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Abstract

We study the structures (Fσ ideals,≤K) and (Fσ ideals,≤KB), where
Fσ ideals is the family of all Fσ-ideals over ω, and ≤K and ≤KB denote
the Katětov and Katětov-Blass orders on ideals. We prove the following:

• (Fσ ideals,≤K) and (Fσ ideals,≤KB) are upward directed.

• The least cardinalities of cofinal subfamilies of (Fσ ideals,≤K) and
(Fσ ideals,≤KB) are both equal to d. Moreover those of unbounded
subfamilies are both equal to b.

• The family of all summable ideals is unbounded in (Fσ ideals,≤K)
and (Fσ ideals,≤KB).

1 Introduction

In this paper an ideal means a proper ideal over ω including all finite subsets of
ω. By identifying subsets of ω with their characteristic functions, an ideal can
be naturally seen as a subset of the Cantor space 2ω. An Fσ-ideal is an ideal
which is Fσ as a subset of 2ω. Let Fσ ideals denote the family of all Fσ-ideals.
A typical example of an Fσ-ideal is a summable ideal: An ideal I is called a
summable ideal if there exists a function p : ω → Q≥0 with

∑
k∈ω p(k) = ∞

such that

I =

{
A ⊂ ω :

∑
k∈A

p(k) <∞

}
,

where Q≥0 denotes the set of all non-negative rational numbers. 1 The family
of all summable ideals is denoted by summable ideals.

In [5], Laflamme tries to destroy mad families with least damages and de-
velops two methods for diagonalizing Fσ-filters. As one of results, he proves
that under CH there exists a mad family A such that A is not included in any
Fσ-ideal. Such a mad family is called a Laflamme family. It is not yet known
whether the existence of a Laflamme family is provable in ZFC.

To construct a Laflamme family under weaker assumptions than CH, it may
look important to investigate the structure (Fσ ideals,⊆), because it is enough

1It is usual to define summable ideals with p : ω → R≥0. Given p : ω → R≥0, choose

p∗ : ω → Q≥0 such that |p(n)− p∗(n)| ≤ 1
2n

for n ∈ ω. Then
{
A ⊂ ω :

∑
n∈A p(n) < ∞

}
={

A ⊂ ω :
∑

n∈A p∗(n) < ∞
}
.
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to take care of a cofinal subfamily of (Fσ ideals,⊆) instead of all Fσ-ideals. (See
Section 5 for more details.) But this does not seem to be so useful because any
cofinal subfamily has the same cardinality as the whole Fσ ideals:

Proposition 1.1. The cardinality of any cofinal subfamily of (Fσ ideals,⊆) is
equal to c.

Proof. Let A be an almost disjoint family with cardinality c. For each A ∈ A
let IA be the ideal on ω generated by ω \ A (and all finite subsets of ω). It is
easy to see that IA is an Fσ-ideal.

Note that for any distinct A,B ∈ A there is no (proper) ideal I with I ⊇
IA, IB. (If IA, IB ⊆ I, then I ∋ (ω \A)∪ (ω \B) = ω \ (A∩B), and so ω ∈ I.)
Hence the cardinality of any cofinal subfamily of (Fσ ideals,⊆) is greater than
or equal to |A| = c.

The Katětov order ≤K and the Katětov-Blass order ≤KB on ideals are re-
finements of the relation ⊆, which are defined as follows:

• I ≤K J if there exists a function τ : ω → ω such that τ−1[A] ∈ J for all
A ∈ I.

• I ≤KB J if there exists a finite to one function τ : ω → ω such that
τ−1[A] ∈ J for all A ∈ I.

Notice that for all ideals I and J , I ⊂ J implies I ≤KB J , and I ≤KB J
implies I ≤K J . So a mad family A is a Laflamme family if there is no Fσ-ideal
above A with respect to ≤K. To construct a Laflamme family under weaker
assumptions than CH, it may be helpful to study the structures (Fσ ideals,≤K)
and (Fσ ideals,≤KB).

In this paper we study basic properties of the structures (Fσ ideals,≤K) and
(Fσ ideals,≤KB). First we prove the following:

Theorem 1. (Fσ ideals,≤K) and (Fσ ideals,≤KB) are upward directed.

Next we investigate the cofinal types of (Fσ ideals,≤K) and (Fσ ideals,≤KB).
For this we use the notion of generalized Galois-Tukey connections introduced
by Vojtáš [10]. First we recall them. In this paper we follow the formulation
and terminology of Blass [2]:

Let A = (A−, A+, A) and B = (B−, B+, B) be triples such that A is a binary
relation between A− and A+ and B is a binary relation between B− and B+.
A morphism from A to B is a pair ρ = (ρ−, ρ+) of functions such that

• ρ− : B− → A−,

• ρ+ : A+ → B+,

• for all b ∈ B− and a ∈ A+, ρ−(b)Aa implies bBρ+(a).
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Y ⊆ A+ is said to be A-cofinal if for any x ∈ A− there is y ∈ Y with xAy,
and X ⊆ A− is said to be A-unbounded if for any y ∈ A+ there is x ∈ X with
¬xAy. Note that if ρ = (ρ−, ρ+) is a morphism from A to B, then ρ−[X] is
A-unbounded for any B-unbounded X ⊆ B−, and ρ+[Y ] is B-cofinal for any
A-cofinal Y ⊆ A+.

Let B ⪯ A denote that there is a morphism from A to B. Notice that ⪯ is
transitive. We write A ≡ B if A ⪯ B, and B ⪯ A.

