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Abstract

We study the structures (Fyideals, <x) and (Fyideals,<xg), where
F,ideals is the family of all F,-ideals over w, and <k and <kp denote
the Katétov and Katétov-Blass orders on ideals. We prove the following:

e (F,ideals, <x) and (F,ideals, <kg) are upward directed.

e The least cardinalities of cofinal subfamilies of (F.ideals, <k) and
(Fsideals, <kp) are both equal to 0. Moreover those of unbounded
subfamilies are both equal to b.

e The family of all summable ideals is unbounded in (Fyideals, <x)
and (Fyideals, <kp).

1 Introduction

In this paper an ideal means a proper ideal over w including all finite subsets of
w. By identifying subsets of w with their characteristic functions, an ideal can
be naturally seen as a subset of the Cantor space 2. An F,-ideal is an ideal
which is F,, as a subset of 2¢. Let F,ideals denote the family of all F,-ideals.
A typical example of an Fj,-ideal is a summable ideal: An ideal Z is called a
summable ideal if there exists a function p : w — Qs with >, . p(k) = oo
such that

7 = {ACw:Zp(k)<oo},

keA

where Q> denotes the set of all non-negative rational numbers. ! The family
of all summable ideals is denoted by summable ideals.

In [5], Laflamme tries to destroy mad families with least damages and de-
velops two methods for diagonalizing F,-filters. As one of results, he proves
that under CH there exists a mad family A such that A is not included in any
F,-ideal. Such a mad family is called a Laflamme family. It is not yet known
whether the existence of a Laflamme family is provable in ZFC.

To construct a Laflamme family under weaker assumptions than CH, it may
look important to investigate the structure (F,ideals, C), because it is enough

It is usual to define summable ideals with p : w — R>q. Given p : w — R>(, choose

p* 1w — Q> such that [p(n) —p*(n)| < 2% forn € w. Then {ACw: Y, cap(n) <oo} =

{ACw:Y,cap*(n) < oo}



to take care of a cofinal subfamily of (F,ideals, C) instead of all F,-ideals. (See
Section 5 for more details.) But this does not seem to be so useful because any
cofinal subfamily has the same cardinality as the whole Fideals:

Proposition 1.1. The cardinality of any cofinal subfamily of (Fyideals, C) is
equal to c.

Proof. Let A be an almost disjoint family with cardinality ¢. For each A € A
let Z4 be the ideal on w generated by w \ A (and all finite subsets of w). It is
easy to see that Z4 is an F,-ideal.

Note that for any distinct A, B € A there is no (proper) ideal Z with Z 2
Za,Zp. (fZp,Zp CZ,thenZ > (w\A)U(w\B)=w\(ANB),and sow € T.)
Hence the cardinality of any cofinal subfamily of (Fjideals, C) is greater than
or equal to |A| = c. O

The Katétov order <yi and the Katétov-Blass order <ip on ideals are re-
finements of the relation C, which are defined as follows:

e 7 <k J if there exists a function 7 : w — w such that 77[A] € J for all
AeT.

o 7 <kp J if there exists a finite to one function 7 : w — w such that
771[A] € J for all A € T.

Notice that for all ideals Z and J, Z C J implies Z <kp J, and Z <gp J
implies Z <k J. So a mad family A is a Laflamme family if there is no F,-ideal
above A with respect to <x. To construct a Laflamme family under weaker
assumptions than CH, it may be helpful to study the structures (Fyideals, <g)
and (F,ideals, <p).

In this paper we study basic properties of the structures (Fyideals, <k) and
(Fyideals, <kp). First we prove the following:

Theorem 1. (Fyideals, <k) and (Fyideals, <xp) are upward directed.

Next we investigate the cofinal types of (F,ideals, <x) and (F,ideals, <xp).
For this we use the notion of generalized Galois-Tukey connections introduced
by Vojtés [10]. First we recall them. In this paper we follow the formulation
and terminology of Blass [2]:

Let A= (A_,A;, A)and B = (B_, By, B) be triples such that A is a binary
relation between A_ and A, and B is a binary relation between B_ and B..
A morphism from A to B is a pair p = (p_, p4) of functions such that

e p_:B_—A_|
* p+ Ay = By,

e forallbe B_ and a € A, p_(b)Aa implies bBp, (a).



Y C A, is said to be A-cofinal if for any x € A_ there is y € Y with zAy,
and X C A_ is said to be A-unbounded if for any y € A4 there is x € X with
-z Ay. Note that if p = (p_, p4) is a morphism from A to B, then p_[X] is
A-unbounded for any B-unbounded X C B_, and p,[Y] is B-cofinal for any
A-cofinal Y C A,.

