Katětov and Katětov-Blass orders on F_{σ} -ideals

Hiroaki Minami and Hiroshi Sakai

Abstract

We study the structures $(F_{\sigma} \text{ideals}, \leq_{K})$ and $(F_{\sigma} \text{ideals}, \leq_{KB})$, where $F_{\sigma} \text{ideals}$ is the family of all $F_{\sigma} \text{-ideals}$ over ω , and \leq_{K} and \leq_{KB} denote the Katětov and Katětov-Blass orders on ideals. We prove the following:

- $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$ are upward directed.
- The least cardinalities of cofinal subfamilies of $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$ are both equal to \mathfrak{d} . Moreover those of unbounded subfamilies are both equal to \mathfrak{b} .
- The family of all summable ideals is unbounded in $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$.

1 Introduction

In this paper an ideal means a proper ideal over ω including all finite subsets of ω . By identifying subsets of ω with their characteristic functions, an ideal can be naturally seen as a subset of the Cantor space 2^{ω} . An F_{σ} -ideal is an ideal which is F_{σ} as a subset of 2^{ω} . Let F_{σ} ideals denote the family of all F_{σ} -ideals. A typical example of an F_{σ} -ideal is a summable ideal: An ideal \mathcal{I} is called a summable ideal if there exists a function $p:\omega\to\mathbb{Q}_{\geq 0}$ with $\sum_{k\in\omega}p(k)=\infty$ such that

$$\mathcal{I} = \left\{ A \subset \omega : \sum_{k \in A} p(k) < \infty \right\} ,$$

where $\mathbb{Q}_{\geq 0}$ denotes the set of all non-negative rational numbers. ¹ The family of all summable ideals is denoted by summable ideals.

In [5], Laflamme tries to destroy mad families with least damages and develops two methods for diagonalizing F_{σ} -filters. As one of results, he proves that under CH there exists a mad family \mathcal{A} such that \mathcal{A} is not included in any F_{σ} -ideal. Such a mad family is called a *Laflamme family*. It is not yet known whether the existence of a Laflamme family is provable in ZFC.

To construct a Laflamme family under weaker assumptions than CH, it may look important to investigate the structure $(F_{\sigma} ideals, \subseteq)$, because it is enough

¹It is usual to define summable ideals with $p:\omega\to\mathbb{R}_{\geq 0}$. Given $p:\omega\to\mathbb{R}_{\geq 0}$, choose $p^*:\omega\to\mathbb{Q}_{\geq 0}$ such that $|p(n)-p^*(n)|\leq \frac{1}{2^n}$ for $n\in\omega$. Then $\left\{A\subset\omega:\sum_{n\in A}p(n)<\infty\right\}=\left\{A\subset\omega:\sum_{n\in A}p^*(n)<\infty\right\}$.

to take care of a cofinal subfamily of $(F_{\sigma} ideals, \subseteq)$ instead of all F_{σ} -ideals. (See Section 5 for more details.) But this does not seem to be so useful because any cofinal subfamily has the same cardinality as the whole $F_{\sigma} ideals$:

Proposition 1.1. The cardinality of any cofinal subfamily of $(F_{\sigma} \text{ideals}, \subseteq)$ is equal to \mathfrak{c} .

Proof. Let \mathcal{A} be an almost disjoint family with cardinality \mathfrak{c} . For each $A \in \mathcal{A}$ let \mathcal{I}_A be the ideal on ω generated by $\omega \setminus A$ (and all finite subsets of ω). It is easy to see that \mathcal{I}_A is an F_{σ} -ideal.

Note that for any distinct $A, B \in \mathcal{A}$ there is no (proper) ideal \mathcal{I} with $\mathcal{I} \supseteq \mathcal{I}_A, \mathcal{I}_B$. (If $\mathcal{I}_A, \mathcal{I}_B \subseteq \mathcal{I}$, then $\mathcal{I} \ni (\omega \setminus A) \cup (\omega \setminus B) = \omega \setminus (A \cap B)$, and so $\omega \in \mathcal{I}$.) Hence the cardinality of any cofinal subfamily of $(F_{\sigma} \mathsf{ideals}, \subseteq)$ is greater than or equal to $|\mathcal{A}| = \mathfrak{c}$.

The Katětov order \leq_K and the Katětov-Blass order \leq_{KB} on ideals are refinements of the relation \subseteq , which are defined as follows:

- $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ if there exists a function $\tau : \omega \to \omega$ such that $\tau^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.
- $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$ if there exists a finite to one function $\tau : \omega \to \omega$ such that $\tau^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.

Notice that for all ideals \mathcal{I} and \mathcal{J} , $\mathcal{I} \subset \mathcal{J}$ implies $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$, and $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$ implies $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$. So a mad family \mathcal{A} is a Laflamme family if there is no F_{σ} -ideal above \mathcal{A} with respect to \leq_{K} . To construct a Laflamme family under weaker assumptions than CH, it may be helpful to study the structures $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{K}})$ and $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{KB}})$.

In this paper we study basic properties of the structures $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{K}})$ and $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{KB}})$. First we prove the following:

Theorem 1. $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$ are upward directed.

Next we investigate the cofinal types of $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$. For this we use the notion of generalized Galois-Tukey connections introduced by Vojtáš [10]. First we recall them. In this paper we follow the formulation and terminology of Blass [2]:

Let $\mathbf{A} = (A_-, A_+, A)$ and $\mathbf{B} = (B_-, B_+, B)$ be triples such that A is a binary relation between A_- and A_+ and B is a binary relation between B_- and B_+ . A morphism from \mathbf{A} to \mathbf{B} is a pair $\rho = (\rho_-, \rho_+)$ of functions such that

- $\rho_-: B_- \to A_-,$
- $\rho_+: A_+ \to B_+,$
- for all $b \in B_-$ and $a \in A_+$, $\rho_-(b)Aa$ implies $bB\rho_+(a)$.

 $Y \subseteq A_+$ is said to be A-cofinal if for any $x \in A_-$ there is $y \in Y$ with xAy, and $X \subseteq A_-$ is said to be A-unbounded if for any $y \in A_+$ there is $x \in X$ with $\neg xAy$. Note that if $\rho = (\rho_-, \rho_+)$ is a morphism from \mathbf{A} to \mathbf{B} , then $\rho_-[X]$ is A-unbounded for any B-unbounded $X \subseteq B_-$, and $\rho_+[Y]$ is B-cofinal for any A-cofinal $Y \subseteq A_+$.

Let $\mathbf{B} \preceq \mathbf{A}$ denote that there is a morphism from \mathbf{A} to \mathbf{B} . Notice that \preceq is transitive. We write $\mathbf{A} \equiv \mathbf{B}$ if $\mathbf{A} \preceq \mathbf{B}$, and $\mathbf{B} \preceq \mathbf{A}$.

If $A_- = A_+$, then $\mathbf{A} = (A_-, A_+, A)$ is simply denoted as (A_-, A) . So $(\omega^{\omega}, \leq^*)$, $(F_{\sigma} \text{ideals}, \leq_K)$ and $(F_{\sigma} \text{ideals}, \leq_{KB})$ respectively denote $(\omega^{\omega}, \omega^{\omega}, \leq^*)$, $(F_{\sigma} \text{ideals}, F_{\sigma} \text{ideals}, \leq_K)$ and $(F_{\sigma} \text{ideals}, F_{\sigma} \text{ideals}, \leq_{KB})$. Define the dual \mathbf{A}^{\perp} of $\mathbf{A} = (A_-, A_+, A)$ by $\mathbf{A}^{\perp} = (A_+, A_-, A^{\perp})$, where

$$A^{\perp} = \{(y, x) \in A_+ \times A_- : \neg x A y\} .$$

If $\rho = (\rho_-, \rho_+)$ witnesses $\mathbf{A} \leq \mathbf{B}$, then $\rho^{\perp} = (\rho_+, \rho_-)$ witnesses $\mathbf{B}^{\perp} \leq \mathbf{A}^{\perp}$.