If A− = A+, then A = (A−, A+, A) is simply denoted as (A−, A). So
(ωω,≤∗), (Fσ ideals,≤K) and (Fσ ideals,≤KB) respectively denote (ωω, ωω,≤∗),
(Fσ ideals, Fσ ideals,≤K) and (Fσ ideals, Fσ ideals,≤KB). Define the dual A⊥ of
A = (A−, A+, A) by A⊥ = (A+, A−, A

⊥), where

A⊥ = {(y, x) ∈ A+ ×A− : ¬xAy} .

If ρ = (ρ−, ρ+) witnesses A ⪯ B, then ρ⊥ = (ρ+, ρ−) witnesses B
⊥ ⪯ A⊥.

The norm ∥A∥ is the least cardinality of an A-cofinal subset of A+. Notice
that ∥A⊥∥ is the least cardinality of an A-unbounded subset of A−. Notice also
that if B ⪯ A, then ∥B∥ ≤ ∥A∥, and ∥B⊥∥ ≥ ∥A⊥∥.

Now we present our results. We prove the following:

Theorem 2.

(Fσ ideals,≤K) ≡ (Fσ ideals,≤KB)

≡ (summable ideals, Fσ ideals,≤K) ≡ (summable ideals, Fσ ideals,≤KB)

≡ (ωω,≤∗).

From Theorem 2 we obtain that

∥(Fσ ideals,≤K)∥ = ∥(Fσ ideals,≤KB)∥ = ∥(ωω,≤∗)∥ ,
∥(Fσ ideals,≤K)

⊥∥ = ∥(Fσ ideals,≤KB)
⊥∥ = ∥(ωω,≤∗)⊥∥ ,

which mean the following:

Corollary 3.

(1) The least cardinalities of cofinal subfamilies of (Fσ ideals,≤K) and
(Fσ ideals,≤KB) are both equal to d.

(2) The least cardinalities of unbounded subfamilies of (Fσ ideals,≤K) and
(Fσ ideals,≤KB) are both equal to b.

Moreover from the facts that

(Fσ ideals,≤K) ⪯ (summable ideals, Fσ ideals,≤K) ,

(Fσ ideals,≤KB) ⪯ (summable ideals, Fσ ideals,≤KB) ,

we obtain the following:

Corollary 4. The family of all summable ideals is unbounded in (Fσ ideals,≤K)
and (Fσ ideals,≤KB).
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This paper is organized as follows: We prove Theorem 1 in Section 3, and
Theorem 2 is proved in Section 4. In the proof of these theorems we will use
Mazur’s characterization of Fσ-ideals using submeasures. In Section 2 we review
this characterization and present basic facts on submeasures. In Section 5 we
will present several questions which are relevant to our results.

2 Submeasures and Fσ-ideals

We will use Mazur’s characterization of Fσ-ideals using submeasures. Here we
review this characterization and present basic facts on submeasures.

A submeasure on a set X is a function φ : [X]<ω → Q≥0 with the following
properties:

(i) φ(A) ≤ φ(B) if A ⊆ B. (Monotonicity)

(ii) φ(A ∪B) ≤ φ(A) + φ(B). (Subadditivity)

(iii) φ(∅) = 0.

If φ is a submeasure on X, then X is denoted by δ(φ). Note that there is a
unique submeasure on ∅, which assigns ∅ to 0. Let φtrivial be this submeasure.

If p is a function from X to Q≥0, then the function φ : [X]<ω → Q≥0 defined
by φ(A) =

∑
k∈A p(k) is a submeasure. In fact, this φ is a measure, that is, φ

satisfies (i), (iii) and (iv) below:

(iv) φ(A ∪B) = φ(A) + φ(B) if A and B are disjoint. (Additivity)

We call this φ the measure induced by p.
Let φ be a submeasure on ω. For A ⊆ ω let

φ̂(A) = lim
n→ω

φ(A ∩ n) ∈ R≥0 ∪ {∞} .

We say that φ is unbounded if φ̂(ω) = ∞. If φ is unbounded, then

Fin(φ) = {A ⊆ ω : φ̂(A) <∞} .

is an ideal. 2 Mazur’s characterization of Fσ-ideals is as follows:

Theorem 2.1 (Mazur [6]). The following are equivalent for I:

(i) I is an Fσ-ideal.

(ii) I = Fin(φ) for some unbounded submeasure φ on ω.

2Recall that in this paper an “ideal” means a proper ideal over ω. Unboundedness of φ
assures properness of Fin(φ).

4



In this paper we will use the above theorem without any notice. Next we
present several notions and lemmata on submeasures, which will be used in this
paper.

For submeasures φ0 and φ1 on a set X let

φ0 ≤ φ1
def⇔ φ0(A) ≤ φ1(A) for all A ∈ [X]<ω.

Moreover for submeasures φ0 on X0 and φ1 on X1 let φ0 ⋏ φ1 be the function
on [X0 ∪X1]

<ω defined as

φ0 ⋏ φ1(A) = min{φ0(A0) + φ1(A1) : A0 ∪A1 = A, A0 ⊆ X0, A1 ⊆ X1}

for each A ∈ [X0 ∪X1]
<ω.

Lemma 2.2. Let φ0 and φ1 be submeasures on sets X0 and X1, respectively,
and let φ = φ0 ⋏ φ1.

(1) φ is a submeasure on X0 ∪X1.

(2) φ↾ [X0]
<ω ≤ φ0, and φ↾ [X1] ≤ φ1. Hence if X0 = X1, then φ ≤ φ0, φ1.

(3) If X ⊆ X0∩X1, and φ0 ↾ [X]<ω ≤ φ1 ↾ [X]<ω, then φ↾ [X]<ω = φ0 ↾ [X]<ω.

