
Weak diamond principle

September 3, 2006

Abstract

Devlin-Shelah [1] introduced the weak diamond principle and proved
that it is equivalent with 2ω < 2ω1 . In this note, we give a proof of this
by the argument of Woodin [2] making use of the iteration of ultrapowers.

1 Introduction

In Devlin-Shelah [1], the weak diamond principle was introduced and was proved
to be equivalent with 2ω < 2ω1 :

Definition 1.1 (Devlin-Shelah [1]). Let WD, the weak diamond principle, be
the following principle:

WD ≡ ∀F : <ω12 → 2 ∃F ∈ ω12 ∀G ∈ ω12,

{α ∈ ω1 | F(G ¹ α) = F (α)} is stationary in ω1.

Theorem 1.2 (Devlin-Shelah [1]). WD ⇔ 2ω < 2ω1 .

In this note, we present a proof of Theorem 1.2 by the argument of Woodin
[2] making use of the iteration of ultrapowers.

This note is constructed as follows. First we review the relation between
the ultrapower and the Skolem hull in Section 2. After that, we give a proof of
Theorem 1.2 in terms of the iteration of ultrapowers in Section 3.

2 Ultrapower and Skolem hull

Here we review the relation, noticed by Jensen, between ultrapowers and Skolem
hulls.

We begin with a review of ultrapowers of models. Let ZFC4 be the theory

ZFC − Power Set Axiom + Collection Principle .

If θ is a regular uncountable cardinal then 〈Hθ,∈〉 is a model of ZFC4. As is
usual, a model 〈M,∈〉 of ZFC4 is simply denoted by M .

Suppose that M is a transitive model of ZFC4 and that X ∈ M is a
nonempty set. Then P(X) ∩ M becomes a Boolean algebra with respect to
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the operations ∪, ∩ and \. We call an ultrafilter on P(X)∩M an M -ultrafilter
over X. Note that M -ultrafilter need not belong to M .

Let M be a transitive model of ZFC4, X be a nonempty set in M and U
be an M -ultrafilter over X. Then let Ult(M, U) be the usual ultrapower of M
by U . That is, Ult(M, U) = 〈XM ∩M/ ≡U , EU 〉 where ≡U is the equivalence
relation on XM ∩M and EU is the binary relation on XM ∩M/ ≡U defined as
follows:

• f ≡U g
def⇔ {x ∈ X | f(x) = g(x)} ∈ U (for each f, g ∈ XM ∩M)

• (f)U EU (g)U
def⇔ {x ∈ X | f(x) ∈ g(x)} ∈ U (for each f, g ∈ XM ∩M)

Here (f)U denotes the equivalence class in XM ∩ M represented by f . It is
easy to check that ≡U is an equivalence reltation and that EU is well defined.
Moreover it can be shown straightforward that ÃLos̀’ theorem holds:

Fact 2.1 (ÃLos̀’ theorem). Suppose that M is a transitive model of ZFC4, that
X ∈ M is a nonempty set and that U is an M -ultrafilter over X. Then for each
formula ϕ and each f1, f2, . . . , fn ∈ XM ∩M ,

Ult(M,U) ² ϕ[(f1)U , (f2)U , . . . (fn)U ]
⇔ {x ∈ X | M ² ϕ[f1(x), f2(x), . . . , fn(x)] } ∈ U .

In particular, Ult(M,U) becomes a model of ZFC4. Moreover the ultrapower
map iU : M → Ult(M, U) is the elementary embedding. Here the ultrapower
map iU is the map which maps each a ∈ M to the equivalence class represented
by the constant function with its value a.

Now, further assume that Ult(M, U) is well founded. Let π : Ult(M, U) →
〈N,∈〉 be the transitive collapse and let jU := π ◦ iU . Then jU : M → N is
an elementary embedding. We also call jU : M → N the ultrapower map by U .
Also, for each f ∈ XM ∩M , let [f ]U denote π((f)U ).

Now we turn our attension to the relation between ultrapowers and Skolem
hulls. The following lemma is the key:

Lemma 2.2. Suppose that θ is an uncountable regular cardinal and that N is
an elementary submodel of Hθ. Moreover suppose that X ∈ N is a nonempty
set and that a ∈ X. Let π : N → M be the trasitive collapse and let

U := {A ∈ P(π(X)) ∩M | a ∈ π−1(A)} .

