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Abstract

MA+(σ-closed) was introduced by Foreman-Magidor-Shelah [5], and

they proved that MA+(σ-closed) implies the stationary reflection principle

in [λ]ω for all λ ≥ ω2. On the contrary we prove that MA+(σ-closed)

does not follow even from stronger stationary reflection principles. More

precisely we show that MA+(σ-closed) does not follow from a slightly

strengthening of the Projectively Stationary Reflection Principle and the

Diagonal Reflection Principle to Internally Approachable Sets.

1 Introduction

MA+(P) is the following strengthening of the forcing axiom for a poset P:

For any family A of ω1-many maximal antichains of P and any P-
name Ṡ for a stationary subset of ω1 there is a filter g ⊆ P such that

g is A-generic, i.e. g ∩A ̸= ∅ for all A ∈ A, and such that the set

Ṡg := {α < ω1 | ∃p ∈ g, p ⊩ “α ∈ Ṡ ”}

is stationary in ω1.

MSC2010: 03E57, 03E35

Key words: Forcing Axiom, Stationary Reflection Principle

1



MA+(σ-closed) is the assertion that MA+(P) holds for all σ-closed posets P.
This was first introduced by Foreman-Magidor-Shelah [5].

It was proved in [5] that MA+(σ-closed) implies the stationary reflection

principle in [λ]ω for all λ ≥ ω2, which is often called the Weak Reflection

Principle. In fact it implies the stationary reflection principle to internally

approachable sets of length ω1, which we denote as RP(IA). To present a precise

statement of RP(IA), first we give some notation. A sequence ⟨Mα | α < γ⟩,
γ ∈ On, is called a nice ∈-chain if ⟨Mα | α ≤ β⟩ ∈ Mβ+1 for all β with β+1 < γ.

A set N is said to be internally approachable of length γ if there is a nice ∈-chain
⟨Mα | α < γ⟩ such that

∪
α<γ Mα = N . Then RP(IA) is the following assertion:

For any regular λ ≥ ω2 and any stationary X ⊆ [Hλ]
ω there is an

internally approachable N ∈ [Hλ]
ω1 of length ω1 such that X ∩ [N ]ω

is stationary.

It was proved by Krueger [9] that RP(IA) is strictly stronger than the Weak

Reflection Principle.

Recently Miyamoto formulated MA∗(σ-closed) and MA′(σ-closed), which are

forcing axioms similar to each other, and Usuba [11] proved that they are equiv-

alent to MA+(σ-closed) and RP(IA), respectively. Then it is natural to ask

whether MA+(σ-closed) and RP(IA) are equivalent. In this paper we prove

that MA+(σ-closed) is strictly stronger than RP(IA). In fact we show that

MA+(σ-closed) follows from neither of two strengthenings of RP(IA) below:

The first one is a variant of the Projectively Stationary Reflection Principle

introduced by Feng-Jech [4], which will be denoted as PSR(IA). First recall the

notion of projectively stationary sets: For W ⊇ ω1 and Z ⊆ [W ]ω, we say that

Z is projectively stationary in [W ]ω if the set {x ∈ Z | x∩ω1 ∈ S} is stationary

in [W ]ω for any stationary S ⊆ ω1. Then PSR(IA) is the following assertion:

For any regular cardinal λ ≥ ω2 and any projectively stationary Z ⊆
[Hλ]

ω there is a ⊆-increasing continuous nice ∈-chain ⟨Mα | α < ω1⟩
through Z.

The original Projectively Stationary Reflection Principle, PSR, is the assertion

obtained by omitting “nice” in PSR(IA). In [4] it was proved that MM im-

plies PSR(IA) and that PSR is equivalent to the Strong Reflection Principle by

Todorčević [2] 1. It was also shown in [4] that PSR implies the Weak Reflection

Principle, and the same argument shows that PSR(IA) implies RP(IA).
1Several variations of the Strong Reflection Principle have been produced as many set

theorists dealt with them. But Todorčević told the author that the original version is the one

equivalent to PSR(IA).
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The second strengthening of RP(IA) is the Diagonal Reflection Principle to

Internally Approachable Sets, DRP(IA), introduced by Cox [3]. As far as the

author knows, this is the strongest one among the simultaneous refleciton prin-

ciples for stationary sets consisting of countable sets. DRP(IA) is the following

statement:

For any cardinal λ ≥ ω2 and any regular cardinal λ̄ > λ there are

stationary many N ∈ [Hλ̄]
ω1 such that N is internally approach-

able of length ω1 and such that X ∩ [N ∩ Hλ]
ω is stationary for all

stationary X ⊆ [Hλ]
ω with X ∈ N .

It is easy to see that DRP(IA) implies RP(IA). It is also proved in [3] that

MA++(σ-closed) implies DRP(IA).

As we mentioned before, we will prove that neither PSR(IA) nor DRP(IA)

implies MA+(σ-closed). In fact, it will be proved that PSR(IA)+DRP(IA) does

not imply MA+(σ-closed):

Theorem 1. Assume there is a supercompact cardinal. Then there is a forcing

extension in which both PSR(IA) and DRP(IA) hold, but MA+(σ-closed) fails.

Here note that DRP(IA) is consistent with CH, while PSR(IA) implies 2ω = ω2.

(See [3] and [2].) We will also prove the following:

Theorem 2. Assume there is a supercompact cardinal. Then there is a forcing

extension in which both DRP(IA) and CH hold, but MA+(σ-closed) fails.

This paper is constructed as follows: In Section 2 we will give our notation

and basic facts used in this paper. In Section 3 we present a combinatorial

principle Φ which denies MA+(σ-closed). There we also present a forcing notion

relevant to Φ. In Section 4 we will prove the consistency of PSR(IA)+DRP(IA)+

Φ, which implies Theorem 1. In Section 5 we will prove the consistency of

DRP(IA) + CH+Φ, which implies Theorem 2.

2 Preliminaries

In this section we present our notation and basic facts used in this paper. Con-

sult Jech [6] and Kanamori [7] for those which are not presented here.

We begin with our notation relevant to trees. Let κ be an ordinal. For

u, v ∈ <κ2 we say that u and v are comparable if either u ⊆ v, or v ⊆ u. For

T ⊆ <κ2, a κ-branch of T is B ∈ κ2 such that the set {α < κ | B ↾α ∈ T} is

cofinal in κ.
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Next we give our notation on stationary sets. Let κ be a cardinal and W be

a set including κ. Z ⊆ [W ]κ is said to be club in [W ]κ if Z is ⊆-cofinal in [W ]κ,

and
∪

α<β zα ∈ Z for any β ≤ κ and any ⊆-increasing sequence ⟨zα | α < β⟩
in Z. X ⊆ [W ]κ is said to be stationary in [W ]κ if X ∩ Z ̸= ∅ for all club

Z ⊆ [W ]κ. It is well-known that X is stationary in [W ]κ if and only if for any

function f : [W ]<ω → W there exists x ∈ X such that x is closed under f and

such that κ ⊆ x. Moreover the condition that κ ⊆ x can be omitted if κ = ω.

The rest of this section is devoted to our notation and basic facts relevant

to the forcing.

Let P be a forcing notion. Then 1P denotes the largest element of P. If we

say “ · · · in V P ”, then it means that 1P forces · · · . Similarly, if we say “ ȧ is a

P-name for · · · ”, then it means that 1P forces that ȧ is · · · . If definable objects

such as ω1 and Hθ appear in · · · , then they denote those defined in V P.