(4) φ↾ [X0 \X1]
<ω = φ0 ↾ [X0 \X1]

<ω, and φ↾ [X1 \X0]
<ω = φ1 ↾ [X1 \X0]

<ω.

Proof. (1) Clearly φ(∅) = 0. We check the monotonicity and the subadditivity.
First we check the monotonicity. Suppose that A ⊆ B ∈ [X0 ∪X1]

<ω. Take
B0 ⊆ X0 and B1 ⊆ X1 such that B0 ∪ B1 = B and φ(B) = φ0(B0) + φ1(B1).
Let Ai = A ∩Bi for each i = 0, 1. Note that A = A0 ∪A1. Then

φ(A) ≤ φ0(A0) + φ1(A1) ≤ φ0(B0) + φ1(B1) = φ(B) ,

where the second inequality follows from the monotonicity of φ0 and φ1.
Next we check the subadditivity. Suppose that A,B ∈ [X0 ∪ X1]

<ω. Take
A0, B0 ⊆ X0 and A1, B1 ⊆ X1 such that A0∪A1 = A, φ(A) = φ0(A0)+φ1(A1),
B0 ∪B1 = B and φ(B) = φ0(B0) +φ1(B1). Note that (A0 ∪B0)∪ (A1 ∪B1) =
A ∪B. Then

φ(A ∪B) ≤ φ0(A0 ∪B0) + φ1(A1 ∪B1)

≤ φ0(A0) + φ0(B0) + φ1(A1) + φ1(B1) = φ(A) + φ(B) ,

where the second inequality follows from the subadditivity of φ0 and φ1.

(2) By symmetry it suffices to prove the former. For any A ∈ [X0]
<ω we have

that φ(A) ≤ φ0(A) + φ1(∅) = φ0(A).

(3) Suppose that A ∈ [X]<ω. Then φ(A) ≤ φ0(A) by (2). Moreover for each
A0, A1 ⊆ A with A0 ∪A1 = A it holds that

φ0(A0) + φ1(A1) ≥ φ0(A0) + φ0(A1) ≥ φ0(A) .
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So φ(A) ≥ φ0(A). Therefore φ(A) = φ0(A).

(4) It suffices to prove the former by symmetry. Suppose that A ∈ [X0 \X1]
<ω.

Note that A0 = A and A1 = ∅ if A0 ∪ A1 = A, A0 ⊆ X0 and A1 ⊆ X1. Then
φ(A) = φ0(A) + φ1(∅) = φ0(A).

Let φ be a submeasure on a set X. For q ∈ Q≥0 let φ + q be the function
on [X]<ω such that

φ+ q (A) =

{
φ(A) + q if A ̸= ∅,
0 if A = ∅.

It is easy to check that φ+ q is a submeasure on X. For a set Y and a function
τ : Y → X let φ ◦ τ denote the pullback of φ by τ , that is, φ ◦ τ is a function
on [Y ]<ω such that

φ ◦ τ (A) = φ(τ [A]) .

Again it is easy to see that φ ◦ τ is a submeasure on Y . The following lemma is
clear from the definition of the Katětov and the Katětov-Blass orders:

Lemma 2.3. Suppose that φ and ψ are unbounded submeasures on ω.

(1) If there exist a function τ : ω → ω and q ∈ Q≥0 such that ψ ≤ (φ+ q) ◦ τ ,
then Fin(φ) ≤K Fin(ψ).

(2) If there exist a finite to one function τ : ω → ω and q ∈ Q≥0 such that
ψ ≤ (φ+ q) ◦ τ , then Fin(φ) ≤KB Fin(ψ).

3 Directedness

In this section first we prove Theorem 1. After that we also observe that the
family of all analytic P-ideals is upward directed with respect to ≤K and ≤KB.

Theorem 1. (Fσ ideals,≤K) and (Fσ ideals,≤KB) are upward directed.

Proof. It suffices to prove that (Fσ ideals,≤KB) is upward directed because ≤KB

is coarser than ≤K. Suppose that I0 and I1 are Fσ-ideals. We must find an
Fσ-ideal J such that J ≥KB I0, I1.

For each i = 0, 1 let φi be an unbounded submeasure on ω such that Ii =
Fin(φi). By induction on n ∈ ω take sn ∈ ω so that s0 = 0 and so that
φi(sn+1 \ sn) > n for both i = 0, 1. Let

An = (sn+1 \ sn)× (sn+1 \ sn) = {(k, l) : sn ≤ k, l < sn+1}

for each n ∈ ω, and let X =
∪
n∈ω An. We will construct a submeasure ψ on

X and finite to one functions τi : X → ω for i = 0, 1 such that ψ(An) > n
for each n ∈ ω and such that ψ ≤ φi ◦ τi for both i = 0, 1. If such ψ and τi’s
are constructed, then ψ can be identified with an unbounded submeasure on ω
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through a bijection between X and ω, and J := Fin(ψ) ≥KB I0, I1 by Lemma
2.3.

For each i = 0, 1 let τi : X → ω be the i-th projection, that is, τ0(k, l) = k
and τ1(k, l) = l for (k, l) ∈ X. Note that both τ0 and τ1 are finite to one. Let

ψ = (φ0 ◦ τ0)⋏ (φ1 ◦ τ1) .

