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1 Introduction

It is known that there is a close relation between Prikry forcing and the iteration
of ultrapowers:

Theorem 1.1. (Solovay) Assume κ is a measurable cardinal and U is a normal
ultrafilter on κ. Let 〈Mn, jm,n | m ≤ n ≤ ω〉 be the iteration of ultrapowers of
V by U . Then the sequence 〈j0,n(κ) | n ∈ ω〉 is a Prikry generic sequence over
Mω with respect to j0,ω(U).

Moreover Bukovský [1] and Dehornoy [2] showed that the generic extension
Mω[〈j0,n(κ) | n ∈ ω〉] is

⋂
n∈ω Mn in Theorem 1.1. (For the history of these

results, read the introduction of Dehornoy [2] and pp.259-260 of Kanamori [6].
) In Dehornoy [3], these results were generalized for the forcing of Magidor [7]
which changes a measurable cardinal of higher Mitchell order into a singular
cardinal of uncountable cofinality.

In this paper we generalize Theorem 1.1 for normal filters which are not
necessarily maximal. Of course, the above theorem can be restated using the
dual ideal of U . In this paper we argue using ideals instead of filters. Assume
κ is regular uncountable and I is a normal precipitous ideal on κ.

Prikry forcing has two natural generalizations, PR∗I and PR+
I . PR∗I consists

of all pairs 〈t, T 〉 such that t ∈ <ωκ and T ⊆ <ωκ is a tree in which every node
has I-measure 1 immediate successors, i.e. {α < κ | s ̂ 〈α〉 ∈ T} is of I-measure
1 for every s ∈ T . PR+

I consists of all pairs 〈t, T 〉 such that t ∈ <ωκ and
T ⊆ <ωκ is a tree in which every node has I-positive immediate successors. In
both PR∗I and PR+

I , the order is defined as 〈t0, T0〉 ≤ 〈t1, T1〉 if and only if for
every s0 ∈ T0, there is an s1 ∈ T1 such that t0 ̂ s0 = t1 ̂ s1. Note that if I is
maximal then PR∗I and PR+

I coincide and this is the tree type Prikry forcing
notion. Note also that if κ = ω2 and I is the ideal of bounded subsets of ω2

then PR+
I is the Namba forcing notion. So PR+

I is often treated as a variant
of Namba forcing.

On the other hand, the iteration of ultrapowers has an obvious generaliza-
tion, the iteration of generic ultrapowers. Unlike the iteration of ultrapowers,
the iteration of generic ultrapowers is not uniquely determined by I. It depends
on the choice of generic filters by which the ultrapowers are constructed.
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We generalize Theorem 1.1 for both PR∗I and PR+
I . In Theorem 3.3, we

show that for some kind of sequence of generic filters 〈Gn | n ∈ ω〉, letting
〈Mn, Gm, jm,n | m ≤ n ≤ ω, m < ω〉 be the iteration of generic ultrapowers of
V by 〈Gn | n ∈ ω〉, the sequence of critical points 〈j0,n(κ) | n ∈ ω〉 is a generic
sequence for PR∗j0,ω(I) over Mω. In Theorem 3.5, we show that for another kind
of sequence of generic filters, the sequence of critical points is a generic sequence
for PR+

j0,ω(I) over Mω.
In Section 2, we review basics on the iteration of generic ultrapowers. Section

3 is the main part of this paper. We show Theorem 3.3 and 3.5. After that, we
observe some known facts on PR∗ and PR+ from the point of view of Theorem
3.3 and 3.5.

Notations and Facts:
In general we follow notations of Kanamori [6].
First we give notations and a fact related to the generic ultrapower and its

iteration. For an ideal I on some set X, I+ is the set of all I-positive sets, I∗ is
the dual filter of I and PI is the poset 〈I+,⊆〉.

Let M be a transitive model of ZFC and X, I ∈ M be such that M ²
“I is an ideal on X”. Let G be an (M, (PI)M )-generic filter. Then for each
function f ∈ M on X, (f)G denotes the element of Ult(M, G) represented by
f , where Ult(M, G) denotes the ultrapower of M by G. If Ult(M, G) is well-
founded then [f ]G denotes the corresponding element of (f)G in the transitive
collapse of Ult(M, G). We say that j : M → N ∼= Ult(M,G) is the generic
ultrapower map associated with G if N is the transitive collapse of Ult(M, G)
and j(a) = [ca]G for each a ∈ M , where ca is the constant function on X with
its value a.

Let M, X, I be as above and let α ∈ On. A sequence 〈Mξ, Gη, jη,ξ | η ≤
ξ < α, η + 1 < α〉 is called an iteration of generic ultrapowers of M by I of
length α if the following holds:

• M0 = M and Mξ is a transitive model of ZFC for each ξ.

• jη,ξ : Mη → Mξ is an elementary embedding for each η, ξ and 〈Mξ, jη,ξ |
η ≤ ξ < α, η + 1 < α〉 is a commutative system.

• For each η, Gη is (Mη, j0,η((PI)M ))-generic and jη,η+1 : Mη → Mη+1
∼=

Ult(Mη, Gη) is the generic ultrapower map.

• If β < α is a limit ordinal then Mβ is the transitive collapse of the direct
limit of 〈Mξ, jη,ξ | η ≤ ξ < β〉 and jη,β : Mη → Mβ is the induced map.

We call Mξ the ξ-th iterate of generic ultrapowers of M by I. In Woodin [12]
(Lemma 3.10. and Remark 3.11.), it is remarked that if I is precipitous in M
and ξ ∈ M ∩On then well-foundedness of the ξ-th iterate is always guaranteed:

Fact 1.2. Let M be a transitive model of ZFC and X, I ∈ M be such that M ²
“I is a precipitous ideal on X”. Let α < On ∩M and 〈Mξ,Hη, jη,ξ | η ≤ ξ <
α, η + 1 < α〉 be an iteration of generic ultrapowers of M by I. Then:
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(1) If α is a successor ordinal, say α = β+1, and G is a (Mβ , j0,β(PI))-generic
filter then Ult(Mβ , G) is well-founded.

(2) If α is a limit ordinal then the direct limit of 〈Mξ, jη,ξ | η ≤ ξ < α〉 is
well-founded.

Next we give notations about embeddings between posets. Let P and Q be
posets.

σ : P→ Q is a complete embedding if

(1) σ is order preserving, i.e. ∀p1, p2 ∈ P, p1 ≤ p2 → σ(p1) ≤ σ(p2),

(2) for each maximal antichain A ⊆ P, σ[A] is a maximal antichain of Q.

π : Q→ P is a projection if

(1) π is surjective and order preserving,

(2) ∀q ∈ Q∀p ∈ P, if p ≤ π(q) then there is a q∗ ≤ q such that π(q∗) = p.

Projections which appear in this paper have the following additional property:

(3) ∀q ∈ Q∀p ∈ P, if p ≥ π(q) then there is a q∗ ≥ q such that π(q∗) = p.

We call π a good projection if π satisfies (1)-(3).
If σ : P→ Q is a complete embedding and G is P-generic then the quotient

Q/σG is the poset obtained from restricting Q to {q ∈ Q | ∀p ∈ G, q is com-
patible with σ(p)}. If π : Q → P is a projection and G is P-generic then the
quotient Q/πG is the poset obtained from restricting Q to π−1[G]. If σ or π is
clear from the context, we just write Q/G for Q/σG or Q/πG.

The following is basic.

Fact 1.3. Let P and Q be posets.

(1) Assume that σ : P→ Q is a complete embedding. Then H is (V,Q)-generic
iff G := σ−1[H] is (V,P)-generic and H is (V [G],Q/σG)-generic.

(2) Assume that π : Q→ P is a good projection. Then H is (V,Q)-generic iff
G := π[H] is (V,P)-generic and H is (V [G],Q/πG)-generic.

(3) Assume that σ : P→ Q is a complete embedding, π : Q→ P is a projection
and π ◦ σ = id.

(a) If H is (V,Q)-generic then σ−1[H] = π[H].

(b) If G is (V,P)-generic then Q/σG = Q/πG.
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2 Iteration of generic ultrapowers.

In this section, we review basics on the iteration of generic ultrapowers. This is
a natural generalization of Kunen’s theory of iterated ultrapowers and a good
summary of this can be found in, for example, Takahashi [11], too. But, to
state and prove our main theorem, we need some details on iterated generic
ultrapowers, which we give here. For the purpose of this paper, we only need
to treat iterations of length ω + 1.

2.1 Fubini powers of ideals

Assume κ is a regular uncountable cardinal, I is a κ-complete ideal on κ and
n ∈ ω. Let In be the n-th Fubini power of I. (See below.) Then, as is the case
with iterated ultrapowers, the n-th iterate of the generic ultrapower of V by I
can be represented as a one-step generic ultrapower of V by In. We see this in
the next subsection. Here we review basic properties of Fubini powers of ideals.
Throughout this subsection, let κ and I be as above.

For each n ∈ ω, the n-th Fubini power of I, In, is the ideal on nκ defined
as follows: Let I0 := {∅}. Note that 0κ = {〈〉}, where 〈〉 is the empty sequence.
So I0 is an ideal on 0κ and (I0)+ = (I0)∗ = {{〈〉}}. Assuming In was defined
as an ideal on nκ, let In+1 be the ideal on n+1κ such that for each A ⊆ n+1κ

A ∈ In+1 ⇔ {s ∈ nκ | {ξ < κ | s ̂ 〈ξ〉 ∈ A} ∈ I } ∈ (In)∗.