Let B < A denote that there is a morphism from A to B. Notice that < is
transitive. We write A =B if A < B, and B < A.

If A. = Ay, then A = (A_, A4, A) is simply denoted as (A_,A). So
(w¥, <*), (Fyideals, <) and (F,ideals, <kp) respectively denote (w*,w*,<*),
(F,ideals, F,ideals, <x) and (F,ideals, F,ideals, <xgp). Define the dual A+ of
A=(A_ A A by At = (A, A AL) where

At ={(y,x) € Ay x A_: -zAy} .

If p=(p_,py) witnesses A < B, then p- = (py,p_) witnesses B+ < A+,
The norm ||A|| is the least cardinality of an A-cofinal subset of A, . Notice
that [|AL]| is the least cardinality of an A-unbounded subset of A_. Notice also
that if B < A, then |B| < ||A||, and |B*|| > [|A*].
Now we present our results. We prove the following;:

Theorem 2.
(Fyideals, <k) = (F,ideals, <kp)
= (summable ideals, F,ideals, <) = (summable ideals, F,ideals, <kp)
= (w¥, <%).

From Theorem 2 we obtain that
|(Fideals, <xc) | = ||(Eyideals, <xs)]| = | (w*, <*)]| .
I(Fyideals, <k)*|| = [|(Fyideals, <kp)*|| = [|(w*, <*)*|l,
which mean the following:
Corollary 3.

(1) The least cardinalities of cofinal subfamilies of (Fyideals,<k) and
(Fyideals, <kg) are both equal to 0.

(2) The least cardinalities of unbounded subfamilies of (Fyideals, <k) and
(Fyideals, <kp) are both equal to b.

Moreover from the facts that

(Fyideals, <k) < (summable ideals, Fi ideals, <) ,
(Fyideals, <kp) = (summable ideals, F,ideals, <xp) ,

we obtain the following:

Corollary 4. The family of all summable ideals is unbounded in (Fyideals, <g)
and (F,ideals, <xp).



This paper is organized as follows: We prove Theorem 1 in Section 3, and
Theorem 2 is proved in Section 4. In the proof of these theorems we will use
Mazur’s characterization of F,-ideals using submeasures. In Section 2 we review
this characterization and present basic facts on submeasures. In Section 5 we
will present several questions which are relevant to our results.

2 Submeasures and F,-ideals

We will use Mazur’s characterization of F,-ideals using submeasures. Here we
review this characterization and present basic facts on submeasures.

A submeasure on a set X is a function ¢ : [X]<¥ — Qx( with the following
properties:

(i) ¢(A) < ¢(B) if A C B. (Monotonicity)
(ii) p(AUB) < ¢(A) + ¢(B). (Subadditivity)
(iif) (@) = 0.

If ¢ is a submeasure on X, then X is denoted by d(¢). Note that there is a
unique submeasure on (3, which assigns @) to 0. Let (¢ivial be this submeasure.

If p is a function from X to Q>, then the function ¢ : [X]<% — Qx> defined
by ©(A) = > ,cap(k) is a submeasure. In fact, this ¢ is a measure, that is, ¢
satisfies (i), (iii) and (iv) below:

(iv) p(AUB) = p(A) 4+ ¢(B) if A and B are disjoint. (Additivity)

We call this ¢ the measure induced by p.
Let ¢ be a submeasure on w. For A C w let

P(A) = lim p(ANn) € RyoU {0} .

n—w
We say that ¢ is unbounded if $(w) = co. If ¢ is unbounded, then
Fin(p) ={ACw: p(A4) < o} .
is an ideal. 2 Mazur’s characterization of F,-ideals is as follows:
Theorem 2.1 (Mazur [6]). The following are equivalent for I:
(i) T is an F,-ideal.

(i) T = Fin(yp) for some unbounded submeasure ¢ on w.

2Recall that in this paper an “ideal” means a proper ideal over w. Unboundedness of ¢
assures properness of Fin(¢p).



In this paper we will use the above theorem without any notice. Next we
present several notions and lemmata on submeasures, which will be used in this

paper.
For submeasures ¢y and (7 on a set X let

vo < 1 o wo(A) < p1(A) for all A € [X]<v.

Moreover for submeasures ¢y on Xy and ¢; on X; let ¢g A ¢1 be the function
on [Xo U X;|<% defined as

vo A p1(A) = min{po(Ag) + p1(A1) : AgU Ay = A, Ay C Xo, A1 C Xy}
for each A € [Xo U X;]<v.

Lemma 2.2. Let g and @1 be submeasures on sets Xy and X1, respectively,
and let ¢ = g A 1.

(1) o is a submeasure on XoU X.