By Lemma 2.2, ψ is a submeasure onX, and ψ ≤ φi◦τi for i = 0, 1. It remains to
show that ψ(An) > n for each n ∈ ω. Fix n ∈ ω, and suppose that B0∪B1 = An.
It suffices to show that φ0 ◦ τ0(B0) + φ1 ◦ τ1(B1) > n. First note that either
τ0[B0] = sn+1\sn, or τ1[B1] = sn+1\sn. This is because if ki ∈ (sn+1\sn)\τi[Bi]
for i = 0, 1, then (k0, k1) ∈ An\(B0∪B1), which contradicts that An = B0∪B1.
Recall also that φi(sn+1 \ sn) > n for both i = 0, 1. So either φ0 ◦ τ0(B0) > n,
or φ1 ◦ τ1(B1) > n. Hence φ0 ◦ τ0(B0) + φ1 ◦ τ1(B1) > n.

Next we observe that the family of all analytic P-ideals, denoted as Analytic
Pideals, is also upward directed with respect to ≤K and ≤KB.

First we briefly review analytic P-ideals: An ideal I is called a P-ideal if
for every countable subset C of I, there exists A ∈ I such that C ⊆∗ A for
every C ∈ C. It is known, due to Solecki [9], that Analytic P-ideals have
a similar characterization to Fσ-ideals. To present this characterization, we
prepare notation. A submeasure φ on ω is said to be bounded if φ̂(ω) <∞. For
a submeasure φ on ω let

Exh(φ) =
{
X ⊆ ω : lim

n→ω
φ̂(X \ n) = 0

}
.

Note that Exh(φ) is an ideal if limn→ω φ̂(ω \ n) > 0. Exh(φ) is called the
exhaustive ideal of φ. The characterization of analytic P-ideals is as follows:

Theorem 3.1 (Solecki [9]). The following are equivalent for I:

(i) I is an analytic P-ideal.

(ii) I = Exh(φ) for some bounded submeasure φ on ω with limn→ω φ̂(ω \n) >
0.

We prove the following:

Proposition 3.2. (Analytic Pideals,≤K) and (Analytic Pideals,≤KB) are up-
ward directed.

Proof. The proof is almost the same as that of Theorem 1. Suppose that I0
and I1 are analytic P-ideals. It suffices to find an analytic P-ideal J with
I0, I1 ≤KB J .

For each i = 0, 1, let φi be a bounded submeasure on ω such that Ii =
Exh(φi). Let ci = limn→ω φ̂(ω \ n) > 0. By induction on n ∈ ω, take sn ∈ ω
so that s0 = 0 and φi(sn+1 \ sn) ≥ ci − 1

2n for both i = 0, 1. Let An =
(sn+1 \sn)× (sn+1 \sn) for each n ∈ ω, and let X =

∪
n∈ω An. It suffices to find

a submeasure ψ on X and finite to one functions τi : X → ω for i = 0, 1 such

7



that lim infn→ω ψ(An) > 0 and ψ ≤ φi ◦ τi: Then ψ can be identified with a

bounded submeasure on ω such that limn→ω ψ̂(ω\n) > 0. Here the boundedness
follows from that of φ0, and the fact that ψ ≤ φ ◦ τ0. Then J = Exh(ψ) is an
analytic P-ideal, and J ≥KB I0, I1.

For each i = 0, 1 let τi : X → ω be the i-th projection, and let

ψ = (φ0 ◦ τ0)⋏ (φ1 ◦ τ1) .

Then τi is finite to one, ψ is a submeasure on X, and ψ ≤ φi ◦ τi. Moreover for
each n ∈ ω, by the same argument as in the proof of Theorem 1,

ψ(An) ≥ min{φ0(sn+1 \ sn), φ1(sn+1 \ sn)} = min{c0, c1} −
1

2n
.

Thus lim infn→∞ ψ(An) ≥ min{c0, c1} > 0.

4 Cofinal types

In this section we prove Theorem 2:

Theorem 2.

(Fσ ideals,≤K) ≡ (Fσ ideals,≤KB)

≡ (summable ideals, Fσ ideals,≤K) ≡ (summable ideals, Fσ ideals,≤KB)

≡ (ωω,≤∗).

Note that the pair of the identity maps on Fσ ideals is a morphism from
(Fσ ideals,≤KB) to (Fσ ideals,≤K) because ≤K refines ≤KB. Similarly, the pair
of the identity maps is a morphism from (summable ideals, Fσ ideals,≤KB) to
(summable ideals, Fσ ideals,≤K). Note also that the pair of the identity maps
is a morphism from (Fσ ideals,≤K) to (summable ideals, Fσ ideals,≤K) and from
(Fσ ideals,≤KB) to (summable ideals, Fσ ideals,≤KB). So we have the following:

(summable ideals, Fσ ideals,≤K) ⪯ (summable ideals, Fσ ideals,≤KB)

⪯ ⪯

(Fσ ideals,≤K) ⪯ (Fσ ideals,≤KB)

Hence it suffices to prove the following:

• (Fσ ideals,≤KB) ⪯ (ωω,≤∗).

• (ωω,≤∗) ⪯ (summable ideals, Fσ ideals,≤K).

These are proved in Proposition 4.1 and 4.6. First we prove the former:

Proposition 4.1. (Fσ ideals,≤KB) ⪯ (ωω,≤∗).
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We will define an upward directed (H,≤◦) and prove that

(Fσ ideals,≤KB) ⪯ (H,≤◦) ⪯ (ωω,≤∗) .

First we define (H,≤◦). Let Φ be the set of all submeasures φ with δ(φ) ∈ ω.
Note that Φ is countable. For φ ∈ Φ and n ∈ ω let Φ(φ, n) be the set of all
φ̄ ∈ Φ such that

(i) φ̄ extends φ, i.e. φ̄↾P(δ(φ)) = φ,

(ii) φ̄(δ(φ̄) \ δ(φ)) > n.

Then let

H = {h ∈ ΦΦ×ω : ∀(φ, n) ∈ Φ× ω, h(φ, n) ∈ Φ(φ, n)} .