It can be easily seen that In+1 is a κ-complete ideal on n+1κ. Note that I1 and
I are the same if we identify κ with 1κ in the obvious way. (For each sequence
s, 〈〉̂ s = s ̂ 〈〉 = s.)

The following lemma is basic:

Lemma 2.1. Assume m ≤ n ∈ ω. Then for each A ⊆ nκ

(1) A ∈ In ⇔ {s ∈ mκ | {t ∈ n−mκ | s ̂ t ∈ A} ∈ In−m } ∈ (Im)∗,

(2) A ∈ (In)+ ⇔ {s ∈ mκ | {t ∈ n−mκ | s ̂ t ∈ A} ∈ (In−m)+ } ∈ (Im)+,

(3) A ∈ (In)∗ ⇔ {s ∈ mκ | {t ∈ n−mκ | s ̂ t ∈ A} ∈ (In−m)∗ } ∈ (Im)∗.

Proof. By induction on the lexicographical order of (n,m), we show (1)-(3)
simultaneously. If n = m = 0 then (1)-(3) are trivial. Assume m ≤ n ∈ ω and
(1)-(3) are true for each pair m′, n′ such that m′ ≤ n′ and (n′, m′) < (n,m).
Because (2) and (3) follow from (1), it suffices to show (1) for m,n. If m = n
then (1) is trivial and if m = n− 1 then (1) is the definition of In. So we may
assume m < n− 1.

Take an arbitrary A ⊆ nκ. For each s ∈ n−1κ, let As be {ξ < κ | s ̂ 〈ξ〉 ∈ A}.
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Then

A ∈ In

⇔ {s ∈ n−1κ | As ∈ I} ∈ (In−1)∗

⇔ {t ∈ mκ | {u ∈ n−1−mκ | At bu ∈ I} ∈ (In−1−m)∗ } ∈ (Im)∗

⇔ {t ∈ mκ | {v ∈ n−mκ | t̂ v ∈ A} ∈ In−m } ∈ (Im)∗.

The first and third equivalences follow from the definition of In and In−m. The
second equivalence follows from the induction hypothesis.

If m ≤ n < ω, there are a natural complete embedding and a projection
between PIm and PIn .

Let σm,n : P(mκ) → P(nκ) be the function such that for each A ⊆ mκ,

σm,n(A) := {s ∈ nκ | s¹m ∈ A}

and let πn,m : P(nκ) → P(mκ) be the function such that for each B ⊆ nκ,

πn,m(B) := {s ∈ mκ | {t ∈ n−mκ | s ̂ t ∈ B} ∈ (In−m)+ }.

Note that if m = n then σm,n = πn,m = id.
By Lemma 2.1, if m ≤ n then σm,n[(Im)+] ⊆ (In)+ and πn,m[(In)+] ⊆

(Im)+. Moreover, as we show in the next lemma, σm,n ¹ (Im)+ is a complete
embedding from PIm to PIn and πn,m ¹ (In)+ is a projection from PIn to PIm .
We call σm,n the natural complete embedding and call πn,m the natural projec-
tion associated with I.

Lemma 2.2. Assume l ≤ m ≤ n ∈ ω. Then the following hold:

(1) σm,n ◦ σl,m = σl,n.

(2) πm,l ◦ πn,m = πn,l.

(3) πn,m ◦ σm,n = id¹P(mκ).

(4) A ∈ (Im)+ ⇔ σm,n(A) ∈ (In)+, for each A ⊆ mκ.

(5) A ∈ (In)+ ⇔ πn,m(A) ∈ (Im)+, for each A ⊆ nκ.

(6) σm,n ¹(Im)+ : PIm → PIn is a complete embedding.

(7) πn,m ¹(In)+ : PIn → PIm is a good projection.

Proof. (1) and (3) are clear by the definition of σ and π. (4) and (5) are clear
by Lemma 2.1. So we prove (2), (6) and (7). We can assume m < n.
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(2). Take an arbitrary B ⊆ nκ. We show that πm,l(πn,m(B)) = πn,l(B). For
each s ∈ lκ, let Bs := {t ∈ n−lκ | s ̂ t ∈ B}. Then, for each s ∈ lκ,

s ∈ πm,l(πn,m(B))
⇔ {u ∈ m−lκ | s ̂ u ∈ πn,m(B)} ∈ (Im−l)+

⇔ {u ∈ m−lκ | {v ∈ n−mκ | s ̂û v ∈ B} ∈ (In−m)+ } ∈ (Im−l)+

⇔ {u ∈ m−lκ | {v ∈ n−mκ | û v ∈ Bs} ∈ (In−m)+ } ∈ (Im−l)+

⇔ Bs ∈ (In−l)+

⇔ s ∈ πn,l(B) .

(For the fourth equivalence, use (2) of Lemma 2.1.) Hence πm,l(πn,m(B)) =
πn,l(B).

(6). Clearly σm,n is order preserving and A⊥B → σm,n(A)⊥σm,n(B) for
each A,B ∈ P(Im). So it suffices to show that if M ⊆ PIm is predense then
σm,n[M ] is predense in PIn . Assume M ⊆ PIm is predense. Take an arbitrary
A ∈ PIn . We must find B ∈ M such that σm,n(B) ∩ A ∈ (In)+. Because
πn,m(A) ∈ PIm we can take B ∈ M such that B ∩ πn,m(A) ∈ (Im)+. Then for
each s ∈ B ∩ πn,m(A),

{t ∈ n−mκ | s ̂ t ∈ σm,n(B) ∩A} = {t ∈ n−mκ | s ̂ t ∈ A} ∈ (In−m)+.

So, by Lemma 2.1, σm,n(B) ∩A ∈ (In)+.
(7). Clearly πn,m is order preserving. By (3), πn,m is surjective. Assume

A ∈ PIn , B ∈ PIm and B ≤ πn,m(A). Then, for each s ∈ B,

{t ∈ n−mκ | s ̂ t ∈ σm,n(B) ∩A} = {t ∈ n−mκ | s ̂ t ∈ A} ∈ (In−m)+.

So C := σm,n(B) ∩A ∈ (In)+. Moreover, clearly, C ≤ A and πn,m(C) = B. So
πn,m is a projection. It is easy to see that πn,m is good.

Lemma 2.3. Assume I is normal. Let n ∈ ω. Then A ∈ (In)∗ if and only
if there is an X ∈ I∗ such that A ⊆ [X]n, where [X]n is the set of all strictly
increasing sequences of elements of X of length n.

Proof. If X ∈ I∗ then it can be easily seen that [X]n ∈ (In)∗. So (⇐) is true.
We show (⇒) by induction on n ∈ ω. If n = 0 or n = 1 then this is clear. So,
assuming n > 1 and (⇒) is true for n− 1, we show this for n.

Assume A ∈ (In)∗. For each t ∈ n−1κ, let At := {ξ < κ | t̂ 〈ξ〉 ∈ A}.
Then B := {t ∈ n−1κ | At ∈ I∗} ∈ (In−1)∗. By the induction hypothesis, there
is a Y ∈ I∗ such that B ⊇ [Y ]n−1. For each ξ < κ, let Aξ :=

⋂{At | t ∈
B ∧ max(t) < ξ}. Because I is κ-complete Aξ ∈ I∗. Let Z := ∆ξ∈κAξ ∈ I∗.
Then let X := Y ∩ Z ∩ Lim(κ) ∈ I∗. We show that if s ∈ [X]n then s ∈ A.
Assume s ∈ [X]n. Then, because s ¹ n − 1 ∈ [Y ]n−1, s ¹ n − 1 ∈ B. Let
ξ := s(n − 2) + 1. Then s(n − 2) < ξ < s(n − 1). Because s(n − 1) ∈ Z,
s(n− 1) ∈ Aξ and so s(n− 1) ∈ As�n−1. This means s ∈ A.
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2.2 Iteration of generic ultrapowers

In this subsection, we review the iteration of generic ultrapowers of length
at most ω + 1.

All through this subsection, in V , fix κ, I, 〈Pn | n ∈ ω〉, 〈σm,n | m ≤ n < ω〉
and 〈πn,m | m ≤ n < ω〉 so that

• κ is a regular uncountable cardinal,

• I is a normal precipitous ideal on κ,

• σm,n : P(mκ) → P(nκ) is the natural complete embedding,

• πn,m : P(nκ) → P(mκ) is the natural projection associated with I,

• Pn := PIn .

Our first aim is to show:

• In is precipitous for each n ∈ ω, i.e. if G is (V,PIn)-generic then Ult(V, G)
is well-founded.

• Assume Gn is (V,Pn)-generic and, for each m ≤ n, Gm is the (V,Pm)-
generic filter naturally obtained from Gn, i.e. Gm = πn,m[Gn] = σ−1

m,n[Gn].
In V [Gn], let Mm be the transitive collapse of Ult(V, Gm) for each m ≤ n.
Then 〈Mm | m ≤ n〉 is an iteration of generic ultrapowers of V by I.

We begin with the factor lemma for Pn.

Lemma 2.4. Assume that m, k ∈ ω, Im is precipitous and Gm is a (V,Pm)-
generic filter. Let jm : V → Mm

∼= Ult(V,Gm) be the generic elementary
embedding and κm, Im, Pm

k be jm(κ), jm(I), jm(Pk) respectively. Then, in
V [Gm], there is a surjective dense embedding from Pm+k/Gm to Pm

k .

Notation: Assume m, k ∈ ω. For each A ⊆ m+kκ which is in V , let fA
m be the

function on mκ such that

fA
m(s) = {t ∈ kκ | s ̂ t ∈ A}

for each s ∈ mκ. (Note that fA
m ∈ V .)