(2) o [Xo]<¥ <o, and ¢ [[X1] < ¢1. Hence if Xo = X1, then ¢ < o, ¢1.
(8) If X € XoNX1, and o [ [X]<Y < 1 [[X]<Y, then o [ [X]SY = o [ [X]<.
(4) o 1[Xo\ X1]=% = po [[Xo \ X1]=%, and ¢ [[X1\ Xo] < = o1 [[X71\ Xo]=“.

Proof. (1) Clearly () = 0. We check the monotonicity and the subadditivity.

First we check the monotonicity. Suppose that A C B € [Xo U X;]<“. Take
By € Xy and B; C X; such that BoU By = B and ¢(B) = ¢o(Bo) + p1(B1).
Let A; = AN B; for each i = 0,1. Note that A = Ag U A;. Then

©(A) < wo(Ag) +¢1(A1) < wo(Bo) + ¢1(B1) = ¢(B),

where the second inequality follows from the monotonicity of ¢g and ;.

Next we check the subadditivity. Suppose that A, B € [Xo U X;]<%¥. Take
Ao,BQ g Xo and 1417 Bl g X1 such that A()UA1 = 147 QO(A) = @0(140)4‘(,01(141),
BO UBl = B and QD(B) = QD()(Bo) + Qﬂl(Bl) Note that (AO UB()) U (Al UBl) =
AU B. Then

(AU B) ¢0(Ag U By) + ¢1(A1 U B)
©0(Ao) +¢o(Bo) +¢1(A1) + ¢1(B1) = ¢(4) +¢(B),

where the second inequality follows from the subadditivity of ¢y and ;.

<
<

(2) By symmetry it suffices to prove the former. For any A € [Xo]<¥ we have
that p(A) < @o(A) + ¢1(0) = po(A).

(3) Suppose that A € [X]<%. Then p(A) < po(A4) by (2). Moreover for each
AQ, Al - A with AO @] A1 = A it holds that

©wo(Ao) +p1(A1) > wo(Ao) +o(A1) > wo(A).



So ¢(A) > ¢o(A). Therefore p(A) = po(A).

(4) It suffices to prove the former by symmetry. Suppose that A € [X,\ X1]<%.
Note that AQ = A and A1 = @ if AO U A1 = A, AO g Xo and A1 g Xl. Then
P(A) = o(A) + 1(0) = o (A). O

Let ¢ be a submeasure on a set X. For ¢ € Q> let ¢ 4+ g be the function
on [X]<% such that

_ e +q if A#0,
pra(d) = {0 if A=0.

It is easy to check that ¢ + ¢ is a submeasure on X. For a set Y and a function
7:Y — X let ¢ o7 denote the pullback of ¢ by 7, that is, p o 7 is a function
on [Y]<“ such that

pot(A) = o(r[A4]) .

Again it is easy to see that ¢ o7 is a submeasure on Y. The following lemma is
clear from the definition of the Katétov and the Katétov-Blass orders:

Lemma 2.3. Suppose that ¢ and 1 are unbounded submeasures on w.

(1) If there exist a function T: w — w and ¢ € Q> such that ¥ < (p+q)oT,
then Fin(p) <k Fin(v).

(2) If there exist a finite to one function 7 : w — w and ¢ € Q>¢ such that
¥ < (p+q)or, then Fin(p) <k Fin(¢)).

3 Directedness

In this section first we prove Theorem 1. After that we also observe that the
family of all analytic P-ideals is upward directed with respect to <k and <kg.

Theorem 1. (Fjideals, <k) and (Fyideals, <xp) are upward directed.

Proof. Tt suffices to prove that (Fyideals, <kxp) is upward directed because <kp
is coarser than <y. Suppose that Z; and Z; are F,-ideals. We must find an
F,-ideal J such that J >k Zgy,Z;1.

For each ¢+ = 0,1 let ; be an unbounded submeasure on w such that Z; =
Fin(¢;). By induction on n € w take s, € w so that sy = 0 and so that
©i(Sn+1 \ 8n) > n for both ¢ = 0,1. Let

Ap = (Snt1 \ Sn) X (Snt1 \ sn) = {(k,0]): s <kl < Spy1}

for each n € w, and let X = J,, o, An. We will construct a submeasure 1) on
X and finite to one functions 7; : X — w for ¢ = 0,1 such that ¥(A4,) > n
for each n € w and such that ¢ < ¢; o7; for both ¢ = 0,1. If such ¢ and 7;’s
are constructed, then ¢ can be identified with an unbounded submeasure on w



through a bijection between X and w, and J := Fin(¢) >kp Zop,Z; by Lemma
2.3.

For each i = 0,1 let 7; : X — w be the i-th projection, that is, 7o(k,l) = k
and 71(k,l) =1 for (k,l) € X. Note that both 75 and 7 are finite to one. Let

Y= _(pooTg) A(proT).

