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Abstract

Minami–Sakai [10] investigated the cofinal types of the Katětov and
the Katětov–Blass orders on the family of all Fσ ideals. In this paper we
discuss these orders on analytic P-ideals and Borel ideals. We prove the
following:

• The family of all analytic P-ideals has the largest element with re-
spect to the Katětov and the Katětov–Blass orders.

• The family of all Borel ideals is countably upward directed with
respect to the Katětov and the Katětov–Blass orders.

In the course of the proof of the latter result, we also prove that for any
analytic ideal I there is a Borel ideal J with I ⊆ J .

1 Introduction
In this paper we continue the study of the Katětov and the Katětov–Blass
orders on Borel ideals from Minami–Sakai [10]. To state a background and our
results, first we present our notation on ideals and recall the Katětov and the
Katětov–Blass orders.

Throughout this paper an ideal over a set X means a proper ideal over X
including [X]<ω. We are interested in ideals over countable infinite sets. If X
is countable infinite, then P(X) can be naturally seen as a topological space,
which is homeomorphic to the Cantor space. An ideal I over a countable infinite
set X is said to be Borel, analytic or Fσ if it is Borel, analytic or Fσ as a subset
of P(X), respectively. Let Bo, An and Fs denote the families of all Borel,
analytic and Fσ ideals over ω, respectively. Moreover let AP denote the family
of all analytic P-ideals over ω, where an ideal I is called a P-ideal if for any
{An | n < ω} ⊆ I there is A ∈ I such that An \ A is finite for every n < ω.
Recall the fact, due to Solecki [11], that every analytic P-ideal is Fσδ.

The Katětov order ≤K and the Katětov–Blass order ≤KB are preorders on
ideals over countable infinite sets, which refine the inclusion relation ⊆. They
are defined as follows: For an ideal I over X and an ideal J over Y ,

I ≤K J def⇔ there is a function τ : Y → X such that τ−1[A] ∈ J for any
A ∈ I,
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I ≤KB J def⇔ there is a finite to one function τ : Y → X such that τ−1[A] ∈
J for any A ∈ I.

Note that if X = Y , and I ⊆ J , then the identity function witnesses that
I ≤KB J . Note also that if I ≤KB J , then I ≤K J .

The Katětov order was introduced by Katětov [5] to discuss limit construc-
tions of continuous functions with Borel ideals. Recently it has turned out that
many properties of ideals can be characterized in terms of the Katětov and the
Katětov–Blass orders. More precisely, for many properties of ideals we can find
some Borel ideals which are critical with respect to ≤K or ≤KB. For example,
it is not hard to see that an ultrafilter U over ω is a P-point if and only if
fin× fin 6≤K U∗, where fin is the ideal consisting all finite subsets of ω. It is also
known, due to Hrušák–Meza–Minami [3], that an ultrafilter U is a Q-point if
and only if EDfin 6≤KB U∗, where EDfin is the eventually different ideal restricted
to the set {(m,n) | n ≤ m}. See Hrušák [2] for details and other examples.

Motivated by these facts, some structural analyses have been made for the
Katětov and the Katětov–Blass orders on Borel ideals. Meza [9] proved that
P(ω)/fin is order-embeddable into (Fs,≤K). Minami–Sakai [10] proved that
both (Fs,≤K) and (Fs,≤KB) are upward directed and that their cofinal types
are the same as (ωω,≤∗). In this paper we continue [10] to investigate the
structures of AP and Bo with respect to ≤K and ≤KB.

In [10] it was proved that (AP,≤KB) is countably upward directed, that is,
every countable subset of AP has an upper bound in (AP,≤KB). (Hence so is
(AP,≤K).) But the case of the cofinal types of (AP,≤K) and (AP,≤KB) were
left open. In this paper we prove the following:

Theorem 1.1. (AP,≤KB) has the largest element.

It is easy to see that for any I ∈ Fs there is J ∈ AP with I ⊆ J (See
Lemma 2.6). So we have the following corollary:

Corollary 1.2. There is J ∈ AP such that I ≤KB J for all I ∈ Fs.

Here note that Theorem 1.1 and Corollary 1.2 also hold for ≤K because
≤K ⊇≤KB.

