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Abstract

Matsubara—Usuba [13] introduced the notion of skinniness and its vari-
ants for subsets of P, A and showed that the existence of skinny stationary
subsets of P, A is related to large cardinal properties of ideals over P, A
and to Jensen’s diamond principle on A. In this paper, we study the
existence of skinny stationary sets in more detail.
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1 Introduction

In Matsubara—Usuba [13], we introduced the notion of skinniness and its variants
for subsets of P\, where P,A denotes the set {x C X | |z|] < x} as usual.
The existence of skinny stationary subsets of P\ is related to large cardinal
properties of ideals over P, )\ and to Jensen’s diamond principle on A. In this
paper, we study the existence of skinny stationary subsets of P, A in more detail.
Throughout this paper, we let x denote an uncountable regular cardinal and A
denote a cardinal > k.

In order to state the definition of skinniness and its variants, we introduce

some notation:
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Notation. For a set x of ordinals, we define sup*(z) by sup*(x) = sup(z) if
sup(z) ¢ x. Let sup*(z) be undefined if sup(x) € x. For X C P, A, we let

Ex :={sup(z) |z € X} .
For X C P and a < A, let
X*:={ze X |sup”(z) =a}.

Note that Ex C E2, U{\} for all X C P, A, where E2, = {a < \ | cf(a) < k}.

Now we present the notion of skinniness and its variants:
Definition 1.1. Let X be a subset of PcA and p be some cardinal.
(1) X is said to be skinny if | X% < |Pxa| for every a < .

(2) X is said to be really skinny if | X*| < cf(Pro, C) for every a < A, where
cf(Pra, C) is the smallest size of a C-cofinal subset of Py

(8) X is said to be skinnier if | X%| < |af for every oo < A.
(4) X is said to be skinniest if | X | <1 for every a < A.
(5) X is said to be p-skinny if | X% < p for every a < A.

Note that X is skinniest if and only if X is 2-skinny. Moreover, if X is p-skinny
for some p < A, then {z € X | sup(x) > p} is skinnier. Note also that X is
p-skinny if and only if sup* [ X is < p to one. In particular, X is skinniest if
and only if sup* | X is one to one. Also, if A = u* and sup(x) > u for every
x € X, then X is skinnier exactly when sup* [ X is < p to one.

Before stating our results in this paper, we recall important facts on skinny
stationary sets. For the case where A is a singular cardinal, we presented the

following result in [12] and [13]:
Theorem 1.2 ((1) Matsubara—Shelah [12], (2) Matsubara—Usuba [13]).

(1) If X is a strong limit singular cardinal > K, then there is no skinny sta-

tionary subset of P A.

(2) If X is a singular cardinal > k, then there is no skinnier stationary subset

of P



For a regular A\, the existence of skinnier or skinniest stationary subsets of

P A is related to large cardinal properties of ideals over P A:

Theorem 1.3 (Solovay [20]). Suppose X\ is regular and k is A-supercompact.
Let U be a normal fine ultrafilter over PcA. Then there is a skinniest X C P\
with X € U.

Theorem 1.4 (Matsubara—Usuba [13]). Suppose X is a regular cardinal with
2<K < X\ =2<A Let X be a stationary subset of PuX. If NS,z [ X is precipitous,

then X contains a skinnier stationary subset.

It is also known that the existence of skinnier or skinniest stationary sets is
related to Jensen’s diamond principle. We introduce some definitions to state
this fact:

Definition 1.5. Let S be a stationary subset of Eén. We say that S bears a
skinny (skinnier, skinniest, u-skinny) stationary set if there is a skinny (skin-

nier, skinniest, p-skinny, respectively) stationary X C P, A with Ex C S.

Theorem 1.6 (Shelah [16], Matsubara—Usuba [13]). Let A be a regular cardinal
> 2<%, Then the following are equivalent for a stationary S C EQK:

(i) Ox(S).
(ii) S bears a skinniest stationary subset of P X, and 2<* = \.
(i4i) S bears a skinnier stationary subset of P.\, and 2<* = \.

In this paper, focusing on the case where A is a regular cardinal, we study
the existence of skinnier and p-skinny stationary subsets of P, A in more detail.
In §3, we will present basic facts on the existence of skinnier stationary sets.
We show that, for many successor cardinals A, there exists a skinnier stationary

subset of P, A. Among other things, we prove the following:

Proposition 1.7. Suppose A = k™™ for some n < w. Then every stationary

subset of Ei,{ bears a skinnier stationary subset of P .

In §3, we also observe the relationship between the existence of skinny sta-
tionary sets and the Singular Cardinal Hypothesis SCH. We prove that if there
is a AT-skinny stationary subset of P\ for every regular cardinal A > &, then
SCH holds above k. From this relationship, we also obtain the consistency of

the non-existence of a skinnier stationary subset of P, xtv+!.



In §4 of this paper, we relate the existence of skinniest stationary subsets
of P. A with combinatorial principles. Recall Theorem 1.4, which states that if
2<% < X = 2<* and NS,.» | X is precipitous, then X contains a skinnier sta-
tionary set. For a stationary X C P, A, we introduce a combinatorial principle
OM(X) which implies that X contains a skinniest stationary set. Moreover,
using this combinatorial principle, we prove the following theorem, which is an

unpublished result of Donder (See K6nig-Larson-Yoshinobu [8], 25 Theorem):

Theorem 1.8 (Donder). Assume V = L. If X is a regular cardinal, then every

stationary subset of PxA has a skinniest stationary subset.

In §4, we also relate the existence of skinniest stationary sets with Jensen’s
O-principle. We show that, under O-principles, similar facts to those proved in

§3 for skinnier sets hold for skinniest sets. In particular, we prove the following:

Theorem 1.9. Suppose A\ = k*" for some n < w. If O,tm holds for every

m < n, then there exists a skinniest stationary subset of P A.

This theorem implies that the non-existence of such a skinniest set has a
strong consistency strength. We do not know whether it is consistent.

In §5, we prove some variations of Theorem 1.3. More precisely, we show that
the dual filters of normal saturated ideals over P, contain skinny stationary
subsets of P,A with various degrees of skinniness. The degree of skinniness
depends on the degree of saturation of the ideal.

In §6 and §7, we discuss the existence of stationary subsets of Eﬁﬁ which
bear no skinnier or p-skinny stationary sets.

By Theorem 1.6, under the assumption of 2<% < X\ = 2<*|if S is a stationary
subset of E2, such that NSy [ S is A*-saturated, then S cannot bear a skinnier
stationary subset of P, A. In §6, we drop the cardinal arithmetical assumption
from this fact. This is done by incorporating the combinatorial principle &;’ <

Comparing Proposition 1.7 and Theorem 1.9, it is natural to ask whether, if
A = k™t for some n < w and O, +» holds for all m < n, then every stationary
subset of Eé,{ bears a skinniest stationary set. In §7, we prove that this is not
the case. In fact, we prove the following more general theorem. In the following
theorem, notice that if (J, holds in V for a cardinal v, then it holds in V¥ since

P preserves all cofinalities.

Theorem 1.10. Let x, u and A be uncountable regular cardinals with k < p < .
Suppose 2< = p. Then there is a poset P satisfying the following:



(i) P has the p*-c.c. and adds no new sequence of ordinals of length < p. (In

particular, P preserves all cofinalities.)

(ii) In V¥, there is a sequence (S5 | § < p) of subsets of E2, such that
U5<M Ss = E2,. and Ss bears no p-skinny stationary subsets of Py for
any 0 < p.

Acknowledgement. The authors are grateful to an anonymous referee for his
or her useful comments and suggestions. Among other things, the notion of

really skinny sets was suggested by a referee.

2 Preliminaries

In this section, we present our notation and basic facts used in this paper.
First, we give some notation on sets of ordinals. For a regular cardinal

p and an ordinal v > u, let Ej (B E;#) be the set of all & < v with

<ps
cf(a) = p (cf(a) < p, cf(a) # p, respectively). Suppose x is a set of ordinals.
We let o.t.(z) denote the order type of . Let Lim(z) be the set {a € z |
sup(z Na) = a}. Moreover, let Cl(z) denote the closure of x with respect to
the order topology, i.e. Cl(z) := 2z U {« € On | sup(z Na) = a}.