The norm $\|\mathbf{A}\|$ is the least cardinality of an A-cofinal subset of A_+ . Notice that $\|\mathbf{A}^{\perp}\|$ is the least cardinality of an A-unbounded subset of A_- . Notice also that if $\mathbf{B} \leq \mathbf{A}$, then $\|\mathbf{B}\| \leq \|\mathbf{A}\|$, and $\|\mathbf{B}^{\perp}\| \geq \|\mathbf{A}^{\perp}\|$.

Now we present our results. We prove the following:

Theorem 2.

```
\begin{split} &(F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{K}}) \equiv (F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{KB}}) \\ &\equiv (\mathsf{summable} \; \mathsf{ideals}, F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{K}}) \equiv (\mathsf{summable} \; \mathsf{ideals}, F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{KB}}) \\ &\equiv (\omega^{\omega}, \leq^{*}). \end{split}
```

From Theorem 2 we obtain that

$$\begin{split} &\|(F_{\sigma}\mathsf{ideals},\leq_{\mathsf{K}})\| = \|(F_{\sigma}\mathsf{ideals},\leq_{\mathsf{KB}})\| = \|(\omega^{\omega},\leq^{*})\|\;,\\ &\|(F_{\sigma}\mathsf{ideals},\leq_{\mathsf{K}})^{\perp}\| = \|(F_{\sigma}\mathsf{ideals},\leq_{\mathsf{KB}})^{\perp}\| = \|(\omega^{\omega},\leq^{*})^{\perp}\|\;, \end{split}$$

which mean the following:

Corollary 3.

- (1) The least cardinalities of cofinal subfamilies of $(F_{\sigma} \text{ideals}, \leq_{K})$ and $(F_{\sigma} \text{ideals}, \leq_{K})$ are both equal to \mathfrak{d} .
- (2) The least cardinalities of unbounded subfamilies of $(F_{\sigma} \text{ideals}, \leq_K)$ and $(F_{\sigma} \text{ideals}, \leq_{KB})$ are both equal to \mathfrak{b} .

Moreover from the facts that

$$(F_{\sigma} \text{ideals}, \leq_{\mathrm{K}}) \preceq (\text{summable ideals}, F_{\sigma} \text{ideals}, \leq_{\mathrm{K}}), (F_{\sigma} \text{ideals}, \leq_{\mathrm{KB}}) \preceq (\text{summable ideals}, F_{\sigma} \text{ideals}, \leq_{\mathrm{KB}}),$$

we obtain the following:

Corollary 4. The family of all summable ideals is unbounded in $(F_{\sigma} ideals, \leq_K)$ and $(F_{\sigma} ideals, \leq_K)$.

This paper is organized as follows: We prove Theorem 1 in Section 3, and Theorem 2 is proved in Section 4. In the proof of these theorems we will use Mazur's characterization of F_{σ} -ideals using submeasures. In Section 2 we review this characterization and present basic facts on submeasures. In Section 5 we will present several questions which are relevant to our results.

2 Submeasures and F_{σ} -ideals

We will use Mazur's characterization of F_{σ} -ideals using submeasures. Here we review this characterization and present basic facts on submeasures.

A submeasure on a set X is a function $\varphi : [X]^{<\omega} \to \mathbb{Q}_{\geq 0}$ with the following properties:

- (i) $\varphi(A) \leq \varphi(B)$ if $A \subseteq B$. (Monotonicity)
- (ii) $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$. (Subadditivity)
- (iii) $\varphi(\emptyset) = 0$.

If φ is a submeasure on X, then X is denoted by $\delta(\varphi)$. Note that there is a unique submeasure on \emptyset , which assigns \emptyset to 0. Let φ_{trivial} be this submeasure.

If p is a function from X to $\mathbb{Q}_{\geq 0}$, then the function $\varphi:[X]^{<\omega}\to\mathbb{Q}_{\geq 0}$ defined by $\varphi(A)=\sum_{k\in A}p(k)$ is a submeasure. In fact, this φ is a measure, that is, φ satisfies (i), (iii) and (iv) below:

(iv)
$$\varphi(A \cup B) = \varphi(A) + \varphi(B)$$
 if A and B are disjoint. (Additivity)

We call this φ the measure induced by p.

Let φ be a submeasure on ω . For $A \subseteq \omega$ let

$$\hat{\varphi}(A) = \lim_{n \to \omega} \varphi(A \cap n) \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$$

We say that φ is unbounded if $\hat{\varphi}(\omega) = \infty$. If φ is unbounded, then

$$\mathsf{Fin}(\varphi) = \{ A \subseteq \omega : \hat{\varphi}(A) < \infty \} \ .$$

is an ideal. ² Mazur's characterization of F_{σ} -ideals is as follows:

Theorem 2.1 (Mazur [6]). The following are equivalent for \mathcal{I} :

- (i) \mathcal{I} is an F_{σ} -ideal.
- (ii) $\mathcal{I} = \mathsf{Fin}(\varphi)$ for some unbounded submeasure φ on ω .

²Recall that in this paper an "ideal" means a proper ideal over ω . Unboundedness of φ assures properness of $\mathsf{Fin}(\varphi)$.

In this paper we will use the above theorem without any notice. Next we present several notions and lemmata on submeasures, which will be used in this paper.

For submeasures φ_0 and φ_1 on a set X let

$$\varphi_0 \le \varphi_1 \overset{\text{def}}{\Leftrightarrow} \varphi_0(A) \le \varphi_1(A) \text{ for all } A \in [X]^{<\omega}.$$

Moreover for submeasures φ_0 on X_0 and φ_1 on X_1 let $\varphi_0 \curlywedge \varphi_1$ be the function on $[X_0 \cup X_1]^{<\omega}$ defined as

$$\varphi_0 \curlywedge \varphi_1(A) = \min \{ \varphi_0(A_0) + \varphi_1(A_1) : A_0 \cup A_1 = A, A_0 \subseteq X_0, A_1 \subseteq X_1 \}$$

for each $A \in [X_0 \cup X_1]^{<\omega}$.

Lemma 2.2. Let φ_0 and φ_1 be submeasures on sets X_0 and X_1 , respectively, and let $\varphi = \varphi_0 \perp \varphi_1$.

- (1) φ is a submeasure on $X_0 \cup X_1$.
- (2) $\varphi \upharpoonright [X_0]^{<\omega} \le \varphi_0$, and $\varphi \upharpoonright [X_1] \le \varphi_1$. Hence if $X_0 = X_1$, then $\varphi \le \varphi_0, \varphi_1$.
- (3) If $X \subseteq X_0 \cap X_1$, and $\varphi_0 \upharpoonright [X]^{<\omega} \le \varphi_1 \upharpoonright [X]^{<\omega}$, then $\varphi \upharpoonright [X]^{<\omega} = \varphi_0 \upharpoonright [X]^{<\omega}$.

$$(4) \ \varphi \upharpoonright [X_0 \setminus X_1]^{<\omega} = \varphi_0 \upharpoonright [X_0 \setminus X_1]^{<\omega}, \ and \ \varphi \upharpoonright [X_1 \setminus X_0]^{<\omega} = \varphi_1 \upharpoonright [X_1 \setminus X_0]^{<\omega}.$$

Proof. (1) Clearly $\varphi(\emptyset) = 0$. We check the monotonicity and the subadditivity. First we check the monotonicity. Suppose that $A \subseteq B \in [X_0 \cup X_1]^{<\omega}$. Take $B_0 \subseteq X_0$ and $B_1 \subseteq X_1$ such that $B_0 \cup B_1 = B$ and $\varphi(B) = \varphi_0(B_0) + \varphi_1(B_1)$. Let $A_i = A \cap B_i$ for each i = 0, 1. Note that $A = A_0 \cup A_1$. Then

$$\varphi(A) \leq \varphi_0(A_0) + \varphi_1(A_1) \leq \varphi_0(B_0) + \varphi_1(B_1) = \varphi(B)$$

where the second inequality follows from the monotonicity of φ_0 and φ_1 .