Let P be a poset and κ be a cardinal. We say that P is <κ-Baire if for any

family A of <κ-many maximal antichains in P there are densely many p ∈ P
which meets all elements of P. Note that P is <κ-Baire if and only if any forcing

extension by P does not add any new sequences of ordinals of length <κ. We

say that P is σ-Baire if it is <ω1-Baire.

Let κ be a regular cardinal. Then Add(κ) denotes the poset <κ2 ordered

by reverse inclusions. For a set W let Col(κ,W ) be the poset <κW ordered

by reverse inclusions. For ordinals ν and λ > ν, Col(κ, ν,< λ) denotes the

<κ-support product of ⟨Col(κ, α) | ν ≤ α < λ⟩. Col(κ, 0, < λ) will be simply

denoted as Col(κ,<λ). Note that all Add(κ), Col(κ,W ) and Col(κ, ν,<λ) are

<κ-closed.

Let M be a set and P be a poset. An (M,P)-generic sequence is a descending

sequence ⟨pξ | ξ < ζ⟩ in P ∩ M for some ordinal ζ such that any maximal

antichain A ∈ M in P is met by some pξ. We say that p ∈ P is (M,P)-generic
if A∩M is predense below p for any maximal antichain A ∈ M in P. Moreover

p ∈ P is said to be strongly (M,P)-generic if p meets A ∩M for every maximal

antichain A ∈ M in P. A filter g ⊆ P ∩ M is said to be (M,P)-generic if

g ∩ A ∩ M ̸= ∅ for any maximal antichain A ∈ M in P. Furthermore, for an

P-generic filter G over V let

M [G] := {ȧG | ȧ is a P-name ∧ ȧ ∈ M} ,

where ȧG denotes an interpretation of ȧ by G.

Let P be a poset. Then MA(P) is the assertion that for any family A of

ω1-many maximal antichains in P there is an A-generic filter g ⊆ P. Moreover

MA++(P) is the further strengthening of MA+(P) stated as follows:
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For any family A of ω1-many maximal antichains in P and any family

S of ω1-many P-names for stationary subsets of ω1, there exists a

A-generic filter g ⊆ P such that Ṡg is stationary for every Ṡ ∈ S.

Let PFA+ and PFA++ be the +-version and ++-version of the Proper Forcing

Axiom PFA. Similarly, MM+ and MM++ are the +-version and ++-version

of Martin’s Maximum MM. In [5] it is proved that if there is a supercompact

cardinal, then there exists a forcing extension in which MM+ holds. In fact it

is easy to see that MM++ holds in that model. The following characterizations

of MA(P) and MA++(P), due to Woodin [12], are well-known:

Fact 2.1 (Woodin [12]). Let P be a poset.

(1) MA(P) holds if and only if for any suffciently large regular cardinal θ there

are stationary many M ∈ [Hθ]
ω1 such that an (M,P)-generic filter exists.

(2) MA++(P) holds if and only if for any sufficiently large regular cardinal θ

there are stationary many M ∈ [Hθ]
ω1 such that there is an (M,P)-generic

filter g with Ṡg stationary for every P-name Ṡ ∈ M of a stationary subset

of ω1.

3 Φ and F -iteration

In this section we present a combinatorial principle Φ denying MA+(Add(ω1)).

As we mentioned at the introduction, we will prove that Φ is consistent with

reflection principles in later sections. Here we also give a relevant forcing notion

Q(F ) in Subsection 3.2, which will be used in these consistency proofs.

3.1 Φ and MA+(Add(ω1))

Here we present Φ and prove that it denies MA+(Add(ω1)).

First we prepare notation: We call e : <ω2 → <ω12 a ⊆-preserving map if

e(s) ⊆ e(t) for any s, t ∈ <ω2 with s ⊆ t. If e : <ω2 → <ω12 is ⊆-preserving,

then let e◦ : ω2 → <ω12 be the function such that e◦(b) =
∪

n<ω e(b↾n).
Now let Φ be the following assertion:

There exists a function F : <ω12 → 2 satisfying [I] and [II] below:

[I] For any ⊆-preserving e : <ω2 → <ω12 with e◦ injective, there

is b ∈ ω2 with F (e◦(b)) = 1.
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[II] For any B ∈ ω12 the set {α < ω1 | F (B ↾ α) = 1} is non-

stationary.

Lemma 3.1. Φ denies MA+(Add(ω1)). Hence Φ denies MA+(σ-closed).

Proof. Assume Φ, and let F be a witness of Φ. Let Ġ be the canonical name for

an Add(ω1)-generic filter, and let Ṡ be an Add(ω1)-name for the set of all α < ω1

with F ((
∪
Ġ) ↾ α) = 1. By [II], Ṡg is non-stationary for any {α2 | α < ω1}-

generic filter g. Thus it suffices to show that Ṡ is stationary in V Add(ω1).

Take an arbitrary u ∈ Add(ω1) and an arbitrary Add(ω1)-name Ċ of a club

subset of ω1. We will find u∗ ≤ u and α < ω1 such that u∗ ⊩ “α ∈ Ṡ∩Ċ ”. Take

a sufficiently large regular cardinal θ and a countable M ≺ ⟨Hθ,∈, u, Ċ⟩. Let

α := M ∩ω1, and let ⟨An | n < ω⟩ be an enumeration of all maximal antichains

in Add(ω1) which belong to M . Then for each s ∈ <ω2 we can inductively take

e(s) ∈ Add(ω1) ∩M so that

(i) u ⊆ e(∅), and e(s) ⊆ e(t) if s ⊆ t,

(ii) e(s) and e(t) are incomparable for any incomparable s and t,

(iii) e(s) meets Adom(s).

Then e is ⊆-preserving, and e◦ is injective. By [I] take b ∈ ω2 with F (e◦(b)) = 1,

and let u∗ := e◦(b). Note that dom(u∗) = α. Then u∗ forces that F ((
∪
Ġ) ↾

α) = F (u∗) = 1, that is, α ∈ Ṡ. Moreover u∗ forces that α ∈ Ċ because u∗ is

strongly (M,Add(ω1))-generic.

3.2 F -iteration

In this subsection we present a forcing notion Q(F ) which forces a given function

F : <ω12 → 2 to witness Φ.

First we introduce an F -iteration, which is essentially a countable support

iteration of club shootings. For an ordinal ξ let

Γξ := the set of all countable partial functions q on ξ such that q(η) is a

closed bounded subset of ω1 for each η ∈ dom(q).

For a function F : <ω12 → 2 and an ordinal ζ we call ⟨Qξ, Ḃη | ξ ≤ ζ, η < ζ⟩ an
F -iteration of length ζ if the following hold for all ξ ≤ ζ and η < ζ:

• Qξ is a poset such that Qξ ⊆ Γξ and such that q0 ≤ q1 in Qξ if and

only if dom(q0) ⊇ dom(q1), and q0(η) is an end-extension of q1(η) for each

η ∈ dom(q1).
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• Ḃη is a nice Qη-name for an (ω1)
V -branch of (<ω12)V .

• Qη+1 consists of all q ∈ Γη+1 such that q ↾ η ∈ Qη and such that if

η ∈ dom(q), then q ↾η ⊩ “F (Ḃη ↾α) = 0 ” for all limit point α of q(η).

• If ξ is a limit ordinal, then Qξ consists of all q ∈ Γξ such that q ↾ξ′ ∈ Qξ′

for all ξ′ < ξ.

If ⟨Qξ, Ḃη | ξ ≤ ζ, η < ζ⟩ is an F -iteration, then Qζ is also called an F -iteration.

The standard argument using the ∆-system lemma proves the following:

Lemma 3.2. For any F : <ω12 → 2 every F -iteration has the (2ω)+-c.c.