Proof. First note that, in Mm, Im is a normal ideal on κm and Pm
k = P(Im)k .

In V [Gm], let dm
k : Pm+k/Gm → Pm

k be the function such that

dm
k (A) := [fA

m]Gm

for each A ∈ Pm+k. Recall that the domain of Pm+k/Gm is π−1
m+k,m[Gm]. (See

“Notations and Facts” in Section 1.) So if A ∈ Pm+k/Gm then dm
k (A) ∈ Pm

k .
Moreover it is clear that dm

k is surjective and order preserving. So it suffices to
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show that, for each A,B ∈ Pm+k/Gm, if A ⊥ B in Pm+k/Gm then dm
k (A) ⊥

dm
k (B) in Pm

k .
Assume dm

k (A) and dm
k (B) are compatible. Then, by ÃLoś’ theorem,

X := {s ∈ mκ | fA
m(s) ∩ fB

m(s) ∈ (Ik)+} ∈ Gm .

So, by the definition of fA
m and fB

m , πm+k,m(A ∩ B) = X ∈ Gm. This means
that A ∩B ∈ Pm+k/Gm and so A and B are compatible in Pm+k/Gm.

Next we show the factor lemma for a generic ultrapower of V by In. If Gm+k

is (V,Pm+k)-generic and Gm = πm+k,m[Gm+k] then dm
k [Gm+k] is (V [Gm],Pm

k )-
generic, where Pm

k and dm
k are as in the previous lemma. (Note that dm

k is
surjective.) Because Pm

k ∈ Mm ⊆ V [Gm], dm
k [Gm+k] is (Mm,Pm

k )-generic. So,
in V [Gm+k], we can construct Ult(Mm, dm

k [Gm+k]). We see that this model is
isomorphic to Ult(V, Gm+k).

Lemma 2.5. Assume m, k ∈ ω, Im is precipitous and Gm+k is (V,Pm+k)-
generic. Let Gm := πm+k,m[Gm+k]. In V [Gm], let jm, Mm, κm, Im, Pm

k

be as in Lemma 2.4 and let dm
k : Pm+k/Gm → Pm

k be the dense embedding
defined as in the proof of Lemma 2.4. In V [Gm+k], let Gm

k = dm
k [Gm+k]. Then

Ult(V,Gm+k) ∼= Ult(Mm, Gm
k ).

Notation: Assume m, k ∈ ω. For each function g ∈ V on m+kκ, let fg
m ∈ V be

the function on mκ such that

fg
m(s) = the function on kκ such that ∀t ∈ kκ, fg

m(s)(t) = g(ŝ t)

for each s ∈ mκ.

Proof. In V [Gm+k], define τ : Ult(V, Gm+k) → Ult(Mm, Gm
k ) as

τ((g)Gm+k
) := ([fg

m]Gm)Gm
k

for each (g)Gm+k
∈ Ult(V, Gm+k). We show that τ is an isomorphism.

First we see that τ is well-defined, injective and elementary. Let ϕ(v1, ..., vl)
be a formula and g1, ..., gl ∈ V be functions on m+kκ. Then, by ÃLoś’ theorem,

Ult(Mm, Gm
k ) ² ϕ(([fg1

m ]Gm)Gm
k

, . . . , ([fgl
m ]Gm)Gm

k
) (1)

⇔ {t ∈ kκm | Mm ² ϕ([fg1
m ]Gm(t), . . . , [fgl

m ]Gm(t))} ∈ Gm
k . (2)

Now, in V , let A ⊆ m+kκ be such that

A := {u ∈ m+kκ | V ² ϕ(g1(u), ..., gl(u))}.
Then, for each s ∈ mκ,

fA
m(s) = {t ∈ kκ | V ² ϕ(fg1

m (s)(t), ..., fgl
m (s)(t))} .

So, by ÃLoś’ theorem,

[fA
m]Gm = {t ∈ kκm | Mm ² ϕ([fg1

m ]Gm(t), ..., [fgl
m ]Gm(t))} .
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Thus

(1.2) ⇔ [fA
m]Gm ∈ Gm

k

⇔ A ∈ Gm+k

⇔ Ult(V, Gm+k) ² ϕ((g1)Gm+k
, . . . , (gl)Gm+k

) . (3)

For the second equivalence, recall that dm
k (A) = [fA

m]Gm
and Gm

k = dm
k [Gm+k].

The equivalence between (1.1) and (1.3) implies that τ is well-defined, injective
and elementary. (For the well-definedness and injectivity, let ϕ be the formula
“v1 = v2”.)

Finally it is clear from the definition that τ is surjective. So τ is an isomor-
phism.

Remark: If Ult(V, Gm+k) and Ult(Mm, Gm
k ) are well-founded then, because

the above τ is an isomorphism,

[g]Gm+k
= [[fg

m]Gm
]Gm

k
.

Lemma 2.6. For each m ∈ ω, Im is precipitous.

Proof. We show this by induction on m ∈ ω. If m = 1, this is clear by the
precipitousness of I. Assume Im is precipitous. Assume Gm+1 is (V,Pm+1)-
generic. Let Gm = πm+1,m[Gm+1] and Mm, jm, Im, Gm

1 be as in Lemma
2.5. (Let k = 1.) Then Gm

1 is (Mm,PIm)-generic. On the other hand, by
the elementarity of jm, Mm ² “Im is precipitous”. So Ult(Mm, Gm

1 ) is well-
founded. So, by Lemma 2.5, Ult(V, Gm+1) is well-founded. This shows Im+1 is
precipitous.

In the following lemma, note that if m1 ≤ m2 ≤ n ∈ ω, Gn is (V,Pn)-generic
and Gmj = πn,mj [Gn] (j = 1, 2) then Gm1 = πm2,m1 [Gm2 ].

Lemma 2.7. Assume n ∈ ω and Gn is (V,Pn)-generic. For each m ≤ n, let
Gm := πn,m[Gn] and Mm be the transitive collapse of Ult(V,Gm). For each
m < n, let Gm

1 be as in Lemma 2.5. Then 〈Mm, Gl
1 | m ≤ n, l < m〉 is an

iteration of generic ultrapowers of V by I.

Proof. Clear by Lemma 2.5.

In the rest of this subsection, we show basic facts needed in the next section.
From now on, let W be an outer model of V in which there is a sequence
〈Gn | n ∈ ω〉 such that if m ≤ n ∈ ω then Gn is a (V,Pn)-generic filter and
Gm = πn,m[Gn]. Basically we work in W . For each m, k ∈ ω, let jm,Mm,Pm

k ,
etc. be as before, i.e.

• jm : V → Mm
∼= Ult(V,Gm) is the generic elementary embedding,

• κm := jm(κ), Im := jm(I),

• Pm
k := jm(Pk) = (P(Im)k)Mm ,
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• dm
k : Pm+k/Gm → Pm

k is a dense embedding such that for each A ∈
Pm+k/Gm,

dm
k (A) := [fA

m]Gm
,

• Gm
k := dm

k [Gm+k].

First we give a representation for the map from Mm to Mn associated with
the iteration of generic ultrapowers. For each m ≤ n ∈ ω, let jm,n : Mm → Mn

be the function defined as

jm,n([g]Gm) := [ḡ]Gn

for each [g]Gm ∈ Mm, where ḡ ∈ V is the function on nκ such that ḡ(s) = g(s¹m)
for each s ∈ nκ. It is easy to see that if l ≤ m ≤ n ∈ ω then j0,n = jn and
jl,n = jm,n ◦ jl,m.

Lemma 2.8. Assume m ≤ n ∈ ω. Then jm,n : Mm → Mn is the generic
elementary embedding associated with Ult(Mm, Gm

n−m).

Proof. Take an arbitrary x ∈ Mm and assume x = [g]Gm . We show that
jm,n(x) = [cx]Gm

n−m
, where cx ∈ Mm is the constant function on n−mκm with

the value x. Let ḡ be as above, i.e. the function on nκ such that ḡ(s) = g(s¹m)
for each s ∈ nκ. Then, in Mm, [f ḡ

m]Gm = cx. By the Remark after Lemma 2.5,
[[f ḡ

m]Gm ]Gm
n−m

= [ḡ]Gn . So

[cx]Gm
n−m

= [[f ḡ
m]Gm ]Gm

m−n
= [ḡ]Gn = jm,n(x) .

In particular, jm,m+1 : Mm → Mm+1 is the ultrapower map associated with
Ult(V,Gm

1 ). Therefore 〈Mn, Gm
1 , jm,n | m ≤ n ∈ ω〉 is an iteration of generic

ultrapowers of V by I.
Next we give the representation for the sequence of critical points. Because

I is normal, the sequence of critical points has a good representation.

Lemma 2.9. Assume m < n ∈ ω. Then 〈κk | m ≤ k < n〉 = [ id ¹
n−mκm ]Gm

n−m
. So, for each A ⊆ n−mκm which is in Mm, A ∈ Gm

n−m if and
only if 〈κk | m ≤ k < n〉 ∈ jm,n(A).

Proof. For each k < n, let ik ∈ V be the function on nκ such that ik(s) = s(k)
for each s ∈ nκ. First we show [ik]Gn = κk. Let hk be the function on k+1κ such
that hk(s) = s(k) for each s ∈ k+1κ. Then jk+1,n([hk]Gk+1) = [ik]Gn . Because
jk+1,n does not move κk, it suffices to show [hk]Gk+1 = κk.

