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Abstract

Matsubara–Usuba [13] introduced the notion of skinniness and its vari-

ants for subsets of Pκλ and showed that the existence of skinny stationary

subsets of Pκλ is related to large cardinal properties of ideals over Pκλ

and to Jensen’s diamond principle on λ. In this paper, we study the

existence of skinny stationary sets in more detail.
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1 Introduction

In Matsubara–Usuba [13], we introduced the notion of skinniness and its variants

for subsets of Pκλ, where Pκλ denotes the set {x ⊆ λ | |x| < κ} as usual.

The existence of skinny stationary subsets of Pκλ is related to large cardinal

properties of ideals over Pκλ and to Jensen’s diamond principle on λ. In this

paper, we study the existence of skinny stationary subsets of Pκλ in more detail.

Throughout this paper, we let κ denote an uncountable regular cardinal and λ

denote a cardinal ≥ κ.

In order to state the definition of skinniness and its variants, we introduce

some notation:
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Notation. For a set x of ordinals, we define sup∗(x) by sup∗(x) = sup(x) if

sup(x) /∈ x. Let sup∗(x) be undefined if sup(x) ∈ x. For X ⊆ Pκλ, we let

EX := {sup∗(x) | x ∈ X} .

For X ⊆ Pκλ and α ≤ λ, let

Xα := {x ∈ X | sup∗(x) = α} .

Note that EX ⊆ Eλ
<κ ∪{λ} for all X ⊆ Pκλ, where E

λ
<κ = {α < λ | cf(α) < κ}.

Now we present the notion of skinniness and its variants:

Definition 1.1. Let X be a subset of Pκλ and µ be some cardinal.

(1) X is said to be skinny if |Xα| < |Pκα| for every α ≤ λ.

(2) X is said to be really skinny if |Xα| < cf(Pκα,⊆) for every α ≤ λ, where

cf(Pκα,⊆) is the smallest size of a ⊆-cofinal subset of Pκα.

(3) X is said to be skinnier if |Xα| ≤ |α| for every α ≤ λ.

(4) X is said to be skinniest if |Xα| ≤ 1 for every α ≤ λ.

(5) X is said to be µ-skinny if |Xα| < µ for every α ≤ λ.

Note that X is skinniest if and only if X is 2-skinny. Moreover, if X is µ-skinny

for some µ < λ, then {x ∈ X | sup(x) ≥ µ} is skinnier. Note also that X is

µ-skinny if and only if sup∗ ↾X is < µ to one. In particular, X is skinniest if

and only if sup∗ ↾X is one to one. Also, if λ = µ+ and sup(x) ≥ µ for every

x ∈ X, then X is skinnier exactly when sup∗ ↾X is ≤ µ to one.

Before stating our results in this paper, we recall important facts on skinny

stationary sets. For the case where λ is a singular cardinal, we presented the

following result in [12] and [13]:

Theorem 1.2 ((1) Matsubara–Shelah [12], (2) Matsubara–Usuba [13]).

(1) If λ is a strong limit singular cardinal > κ, then there is no skinny sta-

tionary subset of Pκλ.

(2) If λ is a singular cardinal > κ, then there is no skinnier stationary subset

of Pκλ.
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For a regular λ, the existence of skinnier or skinniest stationary subsets of

Pκλ is related to large cardinal properties of ideals over Pκλ:

Theorem 1.3 (Solovay [20]). Suppose λ is regular and κ is λ-supercompact.

Let U be a normal fine ultrafilter over Pκλ. Then there is a skinniest X ⊆ Pκλ

with X ∈ U .

Theorem 1.4 (Matsubara–Usuba [13]). Suppose λ is a regular cardinal with

2<κ < λ = 2<λ. Let X be a stationary subset of Pκλ. If NSκλ ↾X is precipitous,

then X contains a skinnier stationary subset.

It is also known that the existence of skinnier or skinniest stationary sets is

related to Jensen’s diamond principle. We introduce some definitions to state

this fact:

Definition 1.5. Let S be a stationary subset of Eλ
<κ. We say that S bears a

skinny (skinnier, skinniest, µ-skinny) stationary set if there is a skinny (skin-

nier, skinniest, µ-skinny, respectively) stationary X ⊆ Pκλ with EX ⊆ S.

Theorem 1.6 (Shelah [16], Matsubara–Usuba [13]). Let λ be a regular cardinal

> 2<κ. Then the following are equivalent for a stationary S ⊆ Eλ
<κ:

(i) ♢λ(S).

(ii) S bears a skinniest stationary subset of Pκλ, and 2<λ = λ.

(iii) S bears a skinnier stationary subset of Pκλ, and 2<λ = λ.

In this paper, focusing on the case where λ is a regular cardinal, we study

the existence of skinnier and µ-skinny stationary subsets of Pκλ in more detail.

In §3, we will present basic facts on the existence of skinnier stationary sets.

We show that, for many successor cardinals λ, there exists a skinnier stationary

subset of Pκλ. Among other things, we prove the following:

Proposition 1.7. Suppose λ = κ+n for some n < ω. Then every stationary

subset of Eλ
<κ bears a skinnier stationary subset of Pκλ.

In §3, we also observe the relationship between the existence of skinny sta-

tionary sets and the Singular Cardinal Hypothesis SCH. We prove that if there

is a λ+-skinny stationary subset of Pκλ for every regular cardinal λ ≥ κ, then

SCH holds above κ. From this relationship, we also obtain the consistency of

the non-existence of a skinnier stationary subset of Pκκ
+ω+1.
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In §4 of this paper, we relate the existence of skinniest stationary subsets

of Pκλ with combinatorial principles. Recall Theorem 1.4, which states that if

2<κ < λ = 2<λ and NSκλ ↾X is precipitous, then X contains a skinnier sta-

tionary set. For a stationary X ⊆ Pκλ, we introduce a combinatorial principle

♢M
λ (X) which implies that X contains a skinniest stationary set. Moreover,

using this combinatorial principle, we prove the following theorem, which is an

unpublished result of Donder (See König-Larson-Yoshinobu [8], 25 Theorem):

Theorem 1.8 (Donder). Assume V = L. If λ is a regular cardinal, then every

stationary subset of Pκλ has a skinniest stationary subset.

In §4, we also relate the existence of skinniest stationary sets with Jensen’s

□-principle. We show that, under □-principles, similar facts to those proved in

§3 for skinnier sets hold for skinniest sets. In particular, we prove the following:

Theorem 1.9. Suppose λ = κ+n for some n < ω. If □κ+m holds for every

m < n, then there exists a skinniest stationary subset of Pκλ.

This theorem implies that the non-existence of such a skinniest set has a

strong consistency strength. We do not know whether it is consistent.

In §5, we prove some variations of Theorem 1.3. More precisely, we show that

the dual filters of normal saturated ideals over Pκλ contain skinny stationary

subsets of Pκλ with various degrees of skinniness. The degree of skinniness

depends on the degree of saturation of the ideal.

In §6 and §7, we discuss the existence of stationary subsets of Eλ
<κ which

bear no skinnier or µ-skinny stationary sets.

By Theorem 1.6, under the assumption of 2<κ < λ = 2<λ, if S is a stationary

subset of Eλ
<κ such that NSλ ↾S is λ+-saturated, then S cannot bear a skinnier

stationary subset of Pκλ. In §6, we drop the cardinal arithmetical assumption

from this fact. This is done by incorporating the combinatorial principle ♣−
λ,<κ.

Comparing Proposition 1.7 and Theorem 1.9, it is natural to ask whether, if

λ = κ+n for some n < ω and □κ+m holds for all m < n, then every stationary

subset of Eλ
<κ bears a skinniest stationary set. In §7, we prove that this is not

the case. In fact, we prove the following more general theorem. In the following

theorem, notice that if □ν holds in V for a cardinal ν, then it holds in V P since

P preserves all cofinalities.

Theorem 1.10. Let κ, µ and λ be uncountable regular cardinals with κ ≤ µ < λ.

Suppose 2<µ = µ. Then there is a poset P satisfying the following:
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(i) P has the µ+-c.c. and adds no new sequence of ordinals of length < µ. (In

particular, P preserves all cofinalities.)

(ii) In V P, there is a sequence ⟨Sδ | δ < µ⟩ of subsets of Eλ
<κ such that∪

δ<µ Sδ = Eλ
<κ and Sδ bears no µ-skinny stationary subsets of Pκλ for

any δ < µ.

Acknowledgement. The authors are grateful to an anonymous referee for his

or her useful comments and suggestions. Among other things, the notion of

really skinny sets was suggested by a referee.

2 Preliminaries

In this section, we present our notation and basic facts used in this paper.

First, we give some notation on sets of ordinals. For a regular cardinal

µ and an ordinal ν > µ, let Eν
µ (Eν

<µ, Eν
̸=µ) be the set of all α < ν with

cf(α) = µ (cf(α) < µ, cf(α) ̸= µ, respectively). Suppose x is a set of ordinals.

We let o.t.(x) denote the order type of x. Let Lim(x) be the set {α ∈ x |
sup(x ∩ α) = α}. Moreover, let Cl(x) denote the closure of x with respect to

the order topology, i.e. Cl(x) := x ∪ {α ∈ On | sup(x ∩ α) = α}.
Next, we give our notation and basic facts on Pκ(λ). Let cf(Pκλ,⊆) denote

the smallest size of a ⊆-cofinal subset of Pκλ. In this paper, we adopt the

notion of stationary subsets of Pκλ, introduced in Jech [6]. Z ⊆ Pκλ is said

to be club if Z is ⊆-cofinal in Pκλ, and, for any ζ < κ and any ⊆-increasing

sequence ⟨zξ | ξ < ζ⟩ of elements of Z, we have
∪

ξ<ζ zξ ∈ Z. X ⊆ Pκλ is said

to be stationary if X intersects with every club subset of Pκλ. We often use

the following fact (See Jech [7], Exercise 38.10):

Fact 2.1. Suppose X ⊆ Pκλ. Then X is stationary in Pκλ if and only if, for

any function F : <ωλ → λ, there is x ∈ X such that x ∩ κ ∈ κ and x is closed

under F , i.e. F [<ωx] ⊆ x.