By Lemma 2.2, 1) is a submeasure on X, and ¢ < p;o7; for ¢ = 0,1. It remains to
show that ¢(A,) > n for each n € w. Fix n € w, and suppose that ByUB; = A,,.
It suffices to show that g o 79(By) + 1 © 71(B1) > n. First note that either
T0[Bo] = Sn+1\Sn, Or T1[B1] = Sp+1\Sn. This is because if k; € (sn41\8n)\7:[Bi]
for i =0, 1, then (ko, k1) € A, \ (BoUBy), which contradicts that A,, = ByUB;.
Recall also that ¢;(sp4+1 \ $n) > n for both ¢ = 0, 1. So either g o 79(By) > n,
or p1 o7 (B1) > n. Hence pg o m9(By) + @1 011 (B1) > n. O

Next we observe that the family of all analytic P-ideals, denoted as Analytic
Pideals, is also upward directed with respect to <k and <kg.

First we briefly review analytic P-ideals: An ideal Z is called a P-ideal if
for every countable subset C of Z, there exists A € Z such that C C* A for
every C € C. It is known, due to Solecki [9], that Analytic P-ideals have
a similar characterization to F,-ideals. To present this characterization, we
prepare notation. A submeasure ¢ on w is said to be bounded if $(w) < co. For
a submeasure ¢ on w let

= C . 1 b =

Exh(p) {X Cw: T{l_r}rbgo(X\n) O} .

Note that Exh(y) is an ideal if lim, ., @(w \ n) > 0. Exh(yp) is called the
ezhaustive ideal of . The characterization of analytic P-ideals is as follows:

Theorem 3.1 (Solecki [9]). The following are equivalent for Z:
(i) Z is an analytic P-ideal.

(i) T = Exh(p) for some bounded submeasure ¢ on w with lim,_,,, p(w \ n) >
0.

We prove the following:

Proposition 3.2. (Analytic Pideals, <k) and (Analytic Pideals, <kgp) are up-
ward directed.

Proof. The proof is almost the same as that of Theorem 1. Suppose that Z;
and Z; are analytic P-ideals. It suffices to find an analytic P-ideal J with
1o,7) <xB J.

For each ¢ = 0,1, let ¢; be a bounded submeasure on w such that Z; =
Exh(g;). Let ¢; = lim,—, ®(w \ n) > 0. By induction on n € w, take s, € w
so that sp = 0 and @;(sp41 \ Sn) > ¢ — 2% for both i = 0,1. Let 4, =
(8n+1\8n) X (8n41\5n) for each n € w, and let X = J,,,, An-. It suffices to find
a submeasure 1) on X and finite to one functions 7; : X — w for ¢ = 0,1 such



that liminf, ., ¥(A,) > 0 and ¢ < ¢; o 7;: Then ¢ can be identified with a
bounded submeasure on w such that lim,, ., ¢(w\n) > 0. Here the boundedness
follows from that of g, and the fact that ¢¥» < ¢ o7y. Then J = Exh(v) is an
analytic P-ideal, and J >k Zo,Z;.

For each i = 0,1 let 7; : X — w be the i-th projection, and let

Y= (poo70) A (p1071) .

Then 7; is finite to one, ¢ is a submeasure on X, and ¢ < ; o 7;. Moreover for
each n € w, by the same argument as in the proof of Theorem 1,

9(A) 2 minfpo(snsn \ 5a), 91 (sns1 \ 5a)} = minfeo, ) — o

Thus liminf,,_,« ¥ (4,) > min{cy, ¢} > 0. O

4 Cofinal types

In this section we prove Theorem 2:

Theorem 2.
(Fyideals, <k) = (Fyideals, <kp)
= (summable ideals, F,ideals, <k ) = (summable ideals, Fi;ideals, <xp)
= (w¥, <*).

Note that the pair of the identity maps on Fjideals is a morphism from
(Fyideals, <xp) to (Fyideals, <x) because <k refines <kp. Similarly, the pair
of the identity maps is a morphism from (summable ideals, Fi;ideals, <xp) to
(summable ideals, Fiideals, <k). Note also that the pair of the identity maps
is a morphism from (Fyideals, <k) to (summable ideals, F,ideals, <x) and from
(Fyideals, <kp) to (summable ideals, F,ideals, <kp). So we have the following:

(summable ideals, F,yideals, <) =< (summable ideals, Fi;ideals, <xp)
A A

(Fyideals, <k) (Fyideals, <kp)

PN

Hence it suffices to prove the following:
e (F,ideals, <gp) =< (w¥, <*).
o (w¥,<*) < (summable ideals, F,ideals, <x).
These are proved in Proposition 4.1 and 4.6. First we prove the former:

Proposition 4.1. (Fyideals, <gp) = (w¥, <*).



