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Abstract

For a stationary S∗ ⊆ Pω1ω2 and k = 0, 1, let SRk(S∗) denote the
principle that every stationary S ⊆ S∗ reflects to some ordinal in ω2 \ ω1

of cofinality ωk. We show that if ZFC is consistent then ZFC together with
∃S∗, SRk(S∗) is also consistent for both k = 0, 1.

1 Introduction

In this paper we consider the consistency of the following partial stationary
reflection principle in Pω1ω2:

Definition 1.1. For a stationary S∗ ⊆ Pω1ω2 and k = 0, 1 let SRk(S∗) denote
the following principle:

For every stationary S ⊆ S∗ there exists an ordinal α ∈ ω2 \ω1 such
that cf α = ωk and S ∩ Pω1α is stationary in Pω1α.

Recall that the stationary reflection principle in Pω1ω2, which is often called
the weak reflection principle, states that for every stationary S ⊆ Pω1ω2 there
exists α ∈ ω2\ω1 with S∩Pω1α stationary. Let SR(Pω1ω2) denote this principle.
SRk(Pω1ω2) is strengthening of SR(Pω1ω2), and SRk(S∗) is a partial version of
SRk(Pω1ω2).

It is well known that if a weakly compact cardinal is Lévy collapsed to ω2 then
SR1(Pω1ω2) holds. On the other hand Veličković [8] showed that if SR(Pω1ω2)
holds then ω2 is weakly compact in L. Hence both SR1(Pω1ω2) and SR(Pω1ω2)
are equiconsistent with the weakly compact cardinal axiom. It seems to be an
open question whether SR(Pω1ω2) implies SR1(Pω1ω2) or not.

As for the consistency of SR0 two important facts are already known. First
it is essentially shown in Foreman-Todorčević [2] that SR0(Pω1ω2) is not consis-
tent. Next it is shown in König-Larson-Yoshinobu [4] that if 2ω1 = ω2 then
SR0(S∗) does not hold for any stationary S∗ ⊆ Pω1ω2. As a corollary of
the latter, König-Larson-Yoshinobu [4] obtained that SR(Pω1ω2) together with
2ω1 = ω2 implies SR(Pω1ω2).

But it remains to be unknown whether the existence of a stationary S∗ ⊆
Pω1ω2 such that SR0(S∗) holds is consistent or not. Here we give a positive
answer:
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Theorem 1.2. If ZFC is consistent then so is ZFC with the existence of a
stationary S∗ ⊆ Pω1ω2 such that SR0(S∗) holds.

In the above theorem note that we do not need any large cardinal for the
consistency of SR0(S∗) for some S∗. We prove that this is also the case with
SR1(S∗):

Theorem 1.3. If ZFC is consistent then so is ZFC with the existence of a
stationary S∗ ⊆ Pω1ω2 such that SR1(S∗) holds.

This paper is devoted to the proof of the above theorems. We prove them
in Section 5. In Section 2 we present our notation and basic facts used in this
paper. In Section 3 and 4 we present tools, developed by Shelah, which we
use in the proof of the above theorems. In Section 3 we review the iteration of
T -complete forcing notions, and in Section 4 we present a lemma on stationary
subsets of Pω1ω2.

2 Preliminaries

Here we present our notation and basic facts used in this paper. For those which
are not presented below, consult Baumgartner [1], Jech [3] and Shelah [5].

The notion of club, stationary and nonstationary subsets of Pκλ can be
found in [3]. We often use the fact that S ⊆ Pω1λ is stationary if and only if
for every function f : [λ]<ω → λ there exists x ∈ S which is closed under f .

For S ⊆ Pω1ω2 and α ∈ ω2 \ ω1 we say that S reflects to α if S ∩ Pω1α is
stationary in Pω1α.

For k = 0, 1 let E2
k denotes the set of all limit ordinals α ∈ ω2 with cf α = ωk.

In this paper we extensively use structures and their elementary submodels.
If we say that M is a structure then it means that M is a structure of some
countable language. We say that a structure M is an expansion of a structure
N if M is obtained from N by adding countable many functions, predicates
and constants. We often use the fact that if θ is a regular uncountable cardinal
and M is an elementary submodel of ⟨Hθ,∈⟩ then x ⊆ M for every countable
x ∈ M .

A forcing notion denotes a partial ordering which have the greatest element
and whose universe is a set.

Let P be a forcing notion and δ be a cardinal. We say that P has the δ-chain
condition (δ-c.c.) if there are no antichain in P of cardinality δ. P is said to be
ω-distributive if for every countable family D of dense open subsets of P,

∩
D

is dense in P. P is ω-distributive if and only if the forcing extension by P does
not add any countable sequence of ordinals.

Next let P be a forcing notion and M be a nonempty set. p ∈ P is called
an (M, P)-generic condition if D ∩ M is predense below p for every predense
D ⊆ P with D ∈ M . Moreover for a P-generic filter over V let

M [G] = {ȧG | ȧ ∈ V P ∩ M} ,

where ȧG denotes the evaluation of ȧ by G. We use the following basic fact:
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Fact 2.1 (Shelah [5]). Let P be a forcing notion, θ be a sufficiently large regular
cardinal and M be an elementary submodel of ⟨Hθ,∈, P⟩. Let Ġ be the canonical
name for a P-generic filter. Then the following hold:

(1) 
P “M [Ġ] ≺ ⟨Hθ
V [Ġ],∈⟩ ”.

(Hence if ċ0, ċ1, . . . are P-names in M then 
P “M [Ġ] ≺ ⟨Hθ
V [Ġ],∈

, ċ0, ċ1, . . . ⟩ ”.)

(2) If p is an (M,P )-generic condition then p 
P “M [Ġ] ∩ V = M ”.