Next, we give notation on ideals. Let A be an infinite set. In this paper, an

ideal over A means a non-principal proper ideal over A. Let I be an ideal over

A. Then I∗ denotes the dual filter of I, i.e. I∗ = {A \X | X ∈ I}. For B ⊆ A,

let I ↾B be the ideal over A defined by I ↾B := {X ⊆ A | X ∩B ∈ I}. Let NSλ

and NSκλ denote the non-stationary ideals over λ and Pκλ, respectively. For a
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cardinal µ, we say that I is µ-saturated if there is no X ⊆ P(A) \ I of size µ

such that X0 ∩X1 ∈ I for any distinct X0, X1 ∈ X .

Let I be an ideal over Pκλ. We say that I is normal if it is closed under

taking diagonal unions, that is, for any sequence X⃗ = ⟨Xα | α ∈ λ⟩, its diagonal
union ∇X⃗ = {x ∈ Pκλ | ∃α ∈ x, x ∈ Xα} belongs to I. We say that I is fine

if the set {x ∈ Pκλ | y ̸⊆ x} belongs to I for any y ∈ Pκλ. Note that if I is

normal and fine, then I is κ-complete, that is,
∪

J ∈ I for all J ⊆ I of size < κ.

Finally, we present our notation on forcing. Let P be a poset and µ be a

regular uncountable cardinal. We say that P is µ-closed if every descending

sequence in P of length < µ has a lower bound in P. P has the µ-c.c. if every

antichain in P has size < µ. P is µ-distributive if
∩

D is dense open in P for

every family D of dense open subsets of P with |D| < µ. If P is µ-distributive,

then forcing extensions by P add no new sequences of ordinals of length < µ.

For the proof, see Jech [7] (Chapter 15, Theorem 15.6).

Suppose I is an ideal over a set A. Then let PI be the poset P(A)\I ordered

by inclusions. Note that I is µ-saturated if and only if PI has the µ-c.c. If G is a

PI -generic filter over V , then, in V [G], we can construct an ultrapower of V by

G. This ultrapower is called a generic ultrapower and denoted as UltG(V ). See

Jech [7] (Chapter 22) for more details on generic ultrapowers. We say that I is

precipitous if UltG(V ) is well-founded for any PI -generic filter G over V . Recall

that for a regular uncountable cardinal λ, every λ-complete λ+-saturated ideal

is precipitous. The proof can be found in Jech [7] (Chapter 22).

Let P be a poset and G be a P-generic filter over V . Then, for a set M in

V , we let M [G] = {ȧG | ȧ ∈ M ∧ ȧ is a P-name}, where ȧG is the evaluation of

ȧ by G.

Let γ be an ordinal and µ be a regular uncountable cardinal. We say that

⟨Pα, Q̇β | α ≤ γ, β < γ⟩ is a < µ-support iteration if each Q̇β is a Pβ-name for a

poset, and each Pα consists of all partial functions p on α such that |dom(p)| < µ

and p(β) ∈ Q̇β for all β ∈ dom(p). p0 ≤ p1 in Pα if dom(p0) ⊇ dom(p1), and

p0 ↾ β ⊩Pβ
“p0(β) ≤ p1(β)” for every β ∈ dom(p1). For each α ≤ γ, ⊩Pα is

simply denoted as ⊩α.
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3 Basic facts

In this section, we present basic facts on the existence of skinnier and µ-skinny

stationary sets.

We begin with a lemma, which tells us that, for many successor cardinals λ,

there is a skinnier stationary subset of Pκλ.

Lemma 3.1. Suppose cf(Pκλ,⊆) = λ. Then every stationary subset of Eλ+

<κ

bears a skinnier stationary subset of Pκλ
+.

We can easily prove this lemma using the following well-known theorem:

Theorem 3.2 (Shelah [17]). The smallest size of stationary subsets of Pκλ is

cf(Pκλ,⊆).

Proof. Suppose S is a stationary subset of Eλ+

<κ. We will construct a skinnier

stationary X ⊆ Pκλ
+ with EX ⊆ S.

By Theorem 3.2 and the assumption of the lemma, for each α ∈ S \λ, there
is a stationary Xα ⊆ Pκα of size λ. Notice that, for each α ∈ S \ λ, there are

club many x ∈ Pκα with sup(x) = α. So we may assume that sup(x) = α for

all x ∈ Xα. Let X :=
∪
{Xα | α ∈ S \ λ}. Then X is skinnier, and EX ⊆ S.

In order to prove that X is stationary, take an arbitrary F : <ωλ+ → λ+.

It suffices to find x ∈ X such that x ∩ κ ∈ κ and x is closed under F . Since S

is stationary in λ+, there is α ∈ S which is closed under F . Then, since Xα is

stationary in Pκα, there is x ∈ Xα such that x ∩ κ ∈ κ and x is closed under

F ↾<ωα. This x is as desired.

By induction on n < ω, it can be easily prove that cf(Pκκ
+n,⊆) = κ+n for

all n < ω. So Proposition 1.7 follows from Lemma 3.1.

The size of stationary subsets of Pκκ
+n is studied in Baumgartner [2] in

details. Let X be the set of all x ∈ Pκκ
+n such that cf(sup(x∩κ+i)) > ω for all

i ≤ n. It is easy to see that X is stationary if κ ≥ ω2. In [2], it was proved that

there is a club Z ⊆ Pκκ
+n such that for any x, y ∈ X ∩ Z, if sup(x ∩ κ+i) =

sup(y ∩ κ+i) for all i ≤ n, then x = y. So X ∩ Z is a skinnier stationary set for

such a club Z. In [2], it was also proved that |Z| ⊇ (κ+n)ω = max{κ+n, κω} for

any club Z ⊆ Pκκ
+n. So if κω > κ+n, then any club subset of Pκκ

+n is not

κω-skinny.

With some cardinal arithmetical assumptions, we have the existence of skin-

niest stationary sets. Shelah [18] proved that, for a cardinal λ, if 2λ = λ+, then
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♢λ+(S) holds for every stationary S ⊆ Eλ+

̸=cf(λ). Note that, if max{κ, cf(λ)+} ≥
ω2, then Eλ+

<κ ∩ Eλ+

̸=cf(λ) is stationary. Hence the following proposition is an

immediate corollary of Theorem 1.6:

Proposition 3.3. Let λ be a cardinal with 2λ = λ+. If max{κ, cf(λ)+} ≥ ω2,

then there is a skinniest stationary subset of Pκλ
+.

Next, we turn our attention to the non-existence of skinny stationary sets.

We first observe the relationship between the existence of skinny stationary sets

and the Singular Cardinal Hypothesis SCH, which asserts that 2δ = δ+ for every

singular strong limit cardinal δ. For this, we prove the next lemma:

Lemma 3.4. Suppose λ is a regular cardinal. Then there exists a λ+-skinny

stationary subset of Pκλ if and only if cf(Pκλ,⊆) = λ.

Proof. Note that there is a λ+-skinny stationary subset of Pκλ if and only if

there is a stationary subset of Pκλ of size λ. The latter is equivalent to that

cf(Pκλ,⊆) = λ by Theorem 3.2.

Note that if λ is a singular strong limit cardinal with cf(λ) < κ < λ, then

2λ = λcf(λ) ≤ cf(Pκλ,⊆) · κcf(λ) = cf(Pκλ,⊆) ≤ cf(Pκλ
+,⊆) .

Thus, if λ is a singular strong limit cardinal with cf(λ) < κ < λ and 2λ > λ+,

then cf(Pκλ
+,⊆) > λ+. So, by Lemma 3.4, there is no λ++-skinny stationary

subset of Pκλ
+ for such λ. Note also that, by Silver’s Theorem [19], if SCH fails

above κ, then there is such λ. Hence we have the following:

Corollary 3.5. Suppose there exists a λ+-skinny stationary subset of Pκλ for

every regular λ ≥ κ. Then SCH holds above κ.

Recall that Magidor [10] constructed a model in which SCH fails at ℵω. In

this model, cf(Pκℵω+1,⊆) ≥ 2ℵω > ℵω+1 for all κ < ℵω by the same calculation

as above. By Lemma 3.4, in this model, there is no skinnier stationary subset

of Pκκ
+ω+1 for every κ < ℵω. In this sense, Proposition 1.7 is optimal.

It is known that there may be a regular cardinal λ with 2<λ = λ for which

Pκλ contains no skinnier stationary subsets. By Proposition 3.3, if λ is a regular

cardinal with 2<λ = λ and there is no skinnier stationary subset of Pκλ, then

either λ is an inaccessible cardinal, or κ = ω1 and λ is a successor of a singular

cardinal of countable cofinality.
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First we mention the case where λ is inaccessible. Using Radin forcing,

Woodin [3] built a model in which ♢λ fails for an inaccessible cardinal λ. By

Theorem 1.6, in this model of Woodin, there is no skinnier stationary subset of

Pκλ for every regular uncountable cardinal κ < λ.

As for the case where κ = ω1 and λ is a successor of a singular cardinal of

countable cofinality with 2<λ = λ, we do not know whether the non-existence

of a skinnier stationary subset of Pκλ is consistent:

Question 3.6. Is it consistent that there is no skinnier stationary subset of

Pω1λ for some successor cardinal λ with 2<λ = λ ?

Gitik–Rinot [4] obtained a partial result on this question. They built a model

of ¬♢ℵω+1
(S) for some stationary S ⊆ E

ℵω+1
ω together with GCH. So, in this

model, S bears no skinnier stationary subset of Pω1
ℵω+1.

4 Combinatorial principles

By Theorem 1.4, if λ is a regular cardinal > κ with 2<κ < λ = 2<λ and NSκλ is

precipitous, then every stationary subset of Pκλ contains a skinnier stationary

subset, that is, skinnier stationary sets are dense in the family of stationary

subsets of Pκλ. We consider when skinnier stationary sets are dense. For this,

we introduce the following variant of Jensen’s diamond principle.