Next, we give our notation and basic facts on P, (A). Let cf(P,A, C) denote
the smallest size of a C-cofinal subset of P,A. In this paper, we adopt the
notion of stationary subsets of P, A, introduced in Jech [6]. Z C Py is said
to be club if Z is C-cofinal in P\, and, for any ( < k and any C-increasing
sequence (z¢ | § < () of elements of Z, we have (J; . 2¢ € Z. X C Py is said
to be stationary if X intersects with every club subset of P,A. We often use
the following fact (See Jech [7], Exercise 38.10):

Fact 2.1. Suppose X C PcA. Then X is stationary in P\ if and only if, for
any function F : <“X — X\, there is x € X such that x Nk € k and x is closed

under F, i.e. F[<¥z] C x.

Next, we give notation on ideals. Let A be an infinite set. In this paper, an
ideal over A means a non-principal proper ideal over A. Let I be an ideal over
A. Then I* denotes the dual filter of I, i.e. I* = {A\ X | X € I}. For B C A,
let I B be the ideal over A defined by I[B:={X C A| X N B € I}. Let NS,

and NS, denote the non-stationary ideals over A\ and P, A, respectively. For a



cardinal p, we say that I is p-saturated if there is no X C P(A) \ I of size u
such that Xg N X; € I for any distinct Xy, X; € X.

Let I be an ideal over P, A. We say that I is normal if it is closed under
taking diagonal unions, that is, for any sequence X = (Xo | @ € N}, its diagonal
union VX = {z € P,A | 3o € 2, © € X,} belongs to I. We say that I is fine
if the set {x € P\ |y € x} belongs to I for any y € P,A. Note that if T is
normal and fine, then I is k-complete, that is, | JJ € T for all J C I of size < k.

Finally, we present our notation on forcing. Let P be a poset and p be a
regular uncountable cardinal. We say that P is u-closed if every descending
sequence in P of length < p has a lower bound in P. P has the p-c.c. if every
antichain in P has size < p. P is u-distributive if (D is dense open in P for
every family D of dense open subsets of P with |D| < u. If P is p-distributive,
then forcing extensions by P add no new sequences of ordinals of length < p.
For the proof, see Jech [7] (Chapter 15, Theorem 15.6).

Suppose [ is an ideal over a set A. Then let P; be the poset P(A4)\ I ordered
by inclusions. Note that I is y-saturated if and only if P; has the p-c.c. If Gis a
Pr-generic filter over V', then, in V[G], we can construct an ultrapower of V' by
G. This ultrapower is called a generic ultrapower and denoted as Ultg (V). See
Jech [7] (Chapter 22) for more details on generic ultrapowers. We say that I is
precipitous if Ultg (V) is well-founded for any Pr-generic filter G over V. Recall
that for a regular uncountable cardinal \, every A-complete AT-saturated ideal
is precipitous. The proof can be found in Jech [7] (Chapter 22).

Let P be a poset and G be a P-generic filter over V. Then, for a set M in
V,welet M[G] = {ag | a € M A ais a P-name}, where a¢ is the evaluation of
a by G.

Let v be an ordinal and p be a regular uncountable cardinal. We say that
Py, Qg | < 7,8 <) is a < u-support iteration if each QB is a Pg-name for a
poset, and each P, consists of all partial functions p on a such that | dom(p)| < u
and p(B) € QB for all g € dom(p). pg < p; in P, if dom(py) 2 dom(p;), and
po | B IFp, “po(B) < p1(B)” for every B € dom(pi). For each a < v, IFp, is
simply denoted as IF,,.



3 Basic facts

In this section, we present basic facts on the existence of skinnier and p-skinny
stationary sets.
We begin with a lemma, which tells us that, for many successor cardinals A,

there is a skinnier stationary subset of P, A.

Lemma 3.1. Suppose cf(P.\, C) = X. Then every stationary subset of Eiz

bears a skinnier stationary subset of P AT.
We can easily prove this lemma using the following well-known theorem:

Theorem 3.2 (Shelah [17]). The smallest size of stationary subsets of P\ is
cf(PeA, ©).

Proof. Suppose S is a stationary subset of Eéty We will construct a skinnier
stationary X C P, AT with Ex C S.

By Theorem 3.2 and the assumption of the lemma, for each @ € S\ A, there
is a stationary X, C P, of size A. Notice that, for each o € S\ A, there are
club many z € P,a with sup(z) = a. So we may assume that sup(z) = « for
all z € X,,. Let X := | J{Xn | @ € S\ A}. Then X is skinnier, and Ex C S.

In order to prove that X is stationary, take an arbitrary F': <“AT — AT,
It suffices to find = € X such that x Nk € k and z is closed under F'. Since S
is stationary in AT, there is o € S which is closed under F. Then, since X, is
stationary in P, there is x € X, such that x Nk € k and x is closed under
F|<¥q. This z is as desired. O

By induction on n < w, it can be easily prove that cf(Pyx™", C) = k™" for
all n < w. So Proposition 1.7 follows from Lemma 3.1.

The size of stationary subsets of P,xt™ is studied in Baumgartner [2] in
details. Let X be the set of all z € Pr ™™ such that cf(sup(zNkT")) > w for all
i < n. It is easy to see that X is stationary if K > ws. In [2], it was proved that
there is a club Z C P.x*" such that for any z,y € X N Z, if sup(x N xT?) =
sup(y N kT?) for all i < n, then = 5. So X N Z is a skinnier stationary set for
such a club Z. In [2], it was also proved that |Z| D (k1™)¥ = max{x™", k“} for
any club Z C P.x™™. So if k¥ > k™™, then any club subset of P.x*™ is not
Kk“-skinny.

With some cardinal arithmetical assumptions, we have the existence of skin-

niest stationary sets. Shelah [18] proved that, for a cardinal ), if 2* = A%, then



O+ (S) holds for every stationary S C E;\;Crf()\). Note that, if max{s,cf(A\)*} >
wa, then Eéz N E;\;f( ") is stationary. Hence the following proposition is an

immediate corollary of Theorem 1.6:

Proposition 3.3. Let A\ be a cardinal with 2* = \*. If max{x, cf(A\)*} > wo,

then there is a skinniest stationary subset of P AT.

Next, we turn our attention to the non-existence of skinny stationary sets.
We first observe the relationship between the existence of skinny stationary sets
and the Singular Cardinal Hypothesis SCH, which asserts that 2° = §+ for every

singular strong limit cardinal §. For this, we prove the next lemma:

Lemma 3.4. Suppose \ is a reqular cardinal. Then there exists a AT -skinny
stationary subset of PeX if and only if cf(Pc\, C) = .

Proof. Note that there is a AT-skinny stationary subset of P, if and only if
there is a stationary subset of P\ of size \. The latter is equivalent to that
cf(P.A, C) = A by Theorem 3.2. O

Note that if A is a singular strong limit cardinal with cf(\) < kK < A, then
2% = A\ < ef (PN, C) - 65N = cf (P, ©) < cf(PAT, C).

Thus, if A is a singular strong limit cardinal with c¢f(A\) < x < A and 2* > \*,
then cf(P.AT,C) > AT. So, by Lemma 3.4, there is no A**-skinny stationary
subset of P, A for such A. Note also that, by Silver’s Theorem [19], if SCH fails

above k, then there is such A. Hence we have the following:

Corollary 3.5. Suppose there ewists a A\T-skinny stationary subset of P\ for
every reqular A > k. Then SCH holds above k.

Recall that Magidor [10] constructed a model in which SCH fails at ®,,. In
this model, cf (PR, 41, C) > 2% > R, for all kK < X, by the same calculation
as above. By Lemma 3.4, in this model, there is no skinnier stationary subset
of P.kTT! for every x < R,,. In this sense, Proposition 1.7 is optimal.

It is known that there may be a regular cardinal A with 2<* = \ for which
P A contains no skinnier stationary subsets. By Proposition 3.3, if A is a regular
cardinal with 2<* = X and there is no skinnier stationary subset of P, \, then
either )\ is an inaccessible cardinal, or Kk = w7 and A is a successor of a singular

cardinal of countable cofinality.