An iteration of forcing notions of length ζ will be denoted as ⟨Pξ, Q̇η | ξ ≤
ζ, η < ζ⟩. Each Pξ is a forcing notion and each Q̇η is a Pη-name of a forcing
notion. Pξ consists of total functions p on ξ such that p � η 
Pξ

“ p(η) ∈ Q̇η ”.
We abbreviate 
Pξ

as 
ξ. We let 1̇η denote a fixed Pη-name of the greatest
element of Q̇η. For each p ∈ Pζ , let supp p := {η < ζ | p(η) = 1̇η}.

An iteration ⟨Pξ, Q̇η | ξ ≤ ζ, η < ζ⟩ is called a countable support iteration if
Pξ is the inverse limit of ⟨Pξ′ | ξ′ < ξ⟩ for every limit ξ with cf ξ = ω and is the
direct limit for every ξ with cf ξ > ω. Note that if ⟨Pξ, Q̇η | ξ ≤ ζ, η < ζ⟩ is a
countable support iteration then | supp p| ≤ ω for every p ∈ Pζ .

3 Iteration of T -complete forcing notions

Here we review the iteration of T -complete forcing notions, which was developed
by Shelah [5]. For the completeness of this paper we give the proof of almost
all lemmata.

We begin with the definition of T -completeness:

Definition 3.1 (Shelah). Let P be a forcing notion and M be a countable set.
We call a sequence ⟨pn | n ∈ ω⟩ with the following properties an (M, P)-generic
sequence:

(i) ⟨pn | n ∈ ω⟩ is a descending sequence in P with pn ∈ M for every n ∈ ω.

(ii) For every dense open subset D ∈ M of P there exists n ∈ ω with pn ∈ D.

Here note that if p is a lower bound of some (M, P)-generic sequence then p
is an (M, P)-generic condition.

Definition 3.2 (Shelah). Let P be a forcing notion, λ be an ordinal ≥ ω1 and
T be a subset of Pω1λ. We say that P is T -complete if it satisfies the following:

If θ is a sufficiently large regular cardinal, and M is a countable
elementary submodel of ⟨Hθ,∈, P, T ⟩ with M ∩ λ ∈ T then every
(M, P)-generic sequence has a lower bound in P.

Below we present basics on T -complete forcing notions. As is the case with
properness, there are several slightly different definitions of T -completeness.
First we give one of them. The proof of the following is similar as that for
properness:
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Lemma 3.3. Let P be a forcing notion. Let λ be an ordinal ≥ ω1 and T be a
subset of Pω1λ. Then P is T -complete if and only if it satisfies the following:

There exists a regular cardinal θ with P, T ∈ Hθ and an expansion
M of the structure ⟨Hθ,∈⟩ such that if M is a countable elementary
submodel of M with M ∩ λ ∈ T then every (M, P)-generic sequence
has a lower bound in P.

It is easy to see that if T is stationary then T -completeness implies ω-
distributivity. Next we observe this:

Lemma 3.4 (Shelah). Let λ be an ordinal ≥ ω1 and T be a stationary subset
of Pω1λ. Then every T -complete forcing notion is ω-distributive.

Proof. Suppose that P is a T -complete forcing notions. Take an arbitrary family
{Dn | n ∈ ω} of dense open subsets of P and an arbitrary p ∈ P. We must find
p∗ ≤ p which belongs to

∩
n∈ω Dn.

Let θ be a sufficiently large regular cardinal. Because T is stationary there
exists a countable elementary submodel M of ⟨Hθ,∈, P, T ⟩ such that {p}∪{Dn |
n ∈ ω} ⊆ M and M ∩ λ ∈ T . Then we can take an (M, P)-generic sequence
⟨pn | n ∈ ω⟩ with p0 ≤ p.

By T -completeness, there exists a lower bound p∗ of ⟨pn | n ∈ ω⟩. Then
p∗ ≤ p and p∗ ∈

∩
n∈ω Dn clearly.

T -completeness is preserved by countable support iterations:

Lemma 3.5 (Shelah). Let λ be an ordinal and T be a subset of Pω1λ. Suppose
that I = ⟨Pξ, Q̇η | ξ ≤ ζ, η < ζ⟩, ζ ∈ On, is a countable support iteration of
T -complete forcing notions. Then Pζ is T -complete.

Proof. Let θ be a sufficiently large regular cardinal. Suppose that M is a count-
able elementary submodel of ⟨Hθ,∈, I, T ⟩ and that ⟨pn | n ∈ ω⟩ is an (M, Pζ)-
generic sequence. By Lemma 3.3 it suffices to show that ⟨pn | n ∈ ω⟩ has a
lower bound. We use the following claim:

Claim . Suppose that η ∈ ζ ∩ M . Then ⟨pn � η | n ∈ ω⟩ is an (M, Pη)-generic
sequence. Moreover suppose that p∗ is a lower bound of ⟨pn � η | n ∈ ω⟩. Then
p∗ forces that ⟨pn(η) | n ∈ ω⟩ is an (M [Ġη], Q̇η)-generic sequence, where Ġη is
the canonical name for Pη-generic filter.

Proof of Claim. First we prove the former. Clearly ⟨pn � η | n ∈ ω⟩ is a
descending sequence in Pη ∩ M . Take an arbitrary dense open subset D ∈ M
of Pη. We must show that there exists n ∈ ω with pn � η ∈ D.

Note that the set D′ := {p ∈ Pζ | p � η ∈ D} is dense open in Pζ and belongs
to M . Then by the (M, Pζ)-genericity of ⟨pn | n ∈ ω⟩ there exists n ∈ ω with
pn ∈ D′. Then pn � η ∈ D for such n.