Let µ := 22
ω

. By Lemma 3.2, using the book-keeping method, we can construct

an F -iteration ⟨Qξ, Ḃη | ξ ≤ µ, η < µ⟩ such that every nice Qµ-name for an

(ω1)
V -branch of (<ω12)V appears among {Ḃη | η < µ}. Let Q(F ) be such Qµ.

The following is easily checked:

Lemma 3.3. Suppose that F : <ω12 → 2 and that Q(F ) is σ-Baire. Then F

satisfies [II] in V Q(F ). If F satisfies [I] in V in addition, then F also satisfies

[I] in V Q(F ), and so F witnesses Φ in V Q(F ).

ButQ(F ) is not σ-Baire in general. For example, if F (u) = 1 for all u ∈ <ω12,

then Q(F ) clearly collapses ω1. Below we give conditions of F which imply that

F -iterations are σ-Baire. We also give conditions of F assuring that F -iterations

preserve a given stationary set, which will be a key for our proof of Theorem 1

and 2.

First let [III] be the following condition for a function F : <ω12 → 2:

[III] For any countable family E of ⊆-preserving maps from <ω2 to <ω12 such

that e◦ is injective for each e ∈ E , there is b ∈ ω2 such that F (e◦(b)) = 0

for all e ∈ E .

We also use conditions [IV] and [IV]W,X . To state these conditions we prepare

notation: For a function F : <ω12 → 2 and a regular cardinal θ ≥ ω2 let

YF,θ := {M ∈ [Hθ]
ω | ∀B ∈ (ω12) ∩M, F (B ↾(M ∩ ω1)) = 0} .

Let [IV] be the following condition for a function F : <ω12 → 2.

[IV] YF,θ is stationary for all sufficiently large regular cardinal θ.

Moreover for W ⊇ ω1 and X ⊆ [W ]ω let [IV]W,X be the following condition:

7



[IV]W,X For any sufficiently large regular cardinal θ there are stationary many

M ∈ YF,θ with M ∩W ∈ X.

Here note that [IV]W,X impliesX to be stationary in [W ]ω and that ifX contains

a club set, then [IV]W,X is equivalent to [IV]. Note also that if F satisfies [II],

then all countable M ≺ ⟨Hθ,∈, F ⟩ belong to YF,θ. So [IV] follows from [II], and

so does [IV]W,X if X is stationary.

We claim the following:

Lemma 3.4. Suppose that W ⊇ ω1, that X ⊆ [W ]ω and that F : <ω12 → 2

satisfies [III] and [IV]W,X . Then every F -iteration is σ-Baire and forces X to

remain stationary in [W ]ω. In particular, if F : <ω12 → 2 satisfies [III] and

[IV], then any F -iteration is σ-Baire.

For this we use the following lemma:

Lemma 3.5. Let F : <ω12 → 2 be a function satisfying [III], let Q be any

poset, and let θ be a regular cardinal with Q ∈ Hθ. Suppose that M ∈ YF,θ,

M ≺ ⟨Hθ,∈,Q, F ⟩ and q ∈ Q ∩M . Then there is an (M,Q)-generic sequence

q⃗ = ⟨qn | n < ω⟩ below q such that F (uḂ,q⃗) = 0 for every Q-name Ḃ ∈ M for

an (ω1)
V -branch of (<ω12)V , where

uḂ,q⃗ :=
∪
{u ∈ (<ω12) ∩M | ∃n < ω, qn ⊩ “u ⊆ Ḃ ”} .

Proof. By extending q if necessary, we may assume that q decides whether there

is a new (ω1)
V -branch of (<ω12)V in V Q. Let α := M ∩ ω1.

First suppose that q forces that there is no new branch. In this case let

q⃗ = ⟨qn | n < ω⟩ be an arbitrary (M,Q)-generic sequence below q. To prove

that q⃗ is as desired, take an arbitrary Q-name Ḃ ∈ M for an (ω1)
V -branch of

(<ω12)V . Then there is n < ω and B ∈ (ω12) ∩ M such that qn ⊩ “ Ḃ = B ”.

Note that uḂ,q⃗ = B ↾ α and that F (B ↾ α) = 0 because B ∈ M ∈ YF,θ. So

F (uḂ,q⃗) = 0.

Next suppose that q forces that there is a new (ω1)
V -branch of (<ω12)V . Let

B be the set of all Q-names Ḃ ∈ M which q forces to be such a new branch.

Take an enumeration ⟨Ḃn | n < ω⟩ of B such that each element of B appears

in it infinitely many times. Moreover let ⟨αn | n < ω⟩ be an increasing cofinal

sequence in α and ⟨An | n < ω⟩ be an enumeration of all maximal antichains in

Q which belong toM . Then for each s ∈ <ω2 we can inductively take qs ∈ Q∩M
and us ∈ (<ω12) ∩M so that (i)–(iv) below hold:

(i) q∅ ≤ q, and if s ⊆ t, then qt ≤ qs.
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(ii) qs meets Adom(s),

(iii) dom(us) ≥ αdom(s), and qs ⊩ “us ⊆ Ḃdom(s) ”.

(iv) If s ̸= t, and dom(s) = dom(t), then us and ut are incomparable.

For each b ∈ ω2 let q⃗b := ⟨qb↾n | n < ω⟩. Note that q⃗b is an (M,Q)-generic

sequence and that

uḂ,q⃗b
=

∪
{ub↾n | n < ω ∧ Ḃ = Ḃn}

for each Ḃ ∈ B. For each Ḃ ∈ B define eḂ : <ω2 → <ω12 as

eḂ(s) :=
∩
{ut | s ⊆ t ∈ <ω2 ∧ Ḃdom(t) = Ḃ} .

Then each eḂ is ⊆-preserving. Note also that eḂ(s) = us if Ḃdom(s) = Ḃ. So

e◦
Ḃ

is injective by (iv), and uḂ,q⃗b
= e◦

Ḃ
(b) for each b ∈ ω2. By [III] we can take

b∗ ∈ ω2 such that F (e◦
Ḃ
(b∗)) = 0 for all Ḃ ∈ B. Let q⃗ = ⟨qn | n < ω⟩ be q⃗b∗ .

We show that q⃗ is as desired. Take an arbitrary Q-name Ḃ ∈ M for an

(ω1)
V -branch of (<ω12)V . If there is n < ω with qn ⊩ “ Ḃ ∈ V ”, then we

can prove that F (uḂ,q⃗) = 0 by the same argument as in the previous case.

Otherwise, there is n < ω with qn ⊩ “ Ḃ /∈ V ”. Then we can take Ḃ′ ∈ B such

that qn ⊩ “ Ḃ = Ḃ′ ”. Note that uḂ,q⃗ = uḂ′,q⃗ and that F (uḂ′,q⃗) = 0 by the

choice of b∗. So F (uḂ,q⃗) = 0.

Proof of Lemma 3.4. Let Q⃗ = ⟨Qξ, Ḃη | ξ ≤ ζ, η < ζ⟩ be an F -iteration. Sup-

pose that q ∈ Qζ , that A is a countable family of maximal antichains in Qζ

and that ḟ is a Qζ-name for a function from [W ]<ω to W . It suffices to

find q∗ ≤ q and x ∈ X such that q∗ meets all elements of A and such that

q∗ ⊩ “x is closed under ḟ ”.

Take a sufficiently large regular cardinal θ. Then there is M ∈ YF,θ such that

x := M ∩W ∈ X and such that M ≺ ⟨Hθ,∈, F,W, Q⃗, q, ḟ⟩. We will construct

a strongly (M,Qζ)-generic condition q∗ below q. Note that q∗ will meet all

elements of A because A ⊆ M . Moreover q∗ will force x to be closed under ḟ

by the (M,Qζ)-genericity. So q∗ and x will be as desired.