First we mention the case where A is inaccessible. Using Radin forcing,
Woodin [3] built a model in which {, fails for an inaccessible cardinal A. By
Theorem 1.6, in this model of Woodin, there is no skinnier stationary subset of
P for every regular uncountable cardinal kK < A.

As for the case where Kk = w; and A is a successor of a singular cardinal of
countable cofinality with 2<* = X\, we do not know whether the non-existence

of a skinnier stationary subset of P, is consistent:

Question 3.6. Is it consistent that there is no skinnier stationary subset of

P, A for some successor cardinal X with 2<* = X ?

Gitik—Rinot [4] obtained a partial result on this question. They built a model
of =On,,,, (S) for some stationary S C E5“*' together with GCH. So, in this

model, S bears no skinnier stationary subset of Py, Ny +1.

4 Combinatorial principles

By Theorem 1.4, if ) is a regular cardinal > s with 2<% < X\ = 2<* and NS, is
precipitous, then every stationary subset of P, A contains a skinnier stationary
subset, that is, skinnier stationary sets are dense in the family of stationary
subsets of P,A. We consider when skinnier stationary sets are dense. For this,

we introduce the following variant of Jensen’s diamond principle.

Definition 4.1. Let X be a stationary subset of PyA. Then $M(X) is the

following assertion:
There is a sequence (b, | & € Ex) such that

(i) ba C « for every a € Ex,

(ii) for every B C A, the set {x € X | BNsup(x) = bsyp(a)} 5

stationary in P .
A sequence (b | a € Ex) satisfying (i) and (ii) is called a O3 (X)-sequence.

This variant of Jensen’s diamond principle produces a skinniest stationary

subset of X as follows:

Proposition 4.2. Let A be a regular cardinal and X be a stationary subset of
P If OA(X) holds, then X has a skinniest stationary subset.



Proof. We may assume that z Nk € k and sup(z) ¢ z for every z € X, since
there are club many such z € P, \. Using M (X), it is not difficult to build a
sequence (f, | @ € Ex) such that

(i) fa:<Ya — afor every a € Fx,

(ii) for every F': <“X\ — A, the set {x € X | F'[ <“sup(z) = foup(a)} I8

stationary in P, .

Now, for each o € Fx, we consider the set of all x € X closed under f,. If
this set is not empty, then choose an element and call it x,. Otherwise, let z,,
be any element of X*. Clearly Y := {z, | @« € Ex} is a skinniest subset of X.
So it suffices to prove that Y is stationary in P, A.

Take an arbitrary function F' : <X — \. Since z, N« € k for each « € Fx,
it is enough to find a* € Ex such that x,~ is closed under F. By property (ii)
of (fa | @ € Ex), we can find some z* € X such that F'[<“sup(z*) = foup(a*),
and z* is closed under F. Let a* := sup(z*) € Ex. Note that z,« must be
closed under f, since z* € X 0‘*, and z* is closed under f,~. Then z,+ is closed

under F since x4+ C o, and F [ <¥a* = fq-. O

Next, we consider when {3 (X) holds. First, we show that it holds in L.
Note that Theorem 1.8 is an immediate consequence of the next proposition

together with Proposition 4.2:

Proposition 4.3. Assume V = L. Suppose A is a reqular cardinal > k, and X
is a stationary subset of PxX. Then $M(X) holds.

Proof. By shrinking X if necessary, we may assume that Nk € x and sup(z) ¢ =
for every z € X. We will define a sequence b = (b, | a € Ex), where by C o for
each a € Ex, by induction on « as follows:

Assume that o € Ex and (bg | 8 € Ex N ) has been defined. Let (b, f) be

the <p-least pair with the following properties, if such a pair exists:
(i) bCa,and f: <Ya— a.

(ii) There are no x € Lo N X such that b N sup(z) = bsyp(e) and x is closed
under f.

Then let b, := b. If such a pair (b, f) does not exist, then let b, := 0.

10



We have defined b. We prove that bis a QM (X)-sequence. For a contradic-
tion, assume not. Then, for some B C X and some F : <“\ — )\, there are no
x € X such that B Nsup(x) = byp(z) and z is closed under F. Let (B, F') be
the <p-least such pair. Moreover, let M := (Ly+, €, A\, X, l_;, B, F), and, for each
a < A, let M, be the Skolem hull of « in M. Note that there are club many
a < A with M, N A = a. Since X is stationary in P, A, there exists x € X such
that Mgup(z) N A = sup(z) and x is closed under F'. Let a := sup(z), b:= BNa,
and f := F | <“a. By the standard argument using the transitive collapse of
M, it is easy to see that (b, f) is the <p-least pair satisfying (i) and (ii) above.
So b, = b, and hence bgy,(,y = B Nsup(x). Since z is closed under F, this
contradicts the choice of B and F'. O

As we mentioned before, if 2<% < XA = 2<* and NS, is precipitous, then
skinnier stationary subsets of P, A are dense. Recall the fact, due to Goldring
[5], that NS, is precipitous if a Woodin cardinal is Lévy collapsed to A™. The
next proposition, together with Proposition 4.2, tells us that the Lévy collapse
of an inaccessible cardinal always provides the denseness of skinniest stationary

subsets:

Proposition 4.4. Let \ be a regular cardinal > k, and suppose § is an in-
accessible cardinal > . Then Col(\, < §) forces that {3 (X) holds for every
stationary X C P\, where Col(\, < §) is the Levy collapse making 6 = A7 .

To prove this proposition, we use the following lemma:

Lemma 4.5. Let \ be a regular cardinal > k, and suppose X is a stationary
subset of PxA.

(1) If 2<* = X, then Add()) forces O3 (X), where Add(N) denotes the poset

<X2 ordered by reverse inclusions.
(2) If GM(X) holds, then every A-closed forcing preserves O3 (X).

Proof. Without loss of generality, we may assume that Nk € k and sup(x) ¢ =

for every z € X.

(1) Let P be the poset of all functions p such that dom(p) € A and p(«a) C « for
every « € dom(p). P is ordered by reverse inclusions. It is easy to see that P is
forcing equivalent to Add(\). We will show that if G is a P-generic filter over
V, then (JG(a) | a € Ex) is a $3(X)-sequence in V[G].

11



Take a P-name B for a subset of \, a P-name F' for a function from <¥\ to

A, and an element p of P. It suffices to find p* < p and z* € X such that
p* Ikp “BNsup(z*) = | G(sup(z*)) A z* is closed under 7

Using the A-closedness of P, by induction on a« < A, we can build a descending
sequence (p, | @ < A) below p such that p, decides B Na and F | <“« for each
o < A Let BC XAand F : <“X — X be the evaluations of B and F by
(Po | @ < A), that is,

e B={Bec )| (Ba<)\ plFe “B€ B},
e F(a) = B if and only if p, IFp “F(a) = 7 for some o < \.

Since X is stationary, we can find some z* € X such that z* is closed under
a<sup(z*) Pa- Then
q forces that | <“sup(z*) = F | <“sup(z*) and B Nsup(z*) = B Nsup(z*).
Note also that dom(q) < sup(z*). Now take p* < ¢ such that p*(sup(z*)) =

F and dom(p,) < sup(z*) for every o < sup(z™*). Let ¢ :== |J

Bnsup(z*). Then p* and z* are clearly as desired.

(2) Let b = (by | @ € Ex) be a OM(X)-sequence. Take an arbitrary A-closed
poset P. We show that b will remain a Oy (X)-sequence in any P-generic exten-
sion. Let B be a P-name for a subset of \, F' be a P-name for a function from
<@X to A, and p be a condition in P. We will find p* < p and z* € X such that

p* IFp “B Nsup(z*) = bsup(z+) A x* is closed under F.