Next we prove the latter. It suffices to show the genericity of ⟨pn(η) | n ∈ ω⟩.
Take an arbitrary Pη-name Ḋ ∈ M of a dense open subset of Q̇η. We show that
there exists n ∈ ω with p∗ 
η “ pn(η) ∈ Ḋ ”.
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It is easy to see that the set D′′ := {p ∈ Pζ | p � η 
η “ p(η) ∈ Ḋ ”} is dense
open in Pζ and belongs to M . Hence there exists n ∈ ω with pn ∈ D′′. Then
p∗ 
η “ pn(η) ∈ Ḋ ” and p∗ ≤ pn � η. � (Claim)

Using the above claim we construct a lower bound p∗ of ⟨pn | n ∈ ω⟩. p∗ will
be a function whose domain is ζ and such that p∗(η) is a Pη-name of a condition
of Q̇η for each η < ζ. By induction on η < ζ we choose p∗(η). The following
are the induction hypotheses:

(i) p∗ � η 
η “p∗(η) is a lower bound of ⟨pn(η) | n ∈ ω⟩”.

(ii) p∗(η) = 1̇η for every η ∈ ζ \ M .

(ii) assures that supp p∗ is countable because M is countable. In general note
that if η ≤ ζ and p∗(η′) has been chosen to satisfy the induction hypotheses for
each η′ < η then p∗ � η = ⟨p∗(η′) | η′ < η⟩ is a lower bound of ⟨pn � η | n ∈ ω⟩.
Note also that p∗ � η is an (M, Pη)-generic condition because ⟨pn � η | n ∈ ω⟩ is
an (M, Pη)-generic condition by Claim.

Now we describe the choice of p∗(η). Suppose that η < ζ and p∗ � η has been
constructed. First suppose also that η /∈ M . In this case let p∗(η) = 1̇η. Note
that supp pn ⊆ M for each n ∈ ω because supp pn is a countable set belonging
to M and M ≺ ⟨Hθ,∈⟩. Hence pn(η) = 1̇η for each n ∈ ω, and thus p∗(η)
satisfies the induction hypothesis (i).

Next suppose that η ∈ M . Let Ġη be the canonical name for Pη-generic
filter. Then note that

p∗ � η 
η “ ⟨pn(η) | n ∈ ω⟩ is an (M [Ġη], Q̇η)-generic sequence ”

by Claim. Moreover

p∗ � η 
η “M [Ġη] ≺ ⟨Hθ
V [Ġη],∈, Q̇η, T ⟩ ∧ M [Ġ] ∩ λ = M ∩ λ ∈ T ”

by Fact 2.1 and the fact that p∗ � η is (M, Pη)-generic. Hence p∗ � η forces
that ⟨pn(η) | n ∈ ω⟩ has a lower bound by T -completeness of Q̇η. Let p∗(η) be
a Pη-name of a lower bound of ⟨pn(η) | n ∈ ω⟩ in Q̇η. Clearly the induction
hypotheses are satisfied.

Now we could construct a lower bound p∗ of ⟨pn | n ∈ ω⟩. This completes
the proof.

At the end of this section we present a condition for iterations to have ω2-c.c.
We use the following condition for forcing notions:

Definition 3.6. A forcing notion P with the following properties is said to be
good:

(i) Every p ∈ P is a function such that |p| = ω and ran p ⊆ ω1.

(ii) p ≤ q in P if and only if p ⊇ q.
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(iii) For each p, q ∈ P if p � (dom p ∩ dom q) = q � (dom p ∩ dom q) then p and
q are compatible.

If P satisfies the following additional condition then we say that P is better:

(iv) If a descending sequence ⟨pn | n ∈ ω⟩ in P has a lower bound then∪
n∈ω pn ∈ P.

The standard argument using the ∆-system lemma shows that if CH holds
then goodness implies the ω2-c.c:

Lemma 3.7. Every good forcing notion has the (2ω)+-c.c.

If CH holds and T is stationary then a countable support iteration of T -
complete better forcing notions have the ω2-c.c:

Lemma 3.8. Let λ be an ordinal ≥ ω1 and T be a stationary subset of Pω1λ.
Suppose that I = ⟨Pξ, Q̇η | ξ ≤ ζ, η < ζ⟩, ζ ∈ On, is a countable support
iteration of T -complete better forcing notions. Then Pζ has the (2ω)+-c.c.

Proof. We may assume that Pη forces that dom q ⊆ On for each q ∈ Q̇η. We
may also assume that 1̇η = ∅̌ for each η < ζ. Outline of our proof is as follows:
First we show that

D := {p ∈ Pζ | ∀η < ζ∃q ∈ V, p(η) = q̌}

is dense in Pζ . After that, we show that the forcing notion obtained by restrict-
ing Pζ to D is good. This together with Lemma 3.7 implies that Pζ has the
(2ω)+-c.c.

Now we start to show that D is dense in Pζ . Take an arbitrary p0 ∈ Pζ . We
find p∗ ≤ p0 which is in D.

Let θ be a sufficiently large regular cardinal, and take a countable elementary
submodel M of ⟨Hθ,∈, I, T ⟩ with p0 ∈ M . We can take such M because T is
stationary. Also, take an (M, Pζ)-generic sequence ⟨pn | n ∈ ω⟩ below p0. Our
p∗ will be a lower bound of ⟨pn | n ∈ ω⟩. The construction of p∗ is based on
that in the proof of Lemma 3.5.

By induction on η < ζ we choose a Pη-name p∗(η) of a condition of Q̇η. The
induction hypotheses are the same as (i) and (ii) in the proof of Lemma 3.5.