Let α := M ∩ ω1, and let q⃗ = ⟨qn | n < ω⟩ be an (M,Qζ)-generic sequence

below q obtained by applying Lemma 3.5 for Qζ . Note that

cη :=
∪

{qn(η) | n < ω ∧ η ∈ dom(qn)}

is a club subset of α for each η ∈ ζ ∩ M . Let q∗ be the function such that

dom(q∗) =
∪

n<ω dom(qn) = ζ ∩M and such that q∗(η) = cη ∪ {α}. We claim
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that q∗ is a strongly (M,Qζ)-generic condition below q. By the construction of

q∗, all we have to show is that q∗ ∈ Qζ .

By induction on ξ ≤ ζ we show that q∗ ↾ ξ ∈ Qξ. Suppose that ξ ≤ ζ and

that q∗ ↾ξ′ ∈ Qξ′ for all ξ
′ < ξ. If ξ is a limit ordinal, or ξ is a successor ordinal

with ξ − 1 /∈ ζ ∩M , then q∗ ↾ ξ ∈ Qξ clearly. Suppose that ξ is successor and

that η := ξ − 1 ∈ ζ ∩M . Because q∗(η) is closed and bounded in ω1, it suffices

to show that q∗ ↾ η ⊩ “F (Ḃη ↾ β) = 0 ” for all limit point β of q∗(η). This is

easily shown for β ∈ cη using the fact that q∗ ↾ η ≤ qn ↾ η and qn ∈ Qζ for all

n < ω. Moreover q∗ ↾η ⊩ “uḂη,q⃗
= Ḃη ↾α ”, and F (uḂη,q⃗

) = 0 by the choice of

q⃗. So q∗ ↾η ⊩ “F (Ḃη ↾α) = 0 ”.

4 Consistency of PSR(IA) + DRP(IA) + Φ

In this section we prove the following, which implies Theorem 1:

Theorem 4.1. Assume MM++. Then there is a forcing extension in which all

PSR(IA), DRP(IA) and Φ hold.

Note thatMM++ implies PSR(IA) and DRP(IA). We will show that ifMM++

holds in the ground model, then the following poset P forces Φ and preserves

PSR(IA) and DRP(IA):

• P consists of all partial functions p : <ω12 → 2 of size ≤ ω1 such that the

set {α < ω1 | B ↾ α ∈ dom(p) ∧ p(B ↾ α) = 1} is non-stationary for all

B ∈ ω12.

• p0 ≤ p1 in P if p0 ⊇ p1.

Here note that P is trivial unless 2ω ≥ ω2. Let ḞP be a P-name for
∪

Ġ, where

Ġ is the canonical name for a P-generic filter. We will prove the following.

Proposition 4.2. Assume PFA. Then ḞP witnesses Φ in V P.

Proposition 4.3. Assume MM. Then P forces PSR(IA).

Proposition 4.4. Assume PFA++. Then P forces DRP(IA).

To prove these propositions we will apply forcing axioms for iterations of P
and several other forcing notions including Q(F ). First we present these auxil-

iary forcing notions in Subsection 4.1. Then we will prove the above propositions

in Subsection 4.2.
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4.1 Auxiliary forcing notions

Here we present auxiliary forcing notions, R and C(Z), which will be used to

prove Proposition 4.2, 4.3 and 4.4.

First we give a forcing notion R, which makes sure that all ω1-branches of

(<ω12)V belong to V in some strong sense. R is based on the forcing notion

introduced by Baumgartner [1] and is also used in König-Yoshinobu [8] and

Krueger [9].

R is a three step iteration Add(ω) ∗ Col(ω1, 2
ω1) ∗ Ṡ, where Ṡ is the forcing

notion defined as follows: Suppose that G is an Add(ω) ∗ Col(ω1, 2
ω1)-generic

filter over V . Note that |(ω12)V | = ω1 in V [G], so we can easily take a function

ρ : (ω12)V → ω1 in V [G] such that either B ↾ ρ(B) ̸⊆ B′ or B′ ↾ ρ(B′) ̸⊆ B for

any distinct B,B′ ∈ (ω12)V . In V [G] let

U := (<ω12)V \ {B ↾α | B ∈ (ω12)V ∧ ρ(B) < α < ω1} ,

and let S be the forcing notion specializing U . That is, S consists of all finite

partial function p : U → ω such that p(u) ̸= p(v) for any distinct comparable

u, v ∈ dom(p), and p ≤ q in S if p ⊇ q. Let Ṡ be an Add(ω) ∗Col(ω1, 2
ω1)-name

for S.
Here note that Add(ω) ∗ Col(ω1, 2

ω1) does not add any new ω1-branch of

(<ω12)V . This was first noticed by Mitchell [10]. Thus there is no ω1-branch of

U in V [G], and so S has the c.c.c. in V [G]. In particular, Add(ω)∗Col(ω1, 2
ω1)∗Ṡ

is proper.

The following summarizes the above mentioned facts on R:

Lemma 4.5. (1) R is proper.

(2) Let T := <ω12 and B := ω12 in V . If G is an R-generic filter over V ,

then in V [G] there exists a function ρ : B → ω1 and a partial function

τ : T → ω such that

(i) either B ↾ρ(B) ̸⊆ B′ or B′ ↾ρ(B′) ̸⊆ B for any distinct B,B′ ∈ B,
(ii) dom(τ) = T \ {B ↾α | B ∈ B ∧ ρ(B) < α < ω1},

and τ(u) ̸= τ(v) for any distinct comparable u, v ∈ dom(τ).

ρ and τ in the above lemma witnesses that all cofinal branch of (<ω12)V are

in V in the following sense:

Lemma 4.6 (Baumgartner [1]). Suppose that T ⊆ <ω12 is closed under initial

segments and that B is a set consisting of ω1-branches of T . Assume that there

are a function ρ : B → ω1 and a partial function τ : T → ω satisfying (i) and

(ii) in Lemma 4.5. Then all ω1-branches of T are in B.
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Proof. For the contradiction assume that B is an ω1-branch of T which is not

in B. Then the set {α < ω1 | B ↾α ∈ dom(τ)} is countable by (ii). Let β < ω1

be an upper bound of this set. Then we can take B′ ∈ B such that ρ(B′) < β

and B ↾ β = B′ ↾ β. Let γ be the least countable ordinal with B ↾ γ ̸= B′ ↾ γ.
Then we can again take B′′ ∈ B with ρ(B′′) < γ and B ↾ γ = B′′ ↾ γ. Then B′

and B′′ are distinct elements of B, but B′ ↾ ρ(B′) ⊆ B′′ and B′′ ↾ ρ(B′′) ⊆ B′.

This contradicts that ρ satisfies (i).

Next we present C(Z), which shoots a ⊆-increasing continuous nice ∈-chain
of length ω1 through a given Z ⊆ [Hλ]

ω. Suppose that λ is a regular cardinal

≥ ω2 and that Z ⊆ [Hλ]
ω. Then let C(Z) be the following poset:

• C(Z) consists of all ⊆-increasing continuous nice ∈-chains ⟨Mβ | β ≤ α⟩
in X for some α < ω1.

• p0 ≤ p1 in C(Z) if p0 is an end-extension of p1.

