TP and weak square

Hiroshi Sakai

Notation 1. For a regular cardinal $\kappa \geq \omega_2$, an ordinal $\lambda \geq \omega_2$ and an ordinal ξ let $\operatorname{Fn}(\kappa, \lambda, \xi)$ denote the set of all partial functions $f : \lambda \to \xi$ with $|\operatorname{dom}(f)| < \kappa$.

Definition 2. Let κ be a regular cardinal $\geq \omega_2$, λ be an ordinal $\geq \kappa$ and ξ be an ordinal.

- (1) An (κ, λ, ξ) -tree is a family $T \subseteq \operatorname{Fn}(\kappa, \lambda, \xi)$ such that
 - $f \upharpoonright u \in T$ for any $f \in T$ and any $u \subseteq dom(f)$,
 - $T_u := \{ f \in T \mid \text{dom}(f) = u \} \neq \emptyset \text{ for all } u \in [\lambda]^{<\kappa}.$
- (2) $A(\kappa, \lambda, \xi)$ -tree T is said to be thin if $|T_u| < \kappa$ for all $u \in [\lambda]^{<\kappa}$.
- (3) A total function $F: \lambda \to \xi$ is said to be a cofinal branch of a (κ, λ, ξ) -tree T if $F \upharpoonright u \in T$ for all $u \in [\lambda]^{<\kappa}$.
- (4) $\mathsf{TP}(\kappa, \lambda)$ denotes the statement that every thin $(\kappa, \lambda, 2)$ -tree has a cofinal branch.

Remark 3. It is easy to see that $\mathsf{TP}(\kappa, \lambda)$ is equivalent to that every thin $(\kappa, \lambda, \omega)$ -tree has a cofinal branch.

Definition 4. Let κ be a cardinal and λ be a regular cardinal $\geq \kappa$.

- $\Box(\lambda, <\kappa) \equiv \text{There is a sequence } \langle \mathcal{C}_{\alpha} \mid \alpha < \lambda \rangle \text{ with the following properties:}$
 - (i) Each C_{α} is a non-empty family of club subsets of α such that $|C_{\alpha}| < \kappa$.
 - (ii) If $c \in \mathcal{C}_{\alpha}$, and $\beta \in \text{Lim}(c)$, then $c \cap \beta \in \mathcal{C}_{\beta}$.
 - (iii) There are no club $C \subseteq \lambda$ such that $C \cap \alpha \in \mathcal{C}_{\alpha}$ for all $\alpha \in \text{Lim}(C)$.

A sequence $\langle \mathcal{C}_{\alpha} \mid \alpha < \lambda \rangle$ with the properties (i)–(iii) above is called a $\square(\lambda, < \kappa)$ -sequence.

We prove the following:

Theorem 5. Let κ and λ be regular cardinals with $\omega_2 \leq \kappa \leq \lambda$. Then $\mathsf{TP}(\kappa, \lambda)$ implies that $\square(\lambda, <\kappa)$ fails.

The rest of this note is devoted to the proof of Thm.5.

Fix regular cardinals κ and λ with $\omega_2 \leq \kappa \leq \lambda$, and assume that $\square(\lambda, < \kappa)$. We prove that $\mathsf{TP}(\kappa, \lambda)$ fails.

Let $\vec{\mathcal{C}} = \langle \mathcal{C}_{\alpha} \mid \alpha < \lambda \rangle$ be a $\square(\lambda, < \kappa)$ -sequence. We may assume that $\mathcal{C}_{\alpha} = \{\{\alpha - 1\}\}\$ for all successor $\alpha < \lambda$. For each $\alpha < \lambda$ choose $c_{\alpha} \in \mathcal{C}_{\alpha}$ arbitrarily.

We use minimal walks through $\langle c_{\alpha} \mid \alpha < \lambda \rangle$. For each α, β with $\beta < \alpha < \lambda$, taking a finite decreasing sequence $\langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle$ such that

- $\alpha_0 = \alpha$, and $\alpha_n = \beta$,
- $\alpha_{k+1} = \min(c_{\alpha_k} \setminus \beta)$ for each k,

let

$$w(\alpha, \beta) := \langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle,$$

 $d(\alpha, \beta) := n.$

For each $\alpha < \lambda$ let $d_{\alpha} : \alpha \to \omega$ be the function such that $d_{\alpha}(\beta) = d(\alpha, \beta)$. We show that

$$T := \{ d_{\alpha} \upharpoonright u \mid u \in [\lambda]^{<\kappa} \land \alpha \ge \overline{\sup}(u) \}$$

is a thin $(\kappa, \lambda, \omega)$ -tree without cofinal branches. Clearly T is a $(\kappa, \lambda, \omega)$ -tree. Thus it suffices to prove that T is thin and that T has no cofinal branches.

To prove these we need some preparations. For each α, β with $\beta < \alpha < \lambda$ and each $c \in \mathcal{C}_{\alpha}$, taking a finite decreasing sequence $\langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle$ such that

- $\alpha_0 = \alpha$, and $\alpha_n = \beta$,
- $\alpha_1 = \min(c \setminus \beta)$,
- $\alpha_{k+1} = \min(c_{\alpha_k} \setminus \beta)$ for each $k \ge 1$,

let

$$w^c(\alpha, \beta) := \langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle,$$

 $d^c(\alpha, \beta) := n.$

(Thus we use c in the first step instead of c_{α} .) For each $c \in \mathcal{C}_{\alpha}$ let $d_{\alpha}^{c} : \alpha \to \omega$ be the function such that $d_{\alpha}^{c}(\beta) = d^{c}(\alpha, \beta)$.