Suppose that η < ζ and that p∗ � η has been constructed. If η /∈ M then let
p∗(η) = 1̇η = ∅̌ as in the Proof of Lemma 3.5. Then suppose that η ∈ M . In
this case we claim the following:

Claim . For each n ∈ ω there exists qn ∈ V such that p∗ � η 
η “pn(η) = q̌n ”.

Proof of Claim. Fix n ∈ ω. First note that Pη is ω-distributive by Lemma 3.4
and 3.5. Hence the set

B = {p ∈ Pη | ∃q ∈ V, p 
η “ pn(η) = q̌ ”}

is a dense open subset of Pη. Moreover B ∈ M .
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Then there exists m ∈ ω with pm ∈ B by the (M, Pη)-genericity of ⟨pm � η |
m ∈ ω⟩ (See Claim in the proof of Lemma 3.5). Then p∗ � η ∈ B because p∗ is
a lower bound of ⟨pm | m ∈ ω⟩. Therefore there exists qn ∈ V such that p∗ � η
forces that pn(η) = q̌n. � (Claim)

Let qn be as in the above claim for each n ∈ ω, and let q∗ be
∪

n∈ω qn. Here
the same argument as in the proof of Lemma 3.5 shows that p∗ � η forces that
⟨pn(η) | n ∈ ω⟩ has a lower bound in Q̇η. Then p∗ � η forces that q̌∗ is a lower
bound of ⟨pn(η) | n ∈ ω⟩ by betterness of Q̇η. Let p∗(η) be q̌∗.

Now we have constructed p∗. It follows from the construction of p∗ that
p∗ ≤ p0 and p∗ ∈ D. This completes the proof of the density of D.

Below, for each p ∈ D and each η < ζ, we let p(η) denote q ∈ V such
that p(η) = q̌. Note that p(η) is a countable function from On to ω1 by the
ω-distributivity of Pη.

For each p ∈ D let p̂ be the partial function from ζ × On to ω1 such that

• dom p̂ = {⟨η, α⟩ | α ∈ dom p(η)},

• p̂(η, α) = p(η)(α) for each ⟨η, α⟩ ∈ dom p̂.

Then let P̂ be the forcing notion {p̂ | p ∈ D} ordered by reverse inclusions.
It is easy to see that P̂ is good. Hence P̂ has the (2ω)+-c.c. It is also easy to

check that P̂ is isomorphic to the forcing notion obtained by restricting Pζ to
D. Therefore Pζ has the (2ω)+-c.c. because D is dense in Pζ .

This completes the proof of the lemma.

4 Sup depending stationary set

In the proof of Theorem 1.2 and 1.3 we use the following lemma due to Shelah:

Lemma 4.1 (Shelah). Suppose that ⟨Ei | i < ω1⟩ is a sequence of stationary
subsets of E2

0 . Then the set

T := {x ∈ Pω1ω2 | x ∩ ω1 ∈ ω1 ∧ supx /∈ x ∧ supx ∈ Ex∩ω1}

is stationary in Pω1ω2.

Variants of this lemma are used in Shelah [6] and Shelah-Shioya [7] to obtain
consequences of the stationary reflection principle. Here we present the proof
of the above lemma for the completeness of this paper. We use a two players’
game of length ω.

For f : [ω2]<ω → ω2 and i ∈ ω1 let a(f, i) be the following two players’ game
of length ω:

BAD α0 α1 α2 · · · αn · · ·
GOOD β0 β1 β2 · · · βn · · ·
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In the n-th stage, first BAD chooses αn < ω2 and then GOOD chooses βn with
αn ≤ βn < ω2. GOOD wins if

clf ( i ∪ {βn | n ∈ ω} ) ∩ ω1 = i ,

where clf (x) denotes the closure of x under f . Otherwise BAD wins.
Note that a(f, i) is an open game for BAD and thus it is determined. We

claim the following:

Lemma 4.2. For every f : [ω2]<ω → ω2 there exists i ∈ ω1 such that GOOD has
a winning strategy in a(f, i).

Proof. On the contrary, assume that f is a function from [ω2]<ω to ω2 and that
there are no i ∈ ω1 such that GOOD has a winning strategy in a(f, i). Then
there exists a winning strategy σi for BAD in a(f, i) for every i ∈ ω1. Let
σ⃗ := ⟨σi | i ∈ ω1⟩.

Let θ be a sufficiently large regular cardinal, and let M be a countable
elementary submodel of ⟨Hθ,∈, f, σ⃗⟩. Note that i∗ := M ∩ ω1 ∈ ω1.

By induction on n ∈ ω we take αn, βn ∈ ω2 so that βn ∈ M . Suppose that
n ∈ ω and that ⟨αm, βm | m < n⟩ has been taken. Then let

αn := σi∗(⟨βm | m < n⟩)
βn := sup{σi(⟨βm | m < n⟩) | i ∈ ω1}

Clearly αn ≤ βn < ω2. Moreover βn ∈ M because {βm | m < n} ⊆ M ≺ ⟨Hθ,∈
, σ⃗⟩.

Now ⟨αn, βn | n ∈ ω⟩ is a sequence of moves in a(f, i∗) in which BAD has
played according to the winning strategy σi∗ . Hence BAD wins with this moves.

On the other hand clf (i∗ ∪ {βn | n ∈ ω}) ⊆ M because M is closed under f
and i∗ ∪ {βn | n ∈ ω} ⊆ M . Thus clf (i∗ ∪ {βn | n ∈ ω})∩ ω1 = i∗, that is, GOOD
wins with the moves ⟨αn, βn | n ∈ ω⟩.

This is a contradiction.

Now we can prove Lemma 4.1:

Proof of Lemma 4.1. Take an arbitrary function f : [ω2]<ω → ω2. We find
x∗ ∈ T closed under f .