Definition 4.1. Let X be a stationary subset of Pκλ. Then ♢M
λ (X) is the

following assertion:

There is a sequence ⟨bα | α ∈ EX⟩ such that

(i) bα ⊆ α for every α ∈ EX ,

(ii) for every B ⊆ λ, the set {x ∈ X | B ∩ sup(x) = bsup(x)} is

stationary in Pκλ.

A sequence ⟨bα | α ∈ EX⟩ satisfying (i) and (ii) is called a ♢M
λ (X)-sequence.

This variant of Jensen’s diamond principle produces a skinniest stationary

subset of X as follows:

Proposition 4.2. Let λ be a regular cardinal and X be a stationary subset of

Pκλ. If ♢M
λ (X) holds, then X has a skinniest stationary subset.
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Proof. We may assume that x ∩ κ ∈ κ and sup(x) /∈ x for every x ∈ X, since

there are club many such x ∈ Pκλ. Using ♢M
λ (X), it is not difficult to build a

sequence ⟨fα | α ∈ EX⟩ such that

(i) fα : <ωα → α for every α ∈ EX ,

(ii) for every F : <ωλ → λ, the set {x ∈ X | F ↾ <ω sup(x) = fsup(x)} is

stationary in Pκλ.

Now, for each α ∈ EX , we consider the set of all x ∈ Xα closed under fα. If

this set is not empty, then choose an element and call it xα. Otherwise, let xα

be any element of Xα. Clearly Y := {xα | α ∈ EX} is a skinniest subset of X.

So it suffices to prove that Y is stationary in Pκλ.

Take an arbitrary function F : <ωλ → λ. Since xα ∩ κ ∈ κ for each α ∈ EX ,

it is enough to find α∗ ∈ EX such that xα∗ is closed under F . By property (ii)

of ⟨fα | α ∈ EX⟩, we can find some x∗ ∈ X such that F ↾<ω sup(x∗) = fsup(x∗),

and x∗ is closed under F . Let α∗ := sup(x∗) ∈ EX . Note that xα∗ must be

closed under fα∗ since x∗ ∈ Xα∗
, and x∗ is closed under fα∗ . Then xα∗ is closed

under F since xα∗ ⊆ α∗, and F ↾<ωα∗ = fα∗ .

Next, we consider when ♢M
λ (X) holds. First, we show that it holds in L.

Note that Theorem 1.8 is an immediate consequence of the next proposition

together with Proposition 4.2:

Proposition 4.3. Assume V = L. Suppose λ is a regular cardinal > κ, and X

is a stationary subset of Pκλ. Then ♢M
λ (X) holds.

Proof. By shrinkingX if necessary, we may assume that x∩κ ∈ κ and sup(x) /∈ x

for every x ∈ X. We will define a sequence b⃗ = ⟨bα | α ∈ EX⟩, where bα ⊆ α for

each α ∈ EX , by induction on α as follows:

Assume that α ∈ EX and ⟨bβ | β ∈ EX ∩ α⟩ has been defined. Let ⟨b, f⟩ be
the <L-least pair with the following properties, if such a pair exists:

(i) b ⊆ α, and f : <ωα → α.

(ii) There are no x ∈ Lα ∩ X such that b ∩ sup(x) = bsup(x) and x is closed

under f .

Then let bα := b. If such a pair ⟨b, f⟩ does not exist, then let bα := ∅.
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We have defined b⃗. We prove that b⃗ is a ♢M
λ (X)-sequence. For a contradic-

tion, assume not. Then, for some B ⊆ λ and some F : <ωλ → λ, there are no

x ∈ X such that B ∩ sup(x) = bsup(x) and x is closed under F . Let ⟨B,F ⟩ be

the <L-least such pair. Moreover, let M := ⟨Lλ+ ,∈, λ,X, b⃗, B, F ⟩, and, for each
α < λ, let Mα be the Skolem hull of α in M. Note that there are club many

α < λ with Mα ∩ λ = α. Since X is stationary in Pκλ, there exists x ∈ X such

that Msup(x)∩λ = sup(x) and x is closed under F . Let α := sup(x), b := B∩α,

and f := F ↾ <ωα. By the standard argument using the transitive collapse of

Mα, it is easy to see that ⟨b, f⟩ is the <L-least pair satisfying (i) and (ii) above.

So bα = b, and hence bsup(x) = B ∩ sup(x). Since x is closed under F , this

contradicts the choice of B and F .

As we mentioned before, if 2<κ < λ = 2<λ, and NSκλ is precipitous, then

skinnier stationary subsets of Pκλ are dense. Recall the fact, due to Goldring

[5], that NSκλ is precipitous if a Woodin cardinal is Lévy collapsed to λ+. The

next proposition, together with Proposition 4.2, tells us that the Lévy collapse

of an inaccessible cardinal always provides the denseness of skinniest stationary

subsets:

Proposition 4.4. Let λ be a regular cardinal > κ, and suppose δ is an in-

accessible cardinal > λ. Then Col(λ,< δ) forces that ♢M
λ (X) holds for every

stationary X ⊆ Pκλ, where Col(λ,< δ) is the Levy collapse making δ = λ+.

To prove this proposition, we use the following lemma:

Lemma 4.5. Let λ be a regular cardinal > κ, and suppose X is a stationary

subset of Pκλ.

(1) If 2<λ = λ, then Add(λ) forces ♢M
λ (X), where Add(λ) denotes the poset

<λ2 ordered by reverse inclusions.

(2) If ♢M
λ (X) holds, then every λ-closed forcing preserves ♢M

λ (X).

Proof. Without loss of generality, we may assume that x∩κ ∈ κ and sup(x) /∈ x

for every x ∈ X.

(1) Let P be the poset of all functions p such that dom(p) ∈ λ and p(α) ⊆ α for

every α ∈ dom(p). P is ordered by reverse inclusions. It is easy to see that P is

forcing equivalent to Add(λ). We will show that if G is a P-generic filter over

V , then ⟨
∪
G(α) | α ∈ EX⟩ is a ♢M

λ (X)-sequence in V [G].
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Take a P-name Ḃ for a subset of λ, a P-name Ḟ for a function from <ωλ to

λ, and an element p of P. It suffices to find p∗ ≤ p and x∗ ∈ X such that

p∗ ⊩P “Ḃ ∩ sup(x∗) =
∪
Ġ(sup(x∗)) ∧ x∗ is closed under Ḟ” .

Using the λ-closedness of P, by induction on α < λ, we can build a descending

sequence ⟨pα | α < λ⟩ below p such that pα decides Ḃ ∩ α and Ḟ ↾<ωα for each

α < λ. Let B ⊆ λ and F : <ωλ → λ be the evaluations of Ḃ and Ḟ by

⟨pα | α < λ⟩, that is,

• B = {β ∈ λ | (∃α < λ) pα ⊩P “β ∈ Ḃ”},

• Ḟ (a) = β if and only if pα ⊩P “Ḟ (a) = β” for some α < λ.

Since X is stationary, we can find some x∗ ∈ X such that x∗ is closed under

F and dom(pα) < sup(x∗) for every α < sup(x∗). Let q :=
∪

α<sup(x∗) pα. Then

q forces that Ḟ ↾<ω sup(x∗) = F ↾<ω sup(x∗) and Ḃ ∩ sup(x∗) = B ∩ sup(x∗).

Note also that dom(q) ≤ sup(x∗). Now take p∗ ≤ q such that p∗(sup(x∗)) =

B ∩ sup(x∗). Then p∗ and x∗ are clearly as desired.

(2) Let b⃗ = ⟨bα | α ∈ EX⟩ be a ♢M
λ (X)-sequence. Take an arbitrary λ-closed

poset P. We show that b⃗ will remain a ♢M
λ (X)-sequence in any P-generic exten-

sion. Let Ḃ be a P-name for a subset of λ, Ḟ be a P-name for a function from
<ωλ to λ, and p be a condition in P. We will find p∗ ≤ p and x∗ ∈ X such that

p∗ ⊩P “Ḃ ∩ sup(x∗) = bsup(x∗) ∧ x∗ is closed under Ḟ” .

As in the proof of (1), we can build a descending sequence ⟨pα | α < λ⟩ below
p such that pα decides Ḃ ∩α and Ḟ ↾<ωα. Let B and F be the evaluations of Ḃ

and Ḟ by ⟨pα | α < λ⟩. Since b⃗ is a ♢M
λ (X)-sequence in V , there is some x∗ ∈ X

such that B ∩ sup(x∗) = bsup(x∗) and x∗ is closed under F . Let p∗ := psup(x∗).

Then p∗ and x∗ are clearly as desired.

Proof of Proposition 4.4. Suppose G is a Col(λ,< δ)-generic filter over V . In

V [G], letX be a stationary subset of Pκλ. ThenX ∈ V [G∩Col(λ,< γ)] for some

γ < δ. Let G0 denote G ∩ Col(λ,< γ). Note that, in V , Col(λ,< δ) is forcing

equivalent to Col(λ,< γ) × Add(λ) × Col(λ,< δ). Furthermore, both Add(λ)

and Col(λ,< δ) are absolute among all models in consideration between V and

V [G]. There are an Add(λ)-generic filter G1 over V [G0] and a Col(λ,< δ)-

generic filter G2 over V [G0][G1] such that V [G] = V [G0][G1][G2]. We know
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that ♢M
λ (X) holds in V [G0][G1] by Lemma 4.5 (1), and then it also holds in

V [G0][G1][G2] = V [G] by Lemma 4.5 (2).

Next, we relate the existence of skinniest stationary sets with Jensen’s square

principle. Recall Jensen’s square principle:

Definition 4.6. □λ asserts the following:

There exists ⟨cα | α ∈ Lim(λ+)⟩ such that

(i) cα is club in α of order type ≤ λ for each α ∈ Lim(λ+),

(ii) if α ∈ Lim(λ+), and β ∈ Lim(cα), then cβ = cα ∩ β.

A sequence ⟨cα | α ∈ Lim(λ+)⟩ satisfying (i) and (ii) is called a □λ-sequence.

