {p} ∪ {pη | η < ξ} such
that pξ decides Ḟ (a) for all a ∈ [xξ]<ω. We can take such pξ by the <κ-closure
of Col(κ, λ).

Here note that pξ ∈ M for each ξ < ζ because pξ can be definable in M
from a parameter ⟨xη | η ≤ ξ⟩ ∈M . Hence pξ decides Ḟ (a) to be in M ∩ λ = x
for each a ∈ [xξ]<ω.

Now take a lower bound p∗ of {pξ | ξ < ζ}. Then p∗ ≤ p, and p∗ forces that
x is closed under Ḟ .

(II)⇒(I):
Assume (II). Take an arbitrary <κ-closed forcing notion P. We must show

that S remains stationary in V P.
Let υ be a regular cardinal with λ, 2|P| < υ. In V Col(κ,υ), for every p ∈ P,

there exists a P-generic filter over V containing p. Hence it suffices to show
that S remains stationary in V Col(κ,υ). But note that Col(κ, υ) ∼= Col(κ, λ) ×
Col(κ, υ). So it suffices to show that S remains stationary in V Col(κ,λ)×Col(κ,υ).

First, S remains stationary in V Col(κ,λ) by (II). Here note that |λ| = κ
in V Col(κ,λ). Moreover Col(κ, υ) is absolute between V and V Col(κ,λ), and so
V Col(κ,λ)×Col(κ,υ) is a < κ-closed forcing extension of V Col(κ,λ). Therefore S
remains stationary in V Col(κ,λ)×Col(κ,υ) by Lem.3.12.

(I)⇒(IV):
Assume (I). Let θ be a regular cardinal ≥ λ in V , let H := Hθ

V , and let
|H|V = υ. Here note that PκH and the internally approachability of sets are
absolute between V and V Col(κ,υ). Moreover V ⊆ V Col(κ,υ). Hence it suffices to
show that the set {M ∈ PκH |M is i.a. ∧M ∩λ ∈ S} is stationary in V Col(κ,υ).
But S remains stationary in V Col(κ,υ) by (1). So it suffices to prove that the set
{M ∈ PκH |M is i.a. } contains a club in V Col(κ,υ). We work in V Col(κ,υ).
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Let F : κ→ H be a surjection. Note that ⟨F [ξ] | ξ < ζ⟩ ∈ H for each ζ < κ
by the <κ-closure of Col(κ, υ). Let C be the set of all limit ζ < κ such that for
every ζ ′ < ζ there exists ζ ′′ with F (ζ ′′) = ⟨F [ξ] | ξ < ζ ′⟩. Then C is a club in κ.
Hence the set {F [ζ] | ζ ∈ C} contains a club in PκH. Moreover ⟨F [ξ] | ξ < ζ⟩ is
an i.a. sequence to F [ζ] for every ζ ∈ C. Thus F [ζ] is i.a. for every ζ ∈ C.

Fact 1.2 and what we mentioned below Fact 1.2 easily follow from Lem.3.11:

Corollary 3.13. Let κ be a regular uncountable cardinal and λ be a cardinal
with λ<κ = λ.

(1) All stationary subsets of Sκλ remain stationary in all < κ-closed forcing
extensions.

(2) Pκλ \ (Sκλ)V becomes nonstationary in V Col(κ,λ).

Proof. Let ψ : <κPκλ → λ be a bijection, and let Sκλ denote Sψκλ. Take an
arbitrary regular cardinal θ ≥ λ. Let C̄ be the set of all M ∈ PκHθ with M ≺
⟨Hθ,∈, κ, λ, ψ⟩. Moreover for each S ⊆ Pκλ let S̄ be the set of all M ∈ PκHθ

satisfying the properties (i) and (ii) in (III) of Lem.3.11.
Note that for eachM ∈ C̄ and each sequence ⟨xξ | ξ < ζ⟩ in Pκλ, ⟨xξ | ξ < ζ⟩

is a ψ-i.a. sequence to M ∩ λ if and only if it witnesses that M satisfies (i) in
(III) of Lem.3.11. Hence

C̄ ∩ S̄ = C̄ ∩ {M ∈ PκHθ |M ∩ λ ∈ S ∩ Sκλ} .

Here note that C̄ is a club. Thus S̄ is stationary in PκHθ if and only if the
set {M ∈ PκHθ | M ∩ λ ∈ S ∩ Sκλ} is stationary in PκHθ. But the latter is
equivalent to that S ∩ Sκλ is stationary in Pκλ. Therefore S̄ is stationary in
PκHθ if and only if S ∩Sκλ is stationary in Pκλ. Both (1) and (2) easily follow
from this fact and Lem.3.11.

The corollary below immediately follows from Lem.3.6 (1) and 3.11:

Corollary 3.14. Let κ be a regular uncountable cardinal, and λ be a < κ-
strong limit cardinal with cf(λ) < κ < λ. Then Pκλ \ (T 0

κλ ∪ T 1
κλ)

V becomes
nonstationary in V Col(κ,λ).

Finally we review the relationship between the preservation and the reflection
of stationary subsets of Pκλ. We give the proof of Fact 1.3:

Proposition 3.15 ([5]). Let κ be a regular uncountable cardinal and λ be a
cardinal > κ. Suppose that ν is a λ-supercompact cardinal with κ < ν < λ. In
V Col(κ,<ν) assume that T is a stationary subset of Pκλ such that all station-
ary subsets of T remain stationary in all <κ-closed forcing extensions. Then
SRκλ(T ) holds in V Col(κ,<ν).