By Lemma 4.2 take i∗ ∈ ω such that GOOD has a winning strategy σ∗ in
a(f, i∗). Let θ be a sufficiently large regular cardinal, and let M be an uncount-
able elementary submodel of ⟨Hθ,∈, f, σ∗⟩ such that M ∩ ω2 ∈ Ei∗ \ ω1. Note
that ω1 ⊆ M ∩ ω2 ∈ ω2.

Take an increasing sequence ⟨αn | n ∈ ω⟩ converging to M ∩ ω2, and let
βn := σ∗(⟨αm | m ≤ n⟩) ∈ M for each n ∈ ω. Moreover let

x∗ := clf (i∗ ∪ {βn | n ∈ ω}) .

It suffices to show that x∗ ∈ T .
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First note that supx∗ ≥ supn∈ω βn ≥ supn∈ω αn = M ∩ ω2. On the other
hand, x∗ ⊆ M because i∗ ∪ {βn | n ∈ ω} ⊆ M and M is closed under f . Hence
supx∗ ≤ M ∩ ω2. Therefore sup x∗ = M ∩ ω2 ∈ Ei∗ . Moreover supx∗ /∈ x∗.

Note also that ⟨αn, βn | n ∈ ω⟩ is a sequence of moves in a(f, i∗) in which
GOOD has played according to the winning strategy σ∗. Hence x∗ ∩ ω1 = i∗.

Therefore x∗∩ω1 ∈ ω1, supx∗ /∈ x∗ and supx∗ ∈ Ex∗∩ω1 , that is, x∗ ∈ T .

5 Proof of Theorem 1.2 and 1.3

Here we prove Theorem 1.2 and 1.3. In fact we prove slightly more.
To state our result we introduce the following subsets of Pω1ω2 for a �ω1 -

sequence c⃗ = ⟨cα | α ∈ Lim ω2⟩:

S c⃗
0 := the set of all x ∈ Pω1ω2 such that

(i) x ∩ ω1 ∈ ω1 and supx /∈ x,

(ii) o.t. csup x < x ∩ ω1,

(iii) csup x ⊆ x.

S c⃗
1 := the set of all x ∈ Pω1ω2 such that

(i) x ∩ ω1 ∈ ω1 and supx /∈ x,

(ii) o.t. csup x = x ∩ ω1,

(iii) csup x ⊆ x.

The difference between S c⃗
0 and S c⃗

1 is the property (ii) of their elements. As we
see in the following lemma, these sets have maximality properties with respect
to the stationary reflection. Note that the following lemma implies that (every
subsets of) Pω1ω2 \ S c⃗

0 does not reflect to any ordinal in E2
0 and that (every

subset of) Pω1ω2 \ S c⃗
1 does not reflect to any ordinal in E2

1 :

Lemma 5.1. Let c⃗ = ⟨cα | α ∈ Lim ω2⟩ be a �ω1-sequence. Then the following
holds:

(1) S c⃗
0 ∩ Pω1α contains a club in Pω1α for every α ∈ E2

0 \ ω1.

(2) S c⃗
1 ∩ Pω1α contains a club in Pω1α for every α ∈ E2

1 .

In particular both S c⃗
0 and S c⃗

1 are stationary in Pω1ω2.

Proof. (1) Suppose that α ∈ E2
0 \ ω1. Note that o.t. cα is countable. Let C be

the set of all x ∈ Pω1α such that cα ⊆ x and o.t. cα < x∩ ω1 ∈ ω1. Then C is a
club in Pω1α, and C ⊆ S c⃗

0.

(2) Suppose that α ∈ E2
1 . Let ⟨βi | i < ω1⟩ be the increasing enumeration of cα.

Let C be the set of all x ∈ Pω1α such that x ∩ ω1 is a countable limit ordinal,
supx = βx∩ω1 /∈ x and {βi | i ∈ x ∩ ω1} ⊆ x. Then it is easy to see that C is a
club in Pω1α.
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We claim that C ⊆ S c⃗
1. Note that if x ∈ C then

csup x = cβx∩ω1
= {βi | i ∈ x ∩ ω1}

by the coherency of c⃗. Hence if x ∈ C then csup x ⊆ x and o.t. csup x = x ∩ ω1.
Therefore C ⊆ S c⃗

1.

We prove the following:

Theorem 5.2. Assume that GCH and �ω1 holds. Let c⃗ be a �ω1-sequence.
Then there exists an ω2-c.c. ω-distributive forcing extension in which SRk(S c⃗

k)
holds for both k = 0, 1.

In the above theorem note that both S c⃗
0 and S c⃗

1 are absolute between the
ground model and the forcing extension because the extension preserves all
cardinals and adds no new countable subsets of ordinals.

The extension of the above theorem will be obtained by making all nonre-
flecting stationary subsets of S c⃗

0 and S c⃗
1 nonstationary by a countable support

iteration of club shootings.
First we describe the club shooting used in each stage:

Definition 5.3. Let S be a subset of Pω1ω2. Then let C(S) be the forcing notion
consisting of all p such that

(i) p is a function from d × d to ω1,

(ii) if x ∈ S and x ⊆ d then x is not closed under p.

for some d ∈ Pω1ω2. p ≤ q if and only if p ⊇ q for each p, q ∈ C(S). For each
p ∈ C(S) we let dp denote d ∈ Pω1ω2 satisfying (i) and (ii) above.

Below we present easy facts on C(S):

Lemma 5.4. Let S be a subset of Pω1ω2.

(1) For every y ∈ Pω1ω2 the set {p ∈ C(S) | y ⊆ dp} is dense in C(S).