We prove that, under □-principle, some variation of Lemma 3.1 holds for

skinniest stationary sets. Note that Theorem 1.9 is an immediate consequence

of the following theorem since κ is a skinniest club subset of Pκκ.

Theorem 4.7. Suppose λ is regular. If □λ holds, and there exists a skinniest

(skinny, really skinny, µ-skinny) stationary subset of Pκλ, then there exists

a skinniest (skinny, really skinny, µ-skinny, respectively) stationary subset of

Pκλ
+, too.

Proof. Let Y be a skinniest (skinny, really skinny, µ-skinny) stationary subset

of Pκλ and c⃗ = ⟨cα | α ∈ Lim(λ+)⟩ be a □λ-sequence. For each α ∈ Lim(λ+),

let ⟨βα
η | η < o.t.(cα)⟩ be an increasing enumeration of cα. Take a sequence

π⃗ = ⟨πβ | β < λ+⟩ such that πβ is a surjection from λ to β for every β < λ+.

Then let X be the set of all x ∈ Pκλ
+ with α := sup(x) /∈ x such that

(i) x ∩ λ ∈ Y ,

(ii) sup(x ∩ λ) /∈ x, and sup(x ∩ λ) = o.t.(cα),

(iii) x =
∪
{πβα

η
[x ∩ λ] | η ∈ x ∩ λ}.

We claim thatX is a skinniest (skinny, really skinny, µ-skinny) stationary subset

of Pκλ
+.

First, we prove that X is skinniest (skinny, really skinny, µ-skinny). Take an

arbitrary α ∈ Eλ+

<κ. It suffices to prove that |Xα| ≤ |Y o.t.(cα)|. By (ii), for every

x ∈ Xα, we have x ∩ λ ∈ Y o.t.(cα). Moreover, by (iii), the mapping x 7→ x ∩ λ

is an injection from Xα to Y o.t.(cα). So |Xα| ≤ |Y o.t.(cα)|.

13



Next, we prove that X is stationary in Pκλ
+. For this, it is enough to prove

that X∩Pκγ is stationary in Pκγ for every γ < λ+ of cofinality λ. Take γ < λ+

of cofinality λ and a function F : <ωγ → γ arbitrarily. We will find x ∈ X∩Pκγ

such that x ∩ κ ∈ κ and x is closed under F .

Take a sufficiently large regular cardinal θ, and let M be the structure

⟨Hθ,∈, κ, λ, γ, c⃗, π⃗, F ⟩. Since Y is stationary, we can take M ≺ M such that

|M | < κ, M ∩ κ ∈ κ and M ∩ λ ∈ Y . Let x := M ∩ γ ∈ Pκγ. Then x ∩ κ ∈ κ,

and x is closed under F . So it suffices to show that x ∈ X.

Let α := sup(x). Clearly α /∈ x, and x satisfies (i). We will check (ii) and

(iii). For this, note that cγ ∈ M and cγ is a club subset of γ of order type λ.

Then the following are easily seen using the elementarity of M :

(iv) α ∈ Lim(cγ), and so cα = cγ ∩ α.

(v) sup(cγ ∩ x) = sup(x) = α.

(vi) cγ ∩ x = {βγ
η | η ∈ x ∩ λ}.

First, we check (ii). Clearly ξ := sup(x ∩ λ) /∈ x. By (v) and (vi), we have

βγ
ξ = α. Then ξ = o.t.(cγ ∩α) = o.t.(cα) by (iv). Next, we check (iii). From (v)

and the elementarity of M , it easily follows that x =
∪
{πβ [x∩ λ] | β ∈ cγ ∩ x}.

Moreover cγ ∩ x = {βα
η | η ∈ x ∩ λ} by (iv) and (vi). So x satisfies (iii).

We end this section with the following question:

Question 4.8. Is the non-existence of skinniest stationary subsets of Pκκ
+n

consistent with ZFC?

5 Saturated ideals

In this section, we prove some variants of Theorem 1.3. More precisely, we show

that, for every regular cardinal λ, the dual filters of saturated ideals over Pκλ

contain skinny stationary subsets of Pκλ with various degrees of skinniness. The

degree of skinniness depends on the degree of saturation of ideals.

In Matsubara [11], it is proved that if there is an ω-strategically closed normal

ideal over Pκλ, then SCH holds between κ and λ. The proofs we present in this

section are based upon the idea of the proof of this result.
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Our first theorem tells us that if (2<κ)+ < λ, and λ is regular, then the

existence of a λ-saturated normal fine ideal over Pκλ implies the existence of a

skinnier stationary subset of Pκλ.

Theorem 5.1. Let λ be a regular cardinal > κ. Suppose I is a λ-saturated

normal fine ideal over Pκλ. Then there is a (2<κ)+-skinny subset of Pκλ which

is in I∗.

The following lemma will be used to prove the above theorem and the next

theorem as well:

Lemma 5.2. Suppose λ and I are as in Theorem 5.1. Let S be a stationary

subset of Eλ
<κ. Then

X := {x ∈ Pκλ | cf(sup(x)) > ω ∧ S ∩ sup(x) is stationary in sup(x)} ∈ I∗ .

Proof. Take an arbitrary PI -generic filter G over V . In V [G], note that the

ultrapower of V by G is well-founded since I is λ-saturated. Let M be its

transitive collapse and j : V → M be the ultrapower map. It suffices to prove

that j[λ] ∈ j(X). Below we work in V [G].

First note that λ is regular in V [G] since PI has the λ-c.c. Thus cf(j[λ]) =

λ > ω in V [G]. Then this also holds in M since M ⊆ V [G]. We must show that

j(S) ∩ sup(j[λ]) is stationary in sup(j[λ]) in M . For this, note that S remains

stationary in λ in V [G], since PI has the λ-c.c. Moreover, S ⊆ (Eλ
<κ)

V , and

j ↾(Eλ
<κ)

V is continuous since the critical point of j is κ. Then j[S] is stationary

in sup(j[λ]) in V [G]. But j[S] ⊆ j(S) ∩ sup(j[λ]). Thus j(S) ∩ sup(j[λ]) is

stationary in sup(j[λ]) in V [G]. This also holds in M since M ⊆ V [G].

Proof of Theorem 5.1. Take a partition ⟨Sβ | β < λ⟩ of Eλ
ω into stationary sets.

Let X be the set of all x ∈ Pκλ such that cf(sup(x)) > ω and Sβ ∩ sup(x)

is stationary in sup(x) for all β ∈ x. Then X ∈ I∗ by Lemma 5.2 and the

normality of I. So it suffices to prove that X is (2<κ)+-skinny.

Take an arbitrary α ∈ Eλ
<κ. We prove that |Xα| ≤ 2<κ. Let B be the set of

all β < α such that Sβ ∩ α is stationary in α. Take a club c ⊆ α of size cf(α).

Then ⟨Sβ ∩ c | β ∈ B⟩ is a pairwise disjoint sequence of non-empty subsets of c.

So |B| ≤ |c| = cf(α) < κ. Moreover Xα ⊆ P(B). So |Xα| ≤ 2|B| ≤ 2<κ.

Next, we show that more stringent requirements on saturation of our ideal

I guarantee the existence of a skinniest subset of Pκλ which is in I∗:

15



Theorem 5.3. Let λ be a regular cardinal > κ and δ be a cardinal with δ < κ+κ

and δ ≤ λ. Suppose I is a δ-saturated normal fine ideal over Pκλ. Then there

exists a skinniest subset of Pκλ which is in I∗.

Proof. To define a skinniest X ∈ I∗, we do some preliminaries. First, note that

κ is weakly inaccessible by the assumptions of our theorem. (If κ = µ+, then

forcing with PI collapses the cardinality of λ to be µ, violating λ-saturation of

I.) Since δ < κ+κ, there is some ν < κ such that |REG ∩ [κ, δ)| < |REG ∩ ν|,
where REG denotes the class of all regular cardinals. For each µ ∈ REG ∩ ν,

fix a partition ⟨Tµ
β | β < λ⟩ of Eλ

µ into stationary sets. Let h be the function on

Pκλ defined by

h(x) := {cf(o.t.(x ∩ γ)) | γ ∈ REG ∩ [κ, δ)} .

Note that REG ∩ ν \ h(x) ̸= ∅ for every x ∈ Pκλ.

Now let X be the set of all x ∈ Pκλ such that cf(sup(x)) > ω, and

x = {β < λ | Tµ
β is stationary in sup(x)}

for every µ ∈ REG ∩ ν \ h(x). We will prove that X ∈ I∗ and X is skinniest.

First, we prove that X is skinniest. Suppose that x, y ∈ X and sup(x) =

sup(y) = α. We show that x = y. Since |h(x)|, |h(y)| < REG ∩ ν, we can pick

µ ∈ REG ∩ ν \ (h(x) ∪ h(y)). Then x = {β < λ | Tµ
β is stationary in α} = y.

Next, we prove that X ∈ I∗. Let X0 be the set of all x ∈ Pκλ such that

cf(sup(x)) > ω and Tµ
β ∩sup(x) is stationary in sup(x) for every µ ∈ REG∩ν and

every β ∈ x. Moreover, let X1 be the set of all x ∈ Pκλ such that Tµ
β ∩ sup(x) is

non-stationary in sup(x) for every µ ∈ REG∩ν \h(x) and every β ∈ λ\x. Then
X = X0 ∩X1. Moreover, X0 ∈ I∗ by Lemma 5.2 together with the normality

and the κ-completeness of I. So it suffices to show that X1 ∈ I∗.

Take an arbitrary PI -generic filter G over V . In V [G], letM be the transitive

collapse of the ultrapower of V by G, and let j : V → M be the ultrapower map.

It suffices to prove that j[λ] ∈ j(X1). Let α := sup(j[λ]). Take an arbitrary

µ ∈ REGM ∩ ν \ j(h)(j[λ]), and let ⟨Tβ | β < j(λ)⟩ be j(⟨Tµ
β | β < λ⟩). We

must prove that, in M , Tβ ∩ α is non-stationary in α for any β ∈ j(λ) \ j[λ].
For this, first we prove that cfM (γ) ̸= µ for any γ ∈ REGV \ {µ}. Suppose

γ ∈ REGV \{µ}. If γ < κ, then γ = j(γ) is regular inM , and so cfM (γ) = γ ̸= µ.