Proof. We make a remark before starting the proof. Several models of ZFC will
appear in the proof below. But <κOn is absolute among all models, and thus
notions such as Col(κ, ∗) and Pκ∗ are absolute among them.
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Now we start the proof. In V let j : V →M be a λ-supercompact embedding
with crit(j) = ν, where crit denotes the critical point. Let G be a Col(κ,<ν)-
generic filter over V , and in V [G] let T be a stationary subset of Pκλ such that
all stationary subsets of T remain stationary in all <κ-closed forcing extensions
of V [G]. We show that SRκλ(T ) holds in V [G]. For this take an arbitrary
stationary S ⊆ T in V [G]. We must show that the following holds in V [G]:

(I) There exists W ⊆ λ such that |W | = κ ⊆W and such that S ∩PκW is
stationary.

First note that

j(Col(κ,< ν)) = Col(κ,< j(ν)) ∼= Col(κ,< ν) × Col(κ, [ν, j(ν))) ,

where Col(κ, [ν, j(ν))) is the < κ-support product of ⟨Col(κ, ν′) | ν ≤ ν′ < j(ν)⟩.
Let H be a Col(κ, [ν, j(ν)))-generic filter over V [G]. We work in V [G∗H] below.

Note that G ∗ H is j(Col(κ,< ν))-generic over M . Then by the standard
argument, j : V → M can be extended to the elementary embedding j∗ :
V [G] →M [G∗H]. For proving (I) in V [G], it suffices to show that the following
holds in M [G ∗H] by the elementarity of j∗:

(II) There exists W ⊆ j∗(λ) such that |W | = κ ⊆ W and j∗(S) ∩ PκW is
stationary.

(Here note that κ < ν = crit(j∗) and thus that j∗(κ) = κ.)
We show that W := j∗[λ] ∈M [G ∗H] witnesses (II). Clearly |j∗[λ]| = |λ| =

κ ⊆ j∗[λ] in M [G∗H]. We prove that j∗(S)∩Pκj∗[λ] is stationary in M [G∗H].
First note that S remains stationary in Pκλ in V [G ∗H] by the assumption

on T . Hence the set {j∗[x] | x ∈ S} is stationary in Pκj∗[λ] in V [G ∗ H].
But j∗(x) = j∗[x] for each x ∈ S because |x| < κ < ν = crit(j∗). Thus
{j∗[x] | x ∈ S} ⊆ j∗(S)∩Pκj∗[λ]. So j∗(S)∩Pκj∗[λ] is stationary in V [G ∗H].
Then j∗(S)∩Pκj∗[λ] is stationary also inM [G∗H] becauseM [G∗H] ⊆ V [G∗H].

This completes the proof.

4 Preservation and reflection below T 0
κλ and T 1

κλ

In this section we prove Thm.1.7 and 1.8. We prove Thm.1.7 in Subsection 4.1
and prove Thm.1.8 in Subsection 4.2.

4.1 T 0
κλ

Here we prove Thm.1.7:

Theorem 1.7. Let κ be a regular uncountable cardinal and λ be a <κ-strong
limit cardinal with cf(λ) < κ < λ.

(1) All stationary subsets of T 0
κλ remain stationary in all < κ-closed forcing

extensions.
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(2) Suppose that ν is a λ-supercompact cardinal with κ < ν < λ. Then
SRκλ(T 0

κλ) holds in V Col(κ,<ν).

Note that Thm.1.7 (2) follows from Thm.1.7 (1) and Prop.3.15. We prove
Thm.1.7 (1). The point is that elements of T 0

κλ is essentially internally ap-
proachable:

Proof of Thm.1.7 (1). Let κ be a regular uncountable cardinal and λ be a <κ-
strong limit cardinal with cf(λ) < κ < λ. Fix a bijection φ :

∪
λ′<λ

<κ(Pκλ′) →
λ, and let T 0

κλ be Tφ,0κλ . Let S be an arbitrary stationary subset of T 0
κλ. It

suffices to show that S satisfies (III) in Lem.3.11.
Let θ be a regular cardinal > λ, and let S̄ be the set of all M ∈ PκHθ such

that M ≺ ⟨Hθ,∈, κ, λ, φ⟩, M ∩ λ ∈ S and M ∩ κ ∈ κ. Then S̄ is stationary
because S is stationary. We prove that if M ∈ S̄, then M satisfies the properties
(i) and (ii) in (III) of Lem.3.11. Fix M ∈ S̄. All we have to show is that M
satisfies (i).

Because M ∩ λ ∈ S ⊆ T 0
κλ there exists a φ-s.i.a. sequence ⟨yξ | ξ < cf(λ)⟩ to

M∩λ. Moreover take an increasing sequence ⟨λξ | ξ < cf(λ)⟩ ∈M converging to
λ. Note that cf(λ) ⊆M because cf(λ) ∈M ∩ κ ∈ κ. Hence all initial segments
of ⟨λξ | ξ < cf(λ)⟩ belong to M .