(2) Suppose that G is a C(S)-generic filter over V . Then
∪

G is a total
function from ω2

V × ω2
V to ω1

V , and there are no x ∈ S closed under∪
G.

(3) C(S) is better.

Proof. (1) Take an arbitrary y ∈ Pω1ω2 and an arbitrary p ∈ C(S). We must
find p∗ ≤ p with y ⊆ dp∗ .

Let d∗ be dp∪y, and take γ ∈ ω1 \d∗. Then let p∗ be a function from d∗×d∗

to ω1 defined as follows:

p∗(a) =
{

p(a) · · · if a ∈ dp × dp

γ · · · otherwise

10



All we have to show is that if x ∈ S and x ⊆ d∗ then x is not closed under p∗.
This implies that p∗ is a condition in C(S) below p and that y ⊆ dp∗ = d∗.

Suppose that x ∈ S and x ⊆ d∗. First consider the case when x ⊆ dp. In
this case x is not closed under p because p ∈ C(S). Hence x is not closed under
p∗ which extends p. Next consider the case when x ̸⊆ dp. In this case there
exists a ∈ (x × x) \ (dp × dp). Then p∗(a) = γ /∈ d∗ ⊇ x, and thus p∗(a) /∈ x.
Therefore x is not closed under p∗.

(2) Clear from (1).

(3) Clearly C(S) satisfies the properties (i) and (ii) in Definition 3.6. We check
that C(S) satisfies (iii) and (iv).

First we check (iii). Suppose that p, q ∈ C(S) and that p � (dom p∩dom q) =
q � (dom p ∩ dom q). We must find a common extension p∗ of p and q.

Let d∗ be dp ∪ dq, and take γ ∈ ω1 \ d∗. Then let p∗ be a function from
d∗ × d∗ to ω1 defined as follows:

p∗(a) =

 p(a) · · · if a ∈ dp × dp

q(a) · · · if a ∈ dq × dq

γ · · · otherwise

p∗ is well-defined because p and q coincide on dom p ∩ dom q. All we have to
show is that if x ∈ S and x ⊆ d∗ then x is not closed under p∗.

Suppose that x ∈ S and x ⊆ d∗. If x ⊆ dp then the same argument as in
the proof of (1) shows that x is not closed under p and thus that x is not closed
under p∗. Similarly, if x ⊆ dq then x is not closed under q, and hence x is not
closed under p∗.

So suppose that x ̸⊆ dp and x ̸⊆ dq. In this case take an α ∈ x \ dp and an
β ∈ x \ dq, and let a := ⟨α, β⟩. Then a ∈ x× x but a /∈ dp × dp and a /∈ dq × dq.
Hence p∗(a) = γ /∈ x. Therefore x is not closed under p∗.

Next we check (iv). Suppose that ⟨pn | n ∈ ω⟩ is a descending sequence in
C(S) which has a lower bound. Let p∗ be a lower bound of ⟨pn | n ∈ ω⟩.

Then
∪

n∈ω pn is a restriction of p∗ to (
∪

n∈ω dpn) × (
∪

n∈ω dpn). From this
it is clear that

∪
n∈ω pn ∈ C(S).

Club shootings which we iterate will be T -complete for some stationary
T ⊆ Pω1ω2. Here we present a sufficient condition for C(S) to be T -complete:

Definition 5.5. For S, T ⊆ Pω1ω2 let Φ(S, T ) be the following principle:

There exist a regular cardinal θ > 2ω2 and an expansion M of the
structure ⟨Hθ,∈⟩ such that if M is a countable elementary submodel
of M with M ∩ ω2 ∈ T then S ∩ P(M) ⊆ M .

While we do not use, the standard argument shows that Φ(S, T ) is equivalent
with the following:

If θ is a sufficiently large regular cardinal, and M is a countable
elementary submodel of ⟨Hθ,∈, S, T ⟩ with M ∩ ω2 ∈ T then S ∩
P(M) ⊆ M .
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Now we prove that Φ(S, T ) is a sufficient condition for C(S) to be T -
complete:

Lemma 5.6. Suppose that S, T ⊆ Pω1ω2 and that Φ(S, T ) holds. Then C(S) is
T -complete.

Proof. Let θ and M be witnesses of Φ(S, T ). Suppose that M is a countable
elementary submodel of M with M ∩ ω2 ∈ T and that ⟨pn | n ∈ ω⟩ is an
(M, C(S))-generic sequence. By Lemma 3.3 it suffices to show that ⟨pn | n ∈ ω⟩
has a lower bound. Moreover it suffices for this to show that p∗ :=

∪
n∈ω pn is

a condition in C(S).
Let d∗ be

∪
n∈ω dpn . Then d∗ ∈ Pω1ω2, and p∗ is a function from d∗ × d∗ to

ω1. We show that if x ∈ S and x ⊆ d∗ then x is not closed under p∗.
Suppose that x ∈ S and x ⊆ d∗. First note that dpn ⊆ M for each n ∈ ω

because dpn is a countable set which belongs to M ≺ ⟨Hθ,∈⟩. Hence d∗ ⊆ M ,
and so x ⊆ M . Thus x ∈ M by Φ(S, T ).

Then the set D := {p ∈ C(S) | x ⊆ dp} belongs to M . Moreover D is dense
open in C(S) by Lemma 5.4 (1). Hence there exists n ∈ ω with pn ∈ D. Then
x ⊆ dpn , and x is not closed under pn because pn ∈ C(S). Therefore x is not
also closed under p∗ which extends pn.

Next we present a stationary T ⊆ Pω1ω2 such that club shootings which we
iterate will be T -complete. For a �ω1-sequence c⃗ = ⟨cα | α ∈ Lim ω2⟩ let

T c⃗ := the set of all x ∈ Pω1ω2 such that

(i) x ∩ ω1 ∈ ω1 and supx /∈ x,

(ii) o.t. csup x > x ∩ ω1.