Next we turn our attention to Bo. It is easy to see that (Bo,≤K) is upward
directed. If I0, I1 ∈ Bo, then the Fubini product I0 × I1 is a Borel ideal over
ω×ω, and the projections from ω×ω to ω witness that I0, I1 ≤K I0×I1. Here
note that the projections are not finite to one, and this argument does not prove
the upward directedness of (Bo,≤KB). The upward directedness of (Bo,≤KB)
was asked in [10]. In this paper we give a positive answer:

Theorem 1.3. (Bo,≤KB) is countably upward directed.

In the course of the proof of this theorem, we also prove that for any analytic
ideal I there is a Borel ideal J with I ⊆ J . See Theorem 3.1.

We do not know the cofinal types of (Bo,≤K) and (Bo,≤KB). But it follows
from the results in Katětov [6] that (Bo,≤K) does not have the largest element.
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(Hence neither does (Bo,≤KB).) We will also give a proof of this fact which is
slightly simpler than the arguments in [6].

The construction of this paper is as follows: In §2 we will prove Theorem 1.1
and Corollary 1.2. In §3 we will prove Theorem 1.3 and give a proof of the fact
that (Bo,≤K) does not have the largest element. Finally in §4 we will present
several questions.

The author would like to express his gratitude to Hiroaki Minami for his
insightful comments and suggestions on this work. He would also like to thank
an anonymous referee for his valuable comments and suggestions on this paper.

2 ≤KB-largest analytic P-ideal
In this section we prove Theorem 1.1 and Corollary 1.2. For this we use the
characterizations of Fσ-ideals and analytic P-ideals using submeasures, which
were given by Mazur [8] and Solecki [11]. First we recall these characterizations.

A submeasure on a set X is a function ϕ : [X]<ω → R≥0 with the following
properties, where R≥0 denotes the set of all non-negative real numbers:

(i) ϕ(A) ≤ ϕ(B) if A ⊆ B. (Monotonicity)

(ii) ϕ(A ∪B) ≤ ϕ(A) + ϕ(B). (Subadditivity)

(iii) ϕ(∅) = 0.

If ϕ is a submeasure on X, then X is denoted by d(ϕ). Let ϕ be a submeasure
on ω. For A ⊆ ω let

ϕ̂(A) := lim
n→ω

ϕ(A ∩ n) ∈ R≥0 ∪ {∞} ,

If ϕ̂(ω) = ∞, then

Fin(ϕ) := {A ⊆ ω | ϕ̂(A) <∞}

is an ideal over ω. On the other hand, if limn→ω ϕ̂(ω \ n) > 0, then

Exh(ϕ) := {A ⊆ ω | lim
n→ω

ϕ̂(A \ n) = 0}

is an ideal over ω. Exh(ϕ) is called the exhaustive ideal of ϕ. The following are
the characterizations of Fσ-ideals and analytic P-ideals mentioned above:

Fact 2.1 (Mazur [8]). I ∈ Fs if and only if I = Fin(ϕ) for some submeasure ϕ
on ω such that ϕ̂(ω) = ∞.

Fact 2.2 (Solecki [11]). I ∈ AP if and only if I = Exh(ϕ) for some submeasure
ϕ on ω such that limn→ω ϕ̂(ω \ n) > 0.

Here we make a remark on Fact 2.2. For I ∈ AP Solecki [11] indeed con-
structed a submeasure ϕ as in Fact 2.2 with the property that range(ϕ) ⊆ Q.
See the proof of Fact 2.2 in [11].

Now we proceed to the proof of Theorem 1.1.
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Theorem 1.1. (AP,≤KB) has the largest element.

Our proof of Theorem 1.1 uses similar arguments as Hrušák–Meza [4], which
proved the existence of a universal analytic P-ideal. Here a universal analytic
P-ideal is J ∈ AP such that for any I ∈ AP there is A ⊆ ω with J �A ∼= I. To
construct such an ideal, they constructed a universal Q-valued submeasure on ω
as a Fraïssé limit of Q-valued submeasures on finite sets. They also constructed
a universal Z-valued submeasure in the same way to prove the existence of a
universal Fσ-ideal. For Theorem 1.1 we will construct a submeasure on ω by
combining Q-valued submeasures on finite sets in a different way from [4].

To prove Theorem 1.1 we need some preliminaries. First we slightly modify
Fact 2.2. We say that a submeasure ϕ on ω is nice if

(i) range(ϕ) ⊆ Q,

(ii) there is an increasing sequence 〈kn | n < ω〉 in ω such that k0 = 0, k1 = 1,
and ϕ(kn+1 \ kn) = 1 for all n.