As in the proof of (1), we can build a descending sequence (p,, | & < A) below
p such that p, decides BN and F'|<“a. Let B and F be the evaluations of B
and F by (pa | @ < A). Since bis a OM(X)-sequence in V, there is some z* € X
such that B Nsup(z*) = bgyp(y+) and z* is closed under F. Let p* 1= pgyp(a+)-

Then p* and z* are clearly as desired. O

Proof of Proposition 4.4. Suppose G is a Col(\, < J)-generic filter over V. In
V]G], let X be a stationary subset of P, A. Then X € V[GNCol(A, < ~y)] for some
v < §. Let Go denote G N Col(\, < 7). Note that, in V, Col(), < §) is forcing
equivalent to Col(\, < ) x Add(A) x Col(\, < ¢). Furthermore, both Add(\)
and Col(\, < J) are absolute among all models in consideration between V' and
V[G]. There are an Add())-generic filter G; over V[Gy] and a Col(\, < §)-
generic filter G over V[Gy][G1] such that V[G] = V[Gy][G1][G2]. We know

12



that $M(X) holds in V[Go][G1] by Lemma 4.5 (1), and then it also holds in
V[Go][G1][G2] = V[G] by Lemma 4.5 (2). O

Next, we relate the existence of skinniest stationary sets with Jensen’s square

principle. Recall Jensen’s square principle:
Definition 4.6. [y asserts the following:
There exists (co | @ € Lim(A1)) such that

(i) cq is club in o of order type < X for each v € Lim(AT),
(ii) if « € Lim(AT), and B € Lim(c,), then cg = cq N B.

A sequence {(cq | a € Lim(AT)) satisfying (i) and (ii) is called a Oy-sequence.

We prove that, under C-principle, some variation of Lemma 3.1 holds for
skinniest stationary sets. Note that Theorem 1.9 is an immediate consequence

of the following theorem since k is a skinniest club subset of Py k.

Theorem 4.7. Suppose A is regular. If Oy holds, and there exists a skinniest
(skinny, really skinny, p-skinny) stationary subset of PyA, then there exists
a skinniest (skinny, really skinny, u-skinny, respectively) stationary subset of
P.AT, too.

Proof. Let Y be a skinniest (skinny, really skinny, p-skinny) stationary subset
of P.X and @ = (¢, | @ € Lim(AT)) be a Oy-sequence. For each o € Lim(A™),
let (B | n < o.t.(ca)) be an increasing enumeration of c,. Take a sequence
T = (ms | B < AT) such that 7g is a surjection from A to 8 for every S < AT.
Then let X be the set of all z € P,AT with a := sup(z) ¢ = such that

(i) zNAeY,
(ii) sup(z N M) ¢ z, and sup(x N A) = o0.t.(cqy),
(ili) = = U{maalz N Al |n€xnA}

We claim that X is a skinniest (skinny, really skinny, pu-skinny) stationary subset
of P AT.

First, we prove that X is skinniest (skinny, really skinny, p-skinny). Take an
arbitrary a € Eé; It suffices to prove that | X | < [y o-t-(ca)

. By (ii), for every
r € X we have x N\ € Yot(¢) Moreover, by (iii), the mapping = + z N A
is an injection from X to Yot(¢a), So | X | < [yot(ea)],
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Next, we prove that X is stationary in P,A™. For this, it is enough to prove
that X NP, is stationary in P,y for every v < AT of cofinality A. Take v < AT
of cofinality A and a function F': <“~ — ~ arbitrarily. We will find z € X NP,y
such that x Nk € k and z is closed under F'.

Take a sufficiently large regular cardinal #, and let M be the structure
(Ho, €,k N, 7,67, F). Since Y is stationary, we can take M < M such that
M| <k, MNk€krkand MNAEY. Let z:= M N~y € Pgy. Then x Nk € k,
and z is closed under F'. So it suffices to show that z € X.

Let o := sup(x). Clearly o ¢ x, and x satisfies (i). We will check (ii) and
(iii). For this, note that ¢, € M and ¢, is a club subset of v of order type A.

Then the following are easily seen using the elementarity of M:
(iv) a € Lim(cy), and 80 ¢ = ¢y Na.
(v) sup(cy Nz) =sup(z) = a.
(vi) ey Nz ={B]) [n€xNA}.

First, we check (ii). Clearly £ := sup(z N'A) ¢ x. By (v) and (vi), we have
B¢ = a. Then { = 0.t.(cy Na) = o.t.(ca) by (iv). Next, we check (iii). From (v)
and the elementarity of M, it easily follows that « = [J{mg[z N A] | B € ¢y Na}.
Moreover ¢, Nz = {8y | n € x N A} by (iv) and (vi). So x satisfies (iii). O

We end this section with the following question:

Question 4.8. Is the non-ezistence of skinniest stationary subsets of Per™"
consistent with ZFC?

5 Saturated ideals

In this section, we prove some variants of Theorem 1.3. More precisely, we show
that, for every regular cardinal A, the dual filters of saturated ideals over P\
contain skinny stationary subsets of P\ with various degrees of skinniness. The
degree of skinniness depends on the degree of saturation of ideals.

In Matsubara [11], it is proved that if there is an w-strategically closed normal
ideal over P, A, then SCH holds between x and A. The proofs we present in this

section are based upon the idea of the proof of this result.
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Our first theorem tells us that if (2<7)* < X, and X is regular, then the
existence of a A-saturated normal fine ideal over P, A implies the existence of a

skinnier stationary subset of PgA.

Theorem 5.1. Let A be a reqular cardinal > k. Suppose I is a A-saturated
normal fine ideal over Py X. Then there is a (2<%)"-skinny subset of P\ which

is i I*.

The following lemma will be used to prove the above theorem and the next

theorem as well:

Lemma 5.2. Suppose A and I are as in Theorem 5.1. Let S be a stationary
subset of E2,.. Then

X :={z € P.A | cf(sup(x)) > w A SNsup(x) is stationary in sup(z)} € I*.

Proof. Take an arbitrary Pj-generic filter G over V. In V[G], note that the
ultrapower of V' by G is well-founded since I is A-saturated. Let M be its
transitive collapse and j : V' — M be the ultrapower map. It suffices to prove
that j[A] € j(X). Below we work in VI[G].

First note that A is regular in V[G] since Py has the A-c.c. Thus cf(j[\]) =
A > w in V[G]. Then this also holds in M since M C V[G]. We must show that
J(S) Nsup(4[}]) is stationary in sup(j[A]) in M. For this, note that S remains
stationary in A in V[G], since P; has the A-c.c. Moreover, S C (E2,)Y, and
J 1 (E2,)V is continuous since the critical point of j is x. Then j[9] is stationary
in sup(§[A]) in V[G]. But j[S] C j5(S) Nsup(j[A]). Thus j5(S) N sup(j[A]) is
stationary in sup(j[\]) in V[G]. This also holds in M since M C V[G]. O

Proof of Theorem 5.1. Take a partition (Sg | 8 < A) of EJ) into stationary sets.
Let X be the set of all z € P\ such that cf(sup(x)) > w and Sg N sup(z)
is stationary in sup(x) for all 5 € z. Then X € I* by Lemma 5.2 and the
normality of 1. So it suffices to prove that X is (2<%)*-skinny.

Take an arbitrary o € E2,.. We prove that | X®| < 2<%. Let B be the set of
all B < « such that Sz N« is stationary in a.. Take a club ¢ C « of size cf(a).
Then (SgNc| B € B) is a pairwise disjoint sequence of non-empty subsets of c.
So |B| < |c| = cf(a) < k. Moreover X® C P(B). So |X*| < 2!Bl <2<~ O

Next, we show that more stringent requirements on saturation of our ideal

I guarantee the existence of a skinniest subset of PxA which is in I*:
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Theorem 5.3. Let A be a reqular cardinal > x and § be a cardinal with § < k+*
and § < \. Suppose I is a d-saturated normal fine ideal over P, \. Then there

exists a skinniest subset of P\ which is in I'*.

Proof. To define a skinniest X € I'*, we do some preliminaries. First, note that
k is weakly inaccessible by the assumptions of our theorem. (If x = u™, then
forcing with P; collapses the cardinality of A to be u, violating A-saturation of
I.) Since § < k", there is some v < k such that |REG N [x,d)] < |[REG Nv|,
where REG denotes the class of all regular cardinals. For each p € REG N v,
fix a partition (T4 | 8 < A) of E7 into stationary sets. Let h be the function on
P defined by

h(z) = {cf(ot.(xN~)) | vy € REGN [k, I)}.

Note that REG Nv \ h(z) # 0 for every x € P .
Now let X be the set of all € P, A such that cf(sup(x)) > w, and

x ={B < \| T is stationary in sup(z)}

for every p € REGNv \ h(xz). We will prove that X € I* and X is skinniest.