The main difference of T c⃗ from S c⃗
0 and S c⃗

1 is the property (ii) of its elements.
It is easy to see that T c⃗ is stationary using Lemma 4.1:

Lemma 5.7. T c⃗ is stationary in Pω1ω2 for every �ω1-sequence c⃗.

Proof. Suppose that c⃗ = ⟨cα | α ∈ Lim ω2⟩ is a �ω1 -sequence.
For each i ∈ ω1 let Ei := {α ∈ E2

0 | o.t. cα > i}. Note that Ei ∩ β contains
a club in β for every β ∈ E2

1 . Hence Ei is a stationary subset of E2
0 .

Here note also that

T c⃗ = {x ∈ Pω1ω2 | x ∩ ω1 ∈ ω1 ∧ supx /∈ x ∧ supx ∈ Ex∩ω1} .

Therefore T c⃗ is stationary by Lemma 4.1.

We want to show something like that if S is a nonreflecting subset of S c⃗
0 or

S c⃗
1 then C(S) is T c⃗-complete. For this we slightly reduce S c⃗

0 and S c⃗
1 as follows:

We call a sequence π⃗ = ⟨πα | α ∈ ω2⟩ a surjection system if πα is a surjection
from ω1 to α for each α ∈ ω2. For a �ω1 -sequence c⃗, a surjection system
π⃗ = ⟨πα | α ∈ ω2 \ ω1⟩ and k = 0, 1 let

S c⃗,π⃗
k := {x ∈ S c⃗

k | ∀α ∈ x, x ∩ α = πα“(x ∩ ω1)} .

12



Note that S c⃗
k \ S c⃗,π⃗

k is nonstationary.
We claim the following.

Lemma 5.8. Suppose that c⃗ = ⟨cα | α ∈ Limω2⟩ is a �ω1-sequence and that
π⃗ = ⟨πα | α ∈ ω2 \ ω1⟩ is a surjection system.

(1) Let S be a subset of S c⃗,π⃗
0 which does not reflect to any ordinal in E2

0 \ ω1.
Then C(S) is T c⃗-complete.

(2) Let S be a subset of S c⃗,π⃗
1 which does not reflect to any ordinal in E2

1 . Then
C(S) is T c⃗-complete.

To prove Lemma 5.8 we need the following easy lemma:

Lemma 5.9. Suppose that c⃗ = ⟨cα | α ∈ Lim ω2⟩ is a �ω1-sequence. Let θ be
a sufficiently large regular cardinal and M be a countable elementary submodel
of ⟨Hθ,∈, c⃗⟩. Moreover let α∗ be an ordinal in E2

0 such that α∗ < sup(M ∩ ω2),
α∗ /∈ M and sup(M ∩ α∗) = α∗. Then o.t. cα∗ = M ∩ ω1.

Proof. Let β∗ := min(M \α∗). Then β∗ ∈ M ∩ω2, and sup(M ∩β∗) = α∗ < β∗.
Moreover it easily follows from the elementarity of M that β∗ ∈ E2

1 . Let ⟨βi | i ∈
ω1⟩ be the increasing enumeration of cβ∗ . We claim that sup(M ∩β∗) = βM∩ω1 .

First note that cβ∗ ∈ M by the elementarity of M . Hence {βi | i ∈ M∩ω1} ⊆
M . Thus

sup(M ∩ β∗) ≥ sup{βi | i ∈ M ∩ ω1} = βM∩ω1 .

On the other hand assume that sup(M ∩ β∗) > βM∩ω1 . Then we can take
β ∈ M ∩ β∗ with β ≥ βM∩ω1 . Let j be the least ordinal < ω1 such that βj ≥ β.
Then j ≥ M ∩ ω1 because β ≥ βM∩ω1 . But j ∈ M ∩ ω1 by the elementarity of
M . This is a contradiction. Therefore sup(M ∩ β∗) ≤ βM∩ω1 .

Now we have shown that sup(M ∩ β∗) = βM∩ω1 . Recall that α∗ = sup(M ∩
β∗). Hence α∗ = βM∩ω1 . Then cα∗ = {βi | i ∈ M ∩ ω1} by the coherency of c⃗.
Therefore o.t. cα∗ = M ∩ ω1.

Now we prove Lemma 5.8:

Proof of Lemma 5.8. For simplicity of our notation let S0, S1 and T denote
S c⃗,π⃗

0 , S c⃗,π⃗
1 and T c⃗ respectively.

(1) By Lemma 5.6 it suffices to show that Φ(S, T ) holds. Let θ be a sufficiently
large regular cardinal, and let M be a countable elementary submodel of ⟨Hθ,∈
, S, c⃗, π⃗⟩ with M ∩ ω2 ∈ T . Moreover suppose that x ∈ S and x ⊆ M . We show
that x ∈ M . Before starting note that x ∩ ω1 ≤ M ∩ ω1 ∈ ω1.

First we claim the following:

Claim 1. supx ∈ M .

Proof of Claim. On the contrary assume that supx /∈ M . Then note that
M ∩ ω1 ≤ o.t. csup x: If sup x = sup(M ∩ ω2) then M ∩ ω1 < o.t. csup x because
M∩ω2 ∈ T . On the other hand, if supx < sup(M∩ω2) then M∩ω1 = o.t. csup x

by Lemma 5.9.

13



Note also that x ∩ ω1 > o.t. csup x because x ∈ S0. Hence M ∩ ω1 ≤
o.t. csup x < x ∩ ω1. This contradicts that x ⊆ M . �(Claim)

Next we claim the following:

Claim 2. x ∩ ω1 < M ∩ ω1.