Let xξ := yξ ∩ λξ for each ξ < cf(λ). Then ⟨xξ | ξ < cf(λ)⟩ is a ⊆-increasing
sequence in Pκλ with

∪
ξ<cf(λ) xξ = M ∩ λ. Moreover ⟨xξ | ξ < ζ⟩ ∈ M for

every ζ < cf(λ) because ⟨xξ | ξ < ζ⟩ can be recovered from ⟨yξ ∩λζ | ξ < ζ⟩ and
⟨λξ | ξ < ζ⟩, both of which belong to M . Therefore ⟨xξ | ξ < cf(λ)⟩ witnesses
that M satisfies (i) in (III) of Lem.3.11.

4.2 T 1
κλ

Here we prove Thm.1.8:

Theorem 1.8. Assume GCH. Let κ be a regular cardinal ≥ ω2 and λ be a
singular cardinal with cf(λ) < κ < λ.

(1) T 1
κλ (defined in V ) remains stationary in all <κ-closed forcing extensions.

But for every stationary T ⊆ T 1
κλ there exists stationary S ⊆ T which

becomes nonstationary in V Col(κ,λ).

(2) SRκλ(T ) fails for every stationary T ⊆ T 1
κλ.

Note that the first statement of Thm.1.8 (1) follows from Lem.3.2, 3.6 and
3.11. In fact we do not need the assumption of GCH for the first statement of
Thm.1.8 (1):

Proposition 4.1. Let κ be a regular cardinal ≥ ω2 and λ be a <κ-strong limit
cardinal with cf(λ) < κ < λ. Then (T 1

κλ)
V remains stationary in Pκλ in all

<κ-closed forcing extensions.

Below we prove the remaining part of Thm.1.8. In fact we prove it from a
weaker assumption than GCH. We use the following assumption:
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Definition 4.2. For a singular cardinal λ let Ψλ be the following assertion:

Ψλ ≡ 2λ is a regular cardinal, and there exist an increasing sequence λ⃗ =
⟨λη | η < cf(λ)⟩ of regular cardinals converging to λ and a cf(λ)-
complete proper ideal J over cf(λ) such that tcf(Πλ⃗/J) = 2λ.

Note that if 2λ = λ+, then tcf(Πλ⃗/BDDcf(λ)) = 2λ for every increasing
sequence λ⃗ of regular cardinals converging to λ. Here BDDcf(λ) denotes the
bounded ideal over cf(λ), i.e. the ideal consisting of all bounded subsets of
cf(λ). Hence if GCH holds, then Ψλ holds for every singular cardinal λ.

Ψλ holds in some other situation. Suppose that λ = ωω is strong limit. Then

2ωω = cf(Pω2ωω,⊆) = maxpcf({ωn | n ∈ ω}) .

The former equality follows from the fact that ωω is strong limit. The latter
is due to Shelah [14], and its proof can be also found in Holz-Steffens-Weitz [7]
§8.4. Hence there exists a maximal ideal J over ω such that tcf(Π⟨ωn | n ∈
ω⟩/J) = 2ωω . Here note that every ideal is ω-complete. Therefore Ψωω holds if
ωω is strong limit. See [14] for other situation in which Ψλ holds.

We prove the following proposition which implies Thm.1.8:

Proposition 4.3. Let κ be a regular uncountable cardinal, and let λ be a < κ-
strong limit cardinal such that cf(λ) < κ < λ and such that Ψλ holds. Then the
following hold:

(1) For every stationary T ⊆ T 1
κλ there exists a stationary S ⊆ T such that S

becomes nonstationary in V Col(κ,λ).

(2) Assume also that κ<κ = κ. Then SRκλ(T ) fails for every stationary T ⊆
T 1
κλ.

The rest of this subsection is devoted to the proof of Prop.4.3. We need
some preliminaries. First we fix our notation in the rest of this subsection. Let

κ: regular uncountable cardinal,
λ: <κ-strong limit cardinal with cf(λ) < κ < λ and Ψλ.

Note that if λ⃗ = ⟨λη | η < cf(λ)⟩ and J witnesses Ψλ, then J ⊇ BDDcf(λ), i.e.
ρ ∈ J for every ρ < cf(λ). This is because if J ̸⊇ BDDcf(λ), then there exists
η∗ < cf(λ) with {η∗} /∈ J by the cf(λ)-completeness of J , and then there are no
<J -increasing sequence of length > λη∗ . Hence we can take a pair of witness
λ⃗ = ⟨λη | η < cf(λ)⟩ and J of Ψλ so that λ0 > κ. Let

λ⃗ = ⟨λη | η < cf(λ)⟩: increasing sequence of regular cardinals converging
to λ with λ0 > κ,

J : cf(λ)-complete proper ideal over cf(λ),

h⃗ = ⟨hα | α < 2λ⟩: (λ⃗, J)-scale.

For each x ∈ Pκλ let
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chx := the characteristic function for x with respect to λ⃗,
i.e. the function on cf(λ) such that chx(η) = sup(x∩λη) for each
η < cf(λ),

βx := the least β < 2λ with chx ≤J hβ .