In V , fhk

k (s) = id¹κ for each s ∈ kκ. (Here we identified 1κ with κ.) So, in
Mk, [fhk

k ]Gk
= id ¹κk. Then, by the normality of Ik, κk = [[fhk

k ]Gk
]Gk

1
. Then,

by the remark after Lemma 2.5, [hk]Gk+1 = κk.
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Now let g ∈ V be the function on nκ such that g(s) = 〈s(m), s(m +
1), ..., s(n − 1)〉 for each s ∈ nκ. Then, because fg

m(s) = id ¹ n−mκ for each
s ∈ mκ, [fg

m]Gm
= id¹n−mκm. So

[[fg
m]Gm ]Gm

n−m
= [id¹n−mκm]Gm

n−m
.

On the other hand,

[g]Gn
= 〈 [im]Gn

, [im+1]Gn
, ..., [in−1]Gn

〉 = 〈κm, κm+1, ..., κn−1〉.
So, by the remark after Lemma 2.5,

[id¹n−mκm]Gm
n−m

= 〈κm, κm+1, ..., κn−1〉.

For each m, k, l ∈ ω such that k ≤ l, let

• σm
k,l := jm(σk,l),

• πm
l,k := jm(πl,k).

Note that if m, k, l are as above then, in Mm,

• σm
k,l : P(kκm) → P(lκm) is the natural complete embedding,

• πm
l,k : P(lκm) → P(kκm) is the natural projection associated with Im.

Lemma 2.10. Assume m ∈ ω and k ≤ l ∈ ω. Then the following diagrams
commute. So Gm

k = πm
l,k[Gm

l ] = (σm
k,l)

−1[Gm
l ].

(1)

Pm+k/Gm
σm+k,m+l−−−−−−→ Pm+l/Gm

dm
k

y
ydm

l

Pm
k

σm
k,l−−−−→ Pm

l

(2)

Pm+k/Gm
πm+l,m+k←−−−−−− Pm+l/Gm

dm
k

y
ydm

l

Pm
k

πm
l,k←−−−− Pm

l

Proof.
(1): Assume B ∈ Pm+k/Gm. Let A := σm+k,m+l(B). Then fA

m(s) =
σk,l(fB

m(s)) for each s ∈ mκ. So, by ÃLoś’ Theorem,

dm
l (A) = [ fA

m ]Gm = σm
k,l([ f

B
m ]Gm) = σm

k,l(d
m
k (B)) .

(2): Assume A ∈ Pm+l/Gm. Let B := πm+l,m+k(A). Then fB
m(s) =

πl,k(fA
m(s)) for each s ∈ mκ. So

dm
k (B) = [ fB

m ]Gm = πm
l,k([ fA

m ]Gm) = πm
l,k(dm

l (A)) .
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We end this section with some notation. By Lemma 2.7, 〈Mn, Gm
1 , jm,n |

m ≤ n < ω〉 is an iteration of generic ultrapowers of V by I. Then, by Fact
1.2, the direct limit of 〈Mn, jm,n | m ≤ n < ω〉 is well-founded. Let Mω be the
transitive collapse of the direct limit of 〈Mn, jm,n | m ≤ n ∈ ω〉 and, for each
m ∈ ω, let jm,ω : Mm → Mω be the induced elementary embedding. Then we
call 〈Mn, Gm

1 , jm,n | m ≤ n ≤ ω, m < ω〉 the iteration of generic ultrapowers
of V by I associated with 〈Gn | n ∈ ω〉.

3 Generalized Prikry Forcing and Iteration of
Generic Ultrapowers.

In this section, we generalize Theorem 1.1 for both PR∗ and PR+ (Theorem
3.3 and 3.5). After that we observe known facts about PR∗ and PR+ from
the point of view of Theorem 3.3 and Theorem 3.5. Mathias found, in [8], a
simple characterization for being a Prikry generic sequence and Theorem 1.1 is
immediate from this characterization and Kunen’s theory of iterated ultrapow-
ers. But we do not know such simple characterizations for PR∗ and PR+, so
we show Theorem 3.3 and 3.5 in a direct way.

3.1 PR∗ and PR+.

Before generalizing Theorem 1.1, we review basic properties of PR∗ and
PR+.

First we give some definitions involving trees. Let α be an ordinal and
T ⊆ <ωα be a tree. Then for each t ∈ <ωα, let

• t ̂T :=
⋃{t¹k | k < |t|} ∪⋃{t̂ s | s ∈ T},

• T/t := {s ∈ <ωα | t ̂ s ∈ T},
• SucT (t) := {ξ < α | t ̂ 〈ξ〉 ∈ T},
• [T ] := {b ∈ ωα | ∀k ∈ ω, b ¹k ∈ T} = the set of all infinite paths through

T ,

• T(k) := T ∩ kα = the k-th level of T , for each k ∈ ω.

Assume J is an ideal on some infinite ordinal α. For each tree T ⊂ <ωα,

• T is called a J∗-tree if T 6= ∅ ∧ ∀t ∈ T , SucT (t) ∈ J∗,

• T is called a J+-tree if T 6= ∅ ∧ ∀t ∈ T , SucT (t) ∈ J+.

Let PR∗J be the poset such that

PR∗J = {〈t, T 〉 | t ∈ <ωα ∧ T ⊆ <ωα is a J∗-tree}

12



and, for each 〈t1, T1〉, 〈t2, T2〉 ∈ PR∗J , 〈t1, T1〉 ≤ 〈t2, T2〉 iff t1 ̂T1 ⊆ t2 ̂ T2. Let
PR+

J be the poset such that

PR+
J = {〈t, T 〉 | t ∈ <ωα ∧ T ⊆ <ωα is a J+-tree}

and, for each 〈t1, T1〉, 〈t2, T2〉 ∈ PR+
J , 〈t1, T1〉 ≤ 〈t2, T2〉 iff t1 ̂T1 ⊆ t2 ̂T2.

The following lemma is basic.

Lemma 3.1. Assume W is a transitive model of ZFC, α ∈ W is an infinite
ordinal and J ∈ W is such that W ² “J is an ideal on α”. Let P∗ := (PR∗J)W

and P+ := (PR+
J )W .

(1) Assume Γ is a (W,P∗)-generic filter. Let b :=
⋃{t | ∃T, 〈t, T 〉 ∈ Γ} and

Γb := {〈t, T 〉 ∈ P∗ | ∀n ∈ ω, b¹n ∈ t ̂T}. Then Γb = Γ.

(2) Assume Γ is a (W,P+)-generic filter. Let b :=
⋃{t | ∃T, 〈t, T 〉 ∈ Γ} and

Γb := {〈t, T 〉 ∈ P+ | ∀n ∈ ω, b¹n ∈ t̂T}. Then Γb = Γ.

Proof. We show only (1). (2) can be shown in the same way. Clearly Γ ⊆ Γb.
So it suffices to show that Γb ⊆ Γ.

Assume 〈s, S〉 /∈ Γ. Because

D := {〈t, T 〉 ∈ P∗ | 〈t, T 〉 ≤ 〈s, S〉 or t /∈ s ̂S }

is in W and is dense in P∗, there is a 〈t, T 〉 ∈ D∩Γ. Because 〈s, S〉 /∈ Γ, t /∈ s ̂S.
Then, because t is an initial segment of b, b /∈ [s ̂ S]. So 〈s, S〉 /∈ Γb.

We call the above b’s a PR∗J -sequence or a PR+
J -sequence. More precisely

we make the following definitions.
Assume W is a transitive model of ZFC, α ∈ W is an infinite ordinal and

J ∈ W is such that W ² “J is an ideal on α”. Let b ∈ ωα. Then we say:

• b is a PR∗J -sequence over W if there is a (W, (PR∗J)W )-generic filter Γ
such that b =

⋃{t | ∃T, 〈t, T 〉 ∈ Γ}.
• b is a PR+

J -sequence over W if there is a (W, (PR+
J )W )-generic filter Γ

such that b =
⋃{t | ∃T, 〈t, T 〉 ∈ Γ}.

By Lemma 3.1, b is a PR∗J -sequence over W if and only if Γb := {〈t, T 〉 ∈
(PR∗J )W | ∀n ∈ ω, b ¹ n ∈ t̂ T} is a (W, (PR∗J)W )-generic filter. (For the
backwards direction, note that if Γb is a generic filter then b =

⋃{t | ∃T, 〈t, T 〉 ∈
Γb}.) This is also true for PR+

J .
The following lemma is useful.

Lemma 3.2. Assume W , α and J are as in Lemma 3.1 and b, c ∈ ωα have a
common tail, i.e. ∃m, n ∈ ω ∀k ∈ ω, b(m + k) = c(n + k). Then:

(1) b is a PR∗J -sequence over W iff c is a PR∗J -sequence over W .

(2) b is a PR+
J -sequence over W iff c is a PR+

J -sequence over W .
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Proof. We show only (1). Let W , α, J , b, c be as above. Let m,n ∈ ω be such
that ∀k ∈ ω, b(m + k) = c(n + k) and let u, v ∈ <ωα be b¹m, c¹n respectively.