We will use the following:

Lemma 2.3. For any I ∈ AP there is a nice submeasure ϕ on ω such that
I = Exh(ϕ).

Proof. Suppose that I ∈ AP. By the proof in [11] of Fact 2.2 there is a
submeasure ψ on ω such that I = Exh(ψ), α := limn→ω ψ̂(ω \ n) > 0, and
range(ψ) ⊆ Q. We may assume that ψ({0}) > 0 by modifying ψ if necessary.
(Since ψ̂(ω) ≥ α > 0, there is k < ω with ψ({k}) > 0. Let σ : ω → ω be
the transposition of 0 and k. Replace ψ with the submeasure ψ′ defined by
ψ′(A) := ψ(σ[A]).) We may also assume that α > 1 and ψ({0}) ≥ 1. (Replace
ψ with m · ψ for some natural number m if necessary.)

Define a function ϕ : [ω]<ω → Q by ϕ(A) := min{ψ(A), 1}. It is easy to
check that ϕ is a submeasure on ω. Moreover, ϕ({0}) = 1, and for each k < ω
there is l > k with ϕ(l \ k) = 1 because α > 1. From this it easily follows
that ϕ satisfies the property (ii) of nice submeasures. So ϕ is nice. Finally,
Exh(ϕ) = Exh(ψ) = I because ϕ̂(A) = min{ψ̂(A), 1} for each A ⊆ ω. Thus ϕ is
as desired.

Next we give a sufficient condition for that Exh(ϕ) ≤KB Exh(ψ):

Lemma 2.4. Let ϕ and ψ be submeasures on ω such that limn→ω ϕ̂(ω \ n) > 0

and limn→ω ψ̂(ω \ n) > 0. Suppose that there is a finite to one τ : ω → ω with
ψ(τ−1[A]) ≤ ϕ(A) for all A ∈ [ω]<ω. Then Exh(ϕ) ≤KB Exh(ψ).

Proof. We show that τ witnesses that Exh(ϕ) ≤KB Exh(ψ). Suppose that A ∈
Exh(ϕ). We show that B := τ−1[A] ∈ Exh(ψ), that is, limn→ω ψ̂(B \ n) = 0.
Because τ is finite to one, for each n < ω there are m, n̄ < ω such that B \ n ⊇
τ−1[A \m] ⊇ B \ n̄. Then, by the monotonicity of ψ,

lim
n→ω

ψ̂(B \ n) = lim
m→ω

ψ̂(τ−1[A \m]) =: α .
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Moreover ψ̂(τ−1[C]) ≤ ϕ̂(C) for all C ⊆ ω by the assumption of the lemma.
Hence α ≤ limm→ω ϕ̂(A \m) = 0. So limn→ω ψ̂(B \ n) = 0.

To prove Theorem 1.1 it suffices to construct a nice submeasure ψ on ω
satisfying the properties of Lemma 2.4 for every nice submeasure ϕ on ω. As
we mentioned before, we will construct such a submeasure ψ by combining sub-
measures on finite sets. The last preliminary for Theorem 1.1 is an investigation
of submeasures on finite sets, which is similar as the one in [10].

Let Φ be the set of all submeasures ϕ such that

(i) d(ϕ) is a non-empty finite subset of ω,

(ii) range(ϕ) ⊆ Q,

(iii) ϕ(d(ϕ)) = 1.

Moreover define a preorder � on Φ as follows: For ϕ,ψ ∈ Φ let

ϕ� ψ
def⇔ there is τ : d(ψ) → d(ϕ) such that ψ(τ−1[A]) ≤ ϕ(A)

for all A ⊆ d(ϕ).

Note that a submeasure ϕ on {0} defined by ϕ({0}) = 1 and ϕ(∅) = 0 is the
smallest element of (Φ,�). We will use the following:

Lemma 2.5. (Φ,�) is upward directed.