Next we check the subadditivity. Suppose that $A, B \in [X_0 \cup X_1]^{<\omega}$. Take $A_0, B_0 \subseteq X_0$ and $A_1, B_1 \subseteq X_1$ such that $A_0 \cup A_1 = A$, $\varphi(A) = \varphi_0(A_0) + \varphi_1(A_1)$, $B_0 \cup B_1 = B$ and $\varphi(B) = \varphi_0(B_0) + \varphi_1(B_1)$. Note that $(A_0 \cup B_0) \cup (A_1 \cup B_1) = A \cup B$. Then

$$\varphi(A \cup B) \leq \varphi_0(A_0 \cup B_0) + \varphi_1(A_1 \cup B_1)
\leq \varphi_0(A_0) + \varphi_0(B_0) + \varphi_1(A_1) + \varphi_1(B_1) = \varphi(A) + \varphi(B),$$

where the second inequality follows from the subadditivity of φ_0 and φ_1 .

- (2) By symmetry it suffices to prove the former. For any $A \in [X_0]^{<\omega}$ we have that $\varphi(A) \leq \varphi_0(A) + \varphi_1(\emptyset) = \varphi_0(A)$.
- (3) Suppose that $A \in [X]^{<\omega}$. Then $\varphi(A) \leq \varphi_0(A)$ by (2). Moreover for each $A_0, A_1 \subseteq A$ with $A_0 \cup A_1 = A$ it holds that

$$\varphi_0(A_0) + \varphi_1(A_1) \ge \varphi_0(A_0) + \varphi_0(A_1) \ge \varphi_0(A)$$
.

So $\varphi(A) \geq \varphi_0(A)$. Therefore $\varphi(A) = \varphi_0(A)$.

(4) It suffices to prove the former by symmetry. Suppose that $A \in [X_0 \setminus X_1]^{<\omega}$. Note that $A_0 = A$ and $A_1 = \emptyset$ if $A_0 \cup A_1 = A$, $A_0 \subseteq X_0$ and $A_1 \subseteq X_1$. Then $\varphi(A) = \varphi_0(A) + \varphi_1(\emptyset) = \varphi_0(A)$.

Let φ be a submeasure on a set X. For $q \in \mathbb{Q}_{\geq 0}$ let $\varphi + q$ be the function on $[X]^{<\omega}$ such that

$$\varphi + q\left(A\right) \; = \; \left\{ \begin{array}{ll} \varphi(A) + q & \qquad & \text{if } A \neq \emptyset, \\ 0 & \qquad & \text{if } A = \emptyset. \end{array} \right.$$

It is easy to check that $\varphi + q$ is a submeasure on X. For a set Y and a function $\tau: Y \to X$ let $\varphi \circ \tau$ denote the pullback of φ by τ , that is, $\varphi \circ \tau$ is a function on $[Y]^{<\omega}$ such that

$$\varphi \circ \tau(A) = \varphi(\tau[A])$$
.

Again it is easy to see that $\varphi \circ \tau$ is a submeasure on Y. The following lemma is clear from the definition of the Katětov and the Katětov-Blass orders:

Lemma 2.3. Suppose that φ and ψ are unbounded submeasures on ω .

- (1) If there exist a function $\tau : \omega \to \omega$ and $q \in \mathbb{Q}_{\geq 0}$ such that $\psi \leq (\varphi + q) \circ \tau$, then $\operatorname{Fin}(\varphi) \leq_{\mathrm{K}} \operatorname{Fin}(\psi)$.
- (2) If there exist a finite to one function $\tau : \omega \to \omega$ and $q \in \mathbb{Q}_{\geq 0}$ such that $\psi \leq (\varphi + q) \circ \tau$, then $\mathsf{Fin}(\varphi) \leq_{\mathsf{KB}} \mathsf{Fin}(\psi)$.

3 Directedness

In this section first we prove Theorem 1. After that we also observe that the family of all analytic P-ideals is upward directed with respect to \leq_K and \leq_{KB} .

Theorem 1. $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{KB})$ are upward directed.

Proof. It suffices to prove that $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{KB}})$ is upward directed because \leq_{KB} is coarser than \leq_{K} . Suppose that \mathcal{I}_0 and \mathcal{I}_1 are F_{σ} -ideals. We must find an F_{σ} -ideal \mathcal{J} such that $\mathcal{J} \geq_{\mathrm{KB}} \mathcal{I}_0, \mathcal{I}_1$.

For each i=0,1 let φ_i be an unbounded submeasure on ω such that $\mathcal{I}_i = \mathsf{Fin}(\varphi_i)$. By induction on $n \in \omega$ take $s_n \in \omega$ so that $s_0 = 0$ and so that $\varphi_i(s_{n+1} \setminus s_n) > n$ for both i=0,1. Let

$$A_n = (s_{n+1} \setminus s_n) \times (s_{n+1} \setminus s_n) = \{(k,l) : s_n \le k, l < s_{n+1}\}$$

for each $n \in \omega$, and let $X = \bigcup_{n \in \omega} A_n$. We will construct a submeasure ψ on X and finite to one functions $\tau_i : X \to \omega$ for i = 0, 1 such that $\psi(A_n) > n$ for each $n \in \omega$ and such that $\psi \leq \varphi_i \circ \tau_i$ for both i = 0, 1. If such ψ and τ_i 's are constructed, then ψ can be identified with an unbounded submeasure on ω

through a bijection between X and ω , and $\mathcal{J} := \mathsf{Fin}(\psi) \geq_{\mathrm{KB}} \mathcal{I}_0, \mathcal{I}_1$ by Lemma 2.3.

For each i = 0, 1 let $\tau_i : X \to \omega$ be the *i*-th projection, that is, $\tau_0(k, l) = k$ and $\tau_1(k, l) = l$ for $(k, l) \in X$. Note that both τ_0 and τ_1 are finite to one. Let

$$\psi = (\varphi_0 \circ \tau_0) \curlywedge (\varphi_1 \circ \tau_1) .$$

By Lemma 2.2, ψ is a submeasure on X, and $\psi \leq \varphi_i \circ \tau_i$ for i=0,1. It remains to show that $\psi(A_n) > n$ for each $n \in \omega$. Fix $n \in \omega$, and suppose that $B_0 \cup B_1 = A_n$. It suffices to show that $\varphi_0 \circ \tau_0(B_0) + \varphi_1 \circ \tau_1(B_1) > n$. First note that either $\tau_0[B_0] = s_{n+1} \setminus s_n$, or $\tau_1[B_1] = s_{n+1} \setminus s_n$. This is because if $k_i \in (s_{n+1} \setminus s_n) \setminus \tau_i[B_i]$ for i=0,1, then $(k_0,k_1) \in A_n \setminus (B_0 \cup B_1)$, which contradicts that $A_n = B_0 \cup B_1$. Recall also that $\varphi_i(s_{n+1} \setminus s_n) > n$ for both i=0,1. So either $\varphi_0 \circ \tau_0(B_0) > n$, or $\varphi_1 \circ \tau_1(B_1) > n$. Hence $\varphi_0 \circ \tau_0(B_0) + \varphi_1 \circ \tau_1(B_1) > n$.

Next we observe that the family of all analytic P-ideals, denoted as Analytic Pideals, is also upward directed with respect to \leq_K and \leq_{KB} .