Then U is an M -ultrafilter over π(X). Moreover define k : Ult(M, U) → Hθ as

k((f)U ) := π−1(f)(a)

for each f ∈ π(X)M ∩M . Then k is well defined and an elementary embedding.

Proof. It easily follows from the elementarity of π−1 that U is an M -ultrafilter.
Here we only prove the maximality of U . The others can be proved by the
similar argument.
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Suppose that A, B ∈ P(π(X))∩M and that A∪B = π(X). Then π−1(A)∪
π−1(B) = X by the elementarity of π−1. Hence either a ∈ π−1(A) or a ∈
π−1(B). This means that either A ∈ U or B ∈ U .

Next we show that k is well defined and an elementary embedding. Suppose
that ϕ is an n-ary formula and that f1, f2, . . . , fn ∈ π(X)M ∩M . It suffices to
show that

Ult(M, U) ² ϕ[(f1)U , (f2)U , . . . , (fn)U ] (1)
⇔ Hθ ² ϕ[π−1(f1)(ā), π−1(f2)(ā), . . . , π−1(fn)(ā)] (2)

(If ϕ is the formula “v1 = v2”then this implies well definedness of k).
First, by ÃLos̀’ theorem and the definition of Ua,

(1) ⇔ {x ∈ π(X) | M ² ϕ[f1(x), f2(x), . . . , fn(x)] } ∈ U (3)
⇔ a ∈ π−1({x ∈ π(X) | M ² ϕ[f1(x), f2(x), . . . , fn(x)]}) (4)

But, because π−1 is an elementary embedding from M to Hθ,

π−1({x ∈ π(X) | M ² ϕ[f1(x), f2(x), . . . , fn(x)]})
= {x ∈ X | Hθ ² ϕ[π−1(f1)(x), π−1(f2)(x), . . . , π−1(fn)(x)] }

Hence (4) ⇔ (2).
This completes the proof.

In Lemma 2.2, Ult(M,U) is embedded into Hθ. Hence the following holds:

Corollary 2.3. Suppose that θ, N , X, a, π : N → M and U are as in Lemma
2.2. Then Ult(M,U) is well-founded.

Lemma 2.2 have the following corollary on the Skolem hull:

Corollary 2.4. Suppose that θ, M , X and a are as in Lemma 2.2. Let

N̄ := {f(a) | f ∈ N is a function on X}
Then N̄ is the smallest elementary submodel of Hθ including N ∪ {a}.
Proof. Note that N̄ is the image of the elementary embedding k in Lemma 2.2.
Hence N̄ ≺ Hθ. It is clear that N̄ is the smallest one.

Finally we refine Lemma 2.2 slightly. The following corollary gives the frame-
work of our proof of Theorem 1.2:

Corollary 2.5. Suppose that θ, N , X, a, π : N → M and U be as in Lemma
2.2. Let N̄ be as in Cor. 2.4 and let π̄ : N̄ → M̄ be the transitive collapse.
Then M̄ is also the transitive collapse of Ult(M, U). Let jU : M → M̄ be the
ultrapower map by U . Then the following diagram commutes:

N
id−−−−→ N̄

π

y
yπ̄

M −−−−→
jU

M̄
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Proof. Let k be as in Lemma 2.2. Then π̄ ◦ k : Ult(M, U) → M̄ is isomorphic
and thus it is the transitive collapse of Ult(M, U). Here note also that for each
f ∈ π(X)M ∩M ,

π̄−1([f ]U ) = k((f)U ) = π−1(f)(a) .

To show that the diagram commutes, take an arbitrary p ∈ N . Let cπ(p) be
the constant function on π(X) with its value π(p) and let cp be the constant
function on X with its value p. Then

π̄−1 ◦ jU ◦ π(p) = = π̄−1([cπ(p)]U ) = π−1(cπ(p))(a) = cp(a) = p .

Therefore jU ◦ π(p) = π̄(p̄).
This completes the proof.

3 Proof of Theorem 1.2

We give a proof of Theorem 1.2 in terms of the iteration of ultrapowers. We
show that the negation of WD is equivalent with 2ω = 2ω1 . First we transform
¬WD slightly:

Lemma 3.1. The following are equivalent:

(i) ¬WD

(ii) ∃F : <ω12 → 2 ∀F ∈ ω12 ∃G ∈ ω12,

{α ∈ ω1 | F(G ¹ α) = F (α)} contains a club in ω1.