To define the order ≤◦, first define an order �φ on Φ(φ, n) as follows: φ̄�φ φ̄
′

if there exists a function τ̄ : δ(φ̄′) → δ(φ̄) such that

(i) τ̄ ↾δ(φ) = id, and τ̄ [δ(φ̄′) \ δ(φ)] ⊆ δ(φ̄) \ δ(φ),

(ii) φ̄′ ≤ φ̄ ◦ τ̄ .

It is easy to see that �φ is transitive. Then for each h, h′ ∈ H let h ≤◦ h′ if
h(φ, n)�φ h

′(φ, n) for all but finitely many (φ, n) ∈ Φ×ω. Note that ≤◦ is also
transitive.

First we show that (H,≤◦) is upward directed. This immediately follows
from the lemma below:

Lemma 4.2. (Φ(φ, n),�φ) is upward directed for all φ ∈ Φ and n ∈ ω.

Proof. The proof is similar as that of Theorem 1. Suppose that φ̄0, φ̄1 ∈ Φ(φ, n).
We must find their upper bound in (Φ(φ, n),�φ). Let s = δ(φ) and s̄i = δ(φ̄i)
for i = 0, 1. Moreover let A = (s̄0 \ s)× (s̄1 \ s). It suffices to find a submeasure
φ̄ on s ∪A and functions τ̄i : s ∪A→ s̄i for i = 0, 1 such that

(i) φ̄ extends φ, and φ̄(A) > n,

(ii) τ̄i ↾s = id, and τ̄i[A] ⊆ s̄i \ s,

(iii) φ̄ ≤ φ̄i ◦ τ̄i.

Let τ̄i ↾ s = id, and let τ̄i ↾A be the i-th projection. Clearly τ̄i satisfies (ii)
above. Let

φ̄ = (φ̄0 ◦ τ̄0)⋏ (φ̄1 ◦ τ̄1) .

Then φ̄ is a submeasure on s∪A satisfying (iii) by Lemma 2.2 (1) and (2). Here
note that (φ̄i ◦ τ̄i)↾P(s) = φ for i = 0, 1. So φ̄ extends φ by Lemma 2.2 (3). It
remains to show that φ̄(A) > n, but this can be proved by the same argument
as in the proof of Theorem 1.
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Using Lemma 4.2, we can easily prove the following:

Lemma 4.3. (H,≤◦) ⪯ (ωω,≤∗).

Proof. We will construct a morphism ρ = (ρ−, ρ+) from (ωω,≤∗) to (H,≤◦).
First take a one to one enumeration ((φi, ni) : i ∈ ω) of Φ × ω. Moreover for
each i ∈ ω take an enumeration (φ̄ij : j ∈ ω) of Φ(φi, ni). For each h ∈ H let

ρ−(h) ∈ ωω be such that h(φi, ni) = φ̄iρ−(h)(i). For each f ∈ ωω let ρ+(f) ∈ H

be such that ρ+(f)(φi, ni) �φi φ̄
i
j for all j ≤ f(i). Note that there exists such

ρ+(f) by Lemma 4.2.
To show that ρ is a morphism from (ωω,≤∗) to (H,≤◦), suppose that h ∈ H,

f ∈ ωω and ρ−(h) ≤∗ f . Note that for each i ∈ ω if ρ−(h)(i) ≤ f(i), then
h(φi, ni)�φi ρ+(f)(φi, ni). So h ≤◦ ρ+(f) because ρ−(h) ≤∗ f .

Next we will prove the following:

Lemma 4.4. (Fσ ideals,≤KB) ⪯ (H,≤◦).

For this we need the following lemma:

Lemma 4.5. Suppose that φ,ψ ∈ Φ. Let n ∈ ω and φ̄ ∈ Φ(φ, n). Then there
is ψ̄∗ ∈ Φ(ψ, n) such that the following holds for all ψ̄ ∈ Φ(ψ, n) with ψ̄∗ �ψ ψ̄:
For any function τ : δ(ψ) → δ(φ) and any q ∈ Q≥0 with ψ ≤ (φ + q) ◦ τ there
exists a function τ̄ : δ(ψ̄) → δ(φ̄) such that

(i) τ̄ extends τ , and τ̄ [δ(ψ̄) \ δ(ψ)] ⊆ δ(φ̄) \ δ(φ),

(ii) ψ̄ ≤ (φ̄+ q) ◦ τ̄ .

Proof. Let s, s̄ and t be δ(φ), δ(φ̄) and δ(ψ), respectively. Moreover let t̄ =
t+ (s̄− s). For each τ : t→ s, let σ̄τ , qτ and ψ̄τ be as follows:

• σ̄τ : t̄→ s̄ is the extension of τ such that σ̄τ (t+ k) = s+ k.

• qτ is the least non-negative rational number such that ψ ≤ (φ + qτ ) ◦ τ .
(We can take such qτ because ψ, φ and τ are all finite.)

• ψ̄τ = ψ ⋏ ((φ̄+ qτ ) ◦ σ̄τ ).

Then ψ̄τ is a submeasure on t̄ by Lemma 2.2 (1). Note that (φ̄ + qτ ) ◦ σ̄τ
extends (φ + qτ ) ◦ τ . So ψ̄τ extends ψ by Lemma 2.2 (3) and the fact that
ψ ≤ (φ+ qτ ) ◦ τ . Moreover, by Lemma 2.2 (4),

ψ̄τ (t̄ \ t) = ((φ̄+ qτ ) ◦ σ̄τ )(t̄ \ t) = φ̄(s̄ \ s) + qτ > n .