First we briefly review analytic P-ideals: An ideal \mathcal{I} is called a P-ideal if for every countable subset \mathcal{C} of \mathcal{I} , there exists $A \in \mathcal{I}$ such that $C \subseteq^* A$ for every $C \in \mathcal{C}$. It is known, due to Solecki [9], that Analytic P-ideals have a similar characterization to F_{σ} -ideals. To present this characterization, we prepare notation. A submeasure φ on ω is said to be bounded if $\hat{\varphi}(\omega) < \infty$. For a submeasure φ on ω let

$$\mathsf{Exh}(\varphi) = \left\{ X \subseteq \omega : \lim_{n \to \omega} \hat{\varphi}(X \setminus n) = 0 \right\} \ .$$

Note that $\mathsf{Exh}(\varphi)$ is an ideal if $\lim_{n\to\omega} \hat{\varphi}(\omega \setminus n) > 0$. $\mathsf{Exh}(\varphi)$ is called the exhaustive ideal of φ . The characterization of analytic P-ideals is as follows:

Theorem 3.1 (Solecki [9]). The following are equivalent for \mathcal{I} :

- (i) \mathcal{I} is an analytic P-ideal.
- (ii) $\mathcal{I} = \mathsf{Exh}(\varphi)$ for some bounded submeasure φ on ω with $\lim_{n \to \omega} \hat{\varphi}(\omega \setminus n) > 0$.

We prove the following:

Proposition 3.2. (Analytic Pideals, \leq_K) and (Analytic Pideals, \leq_{KB}) are upward directed.

Proof. The proof is almost the same as that of Theorem 1. Suppose that \mathcal{I}_0 and \mathcal{I}_1 are analytic P-ideals. It suffices to find an analytic P-ideal \mathcal{J} with $\mathcal{I}_0, \mathcal{I}_1 \leq_{\mathrm{KB}} \mathcal{J}$.

For each i=0,1, let φ_i be a bounded submeasure on ω such that $\mathcal{I}_i=\operatorname{Exh}(\varphi_i)$. Let $c_i=\lim_{n\to\omega}\hat{\varphi}(\omega\setminus n)>0$. By induction on $n\in\omega$, take $s_n\in\omega$ so that $s_0=0$ and $\varphi_i(s_{n+1}\setminus s_n)\geq c_i-\frac{1}{2^n}$ for both i=0,1. Let $A_n=(s_{n+1}\setminus s_n)\times (s_{n+1}\setminus s_n)$ for each $n\in\omega$, and let $X=\bigcup_{n\in\omega}A_n$. It suffices to find a submeasure ψ on X and finite to one functions $\tau_i:X\to\omega$ for i=0,1 such

that $\liminf_{n\to\omega}\psi(A_n)>0$ and $\psi\leq\varphi_i\circ\tau_i$: Then ψ can be identified with a bounded submeasure on ω such that $\lim_{n\to\omega}\hat{\psi}(\omega\backslash n)>0$. Here the boundedness follows from that of φ_0 , and the fact that $\psi\leq\varphi\circ\tau_0$. Then $\mathcal{J}=\mathsf{Exh}(\psi)$ is an analytic P-ideal, and $\mathcal{J}\geq_{\mathrm{KB}}\mathcal{I}_0,\mathcal{I}_1$.

For each i = 0, 1 let $\tau_i : X \to \omega$ be the *i*-th projection, and let

$$\psi = (\varphi_0 \circ \tau_0) \curlywedge (\varphi_1 \circ \tau_1) .$$

Then τ_i is finite to one, ψ is a submeasure on X, and $\psi \leq \varphi_i \circ \tau_i$. Moreover for each $n \in \omega$, by the same argument as in the proof of Theorem 1,

$$\psi(A_n) \ge \min\{\varphi_0(s_{n+1} \setminus s_n), \varphi_1(s_{n+1} \setminus s_n)\} = \min\{c_0, c_1\} - \frac{1}{2^n}.$$

Thus
$$\liminf_{n\to\infty} \psi(A_n) \ge \min\{c_0, c_1\} > 0$$
.

4 Cofinal types

In this section we prove Theorem 2:

Theorem 2.

$$\begin{split} &(F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{K}}) \equiv (F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{KB}}) \\ &\equiv (\mathsf{summable} \; \mathsf{ideals}, F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{K}}) \equiv (\mathsf{summable} \; \mathsf{ideals}, F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{KB}}) \\ &\equiv (\omega^{\omega}, \leq^{*}). \end{split}$$

Note that the pair of the identity maps on F_{σ} ideals is a morphism from $(F_{\sigma}$ ideals, $\leq_{KB})$ to $(F_{\sigma}$ ideals, $\leq_{K})$ because \leq_{K} refines \leq_{KB} . Similarly, the pair of the identity maps is a morphism from (summable ideals, F_{σ} ideals, \leq_{KB}) to (summable ideals, F_{σ} ideals, \leq_{K}). Note also that the pair of the identity maps is a morphism from $(F_{\sigma}$ ideals, $\leq_{K})$ to (summable ideals, F_{σ} ideals, $\leq_{K})$ and from $(F_{\sigma}$ ideals, $\leq_{KB})$ to (summable ideals, \leq_{KB}). So we have the following:

Hence it suffices to prove the following:

- $(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{KB}}) \preceq (\omega^{\omega}, \leq^*).$
- $(\omega^{\omega}, \leq^*) \leq (\text{summable ideals}, F_{\sigma} \text{ideals}, \leq_K).$

These are proved in Proposition 4.1 and 4.6. First we prove the former:

Proposition 4.1. $(F_{\sigma} \text{ideals}, \leq_{KB}) \leq (\omega^{\omega}, \leq^*).$

We will define an upward directed (H, \leq°) and prove that

$$(F_{\sigma} \mathsf{ideals}, \leq_{\mathrm{KB}}) \preceq (H, \leq^{\circ}) \preceq (\omega^{\omega}, \leq^{*})$$
.

First we define (H, \leq°) . Let Φ be the set of all submeasures φ with $\delta(\varphi) \in \omega$. Note that Φ is countable. For $\varphi \in \Phi$ and $n \in \omega$ let $\Phi(\varphi, n)$ be the set of all $\bar{\varphi} \in \Phi$ such that

- (i) $\bar{\varphi}$ extends φ , i.e. $\bar{\varphi} \upharpoonright \mathcal{P}(\delta(\varphi)) = \varphi$,
- (ii) $\bar{\varphi}(\delta(\bar{\varphi}) \setminus \delta(\varphi)) > n$.

Then let

$$H = \{ h \in \Phi^{\Phi \times \omega} : \forall (\varphi, n) \in \Phi \times \omega, \ h(\varphi, n) \in \Phi(\varphi, n) \} .$$

To define the order \leq° , first define an order $\trianglelefteq_{\varphi}$ on $\Phi(\varphi, n)$ as follows: $\bar{\varphi} \trianglelefteq_{\varphi} \bar{\varphi}'$ if there exists a function $\bar{\tau} : \delta(\bar{\varphi}') \to \delta(\bar{\varphi})$ such that

- (i) $\bar{\tau} \upharpoonright \delta(\varphi) = \mathrm{id}$, and $\bar{\tau}[\delta(\bar{\varphi}') \setminus \delta(\varphi)] \subseteq \delta(\bar{\varphi}) \setminus \delta(\varphi)$,
- (ii) $\bar{\varphi}' \leq \bar{\varphi} \circ \bar{\tau}$.

It is easy to see that $\trianglelefteq_{\varphi}$ is transitive. Then for each $h, h' \in H$ let $h \leq^{\circ} h'$ if $h(\varphi, n) \trianglelefteq_{\varphi} h'(\varphi, n)$ for all but finitely many $(\varphi, n) \in \Phi \times \omega$. Note that \leq° is also transitive.

First we show that (H, \leq°) is upward directed. This immediately follows from the lemma below:

Lemma 4.2. $(\Phi(\varphi, n), \leq_{\varphi})$ is upward directed for all $\varphi \in \Phi$ and $n \in \omega$.