(iii) ∃F : <ω12 → 2 ∀A ⊆ ω1 ∃G ∈ <ω12,

{α ∈ ω1 | F(G ¹ α) = 1 ⇔ α ∈ A} contains a club in ω1.

Proof. (ii) is the statement obtained by restating (iii) using the characteristic
function F of A. Hence (ii) and (iii) are equivalent.

We prove the equivalence of (i) and (ii). Note that ¬WD is logically equiva-
lent with the following:

∃F : <ω12 → 2 ∀F ∈ ω12 ∃G ∈ ω12,

{α ∈ ω1 | F(G ¹ α) = F (α)} is nonstationary in ω1.

For a function F : <ω12 → 2, let 1−F be the function from <ω12 to 2 such
that (1−F)(g) = 1− (F(g)) for every g ∈ <ω12. Then it is easy to see that if F
witnesses ¬WD then 1−F witnesses (ii). On the other hand, if F witnesses (ii)
then 1 − F witnesses then 1−F witnesses ¬WD. Therefore ¬WD and (ii) are
equivalent.

As we mentioned above, we show that ¬WD is equivalent with 2ω = 2ω1 .
First we prove the easy direction:

Lemma 3.2. 2ω = 2ω1 ⇒ ¬WD.
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Proof. Assume that 2ω = 2ω1 . We show that (ii) of Lemma 3.1 holds.
Define F : <ω12 → 2 as follows. First take a surjection σ : ω2 → ω12. For

each g ∈ <ω12, let

F(g) :=
{

0 · · · if dom g < ω
σ(g ¹ ω)(dom g) · · · otherwise

To show that F witnesses (ii) of Lemma 3.1, take an arbitrary F ∈ ω12.
Then we can take a G ∈ ω12 with σ(G ¹ ω) = F . Then for each α ≥ ω, F(G ¹
α) = F (α) by the construction of F . Hence the set {α ∈ ω1 | F(G ¹ α) = F (α)}
contains a club.

This completes the proof.

We turn our attention to the other direction:

Lemma 3.3. ¬WD ⇒ 2ω = 2ω1 .

The rest of this note is devoted to this lemma. We show that (iii) of Lemma
3.1 implies that 2ω = 2ω1 . From now, assume that WD fails and fix a witness
F of (iii) of Lemma 3.1. Moreover fix a Σ : P(ω1) → ω12 such that the set

{α ∈ ω1 | F(Σ(A) ¹ α) = 1 ⇔ α ∈ A}

contains a club in ω1 for each A ∈ P(ω1).
We introduce an iteration of ultrapowers of which is defined from F (Def.

3.7) and show that every subset of P(ω1) can be taken in the ω1-th iterate of
some countable model of ZFC4 (Lemma 3.9). As we see later, this easily implies
2ω = 2ω1 .

Before starting this, we presents a lemma and its corollary which are the
core of our argument:

Lemma 3.4. Suppose that θ is a sufficiently large regular cardinal, that N is
a countable elementary submodel of Hθ with F , Σ ∈ N . Let π : N → M be the
transitive collapse and let σ := π(Σ). Then

{A ∈ P(ωM
1 ) ∩M | F(σ(A)) = 1}

= {A ∈ P(ωM
1 ) ∩M | N ∩ ω1 ∈ π−1(A)} .

Proof. Take an arbitrary A ∈ P(ωM
1 ) ∩ M . Then, by the elementarity of N ,

there is a club C ⊆ ω1 in N such that

F(Σ(π−1(A)) ¹ α) = 1 ⇔ α ∈ π−1(A)

for every α ∈ C. Note that N ∩ ω1 ∈ C because C ∈ N is a club in ω1. Note
also that Σ(π−1(A)) ¹ (N ∩ ω1) = σ(A). Hence F(σ(A)) = 1 if and only if
N ∩ ω1 ∈ π−1(A).