Finally let
φ :

∪
λ′<λ

<κ(Pκλ′) → λ: bijection, T 1
κλ := Tφ,1κλ ,

θ: regular cardinal > 2λ, ∆: well-ordering of Hθ,
M := ⟨Hθ,∈,∆, κ, λ, λ⃗, J, h⃗, φ⟩.
T := {x ∈ T 1

κλ | x ∩ κ ∈ κ ∧ skullM(x) ∩ λ = x}

Note that T 1
κλ \ T is nonstationary. Note also that cf(λ), {λη | η < cf(λ)} ⊆ x

for every x ∈ T by Lem.2.3.
Next we present lemmata on elements of T :

Lemma 4.4. Let M be an element of PκHθ such that M ∩ λ ∈ T and M ≺
M. Suppose that ⟨xξ | ξ < ζ⟩ is a φ-s.i.a. sequence to M ∩ λ, and let γ∗ :=
supξ<ζ βxξ

< 2λ. Moreover let g be an element of Πλ⃗ such that g � ρ ∈ M for
every ρ < cf(λ). Then g ≤J hγ∗ .

Proof. First of all note that g(η) ∈M ∩λ for every η < cf(λ) by the assumption
on g. Thus for every η < cf(λ) there exists ξ < ζ with g(η) ∈ xξ.

The proof of the lemma splits into two cases by the cofinality of ζ:

Case 1: cf(ζ) < cf(λ).
Take an increasing sequence ⟨ξk | k < cf(ζ)⟩ cofinal in ζ. For each k < cf(ζ)

let Ak := {η < cf(λ) | g(η) ∈ xξk
}. Note that cf(λ) =

∪
k<cf(ζ)Ak by the

remark at the beginning of the proof.
Moreover let Bk := {η ∈ Ak | g(η) > hγ∗(η)} for each k < cf(ζ). Note that

Bk ∈ J for every k < cf(ζ). This follows from the facts that g(η) ≤ chxξk
(η)

for every η ∈ Ak and that chxξk
≤J hγ∗ . Thus B :=

∪
k<cf(ζ)Bk ∈ J by the

cf(λ)-completeness of J .
Here note that B = {η < cf(η) | g(η) > hγ∗(η)} because

∪
k<cf(ζ)Ak =

cf(λ). Therefore B ∈ J means that g ≤J hγ∗ .

Case 2: cf(ζ) ≥ cf(λ).
In this case we claim that there exists ξ∗ < ζ with g[cf(λ)] ⊆ xξ∗ . Note that

if such ξ∗ exists, then g ≤ chxξ∗ ≤J hγ∗ , and so g ≤J hγ∗ . Thus it suffices to
show that such ξ∗ exists.

First note that for each η < cf(λ) there exists ξ < ζ with g[η] ⊆ xξ. This
follows from the remark at the beginning of this proof and the fact that cf(ζ) ≥
cf(λ). For each η < cf(λ) let ξη be the least ξ < ζ with g[η] ⊆ xξ.

Clearly ⟨ξη | η < cf(λ)⟩ is an increasing sequence below ζ. Moreover note
that ⟨ξη | η < ρ⟩ ∈ M for every ρ < cf(λ) because ⟨ξη | η < ρ⟩ can be
recovered from g � ρ and ⟨xξ ∩ λρ | ξ ≤ ξρ⟩ both of which belong to M . Hence
⟨xξη ∩ λ′ | η < ρ⟩ ∈M for every ρ < cf(λ) and every λ′ < λ.

17



Thus if supη<cf(λ) ξη = ζ, then it is easy to see that ⟨xξη
| η < cf(λ)⟩

becomes a φ-s.i.a. sequence to x, which contradicts that x ∈ T 1
κλ. Therefore

ξ∗ := supη<cf(λ) ξη < ζ. Then g[cf(λ)] ⊆ xξ∗ .

Lemma 4.5. Suppose that x ∈ T and that both ⟨xξ | ξ < ζ⟩ and ⟨yι | ι < ϵ⟩ are
φ-s.i.a. sequence to x. Then supξ<ζ βxξ

= supι<ϵ βyι
.

Proof. It suffices to show that supξ<ζ βxξ
≥ supι<ϵ βyι . Let γ∗ := supξ<ζ βxξ

,
and let M := skullM(x). Note that M ∩ λ = x and thus that ⟨xξ | ξ < ζ⟩ is a
φ-s.i.a. sequence to M ∩ λ. Note also that if ι < ϵ, then chyι �ρ ∈ M for every
ρ < cf(λ) because ⟨λη | η < ρ⟩, yι ∩ λρ ∈M . Hence chyι ≤J hγ∗ , i.e. βyι ≤ γ∗,
for every ι < ϵ by Lem.4.4. Therefore supι<ϵ βyι ≤ γ∗.

For each x ∈ T , taking a φ-s.i.a. sequence ⟨xξ | ξ < ζ⟩ to x, let

γx := sup
ξ<ζ

βxξ
< 2λ .

γx is independent of the choice of a φ-s.i.a. sequence to x by the above lemma.
Note that if x ∈ T and ⟨xξ | ξ < ζ⟩ is a φ-s.i.a. sequence to x, then βxξ

≤ βx
for each ξ < ζ. Hence

γx ≤ βx

for every x ∈ T .

Lemma 4.6. Let M be an element of PκHθ such that M ∩ λ ∈ T , M ≺ M
and M is i.a. Then sup(M ∩ 2λ) = γM∩λ.