Proof. Take ϕ0, ϕ1 ∈ Φ arbitrarily, and let Xi := d(ϕi) for i = 0, 1. It suffices to
find a submeasure ψ on some non-empty finite set Y and functions τi : Y → Xi

for i = 0, 1 such that range(ψ) ⊆ Q, ψ(Y ) = 1, and ψ(τ−1
i [A]) ≤ ϕi(A) for each

i = 0, 1 and each A ⊆ Xi.
Let Y := X0×X1, and for each i = 0, 1 let τi : Y → Xi be the i-th projection,

that is, τi(k0, k1) = ki. Define a function ψ on P(Y ) by

ψ(B) := min{ϕ0(A0)+ϕ1(A1) | A0 ⊆ X0∧A1 ⊆ X1∧B ⊆ τ−1
0 [A0]∪τ−1

1 [A1]}

Then it is easy to check that ψ is a submeasure on Y , range(ψ) ⊆ Q, and
ψ(τ−1

i [A]) ≤ ϕi(A) for each i = 0, 1 and each A ⊆ Xi. Hence it suffices to show
that ψ(Y ) = 1.

Note that ψ(Y ) ≤ ϕ0(X0) + ϕ1(∅) = 1 because Y ⊆ τ−1
0 [X0] ∪ τ−1

1 [∅]. On
the other hand, note that if Ai ⊆ Xi for i = 0, 1, and Y ⊆ τ−1

0 [A0] ∪ τ−1
1 [A1],

then either A0 = X0, or A1 = X1. This is because if A0 6= X0, and A1 6= X1,
then, taking ki ∈ Xi \Ai, we have that (k0, k1) ∈ Y \ τ−1

0 [A0]∪ τ−1
1 [A1]. Then,

because ϕi(Xi) = 1, it follows that ψ(Y ) ≥ 1. Thus ψ(Y ) = 1.

Now we prove Theorem 1.1:

Proof of Theorem 1.1. First we construct J ∈ AP, which will turn out to be
the ≤KB-largest. Since Φ is countable and upward directed, we can take an
increasing cofinal sequence 〈ψn | n < ω〉 in (Φ,�). We may assume that d(ψn) =
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ln+1\ln =: Yn for some increasing sequence 〈ln | n < ω〉 in ω with l0 = 0. Define
a function ψ on [ω]<ω by

ψ(B) := max{ψn(B ∩ Yn) | n < ω} .

Then it is easy to see that ψ is a submeasure on ω and that limn→ω ψ̂(ω \ n) =
1 > 0. Let J := Exh(ψ) ∈ AP. Below we prove that J is the largest element
in (AP,≤KB).

Take an arbitrary I ∈ AP. We show that I ≤KB J . By Lemma 2.3 take a
nice submeasure ϕ on ω with I = Exh(ϕ). By Lemma 2.4 it suffices to find a
finite to one τ : ω → ω such that ψ(τ−1[A]) ≤ ϕ(A) for all A ∈ [ω]<ω.

Because ϕ is nice, there is an increasing sequence 〈km | m < ω〉 in ω such
that k0 = 0, k1 = 1, and ϕ(km+1 \km) = 1 for all m < ω. Let Xm := km+1 \km
and ϕm := ϕ �P(Xm) for each m < ω. Note that ϕm ∈ Φ for all m < ω. Note
also that ϕ0 is the smallest in (Φ,�).

For each n < ω let mn be the largest m ≤ n such that ϕm � ψn. Here note
that the mapping n 7→ mn is finite to one because 〈ψn | n < ω〉 is an increasing
cofinal sequence in (Φ,�). For each n < ω take τn : Yn → Xmn

witnessing that
ϕmn

� ψn, and let τ :=
⋃

n<ω τn. Then τ is a finite to one function from ω to
ω. Moreover for each A ∈ [ω]<ω,

ψ(τ−1[A]) = max{ψn(τ
−1[A] ∩ Yn) | n < ω}

= max{ψn(τ
−1
n [A ∩Xmn

]) | n < ω}
≤ max{ϕmn

(A ∩Xmn
) | n < ω}

≤ ϕ(A) .

Thus τ is as desired.

Next we prove Corollary 1.2:
Corollary 1.2. There is J ∈ AP such that I ≤KB J for all I ∈ Fs.