We observe basic properties of C(Z). For a poset C and a countable set M

we say that C is M -closed if every (M,C)-generic sequence of length ω has a

lower bound. Note that if for some sufficiently large regular cardinal θ there are

stationary many M ∈ [Hθ]
ω with C M -closed, then C is σ-Baire. This can be

shown by the same argument as in the proof of Lemma 3.4. The following is

essentially proved in [4]:

Lemma 4.7 (Feng-Jech [4]). Let λ be a regular cardinal ≥ ω2 and Z be a

stationary subset of [Hλ]
ω.

(1) Suppose that θ is a sufficiently large regular cardinal and that M is a

countable elementary submodel of ⟨Hθ,∈, λ, Z⟩ with M ∩ Hλ ∈ Z. Then

C(Z) is M -closed.

(2) C(Z) is σ-Baire.

(3) In V C(Z) there is a ⊆-increasing continuous cofinal nice ∈-chain of length

ω1 through Z.

Proof. (2) follows from (1). Note that for any x ∈ [Hλ]
ω the set of all ⟨Mβ |

β ≤ α⟩ ∈ C(Z) with x ⊆ Mα is dense in C(Z). Then (3) follows from (2) and

the definition of C(Z). So it suffices to prove (1).

Suppose that c⃗ = ⟨cn | n < ω⟩ is (M,C(Z))-generic sequence. Then it is easy

to see that
∪

n<ω cn is of the form ⟨Mβ | β < α⟩, where α is some countable limit

ordinal. (In fact, α = M ∩ ω1.) It is also easily seen that
∪

β<α Mβ = M ∩Hλ.

Let Mα := M ∩Hλ. Then ⟨Mβ | β ≤ α⟩ is a lower bound of {cn | n < ω}.

12



4.2 Proof of Theorem 4.1

We will prove Proposition 4.2, 4.3 and 4.4. Here [I]–[IV] denote the conditions

of a function F : <ω12 → 2 stated in Section 3.

First we give basic properties of P which can be easily proved:

Lemma 4.8. Assume that 2ω ≥ ω2.

(1) P is σ-closed.

(2) For any p ∈ P and any U ⊆ <ω12 with |U | ≤ ω1 there is p′ ≤ p with

dom(p′) ⊇ U .

Next we observe properties of ḞP:

Lemma 4.9. Assume that 2ω ≥ ω2. Then ḞP is a total function from <ω12 to

2. Moreover we have the following:

(1) ḞP satisfies [I] and [III] in V P.

(2) In V suppose that W ⊇ ω1 and that X ⊆ [W ]ω is stationary. Then ḞP

satisfies [IV]W,X in V P. In particular, ḞP satisfies [IV].

(3) If P is <ω2-Baire, then ḞP satisfies [II] in V P.

Proof. It easily follows from Lemma 4.8 that ḞP is a total function from <ω12

to 2 in V P. Moreover (3) is clear from the definition of P and Lemma 4.8 (2).

We prove (1) and (2).

(1) The proof of [I] is similar as and easier than that of [III]. So we only prove

[III]. We work in V .

Take an arbitrary p ∈ P and an arbitrary sequence ⟨ėn | n < ω⟩ of P-
names such that in V P each ėn is a ⊆-preserving map from <ω2 to <ω12 with ė◦n
injective. It suffices to find p∗ ≤ p and b∗ ∈ ω2 such that p∗ ⊩ “ ḞP(ė

◦
n(b

∗)) = 0 ”

for all n < ω.

Becasue P is σ-closed, we can take p′ ≤ p and a sequence ⟨en | n < ω⟩ of ⊆-

increasing maps from <ω2 to <ω12 such that p′ ⊩ “ ėn = en ” for all n < ω. Note

that for each n < ω there are at most ω1-many b ∈ ω2 with e◦n(b) ∈ dom(p′)

because |p′| ≤ ω1, and e◦n is injective. Then, because 2ω ≥ ω2, we can take

b∗ ∈ ω2 such that e◦n(b
∗) /∈ dom(p′) for all n < ω. Let p∗ be the extension of p′

such that dom(p∗) = dom(p′) ∪ {e◦n(b∗) | n < ω} and such that p∗(e◦n(b
∗)) = 0

for all n < ω. Then p∗ and b∗ are clearly as desired.
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(2) Let θ be a sufficiently large regular cardinal. Take an arbitrary p ∈ P and an

arbitrary P-name ḟ for a function from [Hθ]
<ω to Hθ. It suffices to find p∗ ≤ p

and a P-name Ṁ such that

q∗ ⊩ “ Ṁ ∈ YḞP,θ
∧ Ṁ ∩W ∈ X ∧ Ṁ is closed under ḟ ” .

Let θ̄ be a sufficiently large regular cardinal, and take a countable M̄ ≺
⟨Hθ̄,∈, X,W,P, p, θ, ḟ⟩ with M̄ ∩W ∈ X. Let Ṁ be a P-name for M̄ [Ġ] ∩ Hθ.

Then Ṁ is closed under ḟ in V P by the elementarity of M̄ . Note that any

strongly (M̄,P)-generic condition forces that Ṁ ∩W = M̄ ∩W ∈ X. Thus it

suffices to find a strongly (M̄,P)-generic p∗ ≤ p forcing that Ṁ ∈ YḞP,θ
. The

construction of p∗ uses almost the same argument as in the proof of Lemma 3.5.

By extending p if neccesary we may assume that p decides whether ω12 ⊆ V .

Let α := M̄ ∩ ω1.

First assume that p ⊩ “ ω12 ⊆ V ”. Then take an (M̄,P)-generic sequence

⟨pn | n < ω⟩ below p, and let p∗ be a lower bound of {pn | n < ω} by the

σ-closure of P. Clearly p∗ is a strongly (M̄,P)-generic condition below p. To

see that p∗ ⊩ “ Ṁ ∈ YḞP,θ
”, take an arbitrary P-name Ḃ ∈ M̄ for an element

of ω12. It suffices to show that p∗ ⊩ “ ḞP(Ḃ ↾ α) = 0 ” because p∗ forces that

Ṁ ∩ ω1 = M̄ ∩ ω1 = α. By the assumption on p we can take B ∈ (ω12) ∩ M̄

such that pn ⊩ “ Ḃ = B ” for some n < ω. By Lemma 4.8 (2), increasing n if

necessary, we may assume that {B ↾ β | β < ω1} ⊆ dom(pn). Then there are

club many β < ω1 with pn(B ↾β) = 0 because pn ∈ P, and the set of all such β

is in M̄ . Hence pn(B ↾α) = 0. Thus p∗ forces that ḞP(B ↾α) = pn(B ↾α) = 0.

Next assume that p ⊩ “ ω12 ̸⊆ V ”. Let B be the set of all P-names Ḃ ∈ M̄

such that p ⊩ “ Ḃ ∈ ω12 \ V ”. By exactly the same way as in the proof of

Lemma 3.5, we can take ps ∈ P ∩ M̄ for each s ∈ <ω2 and eḂ : <ω2 → <ω12 for

each Ḃ ∈ B with the following properties:

(i) For any b ∈ ω2, p⃗b = ⟨pb↾n | n < ω⟩ is an (M̄,P)-generic sequence below p.

(ii) For any Ḃ ∈ B, eḂ is ⊆-preserving, and e◦
Ḃ

is injective.

(iii) For any Ḃ ∈ B and any b ∈ ω2,

e◦
Ḃ
(b) =

∪
{u ∈ (<ω12) ∩ M̄ | ∃n < ω, pb↾n ⊩ “u ⊆ Ḃ ”} .