Proof. The proof is similar as that of Theorem 1. Suppose that $\bar{\varphi}_0, \bar{\varphi}_1 \in \Phi(\varphi, n)$. We must find their upper bound in $(\Phi(\varphi, n), \leq_{\varphi})$. Let $s = \delta(\varphi)$ and $\bar{s}_i = \delta(\bar{\varphi}_i)$ for i = 0, 1. Moreover let $A = (\bar{s}_0 \setminus s) \times (\bar{s}_1 \setminus s)$. It suffices to find a submeasure $\bar{\varphi}$ on $s \cup A$ and functions $\bar{\tau}_i : s \cup A \to \bar{s}_i$ for i = 0, 1 such that

- (i) $\bar{\varphi}$ extends φ , and $\bar{\varphi}(A) > n$,
- (ii) $\bar{\tau}_i \upharpoonright s = \mathrm{id}$, and $\bar{\tau}_i[A] \subseteq \bar{s}_i \setminus s$,
- (iii) $\bar{\varphi} \leq \bar{\varphi}_i \circ \bar{\tau}_i$.

Let $\bar{\tau}_i \upharpoonright s = \text{id}$, and let $\bar{\tau}_i \upharpoonright A$ be the *i*-th projection. Clearly $\bar{\tau}_i$ satisfies (ii) above. Let

$$\bar{\varphi} = (\bar{\varphi}_0 \circ \bar{\tau}_0) \curlywedge (\bar{\varphi}_1 \circ \bar{\tau}_1)$$
.

Then $\bar{\varphi}$ is a submeasure on $s \cup A$ satisfying (iii) by Lemma 2.2 (1) and (2). Here note that $(\bar{\varphi}_i \circ \bar{\tau}_i) \upharpoonright \mathcal{P}(s) = \varphi$ for i = 0, 1. So $\bar{\varphi}$ extends φ by Lemma 2.2 (3). It remains to show that $\bar{\varphi}(A) > n$, but this can be proved by the same argument as in the proof of Theorem 1.

Using Lemma 4.2, we can easily prove the following:

Lemma 4.3. $(H, \leq^{\circ}) \preceq (\omega^{\omega}, \leq^*)$.

Proof. We will construct a morphism $\rho = (\rho_-, \rho_+)$ from (ω^ω, \leq^*) to (H, \leq°) . First take a one to one enumeration $((\varphi_i, n_i) : i \in \omega)$ of $\Phi \times \omega$. Moreover for each $i \in \omega$ take an enumeration $(\bar{\varphi}^i_j : j \in \omega)$ of $\Phi(\varphi_i, n_i)$. For each $h \in H$ let $\rho_-(h) \in \omega^\omega$ be such that $h(\varphi_i, n_i) = \bar{\varphi}^i_{\rho_-(h)(i)}$. For each $f \in \omega^\omega$ let $\rho_+(f) \in H$ be such that $\rho_+(f)(\varphi_i, n_i) \trianglerighteq_{\varphi_i} \bar{\varphi}^i_j$ for all $j \leq f(i)$. Note that there exists such $\rho_+(f)$ by Lemma 4.2.

To show that ρ is a morphism from $(\omega^{\omega}, \leq^*)$ to (H, \leq°) , suppose that $h \in H$, $f \in \omega^{\omega}$ and $\rho_{-}(h) \leq^* f$. Note that for each $i \in \omega$ if $\rho_{-}(h)(i) \leq f(i)$, then $h(\varphi_i, n_i) \leq_{\varphi_i} \rho_{+}(f)(\varphi_i, n_i)$. So $h \leq^{\circ} \rho_{+}(f)$ because $\rho_{-}(h) \leq^* f$.

Next we will prove the following:

Lemma 4.4. $(F_{\sigma} ideals, \leq_{KB}) \leq (H, \leq^{\circ}).$

For this we need the following lemma:

Lemma 4.5. Suppose that $\varphi, \psi \in \Phi$. Let $n \in \omega$ and $\bar{\varphi} \in \Phi(\varphi, n)$. Then there is $\bar{\psi}^* \in \Phi(\psi, n)$ such that the following holds for all $\bar{\psi} \in \Phi(\psi, n)$ with $\bar{\psi}^* \leq_{\psi} \bar{\psi}$: For any function $\tau : \delta(\psi) \to \delta(\varphi)$ and any $q \in \mathbb{Q}_{\geq 0}$ with $\psi \leq (\varphi + q) \circ \tau$ there exists a function $\bar{\tau} : \delta(\bar{\psi}) \to \delta(\bar{\varphi})$ such that

- (i) $\bar{\tau}$ extends τ , and $\bar{\tau}[\delta(\bar{\psi}) \setminus \delta(\psi)] \subseteq \delta(\bar{\varphi}) \setminus \delta(\varphi)$,
- (ii) $\bar{\psi} < (\bar{\varphi} + q) \circ \bar{\tau}$.

Proof. Let s, \bar{s} and t be $\delta(\varphi), \delta(\bar{\varphi})$ and $\delta(\psi)$, respectively. Moreover let $\bar{t} = t + (\bar{s} - s)$. For each $\tau : t \to s$, let $\bar{\sigma}_{\tau}, q_{\tau}$ and $\bar{\psi}_{\tau}$ be as follows:

- $\bar{\sigma}_{\tau}: \bar{t} \to \bar{s}$ is the extension of τ such that $\bar{\sigma}_{\tau}(t+k) = s+k$.
- q_{τ} is the least non-negative rational number such that $\psi \leq (\varphi + q_{\tau}) \circ \tau$. (We can take such q_{τ} because ψ , φ and τ are all finite.)
- $\bar{\psi}_{\tau} = \psi \curlywedge ((\bar{\varphi} + q_{\tau}) \circ \bar{\sigma}_{\tau}).$

Then $\bar{\psi}_{\tau}$ is a submeasure on \bar{t} by Lemma 2.2 (1). Note that $(\bar{\varphi} + q_{\tau}) \circ \bar{\sigma}_{\tau}$ extends $(\varphi + q_{\tau}) \circ \tau$. So $\bar{\psi}_{\tau}$ extends ψ by Lemma 2.2 (3) and the fact that $\psi \leq (\varphi + q_{\tau}) \circ \tau$. Moreover, by Lemma 2.2 (4),

$$\bar{\psi}_{\tau}(\bar{t} \setminus t) = ((\bar{\varphi} + q_{\tau}) \circ \bar{\sigma}_{\tau})(\bar{t} \setminus t) = \bar{\varphi}(\bar{s} \setminus s) + q_{\tau} > n.$$

Thus $\bar{\psi}_{\tau} \in \Phi(\psi, n)$ for each $\tau : t \to s$.

By Lemma 4.2 there is $\bar{\psi}^* \in \Phi(\psi, n)$ such that $\bar{\psi}^* \trianglerighteq_{\psi} \bar{\psi}_{\tau}$ for all $\tau : t \to s$. We claim that this $\bar{\psi}^*$ is as desired. Suppose that $\bar{\psi} \trianglerighteq_{\psi} \bar{\psi}^*$, and take an arbitrary function $\tau : \delta(\psi) \to \delta(\varphi)$ and an arbitrary $q \in \mathbb{Q}_{\geq 0}$ with $\psi \leq (\varphi + q) \circ \tau$. Then $\bar{\psi} \trianglerighteq_{\psi} \bar{\psi}_{\tau}$. Let $\bar{\sigma}' : \delta(\bar{\psi}) \to \delta(\bar{\psi}_{\tau})$ be a witness of this relationship, and let $\bar{\tau}$ be

the composition $\bar{\sigma}_{\tau} \circ \bar{\sigma}'$. Then it is easy to check that $\bar{\tau}$ satisfies (i). Here note that $\bar{\psi}_{\tau} \leq (\bar{\varphi} + q_{\tau}) \circ \bar{\sigma}_{\tau}$ by Lemma 2.2 (2). So

$$\bar{\psi} \leq \bar{\psi}_{\tau} \circ \bar{\sigma}' \leq ((\bar{\varphi} + q_{\tau}) \circ \bar{\sigma}_{\tau}) \circ \bar{\sigma}' = (\bar{\varphi} + q_{\tau}) \circ \bar{\tau}.$$

But $q_{\tau} \leq q$ by the choice of q_{τ} . Therefore $\bar{\tau}$ satisfies (ii).