Assume that b is a PR∗J -sequence over W and Γ witnesses this. In W ,
let Pu be PR∗J ¹ 〈u, <ωα〉, i.e. the poset obtained from restricting PR∗J to
{〈t, T 〉 | 〈t, T 〉 ≤ 〈u, <ωα〉}. Let Pv be PR∗J ¹ 〈v, <ωα〉. Then let d : Pu → Pv be
such that

d(〈û s, S〉) = 〈v ̂ s, S〉
for each 〈û s, S〉 ∈ Pu. Then d ∈ W and d is an isomorphism. Because u is an
initial segment of b, 〈u, <ωα〉 ∈ Γ. So Γ ∩ Pu is (W,Pu)-generic. So d[Γ ∩ Pu] is
(W,Pv)-generic. So the filter Ω on (PR∗J)W which is generated by d[Γ ∩ Pu] is
generic over W . Moreover,

⋃
{t | ∃T, 〈t, T 〉 ∈ Ω} =

⋃
{t | ∃T, 〈t, T 〉 ∈ d[Γ ∩ Pu]}

=
⋃
{v ̂ s | ∃T, 〈u ̂ s, T 〉 ∈ Γ ∩ Pu}

=
⋃
{v ̂ s | û s ∈ b}

= c .

So Ω witnesses that c is a PR∗J -sequence over W .
The other direction can be shown similarly.

3.2 Generalizations of Theorem 1.1.

All through this subsection, in V , let κ be a regular uncountable cardinal
and I be a normal precipitous ideal on κ. Moreover, for each m ≤ n ∈ ω, let
Pn := PIn and let σm,n : P(mκ) → P(nκ) and πn,m : P(nκ) → P(mκ) be the
natural complete embedding and the natural projection associated with I.

First we generalize Theorem 1.1 for PR∗.

Theorem 3.3. Let Pω be the direct limit of 〈Pn, σm,n | m ≤ n ∈ ω〉. Let Gω be
a (V,Pω)-generic filter and, for each n ∈ ω, let Gn be the (V,Pn)-generic filter
naturally obtained from Gω. In V [Gω], let 〈Mn,Hm, jm,n | m ≤ n ≤ ω, m < ω〉
be the iteration of generic ultrapowers of V by I associated with 〈Gn | n ∈ ω〉.
Then 〈j0,n(κ) | n ∈ ω〉 is a PR∗j0,ω(I)-sequence over Mω.

To prove the above theorem, we need some preliminaries. Until we complete
the proof of the theorem, let Pω, Gω, 〈Gn | n ∈ ω〉 and 〈Mn, Hm, jm,n | m ≤
n ≤ ω, m < ω〉 be as in the theorem, and, in V [Gω], let jm, κm, Im, Pm

k ,
dm

k , Gm
k , σm

k,l, πm
l,k be as in Section 2.2 for each m, k, l ∈ ω with k ≤ l. Let

Iω := j0,ω(I). Note that Hm = Gm
1 for each m ∈ ω.

Pω is the poset defined as follows: First let ∼σ be the equivalence relation on⋃
n∈ω Pn such that for each A,B ∈ ⋃

n∈ω Pn, say A ∈ Pm and B ∈ Pn, A ∼σ B
iff σm,l(A) = σn,l(A), where l = max(m,n). Let [A]σ denote the equivalence
class represented by A. Then
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• Pω =
⋃

n∈ω Pn/ ∼σ,

• if A ∈ Pm and B ∈ Pn then, letting l = max(m,n), [A]σ ≤ [B]σ iff
σm,l(A) ≤ σn,l(B) in Pl.

For each m ∈ ω, let σm,ω : Pm → Pω be the complete embedding associated
with the direct limit, i.e. the function such that σm,ω(A) = [A]σ for each
A ∈ Pm. Then Gm = σ−1

m,ω[Gω] = {A ∈ Pm | [A]σ ∈ Gω}.
To prove the theorem, we need the factor lemma for Pω and 〈Mn,Hm, jm,n |

m ≤ n ≤ ω,m < ω〉. To see this we define Pm
ω , σm

k,ω, dm
ω and Gm

ω . Let m ∈ ω.
Let

• Pm
ω := jm(Pω),

• σm
k,ω := jm(σk,ω), for each k ∈ ω.

Recall that Pm
k = jm(Pk) and σm

k,l = jm(σk,l) for each k ≤ l ∈ ω. So, in Mm, Pm
ω

is the direct limit of 〈Pm
k , σm

k,l | k ≤ l ∈ ω〉 and σm
k,ω : Pm

k → Pm
ω is the induced

complete embedding. For each A ∈ ⋃
k∈ω Pm

k , let [A]σm denote the equivalence
class represented by A. Then σm

k,ω(A) = [A]σm .
dm

ω : Pω/Gm → Pm
ω is defined as follows. Note that Pω/Gm is the poset in

V [Gm] which is obtained from restricting Pω to {[A]σ | ∃n ≥ m, A ∈ Pn/Gm}.
(If n ≥ m and A ∈ Pn then [A]σ ∈ Pω/Gm ⇔ ∀B ∈ Gm, [A]σ and [B]σ
are compatible in Pω ⇔ ∀B ∈ Gm, A and σm,n(B) are compatible in Pn ⇔
A ∈ Pn/Gm.) Then let dm

ω : Pω/Gm → Pm
ω be the function such that

• dm
ω ([A]σ) = [dm

k (A)]σm ,

for each A ∈ Pm+k/Gm. By Lemma 2.10, dm
ω is well-defined. Clearly dm

ω ∈
V [Gm]. We show that dm

ω is a dense embedding.

Lemma 3.4. dm
ω : Pω/Gm → Pm

ω is a surjective dense embedding.

Proof. Because dm
k : Pm+k/Gm → Pm

k is surjective for each k ∈ ω, dm
ω is also

surjective.
To see that dm

ω is order preserving, assume [A]σ ≤ [B]σ in Pω/Gm. As-
sume A, B are in Pm+k/Gm, Pm+l/Gm respectively. Let i := max(k, l). Then
σm+k,m+i(A) ≤ σm+l,m+i(B) in Pm+i/Gm. Because dm

i is order preserving,
dm

i (σm+k,m+i(A)) ≤ dm
i (σm+l,m+i(B)) in Pm

i . Then σm
k,i(d

m
k (A)) ≤ σm

l,i(d
m
l (B))

by Lemma 2.10. This means that dm
ω ([A]σ) ≤ dm

ω ([B]σ).
By replacing “≤” by “⊥” in the above argument, we can see that dm

ω pre-
serves incompatibility.

Let Gm
ω := dm

ω [Gω]. Then Gm
ω is a (V [Gm],Pm

ω )-generic filter and so is
(Mm,Pm

ω )-generic. We want to show that Gm
k = (σm

k,ω)−1(Gm
ω ) for each k ∈ ω,

i.e. Gm
k is the (V [Gm],Pm

k )-generic filter naturally obtained from Gm
ω . Assume

k ∈ ω and A ∈ Pm
k . Let B ∈ Pm+k/Gm be such that A = dm

k (B). (Recall that
dm

k is surjective.) Then dm
ω ([B]σ) = [A]σm . Then

[A]σm ∈ Gm
ω ⇔ [B]σ ∈ Gω ⇔ B ∈ Gm+k ⇔ A ∈ Gm

k .
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Thus Gm
k = (σm

k,ω)−1[Gm
ω ].

Note that, by Lemma 2.5, 〈Mm+l, H
m+k, jm+k,m+l | k ≤ l ≤ ω, k < ω〉 is

the iteration of generic ultrapowers of Mm by Im naturally obtained from Gm
ω .

Now we can start to prove the theorem.

Proof of Theorem 3.3.
In V [Gω], let ~κ := 〈κn | n ∈ ω〉 and let

Γ := {〈t, T 〉 ∈ (PR∗Iω
)Mω | ∀n ∈ ω,~κ¹n ∈ t̂ T} .

We show that Γ is a (Mω, (PR∗Iω
)Mω )-generic filter. For simplicity of notation,

we write PR∗Im
for (PR∗Im

)Mm for each m ≤ ω.
First we show the genericity of Γ. Let D ∈ Mω be a dense subset of PR∗Iω

.
We show Γ ∩D 6= ∅. Let m ∈ ω and D̄ ∈ Mm be such that D = jm,ω(D̄). D̄ is
a dense subset of PR∗Im

. In Mm, define E ⊆ Pm
ω as

E := {[A]σm ∈ Pm
ω | ∀t ∈ A∃T, 〈~κ¹m ̂ t, T 〉 ∈ D̄} .

Working in Mm, we show that E is dense in Pm
ω .

Claim 3.3.1. Assume k ∈ ω and s ∈ kκm. Then there is an l ∈ ω such that

Bs
l := {t ∈ lκm | ∃T, 〈~κ¹m ̂ s ̂ t, T 〉 ∈ D̄} ∈ ((Im)l)+ .

Proof of Claim. Let k ∈ ω and s ∈ kκm. Assume Bs
l ∈ (Im)l for every l ∈ ω.

Then, by Lemma 2.3, there is an Xl ∈ (Im)∗ such that [Xl]l ∩ Bs
l = ∅ for each

l ∈ ω. Let X :=
⋂

l∈ω Xl. Then X ∈ (Im)∗ and if t ∈ [X]l then t /∈ Bs
l .

Then [X]<ω is an (Im)∗-tree and so 〈~κ ¹ m ̂ s, [X]<ω〉 ∈ PR∗Im
. But, by the

construction of X, there is no element of D̄ which extends 〈~κ ¹ m̂ s, [X]<ω〉.
This contradicts D̄ is dense in PR∗Im

. ¤.Claim

Claim 3.3.2. E is dense in Pm
ω .