Let U :=
∪
([<ω12]ω1 ∩ M̄). Then |U | = ω1. So for each Ḃ ∈ B there are at

most ω1-many b ∈ ω2 with e◦
Ḃ
(b) ∈ U . Recall also that 2ω > ω1 and that B is

countable. Then we can take b∗ ∈ ω2 such that e◦
Ḃ
(b∗) /∈ U for all Ḃ ∈ B. Let

p′ :=
∪

n<ω pb∗↾n. Note that dom(p′) = U . So let p∗ be the extension of p′ such
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that dom(p∗) = U ∪ {e◦
Ḃ
(b∗) | Ḃ ∈ B} and such that p∗(e◦

Ḃ
(b∗)) = 0 for each

Ḃ ∈ B. Clearly p∗ is a strongly (M̄,P)-generic condition below p.

To see that p∗ ⊩ “ Ṁ ∈ YḞP,θ
”, take an arbitrary P-name Ḃ ∈ M̄ of elements

of <ω12. We must show that p∗ ⊩ “ ḞP(Ḃ ↾ α) = 0 ”. If pb∗↾n ⊩ “ Ḃ ∈ V ” for

some n < ω, then this can be shown by the same argument as in the previous

case. Otherwise, there is n < ω with pb∗↾n ⊩ “ Ḃ /∈ V ”. Then we can take

Ḃ′ ∈ B with p∗ ⊩ “ Ḃ = Ḃ′ ”. Note that p∗ ⊩ “ Ḃ ↾α = e◦
Ḃ′(b

∗) ”. So p∗ forces

that ḞP(Ḃ ↾α) = p∗(e◦
Ḃ′(b

∗)) = 0.

We proceed to Proposition 4.2:

Proposition 4.2. Assume PFA. Then ḞP witnesses Φ in V P.

By Lemma 4.9 it suffices to prove the following:

Lemma 4.10. Assume PFA. Then P is <ω2-Baire.

Proof. Suppose that p ∈ P and thatA is a family of ω1-many maximal antichains

of P. We must find p∗ ≤ p meeting all elements of A. For this we will apply PFA

for P∗ Q̇∗ Ṙ, where Q̇ and Ṙ denote Q(ḞP) and a P∗ Q̇-name for R, respectively.
Note that P ∗Q is proper and σ-Baire by Lemmata 3.4 and 4.9. So P ∗Q ∗ Ṙ is

also proper by Lemma 4.5.

Take a sufficiently large regular cardinal θ. By Fact 2.1 we can take N and

g such that

(i) N ∈ [Hθ]
ω1 , and ω1 ⊆ N ≺ ⟨Hθ,∈,P, Q̇, Ṙ, p,A⟩,

(ii) g is an (N,P ∗ Q̇ ∗ Ṙ)-generic filter containing (p, 1Q̇, 1Ṙ).

Let g0 and g1 be the restrictions of g to P and P ∗ Q̇, respectively, that is,

g0 := {p′ ∈ P ∩N | ∃q̇, ṙ, (p′, q̇, ṙ) ∈ g} ,

g1 := {(p′, q̇) ∈ (P ∗ Q̇) ∩N | ∃ṙ, (p′, q̇, ṙ) ∈ g} .

Moreover let p∗ :=
∪
g0. Note that if p∗ ∈ P, then p∗ extends p and meets all

maximal antichains in A by the genericity of g0. Below we show that p∗ ∈ P.
Let T := (<ω12) ∩N , and let B be the collection of Ḃg1 for all P ∗ Q̇-name

Ḃ ∈ N of an element of ω12. Then dom(p∗) = T , and for any B ∈ B the set

{α < ω1 | p∗(B ↾α) = 1} is non-stationary by an effect of Q̇.

Next let ρ̇ and τ̇ be P ∗ Q̇ ∗ Ṙ-names for ρ and τ in Lem.4.5, and let ρ∗ and

τ∗ be the evaluations of ρ̇ and τ̇ by g. More precisely, ρ∗ is a function from B to

ω1 such that ρ∗(Ḃg1) = α if and only if some element of g forces that ρ̇(Ḃ) = α.

Also, τ∗ is a partial function from T to ω such that τ∗(u) = n if and only if
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some element of g forces that τ̇(u) = n. Then using σ-Baireness of P ∗ Q̇ it

is easy to check that ρ∗ and τ∗ satisfies (i) and (ii) in Lemma 4.5 (2). So all

ω1-branches of T belong to B by Lemma 4.6. Thus for any ω1-branch B of T

the set {α < ω1 | p∗(B ↾α) = 1} is non-stationary. Therefore p∗ ∈ P.

Next we prove Proposition 4.3:

Proposition 4.3. Assume MM. Then P forces PSR(IA).

We will apply MM to P ∗ C(Ż) ∗ Q(ḞP) ∗ Ṙ, where Ż is a P-name of a

projectively stationary subset of [Hλ]
ω for some regular λ ≥ ω2, and Ṙ is a

P ∗ C(Ż) ∗ Q(ḞP)-name for R. We need a lemma to see that this four step

iteration preserves stationary subsets of ω1. Here we give it in somewhat a

general form for the later use:

Lemma 4.11. Suppose that F : <ω12 → 2 satisfies [II] and [III]. Let W ⊇ ω1

and X ⊆ [W ]ω. Moreover let C be a forcing notion such that for any sufficiently

large regular cardinal θ the set

{M ∈ [Hθ]
ω | M ∩W ∈ X ∧ C is M -closed}

is stationary in [Hθ]
ω. Suppose also that Q̇ is a C-name for an F -iteration.

Then C ∗ Q̇ is σ-Baire and forces X to remain stationary in [W ]ω.

Proof. First note that C is σ-Baire. Then F satisfies [III] in V C. So by Lemma

3.4 it suffices to show that F satisfies [IV]W,X in V C. Suppose that θ is a

sufficiently large regular cardinal, that c ∈ C and that ḟ is a C-name for a

function from [Hθ]
<ω to Hθ. We find c∗ ≤ c and a C-name Ṁ such that

c∗ ⊩ “ Ṁ ∈ YF,θ ∧ Ṁ ∩W ∈ X ∧ Ṁ is closed under ḟ ” .

Let θ̄ be a sufficiently large regular cardinal. Then we can take a countable

M̄ ≺ ⟨Hθ̄,∈, F,W,X,C, c, θ, ḟ⟩ such that M̄ ∩ W ∈ X and such that C is M̄ -

closed. Let Ṁ be a C-name for M̄ [Ġ] ∩ Hθ, where Ġ is the canonical name

for a C-generic filter. Next note that M̄ ∈ YF,θ̄ because F satisfies [II], and

M̄ ≺ ⟨Hθ̄,∈, F ⟩. Let c⃗ = ⟨cn | n < ω⟩ be a (M̄,C)-generic sequence below c

obtained by applying Lemma 3.5 for C and M̄ . Moreover take a lower bound

c∗ of {cn | n < ω} by the M̄ -closure of C.
First note that Ṁ is closed under ḟ in V C by the elementarity of M̄ . More-

over c∗ forces that Ṁ ∩ W = M̄ ∩ W ∈ X by the (M̄,C)-genericity. Finally

c∗ forces that Ṁ ∩ ω1 = M̄ ∩ ω1 =: α. Moreover, by its choice, c∗ forces that

F (Ḃ ↾ α) = 0 for every C-name Ḃ ∈ M for an element of ω12. Thus c∗ forces

that Ṁ ∈ YF,θ. Therefore c∗ and Ṁ are as desired.
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From the lemma above we obtain the following lemma. (1) follows immedi-

ately from the above lemma and Lemma 4.7. For (2) note that if C is σ-closed,

then C is M -closed for all countable set M :

Lemma 4.12. Suppose that F : <ω12 → 2 satisfies [II] and [III].