Next, suppose γ ≥ δ. Then γ is regular in V [G] by the δ-c.c. of PI , and hence
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this also holds in M . Thus cfM (γ) = γ ̸= µ. Finally, suppose that γ ∈ [κ, δ).

Then

cfM (γ) = cfM (o.t.(j[γ])) = cfM (o.t.(j(γ) ∩ j[λ])) ∈ j(h)(j[λ]) .

Since µ /∈ j(h)(j[λ]), we have cfM (γ) ̸= µ.

Thus S := (Eλ
µ)

V = (Eλ
µ)

M . Note that j ↾ S is continuous since µ < κ.

Hence (Eα
µ )

M \ j[S] is non-stationary in α in M . But j[S] ⊆
∪

β∈j[λ] Tβ , and

⟨Tβ | β < j(λ)⟩ is a pairwise disjoint sequence of subsets of (E
j(λ)
µ )M since

⟨Tµ
β | β < λ⟩ is a partition of S. Therefore Tβ ∩ α is non-stationary in α in M

for any β ∈ j(λ) \ j[λ].

6 Saturation of NSλ ↾S
Recall that the λ+-saturation of NSλ ↾ S implies the failure of ♢λ(S). So, by

Theorem 1.6, assuming 2<κ < λ = 2<λ, if NSλ ↾S is λ+-saturated, then S does

not bear a skinnier stationary subset of Pκλ. It turns out that we can drop the

assumption on cardinal arithmetic from this proposition:

Theorem 6.1. Suppose λ is a regular cardinal > κ and S is a stationary subset

of Eλ
<κ. If NSλ ↾ S is λ+-saturated, then S cannot bear a skinnier stationary

subset of Pκλ.

To present our proof, we use the following combinatorial principle:

Definition 6.2. Suppose that λ is a regular cardinal > κ and S is a stationary

subset of Eλ
<κ. Let ♣−

λ,<κ(S) be the following assertion:

There is a sequence ⟨bα | α ∈ S⟩ such that

(i) bα ⊆ Pκα and |bα| ≤ α for each α ∈ S,

(ii) for any cofinal B ⊆ λ, the set {α ∈ S | ∃b ∈ bα (sup(B ∩ b) =

α)} is stationary in λ.

A sequence ⟨bα | α ∈ S⟩ satisfying (i) and (ii) is called a ♣−
λ,<κ(S)-sequence.

First, we prove the following lemma. Gitik–Rinot [4] proved the same lemma

for the case λ is a successor cardinal. We state our proof for the sake of com-

pleteness.
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Lemma 6.3. Suppose that λ is a regular cardinal > κ and X is a skinnier

stationary subset of Pκλ. Then ♣−
λ,<κ(EX) holds.

Proof. We prove that ⟨Xα | α ∈ EX⟩ is a ♣−
λ,<κ(EX)-sequence. Clearly it

satisfies property (i) of ♣−
λ,<κ. We will prove that it also satisfies (ii).

Take an arbitrary cofinal B ⊆ λ. Define a function F : λ → λ by F (β) =

min(B\β) for each β < λ. Let Y be the set of all x ∈ X such that sup(x) /∈ x and

x is closed under F . Then Y is stationary in Pκλ, and so EY is a stationary

subset of EX . Moreover, for each α ∈ EY , if we take x ∈ Y α ⊆ Xα, then

sup(B ∩ x) = α. Hence ⟨Xα | α ∈ EX⟩ satisfies (ii) for B.

The next theorem, together with the last lemma, immediately provides a

proof for Theorem 6.1. Rinot [14] proved the next theorem for the case when λ

is a successor cardinal.

Theorem 6.4. Suppose that λ is a regular cardinal > κ and S is a stationary

subset of Eλ
<κ. If NSλ ↾S is λ+-saturated, then ♣−

λ,<κ(S) fails.

Our proof of this theorem is modeled after the proof of the well-known fact

that if λ = µ+, then there is no λ+-saturated normal ideal over λ concentrating

on Eλ
<cf(µ), which follows from the theorem by Shelah [15] (Chapter XIII, 4.9

Lemma) stating that if λ is a regular cardinal in V , then (λ+)V is not a cardinal

in any outer model satisfying cf(λ) < cf(|λ|). As in the proof of this fact, the

following notion of strongly pairwise almost disjoint families plays a central role

in our proof:

Definition 6.5 (Shelah [15]). Let ρ be a limit ordinal and B be a family of

cofinal subsets of ρ. B is said to be strongly pairwise almost disjoint if, for

every B′ ⊆ B of size ≤ ρ, there is a function σ : B′ → ρ such that B0 ∩ B1 ⊆
max{σ(B0), σ(B1)} for any distinct B0, B1 ∈ B.

In the proof of the above mentioned theorem by Shelah [15] (Chapter XIII,

4.9 Lemma), it is mentioned that if λ is a regular cardinal, then there is a

strongly pairwise almost disjoint family B of cofinal subsets of λ with |B| = λ+:

Suppose λ is regular. It is well-known that there is a pairwise almost disjoint

family B of cofinal subsets of λ with |B| = λ+. We claim that B is strongly

pairwise almost disjoint. Suppose {Bα | α < λ} ⊆ B. For each β < λ, let

σ(Bβ) := sup{sup(Bβ∩Bα)+1 | α < β}. Then σ(Bβ) < λ for all β < λ since λ is

regular. Moreover, if α < β < λ, then Bα∩Bβ ⊆ σ(Bβ) ≤ max{σ(Bα), σ(Bβ)}.

18



To present our proof of Theorem 6.4, we need the next lemma concerning

strongly pairwise almost disjoint families:

Lemma 6.6. Suppose that ρ is a limit ordinal and B is a strongly pairwise

almost disjoint family of cofinal subsets of ρ. Let b be a subset of ρ with |b|+ ≤ ρ.

Then |{B ∈ B | sup(B ∩ b) = ρ}| ≤ |b|.

Proof. Let B′ := {B ∈ B | sup(B ∩ b) = ρ}. For a contradiction, assume

|B′| > |b|. Note that b is cofinal in ρ. In particular, cf(ρ) ≤ |b|.
Take B′′ ⊆ B′ with |B′′| = |b|+ ≤ ρ. Since B is strongly pairwise almost

disjoint, there is σ : B′′ → ρ such that B0 ∩ B1 ⊆ max{σ(B0), σ(B1)} for

all distinct B0, B1 ∈ B′′. Since cf(ρ) ≤ |b|, we can take α∗ < ρ such that

B∗ = {B ∈ B′′ | σ(B) < α∗} has size |b|+. Then {B \ α∗ | B ∈ B∗} is a

pairwise disjoint family of size |b|+, whose members all intersect with b. This is

a contradiction.

Now we present a proof of Theorem 6.4:

Proof of Theorem 6.4. Towards a contradiction, assume that ♣−
λ,<κ(S) holds,

where NSλ ↾S is λ+-saturated. Let ⟨bα | α ∈ S⟩ be a ♣−
λ,<κ(S)-sequence. Take

a strongly pairwise almost disjoint family B of cofinal subsets of λ with |B| = λ+.

Let P be PNSλ↾S and Ġ be the canonical name for a P-generic filter. In V P,

let M be the transitive collapse of the ultrapower of V by Ġ, and let j : V → M

be the ultrapower map. Here note that ⊩P “λ ∈ j(S)”. Let ḃλ be a P-name

for the λ-th element of j(⟨bα | α ∈ S⟩), and let Ȧ be a P-name for the set

{B ∈ B | ∃b ∈ ḃλ (sup(B ∩ b) = λ)}.
Now note that P forces the following:

(i) B remains a strongly pairwise disjoint family.

(ii) |b|+ ≤ λ for every b ∈ ḃλ.

(iii) |ḃλ| ≤ λ.

(i) is because, by the λ+-c.c. of P, every subset of B of size ≤ λ in the extension

can be covered by a subset of B of size ≤ λ in the ground model. For (ii),

note that, in M , |b|+ ≤ κ < λ for every b ∈ ḃλ, since j(⟨bα | α ∈ S⟩) is

a ♣−
j(λ),<κ(j(S))-sequence. Then this also holds in V P since λM ∩ V P ⊆ M .

Finally, (iii) follows from the fact that j(⟨bα | α ∈ S⟩) is a ♣−
j(λ),<κ(j(S))-

sequence in M .
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By Lemma 6.6 and (i)–(iii) above, we know that ⊩P “|Ȧ| ≤ λ”. By the

λ+-c.c. of P in V , we can take A∗ ⊆ B of size ≤ λ such that ⊩P “Ȧ ⊆ A∗”. Take

B ∈ B \ A∗. Then P forces that there is no b ∈ ḃλ with sup(B ∩ b) = λ. Here

note that P forces j(B) ∩ λ = B. Thus P forces that there is no b ∈ ḃλ with

sup(j(B)∩b) = λ. On the other hand, the set {α ∈ S | ∃b ∈ bα (sup(B∩b) = α)}
is stationary since ⟨bα | α ∈ S⟩ is a ♣−

λ,<κ(S)-sequence, and this set forces that

there is b ∈ ḃλ with sup(j(B) ∩ b) = λ. This is a contradiction.

7 Bearing no µ-skinny stationary sets

In this section, we prove Theorem 1.10. Throughout this section, let µ be a

regular cardinal with κ ≤ µ < λ.

Before we present the details of our proof, we sketch its outline. First, we

force our sequence ⟨Sδ | δ < µ⟩ of subsets of Eλ
<κ with certain desirable prop-

erties described in the beginning of §7.2. That forcing is presented in Lemma

7.8. Then we perform a < µ-support iteration of some “club shooting” posets of

length 2λ, making all of Sδ (δ < µ) of our sequence bear no µ-skinny stationary

subsets of Pκλ. In order to guarantee the µ-distributivity and the µ+-c.c. of

our iteration, we rely on the notion of Z-closedness which is described in §7.1.