Thus ψ̄τ ∈ Φ(ψ, n) for each τ : t→ s.
By Lemma 4.2 there is ψ̄∗ ∈ Φ(ψ, n) such that ψ̄∗�ψ ψ̄τ for all τ : t→ s. We

claim that this ψ̄∗ is as desired. Suppose that ψ̄ �ψ ψ̄
∗, and take an arbitrary

function τ : δ(ψ) → δ(φ) and an arbitrary q ∈ Q≥0 with ψ ≤ (φ+ q) ◦ τ . Then
ψ̄ �ψ ψ̄τ . Let σ̄′ : δ(ψ̄) → δ(ψ̄τ ) be a witness of this relationship, and let τ̄ be
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the composition σ̄τ ◦ σ̄′. Then it is easy to check that τ̄ satisfies (i). Here note
that ψ̄τ ≤ (φ̄+ qτ ) ◦ σ̄τ by Lemma 2.2 (2). So

ψ̄ ≤ ψ̄τ ◦ σ̄′ ≤ ((φ̄+ qτ ) ◦ σ̄τ ) ◦ σ̄′ = (φ̄+ qτ ) ◦ τ̄ .

But qτ ≤ q by the choice of qτ . Therefore τ̄ satisfies (ii).

Now we can prove Lemma 4.4:

Proof of Lemma 4.4. Define ρ+ : H → Fσ ideals as follows: Fix h ∈ H. First, by
induction on n ∈ ω, take ψn as ψ0 = h(φtrivial, 0) and ψn+1 = h(ψn, n). Then
ψ =

∪
n∈ω ψn is an unbounded submeasure on ω. Let ρ+(h) = Fin(ψ).

Next we shall define ρ− : Fσ ideals → H. Fix an Fσ-ideal I. Let ρ−(I) ∈ H
be as follows: Take a submeasure φ on ω with I = Fin(φ). Then, by induction
on n ∈ ω, take an increasing sequence (sn : n ∈ ω) in ω so that s0 = 0 and
φ(sn+1\sn) > n. Let φn = φ↾P(sn) for each n ∈ ω. Note that φn+1 ∈ Φ(φn, n).
Now, for each (ψ, n) ∈ Φ× ω let ρ−(I)(ψ, n) ∈ Φ(ψ, n) be the one obtained by
applying Lemma 4.5 for φn, ψ, n and φn+1. That is, for any ψ̄ ∈ Φ(ψ, n)
with ρ−(I)(ψ, n) �ψ ψ̄, any function τ : δ(ψ) → δ(φn) and any q ∈ Q≥0 with
ψ ≤ (φn + q) ◦ τ , there exists a function τ̄ : δ(ψ̄) → δ(φn+1) such that

(i) τ̄ extends τ , and τ̄ [δ(ψ̄) \ δ(ψ)] ⊆ δ(φn+1) \ δ(φn),

(ii) ψ̄ ≤ (φn+1 + q) ◦ τ̄ .

We show that ρ = (ρ−, ρ+) is a morphism from (H,≤◦) to (Fσ ideals,≤KB).
Suppose that I ∈ Fσ ideals, h ∈ H and ρ−(I) ≤◦ h. We must show that
I ≤KB ρ+(h).

Let φ and φn be as in the definition of ρ−(I), and let ψ and ψn be as in
the definition of ρ+(h). Because ρ−(I) ≤◦ h we can take m ∈ ω such that
ρ−(I)(ψn, n)�ψn h(ψn, n) = ψn+1 for all n ≥ m. Let q = ψm(δ(ψm)), and take
an arbitrary function τm : δ(ψm) → δ(φm). Note that ψm ≤ (φm + q) ◦ τm.
Then, by the construction of ρ−(I), for each n ≥ m we can inductively take
τn : δ(ψn) → δ(φn) so that

(i) τn+1 extends τn, and τn+1[δ(ψn+1) \ δ(ψn)] ⊆ δ(φn+1) \ δ(φn),

(ii) ψn+1 ≤ (φn+1 + q) ◦ τn+1.

Then τ =
∪
n∈ω\m τn is a finite to one function from ω to ω, and ψ ≤ (φ+q)◦τ .

Therefore I = Fin(φ) ≤KB Fin(ψ) = ρ+(h) by Lemma 2.3.

We have proved Proposition 4.1. Then, as we mentioned before, it suffices
for Theorem 2 to prove the following:

Proposition 4.6. (ωω,≤∗) ⪯ (summable ideals, Fσ ideals,≤K).

Proof. First we define ρ− : ωω → summable ideals. Fix f ∈ ωω. Take a partition
(An : n ∈ ω) of ω into successive finite intervals such that

(i) minAn ≥ f(n) for all n ∈ ω \ {0},
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(ii) |An| is a multiple of 2n for all n ∈ ω,

(iii) |An| ≥ 2n · |An′ | for all n′, n ∈ ω with n′ < n.

Then let p : ω → Q≥0 be such that p(k) = 1/|An| for each k ∈ An, and let φ
be the measure induced by p. Here note that φ(An) = 1 for each n. So φ is
unbounded. Let ρ−(f) = Fin(φ) =

{
X ⊂ ω :

∑
n∈X p(n) <∞

}
.

Next we define ρ+ : Fσ ideals → ωω. Suppose that J ∈ Fσ ideals. Take an
unbounded submeasure ψ on ω such that Fin(ψ) = J . Then define ρ+(J ) ∈ ωω

so that

(iv) ψ(ρ+(J )(n+ 1) \ ρ+(J )(n)) ≥ n2(2n + 1).