Proof. Suppose that ⟨Mξ | ξ < ζ⟩ is an i.a. sequence to M . Note that ⟨Mξ ∩ λ |
ξ < ζ⟩ is a φ-s.i.a. sequence to M ∩ λ. Hence γM∩λ = supξ<ζ βMξ∩λ. Moreover
βMξ∩λ ∈ M ∩ 2λ for every ξ < ζ because Mξ ∩ λ ∈ M ≺ M. Therefore
γM∩λ ≤ sup(M ∩ 2λ).

To see the converse inequality, take an arbitrary β ∈ M ∩ 2λ. It suffices to
show that β ≤ γM∩λ.

First note that hβ ∈ M because β ∈ M ≺ M. Hence hβ � ρ ∈ M for every
ρ < cf(λ). Then hβ ≤J hγM∩λ

by Lem.4.4. Therefore β ≤ γM∩λ.

Lemma 4.7. {γx | x ∈ T} is unbounded in 2λ for every stationary T ⊆ T .

Proof. Let T be a stationary subset of T . Take an arbitrary α < 2λ. We must
find x ∈ T with γx ≥ α.

Because T is stationary, we can take M ∈ PκHθ such that M ∩ λ ∈ T ,
M ≺ M and α ∈ M ∩ 2λ. Then hα � ρ ∈ M for every ρ < cf(λ). Then
hα ≤J hγM∩λ

by Lem.4.4. Therefore α ≤ γM∩λ. This completes the proof
because M ∩ λ ∈ T .
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To prove Prop.4.3 (1), for each stationary T ⊆ T we must construct a
stationary S ⊆ T which becomes nonstationary in V Col(κ,λ). To prove (2) we
must construct a nonreflecting stationary S ⊆ T for each stationary T ⊆ T .
The constructions of such S are the same. Here we present the construction.
For each stationary T ⊆ T define ST ⊆ T as follows:

First let ⟨Fα | α ∈ 2λ⟩ be the ∆-least enumeration of all functions from [λ]<ω

to Pκλ. By induction on α < 2λ let zTα be the ∆-least z ∈ T such that

• z is closed under Fα, i.e. Fα(a) ⊆ z for every a ∈ [z]<ω,

• γz > supα′<α βzα′ .

Note that the set {z ∈ T | z is closed under Fα} is stationary. Hence we can
take such zTα ∈ T by Lem.4.7. Then let

ST := {zTα | α < 2λ} .

Here we present basic properties of ST :

Lemma 4.8. Let T be a stationary subset of T .

(1) ST is a stationary subset of T .

(2) The set {γz | z ∈ ST } is nonstationary in 2λ.

(3) Suppose that ζ is a limit ordinal < κ and that ⟨yξ | ξ < ζ⟩ is a strictly
⊆-increasing sequence of elements of ST . Then there are no z ∈ ST with
γz = supξ<ζ βyξ

.

Proof. Throughout this proof we let zα denote zTα for each α < 2λ.

(1) For every function F : [λ]<ω → Pκλ there exists z ∈ ST closed under F by
the first property of the choice of each zα. This means that ST is stationary.
Clearly ST ⊆ T .

(2) First of all recall that γz ≤ βz for every z ∈ T . Hence γzα > supα′<α γzα′

for every α < 2λ by the second property of the choice of zα.
Thus the set {γzα | α < 2λ} = {γz | z ∈ ST } is nonstationary in 2λ.

(3) First of all note that if α′ < α < 2λ, then γzα′ ≤ βzα′ < γzα ≤ βzα by the
choice of zα and the fact that γz ≤ βz for every z ∈ T .

For each ξ < ζ let αξ < 2λ be such that yξ = zαξ
. Then ⟨αξ | ξ < ζ⟩ is strictly

increasing because both ⟨yξ | ξ < ζ⟩ and ⟨βzα | α < 2λ⟩ are strictly increasing.
Let α∗ := supξ<ζ αξ. If α ≥ α∗, then γzα > supξ<ζ βyξ

by the second property
of the choice of zα. On the other hand if α < α∗, then γzα < supξ<ζ βyξ

by the
remark above. Therefore there are no z ∈ ST with γz = supξ<ζ βyξ

.

Below we prove that ST becomes nonstationary in V Col(κ,λ) and is nonreflect-
ing for each stationary T ⊆ T . First we prove that ST becomes nonstationary
in V Col(κ,λ). This implies Prop.4.3 (1):
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Lemma 4.9. ST becomes nonstationary in V Col(κ,λ) for all stationary T ⊆ T .

Proof. Fix a stationary T ⊆ T . Let S̄ be the set of all M ∈ PκHθ such that
M ∩ λ ∈ ST , M ≺ M and M is i.a. By Lem.3.11 it suffices to show that S̄ is
nonstationary in PκHθ.

Note that {sup(M ∩ 2λ) | M ∈ S̄} ⊆ {γz | z ∈ ST } by Lem.4.6 and that
{γz | z ∈ ST } is nonstationary in 2λ by Lem.4.8 (2). Hence {sup(M ∩2λ) |M ∈
S̄} is nonstationary. This implies that S̄ is nonstationary in PκHθ.

Now we have proved Prop.4.3 (1). For (2) we must prove that ST is nonre-
flecting. We prove this by splitting T into the following two sets:

T0 := the set of all x ∈ T which is φ-s.i.a. of length ζ for some ζ < κ
with cf(ζ) = cf(λ).

T1 := the set of all x ∈ T which is φ-s.i.a. of length ζ for some ζ < κ
with cf(ζ) ̸= cf(λ).