First, we prove that X is skinniest. Suppose that z,y € X and sup(z) =
sup(y) = a. We show that z = y. Since |h(x)|,|h(y)| < REG Nv, we can pick
p € REGN v\ (h(z) Uh(y)). Then x = {8 < A | T is stationary in a} =y.

Next, we prove that X € I*. Let X be the set of all x € P, such that
cf(sup(x)) > w and Tj Nsup(x) is stationary in sup(z) for every 4 € REGNv and
every 8 € x. Moreover, let X be the set of all z € P, A such that Tg Nsup(x) is
non-stationary in sup(x) for every p € REGNv\ h(x) and every 8 € A\ z. Then
X = Xy N X;. Moreover, Xy € I* by Lemma 5.2 together with the normality
and the k-completeness of I. So it suffices to show that X; € I*.

Take an arbitrary Pj-generic filter G over V. In V[G], let M be the transitive
collapse of the ultrapower of V' by G, and let j : V' — M be the ultrapower map.
It suffices to prove that j[A] € j(X71). Let a := sup(j[A]). Take an arbitrary
p € REGY nw\ j(R)(J[N]), and let (T | B < j(N) be j((Tf | B < A)). We
must prove that, in M, T N « is non-stationary in « for any 8 € j(A) \ j[A].

For this, first we prove that cf™ (v) # p for any v € REGY \ {u}. Suppose
v € REGY\{u}. If y < &, then y = j(v) is regular in M, and so cf™ (7) = v # p.
Next, suppose v > §. Then 7 is regular in V[G] by the é-c.c. of Py, and hence

16



this also holds in M. Thus ch(v) = 7 # p. Finally, suppose that v € [k, ).
Then

cofM(v) = ofM (0.4, [7])) = cfM (0.t.(i(v) NG[A)) € G(h)(GIN) -

Since 1 ¢ j(h)(j[N]), we have cf™ (v) # p.

Thus S := (Eﬁ‘)v = (E;})M Note that j [ S is continuous since p < k.
Hence (EZ)™ \ j[S] is non-stationary in o in M. But j[S] C Usejp 15, and
(Ts | B < j(N)) is a pairwise disjoint sequence of subsets of (EZ(’\))M since
(T} | B < A) is a partition of S. Therefore T N « is non-stationary in o in M
for any 8 € j(A) \ j[A]. O

6 Saturation of NS, [S

Recall that the AT-saturation of NSy | .S implies the failure of {»(S). So, by
Theorem 1.6, assuming 2<% < X\ = 2<* if NS, [ S is AT-saturated, then S does
not bear a skinnier stationary subset of P, A. It turns out that we can drop the

assumption on cardinal arithmetic from this proposition:

Theorem 6.1. Suppose X is a reqular cardinal >  and S is a stationary subset

of E2,.. If NS\ |S is \*-saturated, then S cannot bear a skinnier stationary
subset of PxA.

To present our proof, we use the following combinatorial principle:

Definition 6.2. Suppose that A is a regular cardinal > k and S is a stationary
subset of E2,.. Let &, _.(S) be the following assertion:

There is a sequence (by | & € S) such that

(i) by C Pea and |b,| < « for each o € S,

(ii) for any cofinal B C X, the set {a € S | 3b € by (sup(BNb) =

a)} is stationary in A.
A sequence (b, | a € S) satisfying (i) and (ii) is called a &) _, (S)-sequence.

First, we prove the following lemma. Gitik—Rinot [4] proved the same lemma
for the case A is a successor cardinal. We state our proof for the sake of com-

pleteness.
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Lemma 6.3. Suppose that A is a reqular cardinal > k and X is a skinnier
stationary subset of PyA. Then &y _ (Ex) holds.

Proof. We prove that (X* | a € Ex) is a &, _, (Ex)-sequence. Clearly it
satisfies property (i) of &, _,.. We will prove that it also satisfies (ii).

Take an arbitrary cofinal B C A. Define a function F' : A — X by F(8) =
min(B\p) for each § < A. Let Y be the set of all x € X such that sup(x) ¢ = and
x is closed under F'. Then Y is stationary in P,A, and so Ey is a stationary
subset of Fx. Moreover, for each o € Fy, if we take x € Y* C X%, then
sup(BNzx) = . Hence (X® | « € Ex) satisfies (ii) for B. O

The next theorem, together with the last lemma, immediately provides a
proof for Theorem 6.1. Rinot [14] proved the next theorem for the case when A

is a successor cardinal.

Theorem 6.4. Suppose that A is a reqular cardinal > k and S is a stationary
subset of E2,.. If NS\ [S is AT -saturated, then & _,.(9) fails.

Our proof of this theorem is modeled after the proof of the well-known fact
that if A = pT, then there is no A*-saturated normal ideal over A concentrating
on E2 of(y)> Which follows from the theorem by Shelah [15] (Chapter XIII, 4.9
Lemma) stating that if \ is a regular cardinal in V, then (A*)" is not a cardinal
in any outer model satisfying cf()\) < cf(|A]). As in the proof of this fact, the
following notion of strongly pairwise almost disjoint families plays a central role

in our proof:

Definition 6.5 (Shelah [15]). Let p be a limit ordinal and B be a family of
cofinal subsets of p. B is said to be strongly pairwise almost disjoint if, for
every B' C B of size < p, there is a function o : B’ — p such that BoN By C
max{o(By),0(B1)} for any distinct By, By € B.

In the proof of the above mentioned theorem by Shelah [15] (Chapter XIII,
4.9 Lemma), it is mentioned that if A is a regular cardinal, then there is a
strongly pairwise almost disjoint family B of cofinal subsets of A with |B| = A\T:
Suppose A is regular. It is well-known that there is a pairwise almost disjoint
family B of cofinal subsets of A with |B| = A*. We claim that B is strongly
pairwise almost disjoint. Suppose {B, | o < A} € B. For each § < A, let
o(Bg) = sup{sup(BgNB,)+1 | o < f}. Then o(Bg) < Aforall 8 < Asince A is
regular. Moreover, if & < 8 < A, then B,NBg C 0(Bg) < max{c(B,),0(Bgs)}.
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To present our proof of Theorem 6.4, we need the next lemma concerning

strongly pairwise almost disjoint families:

Lemma 6.6. Suppose that p is a limit ordinal and B is a strongly pairwise
almost disjoint family of cofinal subsets of p. Let b be a subset of p with |b|*t < p.
Then |[{B € B | sup(BNb) = p}| < |b].

Proof. Let B’ := {B € B | sup(BNb) = p}. For a contradiction, assume
|B’| > |b|. Note that b is cofinal in p. In particular, cf(p) < [b].

Take B” C B’ with |B”| = |b|T < p. Since B is strongly pairwise almost
disjoint, there is ¢ : B” — p such that By N By C max{c(By),c(B;)} for
all distinct By, By € B’. Since cf(p) < |b|, we can take a* < p such that
B* = {B € B" | 0(B) < «*} has size |b|T. Then {B\a* | B € B*} is a
pairwise disjoint family of size |b|T, whose members all intersect with b. This is

a contradiction. O
Now we present a proof of Theorem 6.4:

Proof of Theorem 6.4. Towards a contradiction, assume that &;7 < (:S) holds,
where NSy [ S is AT-saturated. Let (b, | @ € S) be a &, _, (S)-sequence. Take
a strongly pairwise almost disjoint family B of cofinal subsets of A with |B| = A™.