7.1 Z-closed forcing

In this subsection, we introduce the notion of Z-closed forcing for a stationary

subset Z of Pµλ. This notion is a generalization of that of E-complete forcing,

which was introduced by Shelah [15] (Chapter V, §1). We also present basic

properties of Z-closed forcings, which will be used in the proof of Theorem 1.10.

More precisely, we show that if Z is fat, then the Z-closedness implies the µ-

distributivity and is preserved by < µ-support iteration. Here the notion of fat

subsets of Pµλ is the one introduced in Krueger [9], which generalizes the notion

of fat subsets of a regular cardinal introduced by Abraham-Shelah [1].

First, we define the notion of Z-closed forcing:

Notation. Let P be a poset and M be a set. An (M,P)-generic sequence is a

descending sequence ⟨pξ | ξ < ζ⟩ in P∩M for some ordinal ζ such that for every

dense open D ⊆ P with D ∈ M , there is ξ < ζ with pξ ∈ D. We say that P is

M -closed if every (M,P)-generic sequence has a lower bound in P.
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Definition 7.1. Let Z be a subset of Pµλ. We say that a poset P is Z-closed if,

for every sufficiently large regular cardinal θ and every M ≺ ⟨Hθ,∈, µ, λ, Z,P⟩
of size < µ with

∪
(Pµλ ∩M) ∈ Z, we have that P is M -closed.

In the above definition, note that P is Z-closed if there are a sufficiently large

regular cardinal θ and a countable expansion M of ⟨Hθ,∈, µ, λ, Z,P⟩ such that

P is M -closed for every M ≺ M of size < µ with
∪
(Pµλ ∩M) ∈ Z. This can

be proved by the same argument as a well-known similar fact on proper forcing.

Note also that, if θ is a sufficiently large regular cardinal, M is an elementary

submodel of ⟨Hθ,∈, µ, λ⟩ of size < µ, and M∩µ ∈ µ, then
∪
(Pµλ∩M) = M∩λ.

We will use these facts without any notice.

Next, we recall the notion of fat subsets of Pµλ introduced by Krueger [9],

which generalizes the notion of fat subsets of a regular uncountable cardinal due

to Abraham-Shelah [1]. The following definition is slightly different from the

one in [9]. But it is easy to see that they are equivalent if µ is an inaccessible

cardinal or µ = ν+ for a regular cardinal ν with ν<ν = ν.

Notation. A sequence ⟨Mξ | ξ < ζ⟩ for some ordinal ζ is called a nice ∈-chain
if it is ⊆-increasing continuous and ⟨Mη | η ≤ ξ⟩ ∈ Mξ+1 for every ξ with

ξ + 1 < ζ.

Definition 7.2 (Krueger [9]). Let Z be a subset of Pµλ. We say that Z is fat if,

for every regular cardinal θ > λ, every countable expansion M of the structure

⟨Hθ,∈⟩, and every regular cardinal ν < µ, there is a nice ∈-chain ⟨Mξ | ξ ≤ ν⟩
of elementary submodels of M of size < µ such that Mξ∩µ ∈ µ and Mξ∩λ ∈ Z

for every limit ξ ≤ ν.

Krueger [9] proved that if µ is an inaccessible cardinal or µ = ν+ for a

regular cardinal ν with ν<ν = ν, then Z ⊆ Pµλ is fat if and only if there is a

µ-distributive forcing notion shooting a ⊆-increasing continuous sequence in Z

of length µ, which is ⊆-cofinal in Pµλ. Here, as we mentioned at the beginning

of this subsection, we prove that if Z is fat, then the Z-closedness implies the

µ-distributivity:

Lemma 7.3. Suppose that Z is a fat subset of Pµλ and P is a Z-closed poset.

Then P is µ-distributive.

Proof. By induction on cardinals ν ≤ µ, we prove that P is ν-distributive.

Clearly P is ω-distributive. Suppose ν is a cardinal ≤ µ and P is ν′-distributive
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for every cardinal ν′ < ν. We prove that P is ν-distributive. If ν is a limit

cardinal or a successor of a singular cardinal, then this is clear. So assume ν is a

successor of a regular cardinal, and let ν− denote the predecessor of ν. Suppose

p ∈ P and D is a family of dense open subsets of P with |D| ≤ ν−. We will find

p∗ ≤ p with p∗ ∈
∩
D.

Take a sufficiently large regular cardinal θ and a well-ordering ∆ of Hθ, and

let M := ⟨Hθ,∈,∆, µ, λ, Z,P, p,D⟩. First we claim the following:

Claim. There is a nice ∈-chain ⟨Mξ | ξ ≤ ν−⟩ of elementary submodels of M
such that |Mξ| < ν− for every ξ < ν− and

∪
(Pµλ ∩ Mξ) ∈ Z for every limit

ξ ≤ ν−.

Proof of Claim. By fatness of Z, there is a nice ∈-chain ⟨Nξ | ξ ≤ ν−⟩ of

elementary submodels of M of size < µ such that Nξ ∩ µ ∈ µ and Nξ ∩ λ ∈ Z

for every limit ξ ≤ ν−. For each ξ ≤ ν−, let Mξ be the Skolem hull of the set

{⟨Nη | η ≤ ξ′⟩ | ξ′ < ξ} in M. We prove that ⟨Mξ | ξ ≤ ν−⟩ is as desired.
Clearly, |Mξ| < ν− for every ξ < ν−. It is also clear that ⟨Mξ | ξ ≤ ν−⟩

is ⊆-increasing continuous. Moreover, ⟨Mξ | ξ ≤ ζ⟩ ∈ Mζ+1 for every ζ < ν−,

since ⟨Nη | η ≤ ζ⟩ ∈ Mζ+1, and, for each ξ ≤ ζ, Mξ is the Skolem hull of

{⟨Nη | η ≤ ξ′⟩ | ξ′ < ξ} in the restriction of M to Nζ . So ⟨Mξ | ξ ≤ ν−⟩ is a

nice ∈-chain.
It remains to check that

∪
(Pµλ ∩ Mξ) ∈ Z for every limit ξ ≤ ν−. Fix a

limit ordinal ξ ≤ ν−. First, note that
∪
(PµHθ ∩Mξ) ⊆ Nξ, since Mξ ⊆ Nξ ≺

M, and Nξ ∩ µ ∈ µ. Moreover, Nξ ⊆
∪
(PµHθ ∩ Mξ) since Nξ =

∪
η<ξ Nη,

and Nη ∈ PµHθ ∩ Mξ for every η < ξ. So
∪
(PµHθ ∩ Mξ) = Nξ. Then∪

(Pµλ ∩Mξ) = Nξ ∩ λ ∈ Z. □(Claim)

Let ⟨Mξ | ξ ≤ ν−⟩ be as in Claim. Note that D ⊆ Mν− since ν− ⊆ Mν ≺ M.

By induction on ξ, we will construct a descending sequence ⟨pξ | ξ ≤ ν−⟩ in P
below p. We will construct it so that, for each ζ < ν−, ⟨pξ | ξ ≤ ζ⟩ is definable
in M from ⟨Mξ | ξ ≤ ζ⟩. So pξ will belong to Mξ+1 for all ξ < ν−. Let

p0 := p. Suppose ξ < ν− and pξ has been defined. Let Dξ+1 be the family

of all dense open subsets of P which belong to Mξ+1. Then
∩
Dξ+1 is dense

open since |Dξ+1| < ν−, and P is ν−-distributive. Let pξ+1 be the ∆-least

element of
∩
Dξ+1 below pξ. Suppose ξ is a limit ordinal ≤ ν−, and ⟨pη | η < ξ⟩

has been defined. By the construction at successor steps and the fact that

Mξ =
∪

η<ξ Mη, we know that ⟨pη | η < ξ⟩ is (Mξ,P)-generic. Then ⟨pη | η < ξ⟩
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has a lower bound since P is Z-closed, and
∪
(Pµλ ∩ Mξ) ∈ Z. Let pξ be the

∆-least lower bound of ⟨pη | η < ξ⟩ in P.
Let p∗ := pν− . Then p∗ ≤ p. Moreover, p∗ ∈ D for every dense open D ⊆ P

with D ∈ Mν− . Then p∗ ∈
∩
D since D ⊆ Mν− .

In the rest of this subsection, we prove that if Z is fat, then Z-closedness is

preserved by < µ-support iterations.

Proposition 7.4. Let Z be a fat subset of Pµλ and P⃗ = ⟨Pα, Q̇β | α ≤ γ, β < γ⟩
be a < µ-support iteration of Z-closed posets for some ordinal γ. Then Pγ is

Z-closed.

For this, we will need the following lemmata:

Lemma 7.5. Let Z and P⃗ = ⟨Pα, Q̇β | α ≤ γ, β < γ⟩ be as in Proposition 7.4,

and suppose γ is a limit ordinal. Let θ be a sufficiently large regular cardinal and

M be an elementary submodel of ⟨Hθ,∈, µ, λ, Z, P⃗⟩ such that |M | < µ, M∩µ ∈ µ

and M ∩ λ ∈ Z. Let p⃗ = ⟨pξ | ξ < ζ⟩ be a descending sequence in Pγ ∩M such

that ⟨pξ ↾α | ξ < ζ⟩ is (M,Pα)-generic for every α ∈ M ∩γ. Then p⃗ has a lower

bound in Pγ .

Proof. First, note that |M ∩ γ| < µ and dom(pξ) ⊆ M ∩ γ for every ξ < ζ. We

will construct a lower bound p∗ of p⃗ such that dom(p∗) = M ∩ γ. It suffices to

define p∗(β) by induction on β ∈ M ∩ γ so that p∗ ↾β + 1 is a lower bound of

⟨pξ ↾β + 1 | ξ < ζ⟩.
Suppose that β ∈ M ∩ γ and p∗ ↾ β has been defined. Note that p∗ ↾ β

is a lower bound of ⟨pξ ↾ β | ξ < ζ⟩, which is an (M,Pβ)-generic sequence.