Note that T1 is stationary because κ ≥ ω2. In fact we proved that T1 is stationary
in the proof of Lem.3.7 (2). On the other hand, note that elements of T0 are
φ-s.i.a. of length ζ for some ζ with cf(ζ) = cf(λ) but are not i.a. of length cf(λ).
By Lem.3.10, T0 is stationary if the set {ζ < κ | cf(ζ) = cf(λ)} does not belong
to I[κ]. Note also that if x ∈ T0, then x is φ-s.i.a. of length x ∩ κ by Lem.3.9.

Clearly the following two lemmata imply Prop.4.3 (2):

Lemma 4.10. Assume that κ<κ = κ, and suppose that T ⊆ T0 is stationary.
Then ST ∩ PκW is nonstationary for every W ⊆ λ with |W | = κ ⊆W .

Lemma 4.11. Suppose that T ⊆ T1 is stationary. Then ST ∩ PκW is nonsta-
tionary for every W ⊆ λ with |W | = κ ⊆W .

First we prove Lem.4.11. We use the following lemma, due to Shelah:

Lemma 4.12 (Shelah). Suppose that ζ is a limit ordinal < κ with cf(ζ) ̸= cf(λ)
and that ⟨xξ | ξ < ζ⟩ is a ⊆-increasing sequence. Let x :=

∪
ξ<ζ xξ. Then

βx = supξ<ζ βxξ
.

Proof. Clearly βx ≥ supξ<ζ βxξ
. We prove that βx ≤ supξ<ζ βxξ

. Let γ∗ :=
supξ<ζ βxξ

. All we have to show is that chx ≤J hγ∗ . The proof splits into two
cases:

Case 1: cf(ζ) < cf(λ).
Take an increasing cofinal sequence ⟨ξk | k < cf(ζ)⟩ in ζ. Note that

Bk := {η < cf(λ) | chxξk
(η) > hγ∗(η)} ∈ J because βxξk

≤ γ∗. Then
B :=

∪
k<cf(ζ)Bk ∈ J by the cf(λ)-completeness of J .

Here note that chx(η) = supk<cf(ζ) chxξk
(η) for every η < cf(λ). Thus

{η < cf(λ) | chx(η) > hγ∗(η)} = B ∈ J . Therefore chx ≤J hγ∗ .

Case 2: cf(ζ) > cf(λ).
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Assume that chx ̸≤J hγ∗ . Then A := {η < cf(λ) | chx(η) > hγ∗(η)} /∈ J .
For each η ∈ A we can take ξη < ζ such that chxξη

(η) > hγ∗(η) because
chx(η) = supξ<ζ chxξ

(η).
Then ξ∗ := supη∈A ξη < ζ because cf(ζ) > cf(λ). Moreover {η < cf(λ) |

chxξ∗ (η) > hγ∗(η)} = A /∈ J . Hence chxξ∗ ̸≤J hγ∗ . This contradicts that
βxξ∗ ≤ supξ<ζ βxξ

= γ∗.

The following is immediate from the above lemma:

Corollary 4.13. βx = γx for every x ∈ T1.

Now we prove Lem.4.11:

Proof of Lem.4.11. Suppose that T ⊆ T1 is stationary. We claim the following:

Claim. Suppose that ζ is a limit ordinal < κ and that ⟨yξ | ξ < ζ⟩ is a
⊆-increasing sequence in ST with ⟨yξ ∩ κ | ξ < ζ⟩ strictly increasing. Then∪
ξ<ζ yξ /∈ ST .

⊢ Let y :=
∪
ξ<ζ yξ. The proof splits into two cases by the cofinality of ζ.

First suppose that cf(ζ) = cf(λ). Then cf(y ∩ κ) = cf(λ), and thus y /∈ T1

by Lem.3.5. Therefore y /∈ ST because ST ⊆ T ⊆ T1.
Next suppose that cf(ζ) ̸= cf(λ). Assume that y ∈ ST . Then

sup
ξ<ζ

βyξ
= βy = γy

by Lem.4.12 and Cor.4.13. This contradicts Lem.4.8 (3) because y ∈ ST and
⟨yξ | ξ < ζ⟩ is a strictly ⊆-increasing sequence in ST . Therefore y /∈ ST . ⊣

Take an arbitrary W ⊆ λ with |W | = κ ⊆ W . We show that ST ∩ PκW is
nonstationary.

We can take a ⊆-increasing continuous cofinal sequence ⟨xξ | ξ < κ⟩ in PκW
with ⟨xξ ∩ κ | ξ < κ⟩ strictly increasing. Let E := {ξ < κ | xξ ∈ ST }. By the
claim above, if ζ is a limit ordinal < κ with sup(E ∩ ζ) = ζ, then ζ /∈ E. This
implies that E is nonstationary in κ. Therefore ST ∩PκW is nonstationary.

We turn our attention to Lem.4.10. First we extend the notion of the φ-
semi-internally approachability to subsets of λ of cardinality κ:

Definition 4.14. Suppose that W is a subset of λ with |W | = κ. Then W
is said to be φ-semi-internally approachable of length κ if there exists a ⊆-
increasing sequence ⟨wξ | ξ < κ⟩ in Pκλ such that

∪
ξ<κ wξ = W and such that

φ(⟨wξ ∩ λ′ | ξ < ζ⟩) ∈W for every ζ < κ and every λ′ < λ. We call a sequence
⟨wξ | ξ < κ⟩ as above a φ-semi-internally approaching sequence to W .