Now we can prove Lemma 4.4:

Proof of Lemma 4.4. Define $\rho_+: H \to F_{\sigma}$ ideals as follows: Fix $h \in H$. First, by induction on $n \in \omega$, take ψ_n as $\psi_0 = h(\varphi_{\text{trivial}}, 0)$ and $\psi_{n+1} = h(\psi_n, n)$. Then $\psi = \bigcup_{n \in \omega} \psi_n$ is an unbounded submeasure on ω . Let $\rho_+(h) = \text{Fin}(\psi)$.

Next we shall define $\rho_-: F_\sigma \text{ideals} \to H$. Fix an $F_\sigma \text{-ideal } \mathcal{I}$. Let $\rho_-(\mathcal{I}) \in H$ be as follows: Take a submeasure φ on ω with $\mathcal{I} = \text{Fin}(\varphi)$. Then, by induction on $n \in \omega$, take an increasing sequence $(s_n: n \in \omega)$ in ω so that $s_0 = 0$ and $\varphi(s_{n+1} \backslash s_n) > n$. Let $\varphi_n = \varphi \upharpoonright \mathcal{P}(s_n)$ for each $n \in \omega$. Note that $\varphi_{n+1} \in \Phi(\varphi_n, n)$. Now, for each $(\psi, n) \in \Phi \times \omega$ let $\rho_-(\mathcal{I})(\psi, n) \in \Phi(\psi, n)$ be the one obtained by applying Lemma 4.5 for φ_n , ψ , n and φ_{n+1} . That is, for any $\bar{\psi} \in \Phi(\psi, n)$ with $\rho_-(\mathcal{I})(\psi, n) \leq_{\psi} \bar{\psi}$, any function $\tau : \delta(\psi) \to \delta(\varphi_n)$ and any $q \in \mathbb{Q}_{\geq 0}$ with $\psi \leq (\varphi_n + q) \circ \tau$, there exists a function $\bar{\tau} : \delta(\bar{\psi}) \to \delta(\varphi_{n+1})$ such that

- (i) $\bar{\tau}$ extends τ , and $\bar{\tau}[\delta(\bar{\psi}) \setminus \delta(\psi)] \subseteq \delta(\varphi_{n+1}) \setminus \delta(\varphi_n)$,
- (ii) $\bar{\psi} < (\varphi_{n+1} + q) \circ \bar{\tau}$.

We show that $\rho = (\rho_-, \rho_+)$ is a morphism from (H, \leq°) to $(F_{\sigma} \mathsf{ideals}, \leq_{KB})$. Suppose that $\mathcal{I} \in F_{\sigma} \mathsf{ideals}$, $h \in H$ and $\rho_-(\mathcal{I}) \leq^{\circ} h$. We must show that $\mathcal{I} \leq_{KB} \rho_+(h)$.

Let φ and φ_n be as in the definition of $\rho_-(\mathcal{I})$, and let ψ and ψ_n be as in the definition of $\rho_+(h)$. Because $\rho_-(\mathcal{I}) \leq^{\circ} h$ we can take $m \in \omega$ such that $\rho_-(\mathcal{I})(\psi_n, n) \preceq_{\psi_n} h(\psi_n, n) = \psi_{n+1}$ for all $n \geq m$. Let $q = \psi_m(\delta(\psi_m))$, and take an arbitrary function $\tau_m : \delta(\psi_m) \to \delta(\varphi_m)$. Note that $\psi_m \leq (\varphi_m + q) \circ \tau_m$. Then, by the construction of $\rho_-(\mathcal{I})$, for each $n \geq m$ we can inductively take $\tau_n : \delta(\psi_n) \to \delta(\varphi_n)$ so that

- (i) τ_{n+1} extends τ_n , and $\tau_{n+1}[\delta(\psi_{n+1}) \setminus \delta(\psi_n)] \subseteq \delta(\varphi_{n+1}) \setminus \delta(\varphi_n)$,
- (ii) $\psi_{n+1} \leq (\varphi_{n+1} + q) \circ \tau_{n+1}$.

Then $\tau = \bigcup_{n \in \omega \setminus m} \tau_n$ is a finite to one function from ω to ω , and $\psi \leq (\varphi + q) \circ \tau$. Therefore $\mathcal{I} = \mathsf{Fin}(\varphi) \leq_{\mathrm{KB}} \mathsf{Fin}(\psi) = \rho_+(h)$ by Lemma 2.3.

We have proved Proposition 4.1. Then, as we mentioned before, it suffices for Theorem 2 to prove the following:

Proposition 4.6. $(\omega^{\omega}, \leq^*) \leq \text{(summable ideals, } F_{\sigma} \text{ideals,} \leq_K).$

Proof. First we define $\rho_-:\omega^\omega\to \text{summable ideals}$. Fix $f\in\omega^\omega$. Take a partition $(A_n:n\in\omega)$ of ω into successive finite intervals such that

(i) $\min A_n \ge f(n)$ for all $n \in \omega \setminus \{0\}$,

- (ii) $|A_n|$ is a multiple of 2^n for all $n \in \omega$,
- (iii) $|A_n| \ge 2^n \cdot |A_{n'}|$ for all $n', n \in \omega$ with n' < n.

Then let $p: \omega \to \mathbb{Q}_{\geq 0}$ be such that $p(k) = 1/|A_n|$ for each $k \in A_n$, and let φ be the measure induced by p. Here note that $\varphi(A_n) = 1$ for each n. So φ is unbounded. Let $\rho_-(f) = \operatorname{Fin}(\varphi) = \{X \subset \omega : \sum_{n \in X} p(n) < \infty\}$.

unbounded. Let $\rho_-(f) = \mathsf{Fin}(\varphi) = \{X \subset \omega : \sum_{n \in X} p(n) < \infty\}$. Next we define $\rho_+ : F_\sigma \mathsf{ideals} \to \omega^\omega$. Suppose that $\mathcal{J} \in F_\sigma \mathsf{ideals}$. Take an unbounded submeasure ψ on ω such that $\mathsf{Fin}(\psi) = \mathcal{J}$. Then define $\rho_+(\mathcal{J}) \in \omega^\omega$ so that

(iv)
$$\psi(\rho_{+}(\mathcal{J})(n+1) \setminus \rho_{+}(\mathcal{J})(n)) \ge n^{2}(2^{n}+1).$$

We show that $\rho = (\rho_-, \rho_+)$ is a morphism from (summable ideals, F_σ ideals, \leq_{K}) to (ω^ω, \leq^*) . Take an arbitrary F_σ -ideal $\mathcal J$ with an unbounded submeasure ψ such that $\mathrm{Fin}(\psi) = \mathcal J$, and take an arbitrary $f \in \omega^\omega$. Assuming that $f \not\leq^* \rho_+(\mathcal J)$, we show that $\rho_-(f) \not\leq_{\mathrm{K}} \mathcal J$.

For this take an arbitrary function $\tau : \omega \to \omega$. We must find $C \subseteq \omega$ such that $C \in \rho_{-}(f)$ and $\tau^{-1}[C] \notin \mathcal{J}$. Let $(A_n : n \in \omega)$ and φ be as in the definition of $\rho_{-}(f)$. It suffices to find $C \subseteq \omega$ such that $\hat{\varphi}(C) < \infty$ and $\hat{\psi}(\tau^{-1}[C]) = \infty$. We may assume that such a finite C does not exists.