Let Ġβ be the canonical name for a Pβ-generic filter. Then p∗ ↾ β forces that

M [Ġβ ] ≺ ⟨Hθ
V Pβ

,∈, Q̇β⟩, M [Ġβ ]∩µ = M ∩µ ∈ µ and M [Ġβ ]∩λ = M ∩λ ∈ Z.

Moreover, p∗ ↾ β forces that ⟨pξ(β) | ξ < ζ⟩ is (M [Ġβ ], Q̇β)-generic. So p∗ ↾ β
forces that ⟨pξ(β) | ξ < ζ⟩ has a lower bound in Q̇β by Z-closedness of Q̇β . Let

p∗(β) be a Pβ-name which p∗ ↾β forces to be a lower bound of ⟨pξ(β) | ξ < ζ⟩.
Then p∗(β) is as desired.

Lemma 7.6. Let Z and P⃗ = ⟨Pα, Q̇β | α ≤ γ, β < γ⟩ be as in Proposition 7.4,

and suppose that Pα is µ-distributive for every α < γ. Let D be a set of size

< µ such that each D ∈ D is a dense open subset of PαD
for some αD < γ.

Then D∗ = {p ∈ Pγ | ∀D ∈ D (p↾αD ∈ D)} is dense open in Pγ .

23



Proof. Clearly D∗ is open. We will prove that D∗ is dense in Pγ . If γ is

a successor ordinal or a limit ordinal of cofinality ≥ µ, then there is α < γ

with αD ≤ α for all D ∈ D. So, in this case, it easily follows from the µ-

distributivity of Pα that D∗ is dense in Pγ . Thus suppose γ is a limit ordinal

with ν := cf(γ) < µ.

Suppose p ∈ Pγ . We will find p∗ ∈ D∗ below p. Take an increasing continu-

ous sequence α⃗ = ⟨αξ | ξ < ν⟩ cofinal in γ. Let αν := γ. Let θ be a sufficiently

large regular cardinal, and let M := ⟨Hθ,∈, µ, λ, Z, P⃗,D, p, α⃗⟩. By fatness of Z,

take a nice ∈-chain ⟨Mξ | ξ ≤ ν⟩ of elementary submodels of M of size < µ such

that Mξ ∩ µ ∈ µ and Mξ ∩ λ ∈ Z for every limit ξ ≤ ν.

By induction on ξ ≤ ν, we will construct a descending sequence ⟨pξ | ξ ≤ ν⟩
in Pγ such that pξ ∈ Pαξ

and pξ ≤ p↾αξ for each ξ < ν. Each pξ will be definable

in M from a parameter ⟨Mη | η ≤ ξ⟩, and so pξ will be in Mξ+1. Let p0 := p↾α0.

Suppose ξ < ν and pξ has been taken. First, let qξ+1 := pξ∪p↾ [αξ, αξ+1). Then

qξ+1 ∈ Pαξ+1
∩ Mξ+1. Let Dξ+1 be the set of all dense open subsets of Pαξ+1

in Mξ+1. Then
∩
Dξ+1 is dense open in Pαξ+1

since |Dξ+1| < µ and Pαξ+1
is

µ-distributive. Let pξ+1 be the ∆-least element of
∩

Dξ+1 below qξ+1. Next,

suppose that ξ is a limit ordinal ≤ ν. By the construction at successor steps,

we know that ⟨pη ↾ α | η < ξ⟩ is (Mξ,Pα)-generic for every α ∈ Mξ ∩ αξ. By

Lemma 7.5, let pξ be the ∆-least lower bound of ⟨pη | η < ξ⟩ in Pαξ
.

Let p∗ := pν . Then p∗ ≤ p by the construction of ⟨pξ | ξ ≤ ν⟩. Moreover,

note that D ⊆ Mν and that, if α ∈ Mν ∩γ, then p∗ ↾α belongs to all dense open

subsets of Pα in Mν . So p∗ ∈ D∗.

Now we prove Proposition 7.4:

Proof of Proposition 7.4. We prove the proposition by induction on γ. Assume

it is true for all γ′ < γ. We prove it for γ.

Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ

and M be the structure ⟨Hθ,∈,∆, µ, λ, Z, P⃗⟩. Suppose that M is an elementary

submodel of M of size < µ with
∪
(Pµλ ∩M) ∈ Z, and p⃗ = ⟨pξ | ξ < ζ⟩ is an

(M,Pγ)-generic sequence. It is enough to find a lower bound of p⃗ in Pγ .

First, suppose γ is a successor ordinal. Let β := γ − 1. Then ⟨pξ ↾β | ξ < ζ⟩
is an (M,Pβ)-generic sequence. So, by the induction hypothesis, it has a lower

bound p′ ∈ Pβ . Here note that Pµλ is absolute between V and V Pβ since Pβ

is µ-distributive. Hence p′ forces that
∪
(Pµλ ∩ M [Ġβ ]) =

∪
(Pµλ ∩ M) ∈ Z,
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where Ġβ is the canonical name for a Pβ-generic filter. Moreover, p′ forces that

⟨pξ(β) | ξ < ζ⟩ is an (M [Ġβ ], Q̇β)-generic sequence. So there is a Pβ-name q̇

which p′ forces to be a lower bound of ⟨pξ(β) | ξ < ζ⟩. Then p′ ∪ {(β, q̇)} is a

lower bound of p⃗ in Pγ .

Next, suppose that γ is a limit ordinal. Let N :=
∪
(PµHθ ∩ M). Using

the elementarity of M and the Tarski-Vaught criterion, we can easily prove that

N ≺ M. It is also easy to see that N ∩µ ∈ µ and N ∩λ ∈ Z. Then, by Lemma

7.5, it suffices to prove that ⟨pξ ↾α | ξ < ζ⟩ is (N,Pα)-generic for every α ∈ N∩γ.
Fix α ∈ N ∩γ, and take an arbitrary dense open D ⊆ Pα with D ∈ N . We must

find ξ < ζ with pξ ↾α ∈ D. By the construction of N , there is D ∈ M of size

< µ such that D ∈ D. By shrinking D if necessary, we may assume that each

D′ ∈ D is a dense open subset of PαD′ for some αD′ < γ. Then, by Lemma 7.6,

the set D∗ = {p ∈ Pγ | ∀D′ ∈ D (p ↾αD′ ∈ D′)} is dense open in Pγ . Moreover

D∗ ∈ M . So there is ξ < ζ with pξ ∈ D∗. Then pξ ↾α = pξ ↾αD ∈ D.

7.2 Proof of Theorem 1.10

In this subsection, we complete our proof of Theorem 1.10. First we describe a

certain property we impose on our sequence ⟨Sδ | δ < µ⟩:

Definition 7.7. Let S⃗ = ⟨Sδ | δ < µ⟩ be a sequence of subsets of Eλ
<κ. Then

let ZS⃗ be the set of all z ∈ Pµλ such that

(i) z ∩ µ ∈ µ,

(ii) (Cl(z) \ z) ∩
∪

δ∈z∩µ Sδ = ∅.

We say that S⃗ is nice if
∪

δ<µ Sδ = Eλ
<κ and ZS⃗ is fat in Pµλ.

We can easily add a nice S⃗ = ⟨Sδ | δ < µ⟩ by forcing:

Lemma 7.8. Suppose 2<µ = µ and λ is regular. Then there is a µ-closed poset

with the µ+-c.c. which adds a nice sequence ⟨Sδ | δ < µ⟩ of subsets of Eλ
<κ.

Proof. Let P be the set of all partial functions p : µ × Eλ
<κ → 2 of size < µ,

ordered by reverse inclusions. Then P is µ-closed and has the µ+-c.c.

Let Ġ be the canonical name for a P-generic filter, and, for each δ < µ, let

Ṡδ be a P-name for the set {α ∈ Eλ
<κ |

∪
Ġ(δ, α) = 1}. Moreover, let Ż be a

P-name for Z⟨Ṡδ|δ<µ⟩. By a standard density argument,
∪

δ<µ Ṡδ = Eλ
<κ in V P.
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We will prove that Ż is fat in V P. Let θ be a sufficiently large regular

cardinal and Ṁ be a P-name for a countable expansion of ⟨Hθ
V P

,∈⟩. Suppose

ν is a regular cardinal < µ and p ∈ P. We will find p∗ ≤ p and a sequence

⟨Ṁξ | ξ ≤ ν⟩ of P-names such that p∗ forces ⟨Ṁξ | ξ ≤ ν⟩ to witness fatness of

Ż for Ṁ and ν. We work in V .

Take a regular cardinal χ > 2θ and a well-ordering ∆ of Hχ, and let N :=

⟨Hχ,∈,∆,P,Ṁ, p⟩. Then we can take a nice ∈-chain ⟨Nξ | ξ ≤ ν⟩ such that

Nξ ≺ N , |Nξ| < µ and Nξ ∩ µ ∈ µ for every ξ ≤ ν. By induction on ξ ≤ ν,

we will define a decreasing sequence ⟨pξ | ξ ≤ ν⟩ in P below p. For each ζ < ν,

⟨pξ | ξ ≤ ζ⟩ will be definable in N from ⟨Nξ | ξ ≤ ζ⟩. So pξ will belong to Nξ+1

for all ξ < ν.

Let p0 := p. If pξ is defined, then let pξ+1 be the ∆-least condition below

pξ which belongs to all dense open subsets of P in Nξ+1. Note that there exists

such a condition, since P is µ-closed and |Nξ+1| < µ. Suppose ξ is a limit ordinal

and ⟨pη | η < ξ⟩ has been defined. Then ⟨pη | η < ξ⟩ is (Nξ,P)-generic by the

construction at successor steps. Let p′ξ :=
∪

η<ξ pη. Then dom(p′ξ) = (Nξ ∩µ)×
(Nξ∩λ). Let pξ be an extension of p′ξ such that dom(pξ) = (Nξ∩µ)×Cl(Nξ∩λ),
and pξ(δ, α) = 0 for all δ ∈ Nξ ∩ µ and all α ∈ Cl(Nξ ∩ λ) \ (Nξ ∩ λ).