Clearly Lem.4.10 follows from the two lemmata below:

Lemma 4.15. Suppose that T ⊆ T0 is stationary. If |W | = κ ⊆W ⊆ λ and W
is φ-s.i.a. of length κ, then ST ∩ PκW is nonstationary.

21



Lemma 4.16. Assume that κ<κ = κ. If |W | = κ ⊆ W ⊆ λ and T0 ∩ PκW is
stationary, then W is φ-s.i.a. of length κ.

First we prove Lem.4.15:

Proof of Lem.4.15. Suppose that |W | = κ ⊆ W ⊆ λ and that W is φ-s.i.a. of
length κ. Assume that ST ∩ PκW is stationary. We work for a contradiction.

First note that skullM(W ) ∩ λ = W because skullM(x) ∩ λ = x for each
x ∈ ST and ST ∩ PκW is stationary. Then we can take a φ-s.i.a. sequence
⟨wξ | ξ < κ⟩ to W which is strictly ⊆-increasing continuous. (First take a
φ-s.i.a. sequence ⟨w′

ξ | ξ < κ⟩ to W . Let B be the set of all ξ < κ such that
wξ ∩ κ ) wη ∩ κ for every η < ξ. Note that B is a club in κ. Let ⟨ρξ | ξ < κ⟩ be
the increasing enumeration of B, and let wξ :=

∪
η<ρξ

w′
η for each ξ < κ. Note

that if ζ < κ and κ ≤ λ′ < λ, then ⟨wξ ∩ λ′ | ξ < ζ⟩ ∈ skullM(W ) because this
sequence can be recovered from ⟨w′

ξ ∩λ′ | ξ ≤ ρζ⟩ ∈ skullM(W ). Then it is easy
to see that ⟨wξ | ξ < κ⟩ is a φ-s.i.a. sequence to W which is strictly ⊆-increasing
continuous.)

Next let E := {ξ < κ | wξ ∈ ST }. Then E is stationary in κ. Moreover
define a club C ⊆ κ as follows:

First, for each η < cf(λ), let Cη be the set of all limit ζ < κ such that
φ(⟨wξ ∩λη | ξ < ζ ′⟩) ∈ wζ for every ζ ′ < ζ. Note that Cη is a club in κ for each
η < cf(λ). Next let C ′ be the set of all ζ < κ such that skullM(wξ)∩λ = wξ. C ′

is also a club because skullM(W ) ∩ λ = W . Finally let C := C ′ ∩
∩
η<cf(λ) Cη.

Then C is a club in κ. Here note that ⟨wξ | ξ < ζ⟩ is a φ-s.i.a. sequence to wζ
for every ζ ∈ C by Lem.3.4.

Because E is stationary we can take ζ ∈ E ∩ C such that sup(E ∩ ζ) = ζ.
Then ⟨wξ | ξ < ζ⟩ is a φ-s.i.a. sequence to wζ , and so

γwζ
= sup

ξ<ζ
βwξ

= sup
ξ∈E∩ζ

βwξ
.

But wζ ∈ ST , and ⟨wξ | ξ ∈ E ∩ ζ⟩ is a strictly ⊆-increasing sequence in ST .
Hence this contradicts Lem.4.8 (3).

For Lem.4.16 we introduce the notion of φ-semi-internally unboundedness:

Definition 4.17. Let W be a subset of λ with |W | = κ ⊆ W . We say that W
is M-semi-internally unbounded (M-s.i.u.) if it satisfies the following:

(i) skullM(W ) ∩ λ = W .

(ii) For any y ∈ PκW there exists x ∈ PκW such that y ⊆ x and such that
x ∩ λ′ ∈ skullM(W ) for every λ′ < λ.

Lem.4.16 splits into the following two lemmata:

Lemma 4.18. If |W | = κ ⊆ W ⊆ λ and T0 ∩ PκW is stationary, then W is
M-s.i.u.
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Lemma 4.19. Assume that κ<κ = κ. If |W | = κ ⊆W ⊆ λ and W is M-s.i.u,
then W is φ-s.i.a. of length κ.

First we prove Lem.4.18. Lem.4.18 easily follows from the lemma below.
Recall that if x ∈ T0, then x is φ-s.i.a. of length x ∩ κ by Lem.3.9:

Lemma 4.20. Suppose that x, y ∈ T0, y ⊆ x and y ∩ κ < x ∩ κ. Let ⟨xξ | ξ ∈
x ∩ κ⟩ be a φ-s.i.a. sequence to x. Then y ⊆ xξ for some ξ < x ∩ κ.

Proof. Let ⟨yι | ι < y ∩ κ⟩ be a φ-s.i.a. sequence to y. Moreover let M :=
skullM(x). Note that ⟨yι ∩ λ′ | ι < ζ⟩ ∈ M for every ζ < y ∩ κ and λ′ < λ
because y ⊆ x.

We use the following claim:

Claim. For every λ′ < λ and every ι < y ∩ κ there exists ξ < x ∩ κ with
yι ∩ λ′ ⊆ xξ.

⊢ Fix λ′ < λ and ι < y ∩ κ. Assume that yι ∩ λ′ ̸⊆ xξ for every ξ < κ. We
work for a contradiction.