First we claim that there are unboundedly many $n \in \omega$ with $\psi(A_n) \ge n(2^n+1)$: Take an arbitrary $m \in \omega$. We will find n > m with $\psi(A_n) \ge n(2^n+1)$. Because $f \not\leq^* \rho_+(\mathcal{J})$, we can take $\bar{n} > m$ such that

$$\min A_{m+1} \leq \rho_{+}(\mathcal{J})(\bar{n}) < \rho_{+}(\mathcal{J})(\bar{n}+1) \leq f(\bar{n}+1).$$

Note that $\rho_+(\mathcal{J})(\bar{n}+1) \setminus \rho_+(\mathcal{J})(\bar{n})$ is included in $\bigcup \{A_n : m < n \leq \bar{n}\}$ by (i). Then, because ψ is a submeasure, there is n with $m < n \leq \bar{n}$ such that

$$\psi(A_n) \geq \frac{\psi(\rho_{+}(\mathcal{J})(\bar{n}+1) \setminus \rho_{+}(\mathcal{J})(\bar{n}))}{\bar{n}-m} \geq \frac{\bar{n}^2(2^{\bar{n}}+1)}{\bar{n}-m} \\
\geq \bar{n}(2^{\bar{n}}+1) \geq n(2^n+1).$$

Here the second inequality follows from (iv).

By the claim above we can inductively take $m_i, n_i \in \omega$ for each $i \in \omega$ so that

- $\bullet \ m_i \le n_i < m_{i+1},$
- $\hat{\psi}(\tau^{-1}[\bigcup \{A_m : m < m_i\}]) \le n_i$,
- $\psi(A_{n_i}) > n_i(2^{n_i} + 1),$
- $\tau[A_{n_i}] \subseteq \bigcup \{A_m : m < m_{i+1}\}.$

Let $A'_{n_i} = A_{n_i} \setminus \tau^{-1}[\bigcup \{A_m : m < m_i\}]$. Then we have the following:

(v)
$$\tau[A'_{n_i}] \subseteq \bigcup \{A_m : m_i \leq m < m_{i+1}\}.$$

(vi)
$$\psi(A'_{n_i}) \ge n_i(2^{n_i} + 1) - n_i = n_i \cdot 2^{n_i}$$
.

For each $i \in \omega$ we will find $C_i \subseteq \bigcup \{A_m : m_i \leq m < m_{i+1}\}$ so that

(vii)
$$\varphi(C_i) \leq \frac{1}{2^{m_i-1}}$$
,

(viii)
$$\psi(\tau^{-1}[C_i]) \ge n_i$$
.

Suppose that we could take such C_i 's. Let $C = \bigcup_{i \in \omega} C_i$. Then (vii) implies that $\hat{\varphi}(C) < \infty$, and (viii) implies that $\hat{\psi}(\tau^{-1}[C]) = \infty$. So C is as desired.

The construction of C_i 's is as follows: Fix $i \in \omega$. Let

Here note that $A^- \cup A^+ = A'_{n_i}$ by (v). First let $C_i \cap B^+$ be $\tau[A^+]$. Next we define $C_i \cap B^-$. By (ii), for each $m \in M^-$ we can take a partition $(A_{m,j}: j < 2^m)$ of A_m such that $\varphi(A_{m,j}) = |A_{m,j}|/|A_m| = 1/2^m$. For each $j < 2^{n_i}$ let

$$B_j = \bigcup \{A_{m,j} : m \in M^- \& 2^m > j\}$$
.

Note that $(B_j: j < 2^{n_i})$ is a partition of B^- . So $A^- \subseteq \bigcup \{\tau^{-1}[B_j]: j < 2^{n_i}\}$, and thus $A'_{n_i} \subseteq \bigcup \{\tau^{-1}[B_j] \cup A^+: j < 2^{n_i}\}$. Then we can take $j^* < 2^{n_i}$ with

(ix)
$$\psi(\tau^{-1}[B_{j^*}] \cup A^+) \ge \frac{\psi(A'_{n_i})}{2^{n_i}} \ge n_i$$
.

Let $C_i \cap B^-$ be B_{j^*} .

We must check that C_i satisfies (vii) and (viii). Note that (viii) immediately follows from (ix) and the construction of C_i . We will check (vii). Recall that $\varphi(A_{m,j}) = 1/2^m$ for each $m \in M^-$ and $j < 2^m$. Thus

$$\varphi(C_i \cap B^-) = \varphi(B_{j^*}) \leq \sum_{m \in M^-} \frac{1}{2^m}.$$

Note also that if $m > n_i$, then $|A_{n_i}|/|A_m| \le 1/2^m$ by (iii). So

$$\varphi(C_i \cap B^+) = \sum_{m \in M^+} \varphi(C_i \cap A_m) = \sum_{m \in M^+} \frac{|\tau[A^+] \cap A_m|}{|A_m|}$$

$$\leq \sum_{m \in M^+} \frac{|A_{n_i}|}{|A_m|} \leq \sum_{m \in M^+} \frac{1}{2^m}.$$

Then

$$\varphi(C_i) \leq \sum_{m > m_i} \frac{1}{2^m} = \frac{1}{2^{m_i - 1}}.$$

This completes the proof.

5 Questions

We end this paper with several questions.

In Section 3 we have proved that F_{σ} ideals and Analytic Pideals are upward directed with respect to $\leq_{\rm K}$ and $\leq_{\rm KB}$. The first question is on the upward directedness of other families of ideals. Let Borel ideals be the family of all Borel ideals. (Borel ideals, $\leq_{\rm K}$) is known to be upward directed. However, it seems to be an open problem whether (Borel ideals, $\leq_{\rm KB}$) is upward directed. (See [4].) It also seems to be an open problem whether (summable ideals, $\leq_{\rm KB}$) and (summable ideals, $\leq_{\rm KB}$) are upward directed.

Question 5.1. 3

- (1) Is (Borel ideals, \leq_{KB}) upward directed?
- (2) Are (summable ideals, \leq_{K}) and (summable ideals, \leq_{K}) upward directed?

The second question is on the cofinal types of Analytic Pideals and Borel ideals with respect to $\leq_{\mathbf{K}}$ and $\leq_{\mathbf{KB}}$. Recall that $\|(P, \leq_P)\|$ is the least cardinality of a cofinal subfamily of (P, \leq_P) and that $\|(P, \leq_P)^{\perp}\|$ is that of an unbounded subfamily.

Question 5.2.

- $\begin{array}{lll} \textit{(1) How} & \textit{large} & \textit{are} & \|(\mathsf{Analytic\ Pideals}, \leq_K)\|, & \|(\mathsf{Analytic\ Pideals}, \leq_{KB})\|, \\ & \|(\mathsf{Analytic\ Pideals}, \leq_K)^\perp\| & \textit{and} & \|(\mathsf{Analytic\ Pideals}, \leq_{KB})^\perp\| \ ? & \\ \end{array}$
- (2) How large are $\|(\mathsf{Borel}\ \mathsf{ideals}, \leq_{\mathrm{K}})\|$, $\|(\mathsf{Borel}\ \mathsf{ideals}, \leq_{\mathrm{KB}})\|$, $\|(\mathsf{Borel}\ \mathsf{ideals}, \leq_{\mathrm{KB}})\|$, $\|(\mathsf{Borel}\ \mathsf{ideals}, \leq_{\mathrm{KB}})\|$?

Here we make a remark on the above question. It follows from Theorem 2 that summable ideals is unbounded in $(F_{\sigma} ideals, \leq_{K})$ and $(F_{\sigma} ideals, \leq_{K})$. But this is not the case for (Analytic Pideals, \leq_{K}). Let \mathcal{Z} be the density zero ideal, that is,

$$\mathcal{Z} = \left\{ A \subset \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\}.$$

 \mathcal{Z} is an analytic P-ideal, and the following is known:

Theorem 5.3 (Hernández-Hrušák [3]). $\mathcal{I} \leq_{\mathbf{K}} \mathcal{Z}$ for all summable ideals \mathcal{I} .

It is known that \mathcal{Z} plays an important role in (Analytic Pideals, \leq_K). The following theorem may be useful to investigate $\|(\mathsf{Analytic\ Pideals}, \leq_K)\|$ and $\|(\mathsf{Analytic\ Pideals}, \leq_K)^\perp\|$:

³This question is positively answered by the second author. See Sakai [7].