This follows from Theorem 1.1 and the lemma below:
Lemma 2.6. For any I ∈ Fs there is J ∈ AP with I ⊆ J .
Proof. Take an arbitrary I ∈ Fs. By Fact 2.1 let ϕ be a submeasure on ω
with ϕ̂(ω) = ∞ and Fin(ϕ) = I. Then by induction on n < ω we can easily
take kn ∈ ω so that k0 = 0, and ϕ(kn+1 \ kn) ≥ n + 1 for each n < ω. Let
Xn := kn+1 \ kn. For each n < ω let ψn be a submeasure on Xn defined by

ψn(A) :=
1

ϕ(Xn)
· ϕ(A) .

for each A ⊆ Xn. Then define a submeasure ψ on ω by

ψ(A) := max{ψn(A ∩Xn) | n < ω}

for each A ∈ [ω]<ω. Note that limn→ω ψ̂(ω \n) = 1 > 0. So J := Exh(ψ) ∈ AP.
We check that I ⊆ J . Take an arbitrary A ∈ I. Then α := ϕ̂(A) < ∞.

Note that ϕ(A∩Xn) ≤ α for each n < ω. So ψn(A∩Xn) ≤ α
n+1 for each n < ω.

Thus limn→ω ψ̂(A \ n) = 0, that is, A ∈ Exh(ψ) = J .
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3 Directedness of (Bo,≤KB)

In this section we prove Theorem 1.3. After that, we will also give a proof of
the fact, due to Katětov [6], that (Bo,≤K) does not have the largest element.

Now let us start to prove Theorem 1.3:

Theorem 1.3. (Bo,≤KB) is countably upward directed.

This follows from the following:

Theorem 3.1. For any ideal I ∈ An there is J ∈ Bo with I ⊆ J . In
particular, Bo is cofinal in (An,≤KB).

Proposition 3.2. (An,≤KB) is countably upward directed.

Note that Theorem 3.1 is a variant of Luzin’s separation theorem, which
states that every disjoint two analytic sets are separated by a Borel set. In fact
Theorem 3.1 can be proved using Luzin’s separation theorem:

Proof of Theorem 3.1. Take an arbitrary I ∈ An. We construct a Borel J ⊇ I
step-by-step. First we claim the following:

Claim. For any Borel P ⊆ P(ω) with I ⊆ P there is a Borel Q ⊆ P(ω) such
that

(i) I ⊆ Q ⊆ P,

(ii) if A ∈ Q, and B ∈ I, then A ∪B ∈ Q.

Proof of Claim. Suppose that P is a Borel subset of P(ω) with I ⊆ P. By
induction on n < ω we will take a Borel Qn with I ⊆ Qn ⊆ P. The desired Q
will be

⋂
n<ω Qn.

Let Q0 := P. Suppose that Qn has been taken. Then let

Q′
n+1 := {A ∈ Qn | (∀B ∈ I) A ∪B ∈ Qn} .

Note that Q′
n+1 is co-analytic, and I ⊆ Q′

n+1. By Luzin’s separation theorem
let Qn+1 be a Borel set with I ⊆ Qn+1 ⊆ Q′

n+1.
Let Q :=

⋂
n<ω Qn. Then Q is Borel and satisfies (i). Note that if A ∈ Qn+1,

and B ∈ I, then A ∪B ∈ Qn. Hence Q also satisfies (ii). �(Claim)

Using Claim, by induction on n < ω, we will take a Borel Pn ⊂ P(ω) with
I ⊆ Pn. The desired J will be

⋂
n<ω Pn.

Let P0 := P(ω) \ {ω}. Suppose that Pn has been taken. By Claim take a
Borel P ′

n+1 ⊆ P(ω) such that

(i) I ⊆ P ′
n+1 ⊆ Pn,

(ii) if A ∈ P ′
n+1, and B ∈ I, then A ∪B ∈ P ′

n+1.
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Then let

P ′′
n+1 := {A ∈ P ′

n+1 | [(∀B ⊆ A) B ∈ P ′
n+1] ∧ [(∀B ∈ P ′

n+1) A∪B ∈ P ′
n+1]} .

Then P ′′
n+1 is co-analytic. Moreover I ⊆ P ′′

n+1 by (i) and (ii). By Luzin’s
separation theorem let Pn+1 be a Borel subset of P(ω) with I ⊆ Pn+1 ⊆ P ′′

n+1.
Here note that

(iii) if B ⊆ A ∈ Pn+1, then B ∈ Pn,

(iv) if A,B ∈ Pn+1, then A ∪B ∈ Pn.

Let J :=
⋂

n<ω Pn. Then J is Borel, and I ⊆ J . Moreover J is an ideal
by (iii), (iv) and the fact that ω /∈ P0. Thus J is as desired.