Note that yι∩λ′ ∈M . In M take a bijection π : |yι∩λ′| → yι∩λ′. Moreover
let ζ be the least ordinal ≤ |yι ∩ λ′| such that π[ζ] ̸⊆ xξ for every ξ < x ∩ κ.
Note that cf(ζ) = cf(x∩κ) = cf(λ). Moreover ζ ∈M ∩κ because ζ ≤ |yι∩λ′| ∈
M ∩ κ ∈ κ. Hence we can take an increasing sequence ⟨ζη | η < cf(λ)⟩ ∈ M
converging to ζ. For each η < cf(λ) let ξη be the least ξ < x ∩ κ such that
π[ζη] ⊆ xξ.

Then ⟨ξη | η < cf(λ)⟩ is an increasing cofinal sequence in x ∩ κ. Moreover
⟨ξη | η < ρ⟩ ∈M for every ρ < cf(λ) because ⟨ξη | η < ρ⟩ can be recovered from
⟨xξ ∩ λ′ | ξ ≤ ξρ⟩ and ⟨π[ζη] | η < ρ⟩ both of which belong to M . From these
it is easy to see that ⟨xξη | η < cf(λ)⟩ is a φ-s.i.a. sequence to x. Hence x is
φ-s.i.a. of length cf(λ). This contradicts that x ∈ T0. ⊣

We proceed to the proof of the lemma. Assume that there are no ξ < x ∩ κ
with y ⊆ xξ. We work for a contradiction.

First note that y∩κ ∈M ∩κ and that cf(y∩κ) = cf(λ). Take an increasing
sequence ⟨ιη | η < cf(λ)⟩ ∈M converging to y∩κ. By the claim above, for each
η < cf(λ), let ξη be the least ξ < x ∩ κ such that yιη ∩ λη ⊆ xξ.

Here note that ⟨yιη ∩ λη | η < cf(λ)⟩ is a ⊆-increasing sequence with its
union y. Note also that ⟨yιη ∩ λη | η < ρ⟩ ∈ M for each ρ < cf(λ) because
⟨yιη ∩ λη | η < ρ⟩ can be recovered from ⟨yι ∩ λρ | ι < ιρ⟩, ⟨ιη | η < ρ⟩ and
⟨λη | η < ρ⟩, all of which belong to M .

Then ⟨ξη | η < cf(λ)⟩ is an increasing cofinal sequence in x∩κ by the remark
above and the fact that there are no ξ < x ∩ κ with y ⊆ xξ. Note also that
⟨ξη | η < ρ⟩ ∈ M for each ρ < cf(λ) because ⟨ξη | η < ρ⟩ can be recovered from
⟨xξ ∩ λρ | ξ ≤ ξρ⟩ and ⟨yιη ∩ λη | η < ρ⟩ both of which belong to M .

Then it is easy to see that ⟨xξη | η < cf(λ)⟩ is a φ-s.i.a. sequence to x. Thus
x is φ-s.i.a. of length cf(λ). This contradicts that x ∈ T0.

Now we prove Lem.4.18:
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Proof of Lem.4.18. Suppose that |W | = κ ⊆ W ⊆ λ and that T0 ∩ PκW is
stationary. First note that skullM(W ) ∩ λ = W because skullM(x) ∩ λ = x for
each x ∈ T0.

To prove (ii) in Def.4.17 take an arbitrary y ∈ PκW . We will find x∗ ∈ PκW
such that y ⊆ x∗ and such that x∗ ∩ λ′ ∈ skullM(W ) for every λ′ < λ. Because
T0 ∩ PκW is stationary we may assume that y ∈ T0.

We can take x ∈ T0∩PκW with y ⊆ x and y∩κ < x∩κ. Let ⟨xξ | ξ < x∩κ⟩
be a φ-s.i.a. sequence to x. By Lem.4.20 there exists ξ < x∩κ with y ⊆ xξ. Note
that xξ ∩ λ′ ∈ skullM(x) ⊆ skullM(W ) for every λ′ < λ. Therefore x∗ := xξ is
what we seek.

Finally we prove Lem.4.19:

Proof of Lem.4.19. Assume that κ<κ = κ. Suppose that |W | = κ ⊆W ⊆ λ and
that W is M-s.i.u. Take an arbitrary ⊆-increasing cofinal sequence ⟨wξ | ξ < κ⟩
in PκW . We show that ⟨wξ | ξ < κ⟩ is a φ-s.i.a. sequence to W . For this it
suffices to show that ⟨wξ ∩ λ′ | ξ < ζ⟩ ∈ skullM(W ) for every ζ < κ and every
λ′ < λ. Let M := skullM(W ).

Fix ζ < κ and λ′ < λ. Then there exists x ∈ Pκλ′ such that
∪
ξ<ζ wξ ∩ λ′ ⊆

x ∈ M by the φ-s.i.u. of W . Here note that ⟨wξ ∩ λ′ | ξ < ζ⟩ ∈ <κP(x). Note
also that |<κP(x)| = κ because κ<κ = κ. Moreover <κP(x) ∈ M and κ ⊆ M .
Therefore <κP(x) ⊆M . Thus ⟨wξ ∩ λ′ | ξ < ζ⟩ ∈M .

This completes the proof of Prop.4.3.
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