We will define an upward directed (H,<°) and prove that
(F,ideals, <) < (H,<°) < (w0, <") .

First we define (H, <°). Let ® be the set of all submeasures ¢ with 6(p) € w.
Note that ® is countable. For ¢ € ® and n € w let ®(p,n) be the set of all
@ € ® such that

(i) @ extends @, i.e. [ P(d(¢)) = ¢,
(i) @(d(®) \ d()) > n.
Then let

H={hecd"¥ :VY(p,n) € ® xw, h(p,n) € d(p,n)} .

To define the order <°, first define an order <, on ®(y,n) as follows: ¢ <, ¢’
if there exists a function 7 : 6(@’) — §(@) such that

(i) 716(¢) = id, and 7[6(¢") \ 6()] < 6(®) \ 6(¢),

(ii) ¢ < @oT.
It is easy to see that < is transitive. Then for each h,h’ € H let h <° I’ if
h(p,n) <, h'(¢,n) for all but finitely many (¢, n) € ® x w. Note that <° is also
transitive.

First we show that (H,<°) is upward directed. This immediately follows
from the lemma below:

Lemma 4.2. (®(p,n), ) is upward directed for all p € ® and n € w.

Proof. The proof is similar as that of Theorem 1. Suppose that @g, o1 € ®(¢,n).
We must find their upper bound in (®(p,n), <,). Let s = d(¢) and §; = §(@;)
for i = 0,1. Moreover let A = (55 \ s) x (51 \ s). It suffices to find a submeasure
@ on sU A and functions 7; : s U A — §; for ¢ = 0,1 such that

(i) @ extends ¢, and @(A4) > n,
(ii) 7 s =1id, and 7;[A] C §; \ s,
(i) @ < @; 07

Let 7; [ s = id, and let 7; [ A be the i-th projection. Clearly 7; satisfies (ii)
above. Let

@=(PooTo) A(P1oT1) .

Then ¢ is a submeasure on sU A satisfying (iii) by Lemma 2.2 (1) and (2). Here
note that (g; o 7;) [P(s) = ¢ for i = 0,1. So @ extends ¢ by Lemma 2.2 (3). It
remains to show that @(A) > n, but this can be proved by the same argument
as in the proof of Theorem 1. ]



Using Lemma 4.2, we can easily prove the following:
Lemma 4.3. (H,<°) = (w¥,<*).

Proof. We will construct a morphism p = (p_, p4+) from (w*, <*) to (H,<°).
First take a one to one enumeration ((¢;,n;) : @ € w) of ® x w. Moreover for
each i € w take an enumeration (@; 1 j € w) of D(p;,m;). For each h € H let
p-(h) € w* be such that h(p;,n;) = @], ;- For each f € w* let py(f) € H
be such that py (f)(@i,ni) =y, @ for all j < f(i). Note that there exists such
p+(f) by Lemma 4.2.

To show that p is a morphism from (w*, <*) to (H, <°), suppose that h € H,
f € w¥ and p_(h) <* f. Note that for each i € w if p_(h)(i) < f(i), then
h(gi,ni) Dy, p+(f)(pi,n3). So b <° po(f) because p_(h) <* f. O

Next we will prove the following:
Lemma 4.4. (F,ideals, <xp) < (H,<°).
For this we need the following lemma:

Lemma 4.5. Suppose that ¢, € ®. Letn € w and ¢ € ®(p,n). Then there
is * € ®(,n) such that the following holds for all 1 € ®(3, n) with Y* Ly -
For any function T : §(p) — d(p) and any g € Q> with ¥ < (p + q) o T there

exists a function 7 : 6(¢) — 0(®) such that
(i) 7 extends 7, and 7[5(¥) \ 3(1))] € 8(2) \ (%),
(i) ¥ < (p+q)oT.
Proof. Let s, 5 and ¢ be 3(y), 6(¢) and 8(1b), respectively. Moreover let T =

t+(5—s). For each 7 :t — s, let 6, ¢ and 1, be as follows:
e G, :t— 5 is the extension of 7 such that 7. (t + k) = s + k.

e ¢, is the least non-negative rational number such that ¢ < (¢ + ¢;) o 7.
(We can take such ¢, because ¥, ¢ and 7 are all finite.)

d /l/;T:/lz[}A((@_FqT)O&T)'

Then ¢, is a submeasure on ¢ by Lemma 2.2 (1). Note that (¢ + ¢-) o &,
extends (¢ + ¢-) o 7. So ¥, extends ¢ by Lemma 2.2 (3) and the fact that
1 < (¢ + ¢-) o 7. Moreover, by Lemma 2.2 (4),

Ur(E\t) = ((@+ar)oa-)(E\t) = @(5\s)+qr > n.