Next we prove Proposition 3.2. We use the following well-known fact due to
Mathias [7] and Talagrand [12]. Its proof can be also found in Bartoszyński–
Judah [1] (Theorem 4.1.2):

Fact 3.3 (Mathias [7], Talagrand [12]). Let I be an ideal over ω which has the
Baire property in P(ω). Then there is an increasing sequence 〈kn | n < ω〉 in ω
with k0 = 0 such that

⋃
n∈Z kn+1 \ kn /∈ I for any infinite Z ⊆ ω.

Proof of Proposition 3.2. Suppose that {Im | m < ω} ⊆ An. We show that
there is J ∈ An with Im ≤KB J for all m < ω.

First note that each Im has the Baire property because it is analytic. Using
Fact 3.3, we can easily take an increasing sequence 〈kn | n < ω〉 in ω with k0 = 0
such that

⋃
n∈Z kn+1 \ kn /∈ Im for any infinite Z ⊆ ω and any m < ω. Let

Xn := (kn+1 \ kn)n+1 for each n < ω, and let X :=
⋃

n<ωXn. It suffices to find
an analytic ideal J over X such that Im ≤KB J for all m < ω.

For each m < ω define τm : X → ω as follows: For (l0, l1, . . . , ln) ∈ Xn, let
τm(l0, l1, . . . , ln) := lm if m ≤ n, and let τm(l0, l1, . . . , ln) := 0 otherwise. Let
J be the set of all B ∈ P(X) such that B ⊆

⋃
m<m̄ τm

−1[Am] for some m̄ < ω
and some 〈Am | m < m̄〉 with Am ∈ Im. We claim that J is as desired.

First it is easy to see that J is analytic in P(X). Next note that τm is a
finite to one function from X to ω. Then, by the construction of J , each τm
witnesses that Im ≤KB J . So all we have to prove is that J is an ideal over
X. It follows from the construction of J that J is closed under taking finite
unions and subsets, and [X]<ω ⊆ J . Thus it suffices to show that X /∈ J .

Suppose that m̄ < ω and that Am ∈ Im for each m < m̄. It is enough
to show that

⋃
m<m̄ τm

−1[Am] 6= X. By the choice of 〈kn | n < ω〉, for each
m < m̄ there are at most finitely many n < ω with kn+1 \ kn ⊆ Am. So we can
take n ≥ m̄ such that kn+1 \ kn 6⊆ Am for any m < m̄. For each m < m̄ take
lm ∈ kn+1 \ kn with lm /∈ Am, and let lm := kn for each m with m̄ ≤ m ≤ n.
Then (l0, l1, . . . , ln) ∈ Xn ⊆ X. But (l0, l1, . . . , ln) /∈

⋃
m<m̄ τm

−1[Am].

Next we turn our attention to the fact that (Bo,≤K) does not have the
largest element, which follows from the results in [6]. In fact, we have the
following theorem among the results in [6], where an ideal I over ω is called an
Σ0

ξ-ideal if it is Σ0
ξ in P(ω):
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Theorem 3.4 (Katětov [6]). Suppose that 1 ≤ ξ < ω1. Then there is I ∈ Bo
such that I 6≤K J for any Σ0

ξ-ideal J over ω.

Here we give a proof of this theorem, which is slightly simpler than the
arguments in [6].

First we make some preliminaries. Let C denote the Cantor space. Let I be
an ideal over ω, let 〈Pn | n < ω〉 be a sequence of subsets of C, and let Q be a
subset of C. We write limI〈Pn | n < ω〉 = Q if

(i) {n < ω | Q /∈ Pn} ∈ I for all Q ∈ Q,

(ii) {n < ω | Q ∈ Pn} ∈ I for all Q ∈ C \ Q.

We will use the following:

Lemma 3.5. Let I be an ideal over ω, let 〈Pn | n < ω〉 be a sequence of subsets
of C, and let Q be a subset of C. Assume that limI〈Pn | n < ω〉 = Q.

(1) Let J be an ideal over ω with I ≤K J , which is witnessed by τ : ω → ω.
Then limJ 〈Pτ(n) | n < ω〉 = Q.

(2) Suppose that 1 ≤ ξ < ω1 and that I is a Σ0
ξ-ideal. Suppose also that each

Pn is clopen in C. Then Q is Σ0
ξ in C.