Proof of Claim. Assume not. Then x ∩ ω1 = M ∩ ω1. First note that M ∩ α =
πα“(M ∩ ω1) for each α ∈ M ∩ ω2 by the elementarity of M . Hence

M ∩ supx =
∪
α∈x

πα“(M ∩ ω1) =
∪
α∈x

πα“(x ∩ ω1) = x .

The last equality follows from x ∈ S0.
Here note that S ∩ Pω1(supx) is nonstationary by the assumption on S.

Moreover sup x ∈ M ≺ ⟨Hθ,∈, S⟩ by Claim 1. Hence there exists a function
f ∈ M from [supx]<ω to sup x such that every element of S ∩Pω1(supx) is not
closed under f . But x = M∩supx, and so x is closed under f by the elementarity
of M . Because x ∈ S ∩ Pω1(supx) this is a contradiction. �(Claim)

Now x =
∪
{πα“(x ∩ ω1) | α ∈ csup x} because x ∈ S0. Hence x is definable

in ⟨Hθ,∈, c⃗, π⃗⟩ from the parameters x∩ω1 and supx. But both x∩ω1 and supx
belong to M by Claim 1 and 2, and M ≺ ⟨Hθ,∈, c⃗, π⃗⟩. Therefore x ∈ M .

(2) We show that Φ(S, T ) holds. Let θ, M and x be as in the proof of (1). We
show that x ∈ S.

First we claim the following:

Claim 3. supx ∈ M .

Proof of Claim. First note that supx < sup(M ∩ ω2): Otherwise supx =
sup(M ∩ ω2), and

M ∩ ω1 < o.t. csup x = x ∩ ω1

because M ∩ ω2 ∈ T and x ∈ S1. This contradicts that x ⊆ M .
Now assume that sup x /∈ M . Then M ∩ ω1 = o.t. csup x by Lemma 5.9.

Hence M ∩ ω1 = x ∩ ω1 because x ∈ S1. Then the same argument as in the
proof of Claim 2 shows that M ∩ supx = x.

Let β∗ be min(M\supx). Then β∗ ∈ E2
1 , and thus S∩Pω1β

∗ is nonstationary
by the assumption on S. Because β∗ ∈ M ≺ ⟨Hθ,∈, S⟩ there exists a function
f ∈ M from [β∗]<ω to β∗ such that every element of S ∩ Pω1β

∗ is not closed
under f . But x = M ∩ supx = M ∩ β∗, and so x is closed under f by the
elementarity of M . This contradicts that x ∈ S. �(Claim)

Note that x ∩ ω1 = o.t. csup x ∈ M ∩ ω1 by Claim 3 and the elementarity of
M . The rest of the proof is similar as (1).

First x =
∪
{πα“(x∩ω1) | α ∈ csup x}, and thus x is definable in ⟨Hθ,∈, c⃗, π⃗⟩

from the parameters supx and x∩ω1. Moreover both supx and x∩ω1 belongs
to M , and M ≺ ⟨Hθ,∈, c⃗, π⃗⟩. Therefore x ∈ M .
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Now we can prove Theorem 5.2 by combining lemmata above:

Proof of Theorem 5.2. Take a surjection system π⃗ in V . We make all nonre-
flecting subsets of S c⃗,π⃗

0 and S c⃗,π⃗
1 nonstationary by a countable support iteration

of club shootings.
First note that S c⃗,π⃗

k and T c⃗ are absolute in all ω2-c.c. ω-distributive forcing
extensions of V . Let S0, S1 and T denote S c⃗,π⃗

0 , S c⃗,π⃗
1 and T c⃗ respectively. Note

also that |C(S)| = ω2 for every S ⊆ Pω1ω2 in all such extensions.
Then, by Lemmata 3.4, 3.5, 3.8, 5.4, 5.8, by GCH and by the standard book

keeping method, we can construct a countable support iteration ⟨Pξ, Q̇η | ξ ≤
ω3, η < ω3⟩ with the following properties:

(i) Pξ has the ω2-c.c. and is ω-distributive for each ξ ≤ ω3.

(ii) If η < ω3 then 
η “ Q̇η = C(Ṡ) ” for some Pη-name Ṡ such that either


η “ Ṡ ⊆ S0 ∧ Ṡ does not reflect to any ordinal in E2
0 ” ,

or

η “ Ṡ ⊆ S1 ∧ Ṡ does not reflect to any ordinal in E2

1 ” .

Hence 
η “ Q̇η is T -complete and better ∧ |Q̇η| ≤ ω2 ”.

(iii) If ξ < ω3 and Ṡ is a Pξ-name such that either


ξ “ Ṡ ⊆ S0 ∧ Ṡ does not reflect to any ordinal in E2
0 ”

or

ξ “ Ṡ ⊆ S1 ∧ Ṡ does not reflect to any ordinal in E2

1 ”

then there exists η ∈ ω3 \ ξ such that 
η “ Q̇η = C(Ṡ) ”.

Then Pω3 has the ω2-c.c. and is ω-distributive. Let G be a Pω3 -generic filter
over V . Then the standard argument shows that the following both hold in
V [G]:

• If S ⊆ S0 and S does not reflect to any ordinal in E2
0 \ ω1 then S is

nonstationary.

• If S ⊆ S1 and S does not reflect to any ordinal in E2
1 then S is nonsta-

tionary.

That is, SRk(Sk) holds for both k = 0, 1 in V [G]. But note that S c⃗
k \ Sk is

nonstationary. Therefore SRk(S c⃗
k) holds for both k = 0, 1 in V [G].

This completes the proof.
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