Let P be Pnsg, 15 and G be the canonical name for a P-generic filter. In V|
let M be the transitive collapse of the ultrapower of V' by G, and let 73:V—->M
be the ultrapower map. Here note that IFp “)\ € j(S)”.
for the A-th element of j({by | @ € S)), and let A be a P-name for the set
{BeB|3behby(sup(BNb) =N}

Now note that P forces the following:

Let 6)\ be a P-name

(i) B remains a strongly pairwise disjoint family.
(i) |b|* < A for every b € by,
(i) [ba] <

(i) is because, by the AT-c.c. of P, every subset of B of size < ) in the extension
can be covered by a subset of B of size < A in the ground model. For (ii),
note that, in M, ||t < k < X for every b € by, since j((by | a € S)) is
a &;()\)Kﬁ(j(S))—sequence. Then this also holds in V¥ since *M N VF C M.
Finally, (iii) follows from the fact that j((ba | @ € S)) is a &) _, (j(5))-

sequence in M.
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By Lemma 6.6 and (i)-(iii) above, we know that IFp “.A| < A”. By the
AT-c.c. of Pin V, we can take A* C B of size < ) such that IFp “A C A*”. Take
B e B\ A*. Then P forces that there is no b € by with sup(BNb) = \. Here
note that P forces j(B) N A = B. Thus P forces that there is no b € by with
sup(j(B)Nb) = A. On the other hand, the set {« € S | 3b € by, (sup(BNb) = )}
is stationary since (b, | o € S) is a &y _, (S)-sequence, and this set forces that
there is b € by with sup(j(B) Nb) = A. This is a contradiction. O

7 Bearing no pu-skinny stationary sets

In this section, we prove Theorem 1.10. Throughout this section, let u be a
regular cardinal with £ < p < A.

Before we present the details of our proof, we sketch its outline. First, we
force our sequence (S; | § < p) of subsets of E2, with certain desirable prop-
erties described in the beginning of §7.2. That forcing is presented in Lemma
7.8. Then we perform a < u-support iteration of some “club shooting” posets of
length 2*, making all of S5 (§ < ) of our sequence bear no p-skinny stationary
subsets of P,A. In order to guarantee the p-distributivity and the p*-c.c. of

our iteration, we rely on the notion of Z-closedness which is described in §7.1.

7.1 Z-closed forcing

In this subsection, we introduce the notion of Z-closed forcing for a stationary
subset Z of P, A. This notion is a generalization of that of E-complete forcing,
which was introduced by Shelah [15] (Chapter V, §1). We also present basic
properties of Z-closed forcings, which will be used in the proof of Theorem 1.10.
More precisely, we show that if Z is fat, then the Z-closedness implies the p-
distributivity and is preserved by < p-support iteration. Here the notion of fat
subsets of P, is the one introduced in Krueger [9], which generalizes the notion
of fat subsets of a regular cardinal introduced by Abraham-Shelah [1].

First, we define the notion of Z-closed forcing:

Notation. Let P be a poset and M be a set. An (M,P)-generic sequence is a
descending sequence (pe | € < () in PNM for some ordinal ¢ such that for every
dense open D C P with D € M, there is § < ¢ with pc € D. We say that P is

M -closed if every (M, P)-generic sequence has a lower bound in P.
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Definition 7.1. Let Z be a subset of P,A. We say that a poset IP is Z-closed if,
for every sufficiently large reqular cardinal 60 and every M < (Hq, €, i, A, Z,P)
of size < p with \|J(P, AN M) € Z, we have that P is M-closed.

In the above definition, note that P is Z-closed if there are a sufficiently large
regular cardinal 6 and a countable expansion M of (Hy, €, u, A\, Z,P) such that
P is M-closed for every M < M of size < p with J(P,ANM) € Z. This can
be proved by the same argument as a well-known similar fact on proper forcing.
Note also that, if 8 is a sufficiently large regular cardinal, M is an elementary
submodel of (Hg, €, 1, A) of size < p, and M Ny € p, then J(P,ANM) = MNA.
We will use these facts without any notice.

Next, we recall the notion of fat subsets of P, A introduced by Krueger [9],
which generalizes the notion of fat subsets of a regular uncountable cardinal due
to Abraham-Shelah [1]. The following definition is slightly different from the
one in [9]. But it is easy to see that they are equivalent if u is an inaccessible

cardinal or p = v for a regular cardinal v with v<¥ = v.

Notation. A sequence (M¢ | £ < () for some ordinal ¢ is called a nice €-chain
if it is C-increasing continuous and (M, | n < &) € Mcyq1 for every & with
E+1< (.

Definition 7.2 (Krueger [9]). Let Z be a subset of P,A. We say that Z is fat if,
for every regular cardinal 0 > X, every countable expansion M of the structure
(Mo, €), and every reqular cardinal v < p, there is a nice €-chain (Mg | £ < v)
of elementary submodels of M of size < p such that M¢Np € pand McNA € Z

for every limit £ < v.

Krueger [9] proved that if u is an inaccessible cardinal or p = vt for a
regular cardinal v with v<¥ = v, then Z C P, is fat if and only if there is a
p~distributive forcing notion shooting a C-increasing continuous sequence in Z
of length u, which is C-cofinal in P, . Here, as we mentioned at the beginning
of this subsection, we prove that if Z is fat, then the Z-closedness implies the

p-distributivity:

Lemma 7.3. Suppose that Z is a fat subset of P,A and P is a Z-closed poset.
Then P is p-distributive.

Proof. By induction on cardinals v < p, we prove that P is v-distributive.

Clearly P is w-distributive. Suppose v is a cardinal < p and P is v/-distributive
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for every cardinal v/ < v. We prove that P is v-distributive. If v is a limit
cardinal or a successor of a singular cardinal, then this is clear. So assume v is a
successor of a regular cardinal, and let v~ denote the predecessor of v. Suppose
p € P and D is a family of dense open subsets of P with |D| < v~. We will find
p* < p with p* € N D.

Take a sufficiently large regular cardinal 6 and a well-ordering A of Hy, and
let M := (Hg,€,A, u, A\, Z,P,p, D). First we claim the following;:

Claim. There is a nice €-chain (M¢ | £ < v™) of elementary submodels of M
such that |Mg| < v~ for every & < v~ and |J(PuA N Me) € Z for every limit
E<v™.

Proof of Claim. By fatness of Z, there is a nice €-chain (N¢ | £ < v™) of
elementary submodels of M of size < p such that Ne Np € pand NeNA € Z
for every limit £ < v~. For each £ < v, let M, be the Skolem hull of the set
{(Ny | <€) €& <&} in M. We prove that (M, | £ < v™) is as desired.

Clearly, |M¢| < v~ for every & < v~. It is also clear that (M | £ < v7)
is C-increasing continuous. Moreover, (M | £ < () € My for every ( < v,
since (N,, | 7 < ¢) € M¢41, and, for each £ < (, M is the Skolem hull of
{(Ny | <€) | €& <&} in the restriction of M to Ne. So (Mg | € <v7)is a
nice €-chain.

It remains to check that (J(P,A N Me) € Z for every limit £ < v~. Fix a
limit ordinal {£ < v~. First, note that (J(P,He N M¢) C N, since Mg C Ne <
M, and Ne¢ N p € p. Moreover, Ne C J(PuHo N M) since Ne = U, ¢ Ny,
and N, € P,Ho N M for every n < & So U(PuHe N Me) = Ne. Then
UPANM) =NenN e Z. O(Claim)

Let (Mg | £ <v~) be as in Claim. Note that D C M,,- sincev™ C M, < M.
By induction on &, we will construct a descending sequence (pe | { <v™) in P
below p. We will construct it so that, for each { < v~, (pe | £ < () is definable
in M from (M | £ < (). So pe will belong to Mgy for all £ < v~—. Let
po := p. Suppose { < v~ and p¢ has been defined. Let D¢yq be the family
of all dense open subsets of P which belong to Mgy1. Then () Deyq is dense
open since |Dej1] < v~, and P is v~ -distributive. Let pey1 be the A-least
element of (| D¢41 below pe. Suppose § is a limit ordinal < v~, and (p, | n < &)
has been defined. By the construction at successor steps and the fact that
M¢ = U, ¢ My, we know that (p, | n < &) is (Mg, P)-generic. Then (p, | n < §)
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has a lower bound since P is Z-closed, and (J(P,A N M¢) € Z. Let pe be the
A-least lower bound of (p, | n < &) in P.

Let p* := p,-. Then p* < p. Moreover, p* € D for every dense open D C P
with D € M,—. Then p* € (D since D C M,,-. O

In the rest of this subsection, we prove that if Z is fat, then Z-closedness is

preserved by < u-support iterations.

Proposition 7.4. Let Z be a fat subset of P, and P = (Po, Qs | <v,8<7)
be a < p-support iteration of Z-closed posets for some ordinal v. Then P, is
Z-closed.