Proof of Claim. Let k ∈ ω and A ∈ Pm
k . We find an element of E which extends

[A]σm . By the previous claim, for each s ∈ A, there is an ls ∈ ω such that
Bs

ls
is (Im)ls-positive. Because (Im)k is κm-complete, there is an A′ ⊆ A and

l ∈ ω such that A′ is (Im)k-positive and ls = l for every s ∈ A′. Then let
B := {s ̂ t | s ∈ A′ ∧ t ∈ Bs

l }. Because Bs
l is (Im)l-positive for each s ∈ A′,

B is (Im)k+l-positive, i.e. B ∈ Pm
k+l. Then clearly σm

k,k+l(A) ≥ B in Pm
k+l and

so [A]σm ≥ [B]σm . On the other hand, if u ∈ B then there is a T such that
〈~κ¹m̂u, T 〉 ∈ D̄. So [B]σm ∈ E. ¤.Claim

Return to V [Gω].
Because Gm

ω is (Mm,Pm
ω )-generic, Gm

ω ∩E 6= ∅. Let A be such that [A]σm ∈
Gm

ω ∩ E and A witnesses that [A]σm ∈ E, i.e. ∀t ∈ A∃T, 〈~κ ¹ m ̂ t, T 〉 ∈ D̄.
Assume A ∈ Pm

k . Then A ∈ Gm
k and so, by Lemma 2.9, ~κ ¹ [m, m + k) ∈

jm,m+k(A). On the other hand, because jm,m+k is an elementary embedding
and does not move ~κ¹m,

Mm+k ² ∀t ∈ jm,m+k(A) ∃T, 〈~κ¹m̂ t, T 〉 ∈ jm,m+k(D̄) .
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So, in Mm+k, there exists an (Im+k)∗-tree T̄ such that 〈~κ ¹ m + k, T̄ 〉 ∈
jm,m+k(D̄). Let T := jm+k,ω(T̄ ). Then

〈~κ¹m + k, T 〉 = jm+k,ω(〈~κ¹m + k, T̄ 〉) ∈ jm+k,ω(jm,m+k(D̄)) = D .

Thus it suffices to show that 〈~κ ¹m + k, T 〉 ∈ Γ. To see this it suffices to show
that, for every l > 0, 〈κm+k, ..., κm+k+l−1〉 ∈ T . Assume l > 0. Let n := m + k.
Because T̄ is an (In)∗-tree the l-th level of T̄ , T̄(l), is in ((In)l)∗. So T̄(l) ∈ Gn

l .
Then, by Lemma 2.9, 〈κn, ..., κn+l−1〉 ∈ jn,n+l(T̄(l)). Then,

〈κn, ..., κn+l−1〉 = jn+l,ω(〈κn, ..., κn+l−1〉) ∈ jn+l,ω(jn,n+l(T̄(l))) = T(l) .

This completes the proof of the genericity.
Next we show that Γ is a filter. Clearly Γ is closed upwards. We show that

if 〈t1, T1〉 and 〈t2, T2〉 are in Γ then they are compatible in PR∗Iω
. (Because of

the genericity of Γ, this suffices.) Assume 〈t1, T1〉, 〈t2, T2〉 are in Γ. Let n ∈ ω
be such that t1, t2 ⊆ ~κ¹n. Then let

Si := (ti ̂Ti) / (~κ¹n)

for i = 0, 1. Because ~κ ¹n ∈ ti ̂Ti, Si is an (Iω)∗-tree. Then 〈~κ ¹n, S1 ∩ S2〉 is
in PR∗Iω

and is a common extension of 〈t1, T1〉 and 〈t2, T2〉.
This completes the proof of Theorem 3.3. ¤.Theorem

Next we generalize Theorem 1.1 for PR+.

Theorem 3.5. Let Pω be the inverse limit of 〈Pn, πn,m | m ≤ n ∈ ω〉. Let Gω

be a (V,Pω)-generic filter and, for each n ∈ ω, let Gn be a (V,Pn)-generic filter
naturally obtained from Gω. In V [Gω], let 〈Mn, Hm, jm,n | m ≤ n ≤ ω,m < ω〉
be the iteration of generic ultrapowers of V by I associated with 〈Gn | n ∈ ω〉.
Then 〈j0,n(κ) | n ∈ ω〉 is a PR+

j0,ω(I)-sequence over Mω.

To prove the theorem we need some preliminaries. Until we complete the
proof of the above theorem, let Pω, Gω, 〈Gn | n ∈ ω〉, 〈Mn,Hm, jm,n | m ≤ n ≤
ω,m < ω〉 be as in the theorem. In V [Gω], let jm, κm, Im, Pm

k , dm
k , Gm

k , σm
k,l,

πm
l,k be as in Section 2.2 for each m, k, l ∈ ω with k ≤ l. Let Iω = j0,ω(I). Note

that Hm = Gm
1 .

Pω is the poset such that

• Pω is the set of all sequences 〈An | n ∈ ω〉 such that πn,m(An) = Am for
each m ≤ n ∈ ω,

• 〈An | n ∈ ω〉 ≤ 〈Bn | n ∈ ω〉 iff An ≤ Bn in Pn for every n ∈ ω.

First we modify Pω. In V , let P be the poset of all I+-trees ordered by
inclusion. We see that Pω and P are equivalent. Note that if T is an I+-tree
then the sequence of levels of T , 〈T(n) | n ∈ ω〉, is in Pω. Let e : P→ Pω be the
function defined by e(T ) := 〈T(n) | n ∈ ω〉.
Lemma 3.6. e is a dense embedding.
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Proof. Clearly e is order preserving. Moreover, if e(T1) ≤ e(T2) in Pω then
T1 ≤ T2 in P. So it suffices to show that e[P] is dense in Pω.

Take an arbitrary 〈Bn | n ∈ ω〉 ∈ Pω. By induction on n ∈ ω, define
An ⊆ Bn as follows. Let A0 := B0 = {〈〉}. Assuming An ⊆ Bn is defined, let
An+1 := {s ∈ Bn+1 | s ¹ n ∈ An}. Then T :=

⋃
n∈ω An is a tree. Moreover,

because An ⊆ Bn = πn+1,n(Bn+1), {ξ ∈ κ | ŝ 〈ξ〉 ∈ An+1} ∈ I+ for each
s ∈ An. Thus T is an I+-tree. Hence e(T ) = 〈An | n ∈ ω〉 ≤ 〈Bn | n ∈ ω〉.

We argue using P instead of Pω. Let G := e−1[Gω]. Then G is (V,P)-generic.
In V , let πn : P→ Pn be the function defined by πn(T ) := T(n) for each T ∈ P.
Then πn is the composition of e and the natural projection from Pω to Pn. Thus
Gn is the filter generated by πn[G] = {T(n) | T ∈ G}.

As in Theorem 3.3, we need the factor lemma for P and 〈Mn,Hm, jm,n |
m ≤ n ≤ ω,m < ω〉. We define Pm, πm

k , dm and Gm. Let m ∈ ω.
Let

• Pm := jm(P),

• πm
k := jm(πk).

In Mm, Pm is the poset of all (Im)+-trees ordered by inclusion and πm
k is the

function defined by πm
k (T ) := T(k).

dm : P/Gm → Pm is defined similarly to dm
k . For each T ∈ P, let fT

m ∈ V be
the function on mκ such that fT

m(t) = T/t for each t ∈ mκ. Note that fT
m(t) is an

I+-tree for each t ∈ T(m). So if T ∈ P/Gm, i.e. T(m) ∈ Gm then [fT
m]Gm ∈ Pm.

In V [Gm], define dm : P/Gm → Pm by dm(T ) := [fT
m]Gm for each T ∈ P/Gm.

Lemma 3.7. dm is a surjective dense embedding.

Proof. This can be shown in the same way as Lemma 2.4. We show only that
dm preserves incompatibility.

Assume that T1, T2 ∈ P/Gm and dm(T1), dm(T2) are compatible in Pm. We
show that T1, T2 are compatible in P/Gm. Let g ∈ V be such that [g]Gm is a
common extension of dm(T1) and dm(T2). We may assume g(t) is an I+-tree
for each t ∈ mκ. Because [g]Gm is a common extension, B := {t ∈ mκ | g(t) ⊆
T1/t , T2/t} ∩ T1(m) ∩ T2(m) ∈ Gm. Because πm[P] is dense in Pm, there is an
A ⊆ B such that A ∈ Gm and A ∈ πm[P]. Then A is the m-th level of some
I+-tree and g(t) is an I+-tree for each t ∈ A. So T :=

⋃{t ̂ g(t) | t ∈ A} is an
I+-tree. Moreover T ⊆ T1, T2 and T ∈ P/Gm. Thus T1 and T2 are compatible
in P/Gm.

Let Gm := dm[G]. Then Gm is (V [Gm],Pm)-generic and thus (Mm,Pm)-
generic. We show that each Gm

k is the Pm
k -generic filter naturally obtained from

Gm.

Lemma 3.8. Assume k ∈ ω. Then Gm
k is the filter generated by πm

k [Gm] =
{T(k) | T ∈ Gm}.
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Proof. Gm
k is an (Mm,Pm

k )-generic filter and πm
k [Gm] generates an (Mm,Pm

k )-
generic filter. So it suffices to show that πm

k [Gm] ⊆ Gm
k . For each A ∈ Pm+k,

let fA
m ∈ V be as in Lemma 2.4. Recall that dm

k (A) = [fA
m]Gm

for each A ∈
Pm+k/Gm and that Gm

k = dm
k [Gm+k].