We show that ρ = (ρ−, ρ+) is a morphism from (summable ideals, Fσ ideals,
≤K) to (ωω,≤∗). Take an arbitrary Fσ-ideal J with an unbounded submeasure
ψ such that Fin(ψ) = J , and take an arbitrary f ∈ ωω. Assuming that f ̸≤∗

ρ+(J ), we show that ρ−(f) ̸≤K J .
For this take an arbitrary function τ : ω → ω. We must find C ⊆ ω such

that C ∈ ρ−(f) and τ
−1[C] /∈ J . Let (An : n ∈ ω) and φ be as in the definition

of ρ−(f). It suffices to find C ⊆ ω such that φ̂(C) < ∞ and ψ̂(τ−1[C]) = ∞.
We may assume that such a finite C does not exists.

First we claim that there are unboundedly many n ∈ ω with ψ(An) ≥
n(2n+1): Take an arbitrarym ∈ ω. We will find n > m with ψ(An) ≥ n(2n+1).
Because f ̸≤∗ ρ+(J ), we can take n̄ > m such that

minAm+1 ≤ ρ+(J )(n̄) < ρ+(J )(n̄+ 1) ≤ f(n̄+ 1) .

Note that ρ+(J )(n̄ + 1) \ ρ+(J )(n̄) is included in
∪
{An : m < n ≤ n̄} by (i).

Then, because ψ is a submeasure, there is n with m < n ≤ n̄ such that

ψ(An) ≥ ψ(ρ+(J )(n̄+ 1) \ ρ+(J )(n̄))

n̄−m
≥ n̄2(2n̄ + 1)

n̄−m

≥ n̄(2n̄ + 1) ≥ n(2n + 1) .

Here the second inequality follows from (iv).
By the claim above we can inductively take mi, ni ∈ ω for each i ∈ ω so that

• mi ≤ ni < mi+1,

• ψ̂(τ−1[
∪
{Am : m < mi}]) ≤ ni,

• ψ(Ani
) ≥ ni(2

ni + 1),

• τ [Ani ] ⊆
∪
{Am : m < mi+1}.

Let A′
ni

= Ani \ τ−1[
∪
{Am : m < mi}]. Then we have the following:

(v) τ [A′
ni
] ⊆

∪
{Am : mi ≤ m < mi+1}.

(vi) ψ(A′
ni
) ≥ ni(2

ni + 1)− ni = ni · 2ni .
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For each i ∈ ω we will find Ci ⊆
∪
{Am : mi ≤ m < mi+1} so that

(vii) φ(Ci) ≤
1

2mi−1
,

(viii) ψ(τ−1[Ci]) ≥ ni.

Suppose that we could take such Ci’s. Let C =
∪
i∈ω Ci. Then (vii) implies

that φ̂(C) <∞, and (viii) implies that ψ̂(τ−1[C]) = ∞. So C is as desired.
The construction of Ci’s is as follows: Fix i ∈ ω. Let

M− = {m : mi ≤ m ≤ ni} , M+ = {m : ni < m < mi+1} ,
B− =

∪
{Am : m ∈M−} , B+ =

∪
{Am : m ∈M+} ,

A− = τ−1[B−] ∩A′
ni
, A+ = τ−1[B+] ∩A′

ni
.

Here note that A−∪A+ = A′
ni

by (v). First let Ci∩B+ be τ [A+]. Next we define
Ci ∩ B−. By (ii), for each m ∈ M− we can take a partition (Am,j : j < 2m) of
Am such that φ(Am,j) = |Am,j |/|Am| = 1/2m. For each j < 2ni let

Bj =
∪
{Am,j : m ∈M−& 2m > j} .

Note that (Bj : j < 2ni) is a partition of B−. So A− ⊆
∪
{τ−1[Bj ] : j < 2ni},

and thus A′
ni

⊆
∪
{τ−1[Bj ] ∪A+ : j < 2ni}. Then we can take j∗ < 2ni with

(ix) ψ(τ−1[Bj∗ ] ∪A+) ≥
ψ(A′

ni
)

2ni
≥ ni.

Let Ci ∩B− be Bj∗ .
We must check that Ci satisfies (vii) and (viii). Note that (viii) immediately

follows from (ix) and the construction of Ci. We will check (vii). Recall that
φ(Am,j) = 1/2m for each m ∈M− and j < 2m. Thus

φ(Ci ∩B−) = φ(Bj∗) ≤
∑

m∈M−

1

2m
.

Note also that if m > ni, then |Ani |/|Am| ≤ 1/2m by (iii). So

φ(Ci ∩B+) =
∑

m∈M+

φ(Ci ∩Am) =
∑

m∈M+

|τ [A+] ∩Am|
|Am|

≤
∑

m∈M+

|Ani |
|Am|

≤
∑

m∈M+

1

2m
.

Then

φ(Ci) ≤
∑
m≥mi

1

2m
=

1

2mi−1
.

This completes the proof.
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5 Questions

We end this paper with several questions.
In Section 3 we have proved that Fσ ideals and Analytic Pideals are upward

directed with respect to ≤K and ≤KB. The first question is on the upward
directedness of other families of ideals. Let Borel ideals be the family of all
Borel ideals. (Borel ideals,≤K) is known to be upward directed. However, it
seems to be an open problem whether (Borel ideals,≤KB) is upward directed.
(See [4].) It also seems to be an open problem whether (summable ideals,≤K)
and (summable ideals,≤KB) are upward directed.

Question 5.1. 3

(1) Is (Borel ideals,≤KB) upward directed?

(2) Are (summable ideals,≤K) and (summable ideals,≤KB) upward directed?