For this, we will need the following lemmata:

Lemma 7.5. Let Z and P = <IP’(X,Q5 | <v,8 < 7) be as in Proposition 7.4,
and suppose v is a limit ordinal. Let 6 be a sufficiently large regular cardinal and
M be an elementary submodel of (Hg, €, 11, A, Z, ]f”} such that |M| < p, MNp € 1
and MNX € Z. Let = (pe | £ <) be a descending sequence in P, N M such
that (pe o | € < () is (M, Py)-generic for every c € M N~y. Then p has a lower

bound in P, .

Proof. First, note that |M Nv| < p and dom(pg) € M Ny for every & < (. We
will construct a lower bound p* of p such that dom(p*) = M N+. It suffices to
define p* () by induction on 8 € M N~ so that p* [ 5+ 1 is a lower bound of
(pe1B+11€< Q).

Suppose that 8 € M N~ and p* [ 8 has been defined. Note that p* [ 8
is a lower bound of (p¢ | B | & < (), which is an (M, Pg)-generic sequence.
Let Gg be the canonical name for a Pg-generic filter. Then p* | 3 forces that
M[Gs) < (Ho"™ €, Qp), M[Gs]Np=Mnp e pand M[G5]NA=MNA€E Z.
Moreover, p* | 8 forces that (pe(8) | £ < () is (M[G’g],@g)—generic. So p* | B
forces that (pe(8) | € < ¢) has a lower bound in Qg by Z-closedness of Q. Let
p*(B) be a Pg-name which p* | 8 forces to be a lower bound of (ps(8) | £ < ().
Then p*(5) is as desired. O

Lemma 7.6. Let Z and P = <IP’O”Q5 | <v,8 < 7) be as in Proposition 7.4,
and suppose that P, is p-distributive for every a < . Let D be a set of size

< such that each D € D is a dense open subset of P, for some ap < 7.
Then D* = {p e P, |VD € D(plap € D)} is dense open in P.,.
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Proof. Clearly D* is open. We will prove that D* is dense in P,. If v is
a successor ordinal or a limit ordinal of cofinality > u, then there is a <
with ap < « for all D € D. So, in this case, it easily follows from the pu-
distributivity of P, that D* is dense in IP,. Thus suppose v is a limit ordinal
with v :=cf(y) < p.

Suppose p € P,. We will find p* € D* below p. Take an increasing continu-
ous sequence & = {a¢ | £ < v) cofinal in 7. Let a, := . Let 6 be a sufficiently
large regular cardinal, and let M := (Hg, €, u, A, Z, P, D,p,d). By fatness of Z,
take a nice €-chain (M | £ < v) of elementary submodels of M of size < p such
that Me N p € pand Me N A € Z for every limit £ < v.

By induction on ¢ < v, we will construct a descending sequence (p¢ | £ < v)
in P such that p¢ € Po, and pe < p|ag for each § < v. Each pe will be definable
in M from a parameter (M, | n < §), and so p¢ will be in M¢q. Let pg := p|[ag.
Suppose { < v and pg¢ has been taken. First, let ge1 := peUp [ [0, agq1). Then
qe+1 € Poy N Meyq. Let Deyq be the set of all dense open subsets of P

Qg1

in Meyq. Then () Dgyq is dense open in P since |Dgyq| < p and P is

e+l Qgt1

p-distributive. Let pey1 be the A-least element of (| D¢y below geyq. Next,
suppose that £ is a limit ordinal < v. By the construction at successor steps,
we know that (p, [a | n < §) is (M¢,Py)-generic for every a € Mg Nag. By
Lemma 7.5, let pe be the A-least lower bound of (p, | n < §) in P,,.

Let p* := p,. Then p* < p by the construction of (ps | £ < v). Moreover,
note that D C M, and that, if « € M, N+, then p* [ @ belongs to all dense open
subsets of P, in M,. So p* € D*. O

Now we prove Proposition 7.4:

Proof of Proposition 7.4. We prove the proposition by induction on . Assume
it is true for all v/ < . We prove it for ~.

Let 6 be a sufficiently large regular cardinal, A be a well-ordering of Hy
and M be the structure (Hg, €, A, u, A\, Z, @ Suppose that M is an elementary
submodel of M of size < p with |J(PuLANM) € Z, and p'= (p¢ | £ < () is an
(M, P, )-generic sequence. It is enough to find a lower bound of p'in P,.

First, suppose 7 is a successor ordinal. Let 8 : =~ — 1. Then (p¢[5 | £ < ()
is an (M, Pg)-generic sequence. So, by the induction hypothesis, it has a lower
bound p’ € Ps. Here note that P, \ is absolute between V and VF¢ since Pg
is p-distributive. Hence p’ forces that |J(P,A N M[Gg)) = UP AN M) € Z,

24



where G is the canonical name for a Pg-generic filter. Moreover, p’ forces that
(pe(B) | € < ¢) is an (M[G3],Qp)-generic sequence. So there is a Pg-name ¢
which p’ forces to be a lower bound of (p¢(5) | £ < ¢). Then p’ U{(8,4¢)} is a
lower bound of p'in P,.

Next, suppose that 7 is a limit ordinal. Let N := J(P,H¢ N M). Using
the elementarity of M and the Tarski-Vaught criterion, we can easily prove that
N < M. Tt is also easy to see that NNy € pand NN € Z. Then, by Lemma
7.5, it suffices to prove that (ps [a | € < () is (N, P, )-generic for every o € NNry.
Fix o € NN, and take an arbitrary dense open D C P, with D € N. We must
find § < ¢ with p¢ [a € D. By the construction of IV, there is D € M of size
< p such that D € D. By shrinking D if necessary, we may assume that each
D' € D is a dense open subset of Py, , for some aps < ~. Then, by Lemma 7.6,
the set D* = {p e P, | VD' € D(plap € D)} is dense open in P.,. Moreover
D* € M. So there is { < ¢ with p¢ € D*. Then p¢ [ = pe [ap € D. O

7.2 Proof of Theorem 1.10

In this subsection, we complete our proof of Theorem 1.10. First we describe a

certain property we impose on our sequence (Ss | § < p):

Definition 7.7. Let S = (S5 | § < p) be a sequence of subsets of E2... Then
let Zz be the set of all z € Py such that

(i) zNpep,
(ii) (CU()\ 2) N Usearye S5 = 0.
We say that S is nice if U6<M Ss = E2,, and Zg 1is fat in Py
We can easily add a nice § = (S5 | § < p) by forcing:

Lemma 7.8. Suppose 2< = u and X is reqular. Then there is a p-closed poset

with the p*-c.c. which adds a nice sequence (S5 | § < u) of subsets of E2,..

Proof. Let P be the set of all partial functions p : p X Eéﬁ — 2 of size < p,
ordered by reverse inclusions. Then P is u-closed and has the ut-c.c.

Let G be the canonical name for a P-generic filter, and, for each § < p, let
Ss be a P-name for the set {a € E2, | |JG(d,a) = 1}. Moreover, let Z be a
P-name for Z(S'5|6<u)' By a standard density argument, U5<# Ss = Eén in V¥,
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We will prove that Z is fat in VF. Let 6 be a sufficiently large regular
cardinal and M be a P-name for a countable expansion of (H@V]P, €). Suppose
v is a regular cardinal < p and p € P. We will find p* < p and a sequence
(Mg | € < v) of P-names such that p* forces (M | € < v) to witness fatness of
Z for M and v. We work in V.

Take a regular cardinal y > 2% and a well-ordering A of My, and let N :=
<HX,€,A,IP’,M,p>. Then we can take a nice €-chain (N¢ | £ < v) such that
Ne < N, |N¢| < pand NeNp € pfor every & < v. By induction on § < v,
we will define a decreasing sequence (p¢ | £ < v) in P below p. For each ¢ < v,
(pe | € < ¢) will be definable in N from (N¢ | € < (). So pe will belong to Neiq
for all £ < v.