Take an arbitrary B ∈ πm
k [Gm]. Then there is an S ∈ Gm such that S(k) =

B. Let T ∈ G be such that dm(T ) = S and A := T(m+k). Note that A ∈ Gm+k.
Then, for each t ∈ T(m), fA

m(t) is the k-th level of fT
m(t). So, in Mm, [fA

m]Gm

is the k-th level of [fT
m(t)]Gm

. Thus dm
k (A) = S(k) = B. Because A ∈ Gm+k,

B ∈ Gm
k .

Note that 〈Mm+l, H
m+k, jm+k,m+l | k ≤ l ≤ ω, k < ω〉 is the iteration of

generic ultrapowers of Mm by Im naturally obtained from Gm.
Now we can start to prove the theorem.

Proof of Theorem 3.5.
In V [G], let ~κ := 〈κn | n ∈ ω〉 and let

Γ := {〈t, T 〉 ∈ (PR+
Iω

)Mω | ∀n ∈ ω,~κ¹n ∈ t ̂T}.

We show that Γ is (Mω, (PR+
Iω

)Mω )-generic. For simplicity of notation, we write
PR+

In
for (PR+

In
)Mn for each n ≤ ω.

First we show the genericity. Let D ∈ Mω be a dense subset of PR+
Iω

. We
show that Γ∩D 6= ∅. There is an m ∈ ω and D̄ ∈ Mm such that jm,ω(D̄) = D.
Then D̄ is dense in PR+

Im
. In Mm, let E ⊆ Pm be defined by

E = {T ∈ Pm | ∃k ∈ ω∀t ∈ T(k), 〈~κ¹m ̂ t, T/t〉 ∈ D̄}.

Working in Mm, we show that E is dense in Pm. Take an arbitrary S ∈ Pm.
We find a T ∈ E such that T ≤ S.

Claim 3.5.1. For some k ∈ ω,

Bk := {s ∈ S(k) | ∃S′, 〈~κ¹m,S〉 ≥ 〈~κ¹m̂ s, S′〉 ∈ D̄} ∈ ((Im)k)+.

Proof of Claim. Assume not. Then, for each k ∈ ω, there is an Xk ∈ (Im)∗ such
that [Xk]k ∩ Bk = ∅. Let X :=

⋂
k∈ω Xk. Then X ∈ (Im)∗ and so S ∩ [X]<ω

is an (Im)+-tree. Thus 〈~κ ¹m,S ∩ [X]<ω〉 ∈ PR+
Im

. But if s ∈ S ∩ [X]<ω then
s /∈ B|s|. Hence there is no element of D̄ which extends 〈~κ¹m, S ∩ [X]<ω〉. This
contradicts D̄ is dense in PR+

Im
. ¤.Claim

Let k ∈ ω be such that Bk is (Im)k-positive. For each s ∈ Bk, let Ss be an
(Im)+-tree witnessing s ∈ Bk. Note that s ̂Ss ⊆ S. Because πm

k [Pm] is dense
in Pm

k , there is an A ⊆ Bk such that A is the k-th level of some (Im)+-tree.
Then

T :=
⋃
{ŝ Ss | s ∈ A}

is an (Im)+-tree. Moreover T ⊆ S and k witnesses that T ∈ E. This shows that
E is dense.
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Return to V [G].
Let T̄ be in Gm ∩ E and let k be the element of ω witnessing that T̄ ∈ E.

Let T := jm,ω(T̄ ).

Claim 3.5.2. For each l ∈ ω, ~κ¹ [m,m + l) ∈ T(l).

Proof of Claim. Let l ∈ ω. Because T̄ ∈ Gm, T̄(l) ∈ Gm
l by Lemma 3.8. Thus,

by Lemma 2.9, ~κ ¹ [m,m + l) ∈ jm,m+l(T̄(l)). Then, because jm+l,ω does not
move κm+i for each i < l, ~κ¹ [m,m + l) ∈ jm+l,ω(jm,m+l(T̄(l))) = T(l). ¤.Claim

Because T̄ ∈ E and k witnesses this,

Mm ² “∀t ∈ T̄(k), 〈~κ¹m̂ t, T̄ /t〉 ∈ D̄”.

Thus, because jm,ω is elementary and ~κ¹ [m,m + k) ∈ T(k),

〈~κ¹m̂~κ¹ [m,m + k), T/~κ¹ [m,m + k)〉 = 〈~κ¹m + k, T/~κ¹ [m,m + k)〉 ∈ D.

On the other hand, by the previous claim,

〈~κ¹m + k, T/~κ¹ [m,m + k)〉 ∈ Γ.

So Γ ∩D 6= ∅.
Next we show that Γ is a filter. Clearly Γ is closed upwards. So, because of

the genericity, it suffices to show that if 〈t1, T1〉, 〈t2, T2〉 ∈ Γ then 〈t1, T1〉 and
〈t2, T2〉 are compatible in PR+

Iω
.

Assume 〈t1, T1〉, 〈t2, T2〉 ∈ Γ and 〈t1, T1〉 ⊥ 〈t2, T2〉 in PR+
Iω

. Let

D := {〈t, T 〉 ∈ PR+
Iω
| t /∈ t1 ̂ T1 ∨ t /∈ t2 ̂T2}.

Then D is dense in PR+
Iω

. Let 〈t, T 〉 ∈ Γ ∩ D. Without loss of generality, we
may assume t /∈ t1 ̂ T1. Then, because 〈t, T 〉 ∈ Γ, t is an initial segment of ~κ.
Therefore ~κ¹ |t| = t /∈ t1 ̂T1. This contradicts that 〈t1, T1〉 ∈ Γ.

This completes the proof of Theorem 3.5. ¤.Theorem

3.3 Observations about PR∗ and PR+ from Theorem 3.3
and 3.5.

If κ is a measurable cardinal and U is a normal measure on κ then the
Prikry forcing associated with U does not affect Vκ. It is known that this can
be generalized for PR∗ and PR+. In this subsection, we observe this from the
point of view of Theorem 3.3 and 3.5.

First we define strategic closure of ideals.
For each poset Q and δ ∈ On, let Ωδ(Q) be the following two player game

of length δ. In Ωδ(Q), Player I and II in turn choose an element of Q and build
a descending chain in Q, q1 ≥ q2 ≥ q3 ≥ ... ≥ qξ ≥ qξ+1 ≥ ... . Player I plays qξ

for odd ξ’s and II plays for even and limit ξ’s. Player II wins if and only if the
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game can be continued to build a descending chain 〈qξ | ξ ∈ δ−{0}〉. Otherwise
I wins.

We say that Q is δ-strategically closed if Player II has a winning strategy
in the game Ωδ(Q). Here, a winning strategy for Player II is a function τ
from the set of all initial plays of Ωδ(Q) to Q such that if Player II plays
τ(〈qη | η ∈ ξ −{0}〉) in each ξ-th stage then Player II wins. An ideal I is called
δ-strategically closed if PI is δ-strategically closed.

Note that every ω + 1-strategically closed ideal is precipitous. In Galvin-
Jech-Magidor [4], it is shown that if κ is measurable and J is a normal maximal
ideal on κ then J̄ is ω + 1-strategically closed in V Col(ω1,<κ), where J̄ is the
ideal generated by J . In general, if κ and J are as above and γ < κ is a regular
uncountable cardinal then J̄ is γ-strategically closed in V Col(γ,<κ).

Lemma 3.9. Let κ be a regular uncountable cardinal and I be a normal ideal
on κ. For each m ≤ n ∈ ω, let σm,n : PIm → PIn and πn,m : PIn → PIm

be the natural complete embedding and the natural projection associated with I,
respectively.

(1) Assume δ < κ and I is δ-saturated. Then the direct limit of 〈PIn , σm,n |
m ≤ n ∈ ω〉 has the δ-c.c.

(2) Assume δ > ω and I is δ-strategically closed. Then the inverse limit of
〈PIn , πn,m | m ≤ n ∈ ω〉 is δ-strategically closed.

Proof. For each n ∈ ω, let Pn := PIn and Ġn be the canonical name of a
Pn-generic filter.
(1). It suffices to show that °Pn “Pn+1/Ġn has the δ-c.c.”. We show this by
induction on n ∈ ω. Note that if n = 1 then this is true because I is δ-saturated.
Assume n ∈ ω and that this is true for each m ≤ n. We show this for n + 1.

Let Gn be a (V,Pn)-generic filter and let jn : V → Mn
∼= Ult(V, Gn) be

the generic elementary embedding. Because jn is elementary and jn does not
move δ, jn(PI) has δ-c.c. in Mn. By the induction hypothesis, in V , Pn has the
δ-c.c. and so In is a κ-complete δ-saturated ideal. Thus κMn ∩ V [Gn] ⊆ Mn.
So jn(PI) has the δ-c.c. in V [Gn]. By Lemma 2.4, Pn+1/Gn and jn(PI) are
equivalent in V [Gn]. Thus Pn+1/Gn has the δ-c.c. in V [Gn].
(2). (2) can be shown in the same way as (1). But we need a slightly long
argument to treat the inverse limit of posets. So here we directly prove that P
in the proof of Theorem 3.5 is δ-strategically closed. Recall that P is the poset
of all I+-trees ordered by inclusion and P is forcing equivalent to the inverse
limit of 〈PIn , πn,m | m ≤ n ∈ ω〉. Let τ be a winning strategy for Player II in
the game Ωδ(PI). Using τ , we give a winning strategy τ̄ for Player II in Ωδ(P).

Let ξ be in δ − {0} and 〈Tη | η ∈ ξ − {0}〉 be a descending sequence in P.
Let S :=

⋂
η∈ξ−{0} Tη and let

T := {t ∈ S | ∀k ∈ |t|, t(k) ∈ τ(〈SucTη (t¹k) | η ∈ ξ − {0}〉)} .