This implies the lemma.
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Corollary 3.5. Suppose that θ is a sufficiently large regular cadinal, that N is
a countable elementary submodel of Hθ with F , Σ ∈ N . Let π : N → M be the
transitive collapse and let σ := π(Σ). Then

W := {A ∈ P(ωM
1 ) ∩M | F(σ(A)) = 1}

is an M -ultrafilter over ωM
1 . Moreover let

N̄ := {f(N ∩ ω1) | f ∈ N is a function on ω1}

and let π̄ : N̄ → M̄ be the transitive collapse. Then M̄ is isomorphic to
Ult(M, W ). Futhermore if we let jW : M → M̄ be the ultrapower map then
the following diagram commutes:

N
id−−−−→ N̄

π

y
yπ̄

M −−−−→
jW

M̄

An important thing in the above corollary is that, referring to the fixed F ,
W can be defined by σ which is hereditarily countable. This corollary invoke
the following definition of the F-iteration of ultrapowers:

Definition 3.6. We call a pair 〈M, σ〉 with the following properties a F-mouse:

(1) M is a countable transitive model of ZFC4 and M ² “ω1 exists ”.

(2) σ ∈ M and M ² “σ is a function from P(ω1) to ω12 ”.

(3) Wσ := {A ∈ P(ωM
1 ) ∩M | F(σ(A)) = 1} is an M -ultrafilter over ωM

1 .

Definition 3.7. Let 〈M,σ〉 be a F-mouse. Then 〈Mα, σα, jαβ | α ≤ β < ω1〉 is
called an F-iteration of ultrapowers of 〈M, σ〉 if it satisfies the following:

(1) 〈M0, σ0〉 = 〈M,σ〉 and 〈Mα, σ〉 is an F-mouse for each α.

(2) jαβ : Mα → Mβ is an elementary embedding for each α, β and 〈Mα, jαβ |
α ≤ β ≤ ω1〉 is a directed system.

(3) σα = j0α(σ).

(4) If γ is a countable limit ordinal then Mγ is isomorphic to the direct limit
of 〈Mα, jαβ | α ≤ β < γ〉 and, for each α < γ, jαγ : Mα → Mγ is the map
naturally induced from the direct limit map.

(5) Mα+1 is isomorphic to Ult(Mα,Wσα) and jα,α+1 : Mα → Mα+1 is the
ultrapower map by Wσα for each α.

Note 3.8. Suppose that 〈M, σ〉 is an F-mouse. Then an F-iteration of 〈M, σ〉
may not be exists. But if exists then it is unique.
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Lemma 3.9. Suppose that P ∈ P(ω1). Then there is a F-mouse 〈M, σ〉 and
the F-iteration 〈Mα, σα, jαβ | α ≤ β < ω1〉 of ultrapowers of 〈M, σ〉 such that
P is in the transitive collapse of the direct limit of 〈Mα, jαβ | α ≤ β < ω1〉.
Proof. Take an sufficiently large regular cardinal θ and an countable elementary
submodel N of Hθ with F , Σ, P ∈ N . Then by induction on α < ω1, define
〈Nα | α < ω1〉 as follows:

• N0 := N .

• Nα+1 := {f(Nα ∩ ω1) | f ∈ N is a function on ω1} for each α < ω1.

• Nγ =
⋃

α<γ Nα for each limit γ < ω1.

By Cor. 2.4, 〈Nα | α < ω1〉 is a continuous ⊆-increasing sequence of elementary
submodels of Hθ.

For each α < ω1, let πα : Nα → Mα be the transitive collapse and let
σα := πα(Σ). Moreover for each α, β < ω1 with α ≤ β, let jαβ : Mα → Mβ be
πβ ◦ π−1

α .
Then, by Cor. 3.5, it can be easily checked that 〈Mα, σα, jαβ | α ≤ β < ω1〉

is an F-iteration of 〈M0, σ0〉.
Let N∗ :=

⋃
α<ω1

Nα and let π∗ : N∗ → M∗ be the transitive collapse.
Then it is easy to see that M∗ is also the transitive collapse of the direct limit
of 〈Mα, jαβ | α ≤ β < ω1〉. Moreover P = π∗(P ) ∈ M∗ because ω1 ⊆ N∗.

This completes the proof.

From Note 3.8 and Lemma 3.9, we can deduce 2ω = 2ω1 easily:
First note that there are at most 2ω many F-mice. Next, for each F-mouse,

there exists at most one F-iteration of ultrapowers of it. Finally, for each F-
iteration of ultrapowers, the transitive collapse of the direct limit of it has the
size ω1. Hence, by Lemma 3.9,

2ω1 ≤ 2ω × 1× ω1 = 2ω .

Therefore 2ω = 2ω1 .
Now we have proved Lemma 3.3 and this completes the proof of Theorem

1.2.
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