(1) Let Z be a projectively stationary subset of [Hλ]
ω for some regular λ ≥ ω2,

and let Q̇ be a C(Z)-name for an F -iteration. Then C(Z) ∗ Q̇ preserves

stationary subsets of ω1 and is σ-Baire.

(2) Let C be a σ-closed poset, and let Q̇ be a C-name for an F -iteration. Then

C ∗ Q̇ is proper and σ-Baire.

Now we prove Proposition 4.3:

Proof of Proposition 4.3. Suppose that p ∈ P. Let λ be a regular cardinal ≥ ω2,

and let Ż be a P-name for a projectively stationary subset of [Hλ]
ω. We will find

p∗ ≤ p which forces that Ż contains an ⊆-increasing continuous nice ∈-chain of

length ω1.

Let Ċ and Q̇ denote C(Ż) and Q(ḞP), respectively, and let Ṙ be a P ∗ Ċ ∗ Q̇-

name for R. Here note that ḞP satisfies [II] and [III] in V P by Lemmata 4.9 and

4.10. Hence Ċ ∗ Q̇ preserves stationary subsets of ω1 and is σ-Baire by Lemma

4.12 (1). So P ∗ Ċ ∗ Q̇ ∗ Ṙ preserves stationary subsets of ω1 by the properness

of P and R. Let θ be a sufficiently large regular cardinal. By Fact 2.1 we can

take N and g such that

(i) N ∈ [Hθ]
ω1 , and ω1 ⊆ N ≺ ⟨Hθ,∈,P, Ż, Ċ, Q̇, Ṙ, p⟩,

(ii) g is an (N,P ∗ Ċ ∗ Q̇ ∗ Ṙ)-generic filter containing (p, 1Ċ, 1Q̇, 1Ṙ).

Let g0 be the restrictions of g to P, and let p∗ :=
∪
g0. Then p∗ ∈ P by the

same argument as in the proof of Lemma 4.10. Note that p∗ ≤ p.

To show that p∗ is as desired, suppose that G0 is a P-generic filter over V

which contains p∗, and let Z be ŻG0 . In V [G0] we find a ⊆-increasing continuous

nice ∈-chain through Z. First note that N [G0] ≺ ⟨Hθ,∈, Z⟩. Moreover, using

the genericity of g and the fact that g0 ⊆ G0, it is easy to check that

h := {ċG0 | ċ ∈ N ∧ ∃p, q̇, ṙ, (p, ċ, q̇, ṙ) ∈ g}

is an (N [G0],C(Z))-generic filter. Then
∪

h is a ⊆-increasing continuous nice

∈-chain through Z.

Finally we will prove Proposition 4.4:
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Proposition 4.4. Assume PFA++. Then P forces DRP(IA).

Proof. Suppose that p ∈ P, that λ and λ̄ are regular cardinals with ω2 ≤ λ < λ̄,

and that ḟ is a P-name for a function from [Hλ̄]
<ω to Hλ̄. It suffices to find

p∗ ≤ p which forces that there is N∗ ∈ [Hλ̄]
ω1 such that

(i) ω1 ⊆ N∗, and N∗ is closed under ḟ ,

(ii) N∗ is internally approachable of length ω1,

(iii) X ∩ [N∗ ∩Hλ]
ω is stationary for any stationary X ⊆ [Hλ]

ω in N∗.

Let Ċ be a P-name for Col(ω1,Hλ̄), let Q̇ denote Q(ḞP) in V P∗Ċ, and let

Ṙ be a P ∗ Ċ ∗ Q̇-name for R. As in the proof of the previous proposition, ḞP

satisfies [II] and [III] by Lemmata 4.9 and 4.10. Thus Ċ ∗ Q̇ is proper in V P by

Lemma 4.12 (2). So P ∗ Ċ ∗ Q̇ ∗ Ṙ is proper. Take a sufficiently large regular

cardinal θ. By Fact 2.1 we can take N and g such that

(iv) N ∈ [Hθ]
ω1 , and ω1 ⊆ N ≺ ⟨Hθ,∈,P, Ċ, Q̇, Ṙ, λ, λ̄, p, ḟ⟩,

(v) g is an (N,P ∗ Ċ ∗ Q̇ ∗ Ṙ)-generic filter containing (p, 1Ċ, 1Q̇, 1Ṙ),

(vi) Ṡg is stationary for every P∗ Ċ∗ Q̇∗ Ṙ-name Ṡ ∈ N for a stationary subset

of ω1.

Let g0 be the restriction of g to P, and let p∗ be
∪
g0. Then p∗ ∈ P by the same

argument as in the proof of Proposition 4.2, and p∗ ≤ p.

We show that p∗ is as desired. Suppose that G0 is a P-generic filter over V

containing p∗, and in V [G0] let N∗ := N [G0] ∩ Hλ̄. Then N∗ clearly satisfies

(i). We must check (ii) and (iii). Below let Ḣ be the canonical P ∗ Ċ-name for

a Ċ-generic filter over V P.

First we check (ii). Let π be the interpretation of
∪
Ḣ by g, that is,

π :=
∪

{ċG0 | ∃p, q̇, ṙ, (p, ċ, q̇, ṙ) ∈ g} .

Note that π is a surjection from ω1 to N∗ and that all proper initial segments

belong to N∗. Then we can inductively construct an increasing cofinal sequence

⟨γα | α < ω1⟩ in ω1 so that ⟨π[γα] | α < ω1⟩ is a nice ∈-chain. Because∪
α<ω1

π[γα] = π[ω1] = N∗, it follows that N∗ is internally approachable of

length ω1.

Next we check (iii). Take an arbitrary stationary X ⊆ [Hλ]
ω in N∗. Let

Ẋ ∈ N be a P-name for X, and let Ṡ ∈ N be a P ∗ Ċ-name for the set

{α < ω1 | (
∪
Ḣ)[α] ∩ (Hλ)

V P ∈ Ẋ} .
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Here recall that Ċ∗Q̇∗ Ṙ is proper in V P. So Ẋ remains stationary in V P∗Ċ∗Q̇∗Ṙ.

Then by the continuity of the map α 7→ (
∪
Ḣ)[α], P∗Ċ∗Q̇∗Ṙ forces Ṡ stationary.

Thus Ṡg is a stationary subset of ω1 in V , and so is in V [G0] because P is σ-

closed. Here note that

X ∩ [N∗ ∩Hλ]
ω ⊇ {π[α] ∩Hλ | α ∈ Ṡg}

by the construction of π. Thus X ∩ [N∗ ∩Hλ]
ω is stationary.

5 Consistency of DRP(IA) + CH+ Φ

In this section we prove the following, which implies Theorem 2:

Theorem 5.1. Assume that there is a supercompact cardinal. Then there exists

a forcing extension in which all DRP(IA), CH and Φ hold.

As in the previous section, [I]–[IV] denote the properties of a function F :
<ω12 → 2 stated in Section 3. We use the following:

Lemma 5.2. Let κ be an inaccessible cardinal. Then Col(ω1, < κ) adds a

function F : <ω12 → 2 satisfying [I], [III] and [IV].

Proof. Let P be the poset of all countable partial functions p : <ω12 → 2 ordered

by reverse inclusions. First note that if CH holds, then |<ω12| = ω1, and so P is

forcing equivalent to Col(ω1, 2). Moreover Col(ω1, <κ) forces CH. So

Col(ω1, <κ) ∼ Col(ω1, <κ) ∗ Col(ω1, 2) ∼ Col(ω1, <κ) ∗ Ṗ ,

where Ṗ denotes a Col(ω1, <κ)-name for P, and ∼ denotes the forcing equiva-

lence. Hence it suffices to show that P adds F as in the lemma.