Thus 1, € ®(1,n) for each 7:t — s.

By Lemma 4.2 there is 1)* € ®(1), n) such that ¢* >, 1, for all 7 : t — 5. We
claim that this ¢)* is as desired. Suppose that 1) > Y*, and take an arbitrary
function 7 : §(¢p) — d(¢) and an arbitrary ¢ € Q>o with ¢ < (¢ + ¢) o 7. Then
Y >y - Let 60 8(¢0) — §(1)-) be a witness of this relationship, and let 7 be

10



the composition &, o &’. Then it is easy to check that 7 satisfies (i). Here note
that ¢, < (¢ + ¢r) 05 by Lemma 2.2 (2). So

¢ < 4rod’ < ((p+ar)odr)od = (p+gr)oT.
But ¢, < ¢ by the choice of ¢,. Therefore T satisfies (ii). O

Now we can prove Lemma 4.4:

Proof of Lemma 4.4. Define p; : H — F,ideals as follows: Fix h € H. First, by
induction on n € w, take ¥, as ¥y = h(@trivial, 0) and P41 = h(1n,n). Then
Y = U, e, ¥n is an unbounded submeasure on w. Let p (h) = Fin(¢)).

Next we shall define p_ : F,ideals — H. Fix an F,-ideal Z. Let p_(Z) € H
be as follows: Take a submeasure ¢ on w with Z = Fin(yp). Then, by induction
on n € w, take an increasing sequence (s, : n € w) in w so that sg = 0 and
©(Sn+1\8n) > n. Let ¢, = @[ P(s,) for each n € w. Note that v, 11 € ®(p,,n).
Now, for each (¢,n) € ® x w let p_(Z)(1p,n) € (1, n) be the one obtained by
applying Lemma 4.5 for ¢,,, 1, n and ¢,,1. That is, for any ¢ € ®(¢,n)
with p_(Z) (), n) <y 1, any function 7 : §(¢p) — §(¢,) and any ¢ € Q¢ with

¥ < (¢n + q) o 7, there exists a function 7 : §(¢)) — 6(pn+1) such that
(i) 7 extends 7, and 7[3()) \ 6(v)] C 8(2n+1) \ 3(n);
(i) ¥ < (pnt1+q) o7

We show that p = (p—, p+) is a morphism from (H, <°) to (Fyideals, <xp).
Suppose that Z € F,ideals, h € H and p_(Z) <° h. We must show that
T <k p+(h).

Let ¢ and ¢, be as in the definition of p_(Z), and let ¥ and ,, be as in
the definition of py(h). Because p_(Z) <° h we can take m € w such that

P—(Z)(Yn,n) Dy, h(thn,n) = Pp4q for all n > m. Let ¢ = ¢, (6()), and take
an arbitrary function 7, : 6(¢m) — 6(om). Note that ¥, < (©m + ) © T
Then, by the construction of p_(Z), for each n > m we can inductively take
Tn : 0(n) = 0(py) so that

() Tns1 extends 7, and 741 [0(n11) \ 0(¢n)] S 0(pni1) \ 0(on),

(i) Yns1 < (@nt1+ ) © Tyt

Then 7 = U, o\ m Tn 1S a finite to one function from w to w, and ¢ < (¢ +g)or.
Therefore Z = Fin(¢) <xp Fin(¢)) = p+(h) by Lemma 2.3. O

We have proved Proposition 4.1. Then, as we mentioned before, it suffices
for Theorem 2 to prove the following:

Proposition 4.6. (w*,<*) < (summable ideals, F,ideals, <g).

Proof. First we define p_ : w* — summable ideals. Fix f € w¥. Take a partition
(A, : n € w) of w into successive finite intervals such that

(i) min A, > f(n) for all n € w\ {0},

11



(i) |An| is a multiple of 2" for all n € w,
(ili) |An| > 2" |A,/| for all n’,n € w with n’ < n.

Then let p : w — Q>0 be such that p(k) = 1/|A,| for each k € A, and let ¢
be the measure induced by p. Here note that ¢(A,) = 1 for each n. So ¢ is
unbounded. Let p_(f) = Fin(p) = {X Cw: >,y p(n) < oo}.

Next we define p; : Fyideals — w*. Suppose that J € Fyideals. Take an
unbounded submeasure ¥ on w such that Fin(¢)) = J. Then define p4(J) € w®
so that

(iv) P(p+(T)(n+ 1)\ p(T)(n)) = n?(2" +1).