Let po := p. If pe is defined, then let psq be the A-least condition below
pe which belongs to all dense open subsets of PP in N¢1 1. Note that there exists
such a condition, since IP is p-closed and |N¢y1| < p. Suppose § is a limit ordinal
and (p, | n < &) has been defined. Then (p, | n < &) is (N¢,P)-generic by the
construction at successor steps. Let p; := (J, .¢ py. Then dom(pg) = (NeNp) x
(NeNA). Let pe be an extension of p; such that dom(pg) = (NeNp) x CI(NgNA),
and pe(d, ) = 0 for all 6 € Ne Ny and all & € CI(Ng N A) \ (Ne N A).

Now we have defined (p¢ | £ < v). Note that, for every limit £ < v, p, forces
that Ne[G]Np = NeNp € pand Ne[GINA = NeNA € Z. Let p* := p,, and, for
each £ < v, let M be a P-name for N¢[G] NHe" . Then p* and (M | € <v)is

as desired. 0

After obtaining a nice sequence S = (S5 | § < p) of subsets of E2,., by an
iteration of club shootings, we will force each Ss to bear no u-skinny stationary

sets. Next, we present our poset for club shooting:

Definition 7.9. For a subset X of P\, let C(X) be the poset of all p such that
(i) p: (dy)* — p for some d, € Py,
(i1) every x € X with x C d), is not closed under p.

C(X) is ordered by reverse inclusions.

First, we present an easy lemma on C(X). Note that, by (ii) of Definition
7.9 and (2) of the following lemma, C(X) forces X to be non-stationary.

Lemma 7.10. Let X be a subset of Pi\.
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(1) Suppose p,q € C(X) and p|(d, Ndy)* = q[(d, Ndy)?. Then p and q are
compatible in C(X).

(2) For any d € Py, the set {p € C(X) | d C d,} is dense in C(X).

Proof. (1) Take v € pu\ (dpUd,), and let r : (d, Ud,)? — p be such that p,q C r
and 7(a,8) = v for all (o, ) € (dp Udy)? \ ((dp)? U (dg)?). We claim that
r < p,q. For this it suffices to check that r € C(X).

Clearly, r satisfies property (i) of conditions of C(X). To check (ii), suppose
z€Xandx Cdy,Ud,. If x Cd, or z Cdy, then x is not closed under r, since
p,q C rand p,q € C(X). So suppose z € d, and « Z d4. Take a € =\ d}, and
B € x\dg Then r(a, ) =7 ¢ dpUdy 2 x. Thus z is not closed under 7.

(2) Suppose p € C(X) and d € P,A\. We will find ¢ < p with d C d;. Take
v € p\ (dpUd), and let ¢ : (d, Ud)? — p be such that p C ¢ and g(«, B) = v
for every (a, B) € (d, Ud)?\ (dp)?. Then g € C(X) by the same argument as in
the proof of (1). Moreover, clearly ¢ < p and d C dg. O

Lemma 7.11. Suppose S = (Ss | & < ) is a sequence of subsets of E2, . Let
0 < p, and let X be a p-skinny subset of P\ such that Ex C S5 and sup(z) ¢ x
for all x € X. Then C(X) is Zg-closed.

Proof. Let 0 be a sufficiently large regular cardinal, A be a well-ordering of Hg
and M be the structure (Hy, €, A, X, S, 0). Suppose M < M, |[M| < p and
U(P, AN M) € Zg. Suppose also that p'= (p¢ | { < () is an (M, C(X))-generic
sequence. We show that p* := U£<C pe is a lower bound of p* in C(X). For
this, it suffices to prove that p* € C(X).

Clearly, d,~ satisfies property (i) of conditions of C(X). To check (ii), take
an arbitrary x € X with x C dp-. We show that x is not closed under dp-. Let
2= J(PuANM) € Zg. Then it easily follows from Lemma 7.10 (2) that dp- = 2.
So sup(z) € Cl(z) N'Ss. But (Cl(z) \ 2) NSs = @ since d € MNpu C zNp.
Hence sup(z) € z. Take yo € P,A N M with sup(z) € yo. Then we have
y1 = {2’ € X | sup(z’) € yo} € PuAN M by the p-skinniness of X. Again,
by Lemma 7.10 (2), there is § < ¢ with d,, D y1. Then 2 is not closed under pg
since z C y; and pe € C(X). But pe C p*. So x is not closed under p*, too. [

Note that Zg in a p-distributive forcing extension is the same as in the

ground model. Then, by Proposition 7.4 and Lemmata 7.3 and 7.11, if Sis a
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nice sequence of subsets of Eém then a < p-support iteration of C(X)’s as in
Lemma 7.11 is Zg-closed. Next, we show that such an iteration has the p*-c.c. if
2<H = .

Lemma 7.12. Suppose 2<# = p and S = (S5 | § < p) is a nice sequence of
subsets of E2,. Let v be an ordinal and P = (Po,C(Xg) | @ < 7,8 < 7) be
a < p-support iteration, where each XB is a Pg-name for a p-skinny subset of
PuA such that Ex € Ss for some § < p and sup(z) ¢ x for all x € Xg. Then
P, has the p*-c.c.

Proof. Let D be the set of all p € P, such that, for every 5 € dom(p), p(8) = ¢
for some function ¢ € V.

First, we prove that D is dense in P,. Take an arbitrary p € P,. We will
find p* < p which is in D. Let 6 be a sufficiently large regular cardinal, and
let M = (Hg, €, 5,1, \, S, B,p). Since Zg is fat, we can take a nice €-chain
(M, | n <w) of elementary submodels of M of size < p such that M, Np € p
and M, N\ € Zz. Using the p-distributivity of P, we can easily construct an
(M., P,)-generic sequence (p, | n < w) below p. Note that dom(p,) C M, N~y
for every n < w.

p* will be a lower bound of (p, | n < w) whose domain is M, N~y. By
induction on 8 € M,, N+, we will define p*(8) so that p* |8+ 1 < p, [B+1
for every n < w. Suppose 8 € M, N~y and p*(f’) has been defined for all
B € M, N B. By the genericity, p* | B forces that M,[GglNp = M,Np € p
and M,[Gs] N A = M, N\ € Zg, where Gy is the canonical name for a Pg-
generic filter. p* also forces that (p,(8) | n < w) is (M,[Gs],C(X3))-generic.
Then, by the Zg-closedness of C(Xp), p* forces that Un<w Pn(B) is a lower
bound of (p,(8) | n < w) in C(Xs). Moreover, by the genericity of p* | 3
and the p-distributivity of Pg, for each n < w, there is a function ¢, € V
such that p* [ 8 Ikg “pn(B) = ¢.”. Let q := U, .., ¢n and p*(B) := ¢. Then
p*TB+1€Pgyandp* [B+1<p, B+ 1 for every n < w. Now we have
defined p* € P,,. Clearly p* <p and p* € D.

We have proved that D is dense in P.,. For each p € D and § € dom(p), if
p(B) = ¢, then we let p(3) denote ¢. It suffices to show that if A C D and |A| >
pt, then there are distinct p, p’ € A which are compatible in P,. Suppose A C D
and |A| > p. By the standard argument using the A-system lemma, there are
distinct p,p’ € A such that p(8) [ (dygy N dps))* = P'(B) | (dpis) N dp(p))? for
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every 8 € dom(p) Ndom(p’). Then, using Lemma 7.10 (1), it is easy to see that
p and p’ are compatible in P,. O

Now we can easily prove Theorem 1.10:

Proof of Theorem 1.10. By Lemma 7.8, we may assume that there is a nice
sequence S = (S5 | 6 < ) of subsets of E2, in the ground model. Then, by
Lemma 7.12, using the bookkeeping method, we can construct a < p-support
iteration (P,,C(X3) | a < 2, 8 < 2*) with the following properties:

(i) Each Xz is a Pg-name for a p-skinny subset of P\ such that Ex, ©5Ss

for some § < p and sup(z) ¢ = for all z € X.

(ii) If X is a Pyr-name for a p-skinny subset of P, such that Ey C S for
some § < p and sup(z) ¢ x for all z € Xg, then there is 8 < 2* such that

s X5 = X7
Let P := Pyx. Then P preserves all cofinalities, since P is u-distributive and has
the pt-c.c. by Proposition 7.4 and Lemmata 7.3, 7.11, 7.12. Moreover, in V¥,
S5 bears no p-skinny stationary sets for any § < u by the construction of the

iteration. O
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