The second question is on the cofinal types of Analytic Pideals and Borel ideals
with respect to ≤K and ≤KB. Recall that ∥(P,≤P )∥ is the least cardinality of
a cofinal subfamily of (P,≤P ) and that ∥(P,≤P )⊥∥ is that of an unbounded
subfamily.

Question 5.2.

(1) How large are ∥(Analytic Pideals,≤K)∥, ∥(Analytic Pideals,≤KB)∥,
∥(Analytic Pideals,≤K)

⊥∥ and ∥(Analytic Pideals,≤KB)
⊥∥? 4

(2) How large are ∥(Borel ideals,≤K)∥, ∥(Borel ideals,≤KB)∥, ∥(Borel ideals,
≤K)

⊥∥ and ∥(Borel ideals,≤KB)
⊥∥?

Here we make a remark on the above question. It follows from Theorem 2
that summable ideals is unbounded in (Fσ ideals,≤K) and (Fσ ideals,≤KB). But
this is not the case for (Analytic Pideals,≤K). Let Z be the density zero ideal,
that is,

Z =

{
A ⊂ ω : lim

n→∞

|A ∩ n|
n

= 0

}
.

Z is an analytic P-ideal, and the following is known:

Theorem 5.3 (Hernández-Hrušák [3]). I ≤K Z for all summable ideals I.

It is known that Z plays an important role in (Analytic Pideals,≤K). The
following theorem may be useful to investigate ∥(Analytic Pideals,≤K)∥ and
∥(Analytic Pideals,≤K)

⊥∥:

3This question is positively answered by the second author. See Sakai [7].
4It is shown by the second author that there is the largest analytic P-ideal with respect to

the Katětov-Blass order. See Sakai [8].
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Theorem 5.4 (Measure Dichotomy, Hrušák [4]). Let I be an analytic P -ideal.
Then, either I ≤K Z, or there is X ∈ I+ such that S ≤K I ↾ X, where S is the
ideal on the countable set

Ω =

{
A ∈ Clop(2ω) : λ(A) =

1

2

}
generated by the sets of the form Ix = {A ∈ Ω : x ∈ A} for x ∈ 2ω. Here λ
denotes the standard Haar measure on 2ω.

The last question is on the existence of a Laflamme family. As we mentioned
at the introduction, Laflamme [5] constructs a Laflamme family under CH, and
it is not yet known whether the existence of a Laflamme family is provable in
ZFC. Actually we can construct a Laflamme family if the pseudo intersection
number p is greater than or equal to |Fσ ideals|, which is equivalent to p = c
because |Fσ ideals| = c:

Proposition 5.5. If p = c, then a Laflamme family exists.

Proof. Assume that p = c. Take an enumeration (Iα : α < c) of Fσ ideals. By
induction on α < c we will take an infinite Aα ⊆ ω so that

• Aα is almost disjoint from Aβ for any β < α,

• {Aβ : β ≤ α} ̸⊆ Iα,

• ω \
∪
β∈uAβ is infinite for all finite u ⊆ α+ 1.

Note that if we could construct {Aα : α < c} as above, then, by extending it to
a mad family, we would obtain a Laflamme family. We will use the fact, due to
Bell [1], that if P is a σ-centered poset, and D is a family of dense subsets of P
with |D| < p, then there is a filter G ⊆ P intersecting with every element of D.

Suppose that α < c and that (Aβ : β < α) has been taken. Let P be the poset
of all pairs (a, u) such that a and u are finite subsets of ω and α, respectively.
(a, u) ≤ (b, v) in P if a ⊇ b, and (a \ b) ∩ Aβ = ∅ for all β ∈ v. Note that P is
σ-centered. For each β < α and n < ω let

D0
β = {(a, u) ∈ P : β ∈ u} , D1

n = {(a, u) ∈ P : max a ≥ n} .

Then D0
β is clearly dense in P, and so is D1

n because ω \
∪
α∈uAα is infinite for

all finite u ⊆ α.
First suppose that {Aβ : β < α} ̸⊆ Iα. In this case take a filter G ⊆ P

intersecting with D0
β and D1

n for all β < α and n < ω. We can take such G
because α < p. Then A′ =

∪
{a : ∃u, (a, u) ∈ G} is an infinite subset of ω which

is almost disjoint from Aβ for every β < α. Let Aα be an infinite co-infinite
subset of A′. Then it is easy to check that Aα is as desired.

Next suppose that {Aβ : β < α} ⊆ Iα. Let φ be an unbounded submeasure
on ω with Fin(φ) = Iα. Note that φ̂(ω \

∪
β∈uAβ) = ∞ for any finite u ⊆ α

because {Aβ : β < α} ⊆ Iα. Then

D2
n = {(a, u) ∈ P : φ(a) ≥ n}
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is dense in P for all n < ω. Take a filter G ⊆ P intersecting with D0
β , D

1
n and

D2
n for all β < α and all n < ω, and let A′ =

∪
{a : ∃u, (a, u) ∈ G}. Then

φ̂(A′) = ∞, that is, A′ /∈ Iα. Because Iα is an ideal, we can take an infinite
co-infinite subset Aα of A′ with Aα /∈ Iα. Then Aα is as desired.

Note that p ≥ ∥(Fσ ideals,⊆)∥ is enough to construct a Laflamme family,
because it suffices to take care of a cofinal subfamily of (Fσ ideals,⊆) instead of
all Fσ-ideals. But this assumption is also equivalent to p = c by Proposition
1.1. Can we construct a Laflamme family under p ≥ ∥(Fσ ideals,≤K)∥ or p ≥
∥(Fσ ideals,≤KB)∥? This is equivalent to the following by Corollary 3:

Question 5.6. Does p = d imply the existence of a Laflamme family?
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