We show that p = (p—, p+) is a morphism from (summable ideals, Fi;ideals,
<k) to (w¥,<*). Take an arbitrary F,-ideal J with an unbounded submeasure
¢ such that Fin(¢) = J, and take an arbitrary f € w®. Assuming that f £*
p+(J), we show that p_(f) €x J.

For this take an arbitrary function 7 : w — w. We must find C' C w such
that C € p_(f) and 771[C] ¢ J. Let (A, : n € w) and ¢ be as in the definition
of p_(f). It suffices to find C' C w such that $(C) < oo and (7~ L[C]) = occ.
We may assume that such a finite C' does not exists.

First we claim that there are unboundedly many n € w with ¥(A4,) >
n(2"+41): Take an arbitrary m € w. We will find n > m with ¥/(4,) > n(2"+1).
Because f £* p;(J), we can take fi > m such that

minA, o < pe(T)@R) < pe(D)A+1) < fla+1).

Note that p (7)(n+ 1) \ p+(J)(72) is included in [J{A, : m <n < n} by (i).
Then, because v is a submeasure, there is n with m < n < n such that

Yo (T + 1)\ p4 () (@) ﬁ252ﬁ+1)
> n2"+1) > n2"+1).

Y(An)

v

Here the second inequality follows from (iv).
By the claim above we can inductively take m;,n; € w for each ¢ € w so that

o m; <n; < Mit1,
o S U A sm < mid) < i
o U(An) > m(2 +1),
o 7[An,] CU{Am :m <mipi}.
Let Al = A,, \ 7 HU{An : m < m;}]. Then we have the following:
(v) 7[AL] C U{Am :mi <m <mypa}.

(vi) $(A7,) > ni(2™ + 1) —ng =n; - 2™,

12



For each i € w we will find C; C [J{A : m; <m < myy1} so that

(vi) ¢(C;) < P

(viii) ¢(r7[Ci]) > ns.
Suppose that we could take such Cj’s. Let C = J;c, Ci. Then (vii) implies

that ¢(C) < oo, and (viii) implies that ¢)(7~[C]) = co. So C is as desired.
The construction of C;’s is as follows: Fix i € w. Let

M-—={m:m;<m<n;}, Mr={m:n;i<m<m1},
B =U{4mn :me M}, Bt =U{An :me M},
A =77 B7|NnA, , AT =77BTIN A, .

Here note that A~UAT = A], by (v). First let C;NB™ be 7[AT]. Next we define
C; N B~. By (ii), for each m € M~ we can take a partition (A4,,; :j < 2™) of
A, such that (A, ;) = |Am ;l/|Am| =1/2™. For each j < 2" let

Bj = U{A7n,j tme M & 2™ >]} .

Note that (B; : j < 2") is a partition of B~. So A~ C [J{r7}[B,] : j < 2™},
and thus A7, C {77 ![Bj]UAT : j <2"}. Then we can take j* < 2" with

: - P(A5,)
(IX) 1/)(7’ 1[B]*] UA+) Z T Z n;.
Let C; N B~ be Bj*.

We must check that C; satisfies (vii) and (viii). Note that (viil) immediately
follows from (ix) and the construction of C;. We will check (vii). Recall that
@(Ap,;) =1/2™ for each m € M~ and j < 2™. Thus

1

P(CiNBT) = @(Br) < Y oo

meM—

Note also that if m > ny, then |A,,,|/|An| < 1/2™ by (iii). So

ATIN A
,NBT) = ‘NA,) = [TIAT] N A
p(C; N BY) > e(CinAy) > .
meM+ meM+
| Ay, | 1
< = < — .
< oy ooy L
meM+ meM~+
Then
1 1
P(C) < D ow = gmoT
m>m;
This completes the proof. O
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5 Questions

We end this paper with several questions.

In Section 3 we have proved that Fjideals and Analytic Pideals are upward
directed with respect to <x and <kg. The first question is on the upward
directedness of other families of ideals. Let Borel ideals be the family of all
Borel ideals. (Borel ideals, <) is known to be upward directed. However, it
seems to be an open problem whether (Borel ideals, <xp) is upward directed.
(See [4].) It also seems to be an open problem whether (summable ideals, <k)
and (summable ideals, <kp) are upward directed.

Question 5.1. 3
(1) Is (Borel ideals, <xp) upward directed?
(2) Are (summable ideals, <k) and (summable ideals, <kp) upward directed?

The second question is on the cofinal types of Analytic Pideals and Borel ideals
with respect to <k and <kp. Recall that ||(P, <p)]| is the least cardinality of
a cofinal subfamily of (P,<p) and that ||(P,<p)"| is that of an unbounded
subfamily.

Question 5.2.