Now we have defined ⟨pξ | ξ ≤ ν⟩. Note that, for every limit ξ ≤ ν, pξ forces

that Nξ[Ġ]∩µ = Nξ ∩µ ∈ µ and Nξ[Ġ]∩λ = Nξ ∩λ ∈ Ż. Let p∗ := pν , and, for

each ξ ≤ ν, let Ṁξ be a P-name for Nξ[Ġ]∩Hθ
V P

. Then p∗ and ⟨Ṁξ | ξ ≤ ν⟩ is
as desired.

After obtaining a nice sequence S⃗ = ⟨Sδ | δ < µ⟩ of subsets of Eλ
<κ, by an

iteration of club shootings, we will force each Sδ to bear no µ-skinny stationary

sets. Next, we present our poset for club shooting:

Definition 7.9. For a subset X of Pκλ, let C(X) be the poset of all p such that

(i) p : (dp)
2 → µ for some dp ∈ Pµλ,

(ii) every x ∈ X with x ⊆ dp is not closed under p.

C(X) is ordered by reverse inclusions.

First, we present an easy lemma on C(X). Note that, by (ii) of Definition

7.9 and (2) of the following lemma, C(X) forces X to be non-stationary.

Lemma 7.10. Let X be a subset of Pκλ.
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(1) Suppose p, q ∈ C(X) and p ↾ (dp ∩ dq)
2 = q ↾ (dp ∩ dq)

2. Then p and q are

compatible in C(X).

(2) For any d ∈ Pµλ, the set {p ∈ C(X) | d ⊆ dp} is dense in C(X).

Proof. (1) Take γ ∈ µ\ (dp∪dq), and let r : (dp∪dq)
2 → µ be such that p, q ⊆ r

and r(α, β) = γ for all (α, β) ∈ (dp ∪ dq)
2 \ ((dp)

2 ∪ (dq)
2). We claim that

r ≤ p, q. For this it suffices to check that r ∈ C(X).

Clearly, r satisfies property (i) of conditions of C(X). To check (ii), suppose

x ∈ X and x ⊆ dp ∪ dq. If x ⊆ dp or x ⊆ dq, then x is not closed under r, since

p, q ⊆ r and p, q ∈ C(X). So suppose x ̸⊆ dp and x ̸⊆ dq. Take α ∈ x \ dp and

β ∈ x \ dq. Then r(α, β) = γ /∈ dp ∪ dq ⊇ x. Thus x is not closed under r.

(2) Suppose p ∈ C(X) and d ∈ Pµλ. We will find q ≤ p with d ⊆ dq. Take

γ ∈ µ \ (dp ∪ d), and let q : (dp ∪ d)2 → µ be such that p ⊆ q and q(α, β) = γ

for every (α, β) ∈ (dp ∪ d)2 \ (dp)2. Then q ∈ C(X) by the same argument as in

the proof of (1). Moreover, clearly q ≤ p and d ⊆ dq.

Lemma 7.11. Suppose S⃗ = ⟨Sδ | δ < µ⟩ is a sequence of subsets of Eλ
<κ. Let

δ < µ, and let X be a µ-skinny subset of Pκλ such that EX ⊆ Sδ and sup(x) /∈ x

for all x ∈ X. Then C(X) is ZS⃗-closed.

Proof. Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ

and M be the structure ⟨Hθ,∈,∆, X, S⃗, δ⟩. Suppose M ≺ M, |M | < µ and∪
(Pµλ ∩M) ∈ ZS⃗ . Suppose also that p⃗ = ⟨pξ | ξ < ζ⟩ is an (M,C(X))-generic

sequence. We show that p∗ :=
∪

ξ<ζ pξ is a lower bound of p∗ in C(X). For

this, it suffices to prove that p∗ ∈ C(X).

Clearly, dp∗ satisfies property (i) of conditions of C(X). To check (ii), take

an arbitrary x ∈ X with x ⊆ dp∗ . We show that x is not closed under dp∗ . Let

z :=
∪
(Pµλ∩M) ∈ ZS⃗ . Then it easily follows from Lemma 7.10 (2) that dp∗ = z.

So sup(x) ∈ Cl(z) ∩ Sδ. But (Cl(z) \ z) ∩ Sδ = ∅ since δ ∈ M ∩ µ ⊆ z ∩ µ.

Hence sup(x) ∈ z. Take y0 ∈ Pµλ ∩ M with sup(x) ∈ y0. Then we have

y1 :=
∪
{x′ ∈ X | sup(x′) ∈ y0} ∈ Pµλ ∩M by the µ-skinniness of X. Again,

by Lemma 7.10 (2), there is ξ < ζ with dpξ
⊇ y1. Then x is not closed under pξ

since x ⊆ y1 and pξ ∈ C(X). But pξ ⊆ p∗. So x is not closed under p∗, too.

Note that ZS⃗ in a µ-distributive forcing extension is the same as in the

ground model. Then, by Proposition 7.4 and Lemmata 7.3 and 7.11, if S⃗ is a
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nice sequence of subsets of Eλ
<κ, then a < µ-support iteration of C(X)’s as in

Lemma 7.11 is ZS⃗-closed. Next, we show that such an iteration has the µ+-c.c. if

2<µ = µ.

Lemma 7.12. Suppose 2<µ = µ and S⃗ = ⟨Sδ | δ < µ⟩ is a nice sequence of

subsets of Eλ
<κ. Let γ be an ordinal and P⃗ = ⟨Pα,C(Ẋβ) | α ≤ γ, β < γ⟩ be

a < µ-support iteration, where each Ẋβ is a Pβ-name for a µ-skinny subset of

Pκλ such that EẊβ
⊆ Sδ for some δ < µ and sup(x) /∈ x for all x ∈ Ẋβ. Then

Pγ has the µ+-c.c.

Proof. Let D be the set of all p ∈ Pγ such that, for every β ∈ dom(p), p(β) = q̌

for some function q ∈ V .

First, we prove that D is dense in Pγ . Take an arbitrary p ∈ Pγ . We will

find p∗ ≤ p which is in D. Let θ be a sufficiently large regular cardinal, and

let M := ⟨Hθ,∈, κ, µ, λ, S⃗, P⃗, p⟩. Since ZS⃗ is fat, we can take a nice ∈-chain
⟨Mn | n ≤ ω⟩ of elementary submodels of M of size < µ such that Mω ∩ µ ∈ µ

and Mω ∩ λ ∈ ZS⃗ . Using the µ-distributivity of Pγ , we can easily construct an

(Mω,Pγ)-generic sequence ⟨pn | n < ω⟩ below p. Note that dom(pn) ⊆ Mω ∩ γ

for every n < ω.

p∗ will be a lower bound of ⟨pn | n < ω⟩ whose domain is Mω ∩ γ. By

induction on β ∈ Mω ∩ γ, we will define p∗(β) so that p∗ ↾ β + 1 ≤ pn ↾ β + 1

for every n < ω. Suppose β ∈ Mω ∩ γ and p∗(β′) has been defined for all

β′ ∈ Mω ∩ β. By the genericity, p∗ ↾ β forces that Mω[Ġβ ] ∩ µ = Mω ∩ µ ∈ µ

and Mω[Ġβ ] ∩ λ = Mω ∩ λ ∈ ZS⃗ , where Ġβ is the canonical name for a Pβ-

generic filter. p∗ also forces that ⟨pn(β) | n < ω⟩ is (Mω[Ġβ ],C(Ẋβ))-generic.

Then, by the ZS⃗-closedness of C(Ẋβ), p∗ forces that
∪

n<ω pn(β) is a lower

bound of ⟨pn(β) | n < ω⟩ in C(Ẋβ). Moreover, by the genericity of p∗ ↾ β
and the µ-distributivity of Pβ , for each n < ω, there is a function qn ∈ V

such that p∗ ↾ β ⊩β “pn(β) = q̌n”. Let q :=
∪

n<ω qn and p∗(β) := q̌. Then

p∗ ↾ β + 1 ∈ Pβ+1 and p∗ ↾ β + 1 ≤ pn ↾ β + 1 for every n < ω. Now we have

defined p∗ ∈ Pγ . Clearly p∗ ≤ p and p∗ ∈ D.

We have proved that D is dense in Pγ . For each p ∈ D and β ∈ dom(p), if

p(β) = q̌, then we let p(β) denote q. It suffices to show that if A ⊆ D and |A| ≥
µ+, then there are distinct p, p′ ∈ A which are compatible in Pγ . Suppose A ⊆ D

and |A| ≥ µ+. By the standard argument using the ∆-system lemma, there are

distinct p, p′ ∈ A such that p(β) ↾ (dp(β) ∩ dp′(β))
2 = p′(β) ↾ (dp(β) ∩ dp′(β))

2 for
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every β ∈ dom(p)∩ dom(p′). Then, using Lemma 7.10 (1), it is easy to see that

p and p′ are compatible in Pγ .

Now we can easily prove Theorem 1.10:

Proof of Theorem 1.10. By Lemma 7.8, we may assume that there is a nice

sequence S⃗ = ⟨Sδ | δ < µ⟩ of subsets of Eλ
<κ in the ground model. Then, by

Lemma 7.12, using the bookkeeping method, we can construct a < µ-support

iteration ⟨Pα,C(Ẋβ) | α ≤ 2λ, β < 2λ⟩ with the following properties:

(i) Each Ẋβ is a Pβ-name for a µ-skinny subset of Pκλ such that EẊβ
⊆ Sδ

for some δ < µ and sup(x) /∈ x for all x ∈ Ẋβ .

(ii) If Ẋ is a P2λ -name for a µ-skinny subset of Pκλ such that EẊ ⊆ Sδ for

some δ < µ and sup(x) /∈ x for all x ∈ Ẋβ , then there is β < 2λ such that

⊩2λ “Ẋβ = Ẋ”.

Let P := P2λ . Then P preserves all cofinalities, since P is µ-distributive and has

the µ+-c.c. by Proposition 7.4 and Lemmata 7.3, 7.11, 7.12. Moreover, in V P,

Sδ bears no µ-skinny stationary sets for any δ < µ by the construction of the

iteration.
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