Let Ġ be the canonical name for a P-generic filter, and let Ḟ be a P-name

for
∪

Ġ. By the same argument as in the proof of Lemma 4.9 we can prove that

Ḟ satisfies [I] and [III] in V P. We show that Ḟ satisfies [IV] in V P. Let θ be

a regular cardinal ≥ ω2 which remains regular in V P. Suppose that p ∈ P and

that ḟ is a P-name for a function from [Hθ]
<ω to Hθ. It suffices to find p∗ ≤ p

and a P-name Ṁ such that

p∗ ⊩ “ Ṁ ∈ YḞ ,θ ∧ Ṁ is closed under ḟ ” .

Take a sufficiently large regular θ̄ and a countable M̄ ≺ ⟨Hθ̄,∈,P, p, θ, ḟ⟩.
Let Ṁ be a P-name for M̄ [Ġ] ∩ Hθ. Note that Ṁ is closed under ḟ in V P

by the elementarity of M̄ . Next take a (M̄,P)-generic sequence ⟨pn | n < ω⟩
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below p, and let p′ :=
∪

n<ω pn. Moreover let α := M̄ ∩ ω1, and let B be

the set of all P-name Ḃ ∈ M̄ for an element of ω12. Then for each Ḃ ∈ B
there is uḂ ∈ α2 such that p′ ⊩ “ Ḃ ↾ α = uḂ ”. Note that uḂ /∈ dom(p′)

because dom(p′) ⊆ (<ω12) ∩ M̄ ⊆ <α2. Let p∗ be the extension of p′ such that

dom(p∗) = dom(p′) ∪ {uḂ | Ḃ ∈ B} and such that p∗(uḂ) = 0 for all Ḃ ∈ B.
Clearly p∗ ∈ P, and p∗ ≤ p.

We must show that p∗ ⊩ “ Ṁ ∈ YḞ ,θ ”. First p
∗ ⊩ “ Ṁ∩ω1 = M̄∩ω1 = α ” by

the genericity of p∗. Moreover, by its construction, p∗ forces that Ḟ (Ḃ ↾α) = 0

for all Ḃ ∈ B. Thus p∗ forces that Ṁ ∈ YḞ ,θ.

Proof of Theorem 5.1. Let κ be a supercompact cardinal. Moreover let Ḟ be a

Col(ω1, <κ)-name of F as in Lemma 5.2. Then Q(Ḟ ) is σ-Baire in V Col(ω1,<κ)

by Lemma 3.4. So Col(ω1, < κ) ∗ Q(Ḟ ) forces that Ḟ witnesses Φ by Lemma

3.3 and that CH holds. Thus it suffices to prove that Col(ω1, <κ) ∗Q(Ḟ ) forces

DRP(IA). Before starting, we make a remark on the proof below. We will deal

with several transitive models of ZFC, and the argument below can be carried

out in some large forcing extension of V , for example, an extension of V by

Col(ω, χ) for some enough large cardinal χ. Note also that [On]ω is absolute

among all models appearing below. In particular, ω1, Col(ω1, < κ), etc. are

absolute.

Take a Col(ω1, <κ)-generic filter G0 over V , and let V ′ := V [G0] and F :=

ḞG0 . Note that Q(F ) is an F -iteration of length κ in V ′. Let Q⃗ = ⟨Qξ, Ḃη | ξ ≤
κ, η < κ⟩ be an F -iteraiton with Q(F ) = Qκ. Take a Qκ-generic filter H0 over

V ′, and let V ′′ := V ′[H0]. In V ′′, suppose that λ and λ̄ are regular cardinals

with κ ≤ λ < λ̄, and let W and W̄ be Hλ and Hλ̄, respectively. Morever take

an arbitrary function f : [W̄ ]<ω → W̄ . It suffices to show that in V ′′ there is

N̄ ∈ [W̄ ]ω1 with the following properties:

(i) ω1 ⊆ N̄ , and N̄ is closed under f .

(ii) N̄ is internally approachable of length ω1.

(iii) X ∩ [N̄ ∩W ]ω is stationary for all stationary X ⊆ [W ]ω with X ∈ N̄ .

For this we will use a generic elementary embedding.

In V let θ be a sufficiently large cardinal, and take an elementary embedding

j : V → K witnessing that κ is θ-supercompact. Note that j(Col(ω1, < κ)) is

equal to Col(ω1, <κ)×Col(ω1, κ,<j(κ)). Let G1 be a Col(ω1, κ,<j(κ))-generic

filter overK[G0∗H0], and let K ′ := K[G0∗G1]. Then by the standard argument

j can be extended to an elementary embedding from V ′ to K ′. For simplicity

of our notation, this elementary embedding is also denoted as j. Note that Q⃗ is
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an initial segment of j(Q⃗). Hence j(Qκ) can be decomposed to Qκ ∗ Q̇tail in K ′.

Note that H0 is Qκ-generic over K ′. Let H1 be a (Q̇tail)H0-generic filter over

K ′[H0]. Then, because Qκ ⊆ Hκ in V ′, j can be extended to an elementary

embedding j : V ′′ → K ′′.

Let N̄ := j[W̄ ]. Note that j ↾ W̄ ∈ K ′′ because it can be recovered from

j ↾ (Hλ̄)
V , G0, G1, H0 and H1, which are all in K ′′. Note also that |W̄ | = ω1

in K ′′. So N̄ ∈ [j(W̄ )]ω1 in K ′′. Then by the elementarity of j it suffices for

(i)–(iii) in V ′′ to prove that the following hold in K ′′:

(iv) ω1 ⊆ N̄ , and N̄ is closed under j(f).

(v) N̄ is internally approachable of length ω1.

(vi) X ∩ [j[W ]]ω is stationary for all stationary X ⊆ [j(W )]ω with X ∈ N̄ .

Here note that j[W ] = N̄ ∩ j(W ) in (vi).

(iv) is clear from the construction of N̄ and the elementarity of j. For (v)

note that W̄ is closed under countable sequences in K ′′. Then so is N̄ by the

elementarity of j, and (v) easily follows from this fact. We will check (vi) below:

In K ′′ take an arbitrary stationary X ⊆ [j(W )]ω in N̄ . Let Y := j−1(X).

Then Y is stationary subset of [W ]ω in V ′′ = V [G0 ∗ H0]. Here note that

(θK[G0 ∗ H0]) ∩ V ′′ ⊆ K[G0 ∗ H0] because (θK) ∩ V ⊆ K, and the size of

Col(ω1, < κ) ∗ Q(Ḟ ) is less than θ in V . So Y ∈ K[G0 ∗ H0]. Moreover Y is

stationary in [W ]ω in K[G0 ∗ H0] because K[G0 ∗ H0] ⊆ V ′′. Here note that

K ′′ is a generic extension of K[G0 ∗H0] by Col(ω1, κ,<j(κ)) ∗ (Q̇tail)H0 . Note

also that F satisfies [II] and [III] in K[G0 ∗ H0]. Hence Y remains stationary

in [W ]ω in K ′′ by Lemma 4.12 (2). Then Z := {j[y] | y ∈ Y } is stationary in

[j[W ]]ω in K ′′ because j ↾W : W → j[W ] is a bijection. But j[y] = j(y) for each

y ∈ Y because y is countable. Hence Z = j[Y ] ⊆ X ∩ [j[W ]]ω. So X ∩ [j[W ]]ω

is stationary in K ′′.
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