(1) How large are ||(Analytic Pideals, <k)|, |(Analytic Pideals, <kg)|,
| (Analytic Pideals, <x)*|| and ||(Analytic Pideals, <gxg)*|/# 4

(2) How large are |(Borel ideals, <k)||, ||(Borel ideals, <kp)||, ||(Borel ideals,
<x)*|| and ||(Borel ideals, <xp)=*||?

Here we make a remark on the above question. It follows from Theorem 2
that summable ideals is unbounded in (F,ideals, <) and (Fyideals, <xp). But
this is not the case for (Analytic Pideals, <k). Let Z be the density zero ideal,
that is,

AN
Z:{ACw:lim | n|:0}.
n—00 n
Z is an analytic P-ideal, and the following is known:
Theorem 5.3 (Herndndez-Hrusék [3]). Z <k Z for all summable ideals T.

It is known that Z plays an important role in (Analytic Pideals, <k). The
following theorem may be useful to investigate ||(Analytic Pideals, <gk)| and
| (Analytic Pideals, <x)*|:

3This question is positively answered by the second author. See Sakai [7].
41t is shown by the second author that there is the largest analytic P-ideal with respect to
the Katétov-Blass order. See Sakai [8].
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Theorem 5.4 (Measure Dichotomy, Hrusék [4]). Let Z be an analytic P-ideal.
Then, either T <k Z, or there is X € TT such that S <x Z | X, where S is the
ideal on the countable set

Q= {A € Clop(2¥) : M(A) = ;}

generated by the sets of the form I, = {A € Q : x € A} for x € 2¥. Here A
denotes the standard Haar measure on 2%.

The last question is on the existence of a Laflamme family. As we mentioned
at the introduction, Laflamme [5] constructs a Laflamme family under CH, and
it is not yet known whether the existence of a Laflamme family is provable in
ZFC. Actually we can construct a Laflamme family if the pseudo intersection
number p is greater than or equal to |F,ideals|, which is equivalent to p = ¢
because | Fyideals| = ¢

Proposition 5.5. If p = ¢, then a Laflamme family exists.

Proof. Assume that p = ¢. Take an enumeration (Z, : « < ¢) of F,ideals. By
induction on « < ¢ we will take an infinite A, C w so that

o A, is almost disjoint from Ag for any 5 < a,
o {Ag:B<a} LIy,
e w\ Uge, Ap is infinite for all finite u C o + 1.

Note that if we could construct {A, : @ < ¢} as above, then, by extending it to
a mad family, we would obtain a Laflamme family. We will use the fact, due to
Bell [1], that if P is a o-centered poset, and D is a family of dense subsets of P
with |D| < p, then there is a filter G C P intersecting with every element of D.

Suppose that o < ¢ and that (Ag : < «) has been taken. Let P be the poset
of all pairs (a,u) such that a and u are finite subsets of w and «, respectively.
(a,u) < (b,v) inPifa Db, and (a\b)N Az =0 for all § € v. Note that P is
o-centered. For each 8 < o and n < w let

Dg:{(a,u)e]P’:Beu}, D} ={(a,u) € P: maxa >n} .

Then Dg is clearly dense in P, and so is D} because w \ ., A« is infinite for
all finite u C a.

First suppose that {Ag : 8 < a} € Z,. In this case take a filter G C P
intersecting with D% and D} for all B < a and n < w. We can take such G
because o < p. Then A’ = (J{a : Ju, (a,u) € G} is an infinite subset of w which
is almost disjoint from Ag for every 8 < a. Let A, be an infinite co-infinite
subset of A’. Then it is easy to check that A, is as desired.

Next suppose that {As : 8 < a} CZ,. Let ¢ be an unbounded submeasure
on w with Fin(¢) = Z,. Note that ¢(w \ Uge, Ag) = oo for any finite u C o
because {Ap : 8 < a} CZ,. Then

acu

D2 = {(a,u) € P: (a) > n}
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is dense in P for all n < w. Take a filter G C P intersecting with Dg7 D}L and
D2 for all B < a and all n < w, and let A’ = J{a : Ju, (a,u) € G}. Then
P(A") = oo, that is, A’ ¢ Z,. Because Z, is an ideal, we can take an infinite
co-infinite subset A, of A" with A, ¢ Z,. Then A, is as desired. O

Note that p > ||(Fideals, C)|| is enough to construct a Laflamme family,
because it suffices to take care of a cofinal subfamily of (Fyideals, C) instead of
all F,-ideals. But this assumption is also equivalent to p = ¢ by Proposition
1.1. Can we construct a Laflamme family under p > ||(Fyideals, <x)| or p >
||(F,ideals, <kp)||? This is equivalent to the following by Corollary 3:

Question 5.6. Does p =0 imply the existence of a Laflamme family?
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