Note that T is a tree. Moreover if t ∈ T and 〈SucTη (t) | η ∈ ξ − {0}〉 is an
initial play of Ωδ(PI) in which II has played according to τ then SucT (t) =
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τ(〈SucTη (t) | η ∈ ξ−{0}〉). If T ∈ P then let τ̄(〈Tη | η ∈ ξ−{0}〉) be the above
T . Otherwise let τ̄(〈Tη | η ∈ ξ − {0}〉) be an arbitrary element of P.

By induction on ξ, we can easily see:

Assume ξ is even or limit and 〈Tη | η ∈ ξ − {0}〉 is an initial play in
which II has played according to τ̄ . Let S, T be as in the definition
of τ̄ . Then:

i) For each t ∈ S, 〈SucTη (t) | η ∈ ξ − {0}〉 is a play in Ωδ(PI) in
which Player II plays according to τ .

ii) T ∈ P and T ≤ Tη for every η ∈ ξ − {0}.
In particular, ii) implies that τ̄ is a winning strategy for Player II in Ωδ(P).

Theorem 3.10. Let κ be a regular uncountable cardinal and let I be a normal
ideal on κ.

(1) (Prikry [9]) Assume that δ < κ and I is δ-saturated. Let Γ be (V, PR∗I)-
generic. Then for each α, β < κ and f ∈ αβ ∩ V [Γ], there is an F ∈
αP(β) ∩ V such that for every ξ ∈ α, |F (ξ)|V < δ and f(ξ) ∈ F (ξ). (We
say that F < δ-covers f .)

(2) (Shelah [10]) Assume that ω < δ ≤ κ and I is δ-strategically closed. Then
PR+

I does not add any bounded subset of δ.

Proof. (1). Assume not. Then there are α, β ∈ κ, 〈t, T 〉 ∈ PR∗I and a PR∗I -
name ḟ such that 〈t, T 〉 forces ḟ ∈ αβ and there is no F ∈ V which < δ-covers ḟ .
Let Pω be the direct limit of 〈PIn | n ∈ ω〉 with respect to the natural complete
embeddings and let Gω be (V,Pω)-generic. Let 〈Mn, jm,n | m ≤ n ≤ ω〉 be as
in Theorem 3.3. Let M = Mω, j := j0,ω and ~κ = 〈j0,n(κ) | n ∈ ω〉.

We work in V [Gω]. By Theorem 3.3 and Lemma 3.2, t̂~κ is a PR∗j(I)-
sequence over M . Let Γt be the (M,PR∗j(I))-generic filter generated by t ̂~κ

and let f be the interpretation of j(ḟ) by Γt. Note that j(〈t, T 〉) ∈ Γt because
j(t) = t and ~κ ¹n ∈ j(T ) for each n ∈ ω. So, because j is elementary and does
not move α, β and δ, f ∈ αβ and there is no F ∈ M which δ-covers f . On the
other hand, because Pω has the δ-c.c. and f ∈ V [Gω], there is an F ∈ αP(β)∩V
which < δ-covers f . Then F = j(F ) ∈ M . This is a contradiction.

(2). We show (2) by almost the same argument. Assume the contrary.
Then there is an α < δ, a PR+

I -name ẋ and 〈t, T 〉 ∈ PR+
I such that 〈t, T 〉

forces ẋ ⊆ α and ẋ /∈ V . Let Pω be the inverse limit of 〈PIn | n ∈ ω〉 with
respect to the natural projections and let Gω be a (V,Pω)-generic filter such
that 〈T(n) | n ∈ ω〉 ∈ Gω. Let 〈Mn, jm,n | m ≤ n ≤ ω〉 be as in Theorem 3.5.
Let M = Mω, j := j0,ω and ~κ = 〈j0,n(κ) | n ∈ ω〉.

Work in V [Gω]. Let Γt be a (M, PR+
j(I))-generic filter generated by t ̂~κ.

Let x be the interpretation of j(ẋ) by Γt. Then because 〈T(n) | n ∈ ω〉 ∈ Gω,
~κ ¹n ∈ j(T ) for each n ∈ ω and so j(〈t, T 〉) ∈ Γt. Then, by the elementarity of
j, x ⊆ α and x /∈ M . On the other hand, because Pω is δ-strategically closed,
x ∈ V . Because x ⊆ α < κ, x = j(x) ∈ M . This is a contradiction.
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Next we discuss semiproperness of PR∗ and PR+. We begin with a review
of semiproperness of posets.

A poset P is called semiproper if for every cardinal λ > 22|tcl(P)|
there is a

club C ⊆ [Hλ]ω such that for every N ∈ C and p ∈ P ∩ N , there is a p∗ ≤ p
which forces “N [Ġ] ∩ ωV

1 = N ∩ ωV
1 ”. Here Ġ is the canonical name of a P-

generic filter and, for each (V,P)-generic filter G, N [G] := {ẋG | ẋ is a P-name
∧ ẋ ∈ N}. We call the above p∗ a semimaster condition for N . Recall that
P is semiproper if and only if for “some” cardinal λ > 22|tcl(P)|

there is a club
C ⊆ [Hλ]ω such that for every N ∈ C and p ∈ P ∩ N , there is a semimaster
condition for N below p. (See Shelah [10].)

Now we give new conditions for PR∗I and PR+
I being semiproper, which are

related to the iteration of generic ultrapowers.

Theorem 3.11. Let κ be a regular uncountable cardinal and I be a normal
precipitous ideal on κ. Let σm,n : PIm → PIn be the natural complete embedding
and πn,m : PIn → PIm be the natural projection for m ≤ n ∈ ω.

(1) If the direct limit of 〈PIn , σm,n | m ≤ n ∈ ω〉 is semiproper then PR∗I is
semiproper.

(2) If the inverse limit of 〈PIn , πn,m | m ≤ n ∈ ω〉 is semiproper then PR+
I is

semiproper.

Proof. (2) can be shown in the same way as (1). So we show only (1). Let Pω

be the direct limit of 〈PIn , σm,n | m ≤ n ∈ ω〉.
In V Pω , let 〈Mn, jm,n | m ≤ n ≤ ω〉 be as in Theorem 3.3 and let M = Mω,

j = j0,ω. For each t ∈ <ωκ, let Γ̇t be a Pω-name for the (M,PR∗j(I))-generic
filter generated by t̂ 〈j0,n(κ) | n ∈ ω〉. Note that if ẋ ∈ V is a PR∗I -name then
j(ẋ) ∈ M is a PR∗j(I)-name. So there is a Pω-name ȧ ∈ V such that

V Pω ² “ ȧ = j(ẋ)Γ̇t
:= the interpretation of j(ẋ) by Γ̇t ”

In V , let λ be a cardinal such that

• κ, I,Pω, PR∗I ∈ Hλ,

• If ẋ ∈ Hλ is a PR∗I -name and t ∈ <ωκ then there is a Pω-name ȧ ∈ Hλ

such that V Pω ² “ ȧ = j(ẋ)Γ̇t
” .

Let F : Hλ → Hλ be a function witnessing the second condition above, i.e.
for each PR∗I -name ẋ ∈ Hλ and t ∈ <ωκ, F (ẋ, t) is a Pω-name such that
V Pω ² “ F (ẋ, t) = j(ẋ)Γ̇t

”. Let C ⊆ [Hλ]ω be a club witnessing the properness
of Pω.

We show that if N is a countable elementary submodel of 〈Hλ,∈, κ, I, F, C〉
and 〈t, T 〉 ∈ N ∩ PR∗I then there is a semimaster condition for N below 〈t, T 〉.
Let N and 〈t, T 〉 be as above. Because N ∈ C and C witnesses the semiproper-
ness of Pω there is a semimaster condition p ∈ Pω for N . Let Gω be a (V,Pω)-
generic filter containing p. In V [Gω], let j and M be as above. Note that ω1 is
absolute among V , M and V [Gω].
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We work in V [Gω]. Let Γt be the interpretation of Γ̇t by Gω. Because N is
countable in V , j(N) = j[N ]. Then, because t ∈ N and N is closed under F ,

j(N)[Γt] = {ẏ Γt
| ẏ ∈ j(N) ∧ ẏ is a PR∗j(I)-name}

= {j(ẋ)Γt | ẋ ∈ N ∧ ẋ is a PR∗I -name}
= {F (ẋ, t)Gω

| ẋ ∈ N ∧ ẋ is a PR∗I -name}
⊆ N [Gω] .

So, because j ¹ω1 = id and Gω contains p,

j(N)[Γt] ∩ ω1 ⊆ N [Gω] ∩ ω1 = N ∩ ω1 ⊆ j(N) ∩ ω1

and thus j(N)[Γt] ∩ ω1 = j(N) ∩ ω1. This implies that there is a semimaster
condition for j(N) in Γt. Note that j(〈t, T 〉) ∈ Γt. Therefore Mω ² “there is a
semimaster condition for j(N) below j(〈t, T 〉)”. So, by the elementarity of j,
V ²“there is a semimaster condition for N below 〈t, T 〉”.

From Theorem 3.11 and Lemma 3.9, we can obtain the following corollary
immediately. We believe that (1) of the following corollary is already known,
too.

Corollary 3.12. Let κ be a regular uncountable cardinal and I be a normal
ideal on κ.

(1) If I is ω1-saturated then PR∗I is semiproper.

(2) (Shelah [10]) If I is ω + 1-strategically closed then PR+
I is semiproper.
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