⁴It is shown by the second author that there is the largest analytic P-ideal with respect to the Katětov-Blass order. See Sakai [8].

Theorem 5.4 (Measure Dichotomy, Hrušák [4]). Let \mathcal{I} be an analytic P-ideal. Then, either $\mathcal{I} \leq_K \mathcal{Z}$, or there is $X \in \mathcal{I}^+$ such that $\mathcal{S} \leq_K \mathcal{I} \upharpoonright X$, where \mathcal{S} is the ideal on the countable set

$$\Omega = \left\{ A \in \mathsf{Clop}(2^\omega) : \lambda(A) = \frac{1}{2} \right\}$$

generated by the sets of the form $I_x = \{A \in \Omega : x \in A\}$ for $x \in 2^{\omega}$. Here λ denotes the standard Haar measure on 2^{ω} .

The last question is on the existence of a Laflamme family. As we mentioned at the introduction, Laflamme [5] constructs a Laflamme family under CH, and it is not yet known whether the existence of a Laflamme family is provable in ZFC. Actually we can construct a Laflamme family if the pseudo intersection number $\mathfrak p$ is greater than or equal to $|F_{\sigma}ideals|$, which is equivalent to $\mathfrak p=\mathfrak c$ because $|F_{\sigma}ideals|=\mathfrak c$:

Proposition 5.5. If $\mathfrak{p} = \mathfrak{c}$, then a Laflamme family exists.

Proof. Assume that $\mathfrak{p} = \mathfrak{c}$. Take an enumeration $(\mathcal{I}_{\alpha} : \alpha < \mathfrak{c})$ of F_{σ} ideals. By induction on $\alpha < \mathfrak{c}$ we will take an infinite $A_{\alpha} \subseteq \omega$ so that

- A_{α} is almost disjoint from A_{β} for any $\beta < \alpha$,
- $\{A_{\beta}: \beta \leq \alpha\} \not\subseteq \mathcal{I}_{\alpha}$,
- $\omega \setminus \bigcup_{\beta \in u} A_{\beta}$ is infinite for all finite $u \subseteq \alpha + 1$.

Note that if we could construct $\{A_{\alpha} : \alpha < \mathfrak{c}\}$ as above, then, by extending it to a mad family, we would obtain a Laflamme family. We will use the fact, due to Bell [1], that if \mathbb{P} is a σ -centered poset, and \mathcal{D} is a family of dense subsets of \mathbb{P} with $|\mathcal{D}| < \mathfrak{p}$, then there is a filter $G \subseteq \mathbb{P}$ intersecting with every element of \mathcal{D} .

Suppose that $\alpha < \mathfrak{c}$ and that $(A_{\beta} : \beta < \alpha)$ has been taken. Let \mathbb{P} be the poset of all pairs (a, u) such that a and u are finite subsets of ω and α , respectively. $(a, u) \leq (b, v)$ in \mathbb{P} if $a \supseteq b$, and $(a \setminus b) \cap A_{\beta} = \emptyset$ for all $\beta \in v$. Note that \mathbb{P} is σ -centered. For each $\beta < \alpha$ and $n < \omega$ let

$$D_{\beta}^{0} = \{(a, u) \in \mathbb{P} : \beta \in u\} , \qquad D_{n}^{1} = \{(a, u) \in \mathbb{P} : \max a \ge n\} .$$

Then D^0_β is clearly dense in \mathbb{P} , and so is D^1_n because $\omega \setminus \bigcup_{\alpha \in u} A_\alpha$ is infinite for all finite $u \subseteq \alpha$.

First suppose that $\{A_{\beta}: \beta < \alpha\} \not\subseteq \mathcal{I}_{\alpha}$. In this case take a filter $G \subseteq \mathbb{P}$ intersecting with D^0_{β} and D^1_n for all $\beta < \alpha$ and $n < \omega$. We can take such G because $\alpha < \mathfrak{p}$. Then $A' = \bigcup \{a: \exists u, (a, u) \in G\}$ is an infinite subset of ω which is almost disjoint from A_{β} for every $\beta < \alpha$. Let A_{α} be an infinite co-infinite subset of A'. Then it is easy to check that A_{α} is as desired.

Next suppose that $\{A_{\beta} : \beta < \alpha\} \subseteq \mathcal{I}_{\alpha}$. Let φ be an unbounded submeasure on ω with $\mathsf{Fin}(\varphi) = \mathcal{I}_{\alpha}$. Note that $\hat{\varphi}(\omega \setminus \bigcup_{\beta \in u} A_{\beta}) = \infty$ for any finite $u \subseteq \alpha$ because $\{A_{\beta} : \beta < \alpha\} \subseteq \mathcal{I}_{\alpha}$. Then

$$D_n^2 = \{(a, u) \in \mathbb{P} : \varphi(a) \ge n\}$$

is dense in \mathbb{P} for all $n < \omega$. Take a filter $G \subseteq \mathbb{P}$ intersecting with D_{β}^{0} , D_{n}^{1} and D_{n}^{2} for all $\beta < \alpha$ and all $n < \omega$, and let $A' = \bigcup \{a : \exists u, (a, u) \in G\}$. Then $\hat{\varphi}(A') = \infty$, that is, $A' \notin \mathcal{I}_{\alpha}$. Because \mathcal{I}_{α} is an ideal, we can take an infinite co-infinite subset A_{α} of A' with $A_{\alpha} \notin \mathcal{I}_{\alpha}$. Then A_{α} is as desired. \square

Note that $\mathfrak{p} \geq \|(F_{\sigma}\mathsf{ideals}, \subseteq)\|$ is enough to construct a Laflamme family, because it suffices to take care of a cofinal subfamily of $(F_{\sigma}\mathsf{ideals}, \subseteq)$ instead of all F_{σ} -ideals. But this assumption is also equivalent to $\mathfrak{p} = \mathfrak{c}$ by Proposition 1.1. Can we construct a Laflamme family under $\mathfrak{p} \geq \|(F_{\sigma}\mathsf{ideals}, \leq_{\mathrm{KB}})\|$? This is equivalent to the following by Corollary 3:

Question 5.6. Does $\mathfrak{p} = \mathfrak{d}$ imply the existence of a Laflamme family?

Acknowledgements

The authors would like to thank to Yasuo Yoshinobu for his helpful comments, especially pointing out Proposition 1.1.

References

- [1] M. Bell, On the combinatorial principle P(c), Fund. Math. **114** (1981), no. 2, 149–157.
- [2] A. Blass, Combinatorial cardinal characteristics of the continuuum, Handbook of set theory (M. Foreman and A. Kanamori ed.) Vol. 1, 395–489, Springer-Verlag, Berlin, 2010.
- [3] F. Hernández-Hernández and M. Hrušák, Cardinal invariants of analytic P-ideals, Canad. J. Math. **59** (2007), no. 3, 575–595.
- [4] M. Hrušák, *Combinatorics of filters and ideals*, Set theory and its applications, 29–69, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011.
- [5] C. Laflamme, Zapping small filters, Proc. Amer. Math. Soc. 114 (1992), no. 2, 535-544.
- [6] K. Mazur, F_{σ} -ideals and $\omega_1\omega_1^*$ -gaps in the boolean algebras $\mathcal{P}(\omega)/I$, Fund. Math. 138 (1991), no. 2, 103–111.
- [7] H. Sakai, Directedness of class of ideals under Katetov-Blass order, preprint. http://www2.kobe-u.ac.jp/~hsakai/Research/papers/directed_KB. pdf
- [8] H. Sakai, Largest analytic P-ideal with respect to Katětov-Blass order, preprint.
 - http://www2.kobe-u.ac.jp/~hsakai/Research/papers/analyticP_ideal_largest_KB.pdf

- [9] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic **99** (1999), no. 1-3, 51–72.
- [10] P. Vojtáš, Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis, Set Theory of the Reals (H. Judah, ed.), Israel Mathematical Conference Proceedings, vol. 6, 1993, pp. 619 – 643.