Proof. (1) If Q ∈ Q, then {n < ω | Q /∈ Pτ(n)} = τ−1[{n < ω | Q /∈ Pn}] ∈ J .
Also, if Q ∈ C \ Q, then {n < ω | Q ∈ Pτ(n)} = τ−1[{n < ω | Q ∈ Pn}] ∈ J .
Thus limJ 〈Pτ(n) | n < ω〉 = Q.
(2) Define f : C → P(ω) by f(Q) := {n < ω | Q /∈ Pn}. Then it is easy to see
that f is continuous and that Q = f−1[I]. Hence Q is Σ0

ξ .

Now we give a proof of Theorem 3.4:

Proof of Theorem 3.4. By Theorem 3.1 it suffices to find I ∈ An such that
I 6≤K J for any Σ0

ξ ideal J .
Take a Borel Q ⊆ C which is not Σ0

ξ and an enumeration 〈Pn | n < ω〉 of all
clopen subsets of C. For each Q ∈ C let AQ := {n < ω | Q ∈ Pn}. Then let I
be the set of all B ⊆ ω such that

B ⊆

( ⋃
Q∈R

ω \AQ

)
∪

( ⋃
Q∈S

AQ

)

for some R ∈ [Q]<ω and some S ∈ [C \ Q]<ω. We claim that I is as desired.
First we check that I ∈ An. It is easy to see that I is analytic. We show

that I is an ideal. Note that I is closed under taking finite unions and subsets
by its construction. Note also that for any R ∈ [Q]<ω and any S ∈ [C \ Q]<ω

there is n < ω with Pn ⊇ R and Pn ∩ S = ∅, i.e. n ∈ AQ for any Q ∈ R and
n /∈ AQ for any Q ∈ S. Hence ω /∈ I. To see that [ω]<ω ⊆ J , it is enough to
prove that {n} ∈ I for all n < ω. Suppose that n < ω. Then Pn 6= Q because Q
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is not Σ0
ξ . If there is Q ∈ Q \ Pn, then Q ∈ Q, n ∈ ω \AQ, and hence {n} ∈ I.

Otherwise, there is Q ∈ Pn \ Q. Then Q /∈ Q, n ∈ AQ, and so {n} ∈ I.
Next note that limI〈Pn | n < ω〉 = Q by the construction of I. Recall also

that Q is not Σ0
ξ and that each Pn is clopen. Then it follows from Lemma 3.5

that I 6≤K J for any Σ0
ξ-ideal J over ω. Thus I is as desired.

4 Questions
We end this paper with several questions.

We do not know the cofinal types of (Bo,≤K) and (Bo,≤KB). If the fol-
lowing question is answered affirmatively (this would strengthen Theorem 3.4),
then (Bo,≤K) and (Bo,≤KB) are Tukey equivalent to (ω1, <) by Theorem 1.3:

Question 4.1. For any ξ with 1 ≤ ξ < ω1, is there J ∈ Bo with I ≤KB J (or
I ≤K J ) for every Σ0

ξ-ideal I ?

Note that there is such J for ξ = 2 by Corollary 1.2.
Next question is on the Rudin–Keisler order ≤RK and the Rudin–Blass order

≤RB on ideals, which are defined as follows: For an ideal I over X and an ideal
J over Y ,

I ≤RK J def⇔ there is a function τ : Y → X such that A ∈ I if and only if
τ−1[A] ∈ J for any A ⊆ X,

I ≤RB J def⇔ there is a finite to one function τ : Y → X such that A ∈ I if
and only if τ−1[A] ∈ J for any A ⊆ X.

Note that ≤RK ⊆≤K and ≤RB ⊆≤KB. For details of these orders, see Hrušák
[2] for example.

We do not know whether AP has the largest element with respect to these
orders:

Question 4.2. Does (AP,≤RK) or (AP,≤RB) have the largest element?

As for the upward directedness of Bo, it is easy to see that (Bo,≤RK) is
upward directed: For any I0, I1 ∈ Bo, their Fubini product I0 × I1 is a Borel
ideal on ω × ω, and the projections from ω × ω to ω witness that I0, I1 ≤RK

I0 × I1. But we do not know whether (Bo,≤RB) is upward directed:

Question 4.3. Is (Bo,≤RB) upward directed?
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