Remark 6. $c = \{\beta < \alpha \mid d_{\alpha}^{c}(\beta) = 1\}$ for each $\alpha < \lambda$ and each $c \in \mathcal{C}_{\alpha}$.

Lemma 7. Suppose that $\alpha \leq \alpha' < \lambda$ and that α is a limit ordinal. Then there exist $\gamma < \alpha$, $c \in \mathcal{C}_{\alpha}$ and $m \in \omega$ such that $d_{\alpha'}(\beta) = d_{\alpha}^{c}(\beta) + m$ for all $\beta \in \alpha \setminus \gamma$.

Proof. If $\alpha = \alpha'$, then the lemma is clear. Assume that $\alpha < \alpha'$. Let $w(\alpha', \alpha)$ be $\langle \alpha'_0, \alpha'_1, \dots, \alpha'_m \rangle$. The proof splits into two cases.

First suppose that $c_{\alpha'_{m-1}} \cap \alpha$ is not unbounded in α . In this case let

$$\gamma := \max\{\max(c_{\alpha_h'} \cap \alpha) + 1 \mid k \le m - 1\}.$$

Then $\gamma < \alpha$. Moreover it is easy to see that for any $\beta \in \alpha \setminus \gamma$ the walk $w(\alpha', \beta)$ goes through α . More precisely, if $\beta \in \alpha \setminus \gamma$, and $w(\alpha, \beta) = \langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle$, then

$$w(\alpha', \beta) = \langle \alpha'_0, \alpha'_1, \dots, \alpha'_m = \alpha = \alpha_0, \alpha_1, \dots, \alpha_n \rangle$$
.

Therefore $d_{\alpha'}(\beta) = d_{\alpha}^{c_{\alpha}}(\beta) + m$ for all $\beta \in \alpha \setminus \gamma$.

Next suppose that $c_{\alpha'_{m-1}} \cap \alpha$ is unbounded in α . In this case let

$$\gamma := \max\{\max(c_{\alpha'_{\alpha}} \cap \alpha) + 1 \mid k < m - 1\}.$$

Then $\gamma < \alpha$. Note that $c := c_{\alpha'_{m-1}} \cap \alpha \in \mathcal{C}_{\alpha}$ by the coherency. We prove that $d_{\alpha'}(\beta) = d^c_{\alpha}(\beta) + m - 1$ for all $\beta \in \alpha \setminus \gamma$.

Suppose that $\beta \in \alpha \setminus \gamma$. Let $w(\alpha'_{m-1}, \beta) = \langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle$. Then

$$w(\alpha',\beta) = \langle \alpha'_0, \alpha'_1, \dots, \alpha'_{m-1} = \alpha_0, \alpha_1, \dots, \alpha_n \rangle.$$

Moreover

$$w^c(\alpha, \beta) = \langle \alpha, \alpha_1, \dots, \alpha_n \rangle$$

because
$$c_{\alpha'_{m-1}} \cap \alpha = c$$
. Therefore $d_{\alpha'}(\beta) = d^c_{\alpha}(\beta) + m - 1$.

Using Lem. 7 we can easily prove that T is thin:

Proof of that T is thin. By induction on $\overline{\sup}(u)$ we prove that $|T_u| < \kappa$ for every $u \in [\lambda]^{<\kappa}$. If $\overline{\sup}(u) = 0$, i.e. $u = \emptyset$, then this is clear.

Suppose that $\alpha < \lambda$ and that $|T_u| < \kappa$ for every $u \in [\lambda]^{<\kappa}$ with $\overline{\sup}(u) < \alpha$. If α is a successor ordinal, then for every $u \in [\lambda]^{<\kappa}$ with $\overline{\sup}(u) = \alpha$ we have that

$$|T_u| \leq |T_{u \cap \alpha - 1} \times \omega| < \kappa$$

because T_u consists of functions from u to ω . Suppose that α is a limit ordinal. Take an arbitrary $u \in [\lambda]^{<\kappa}$ with $\overline{\sup}(u) = \alpha$. Here recall that $T_u = \{d_{\alpha'} \upharpoonright u \mid \alpha' \geq \alpha\}$. By Lem.7, for each $\alpha' \geq \alpha$ we can take $\gamma < \alpha$, $c \in \mathcal{C}_{\alpha}$ and $m \in \omega$ such that $d_{\alpha'}(\beta) = d_{\alpha}^c(\beta) + m$ for every $\beta \in \alpha \setminus \gamma$. Thus

$$|T_u| \leq \left| \left(\bigcup_{\gamma < \alpha} T_{u \cap \gamma} \right) \times C_{\alpha} \times \omega \right| < \kappa.$$

Finally we prove that T has no cofinal branches:

Proof of that T has no cofinal branches. For the contradiction assume that T has a cofinal branch F. We will construct a club $C \subseteq \lambda$ such that $C \cap \alpha \in C_{\alpha}$ for every $\alpha \in \text{Lim}(C)$. This will contradict that C is a $\square(\lambda, <\kappa)$ -sequence.

For each $m \in \omega$ let

$$C_m := \{ \beta < \lambda \mid F(\beta) = m \}$$
.

We claim the following:

Claim. For each $\alpha \in E_{\leq \kappa}^{\lambda}$ there exist $\gamma < \alpha$, $c \in C_{\alpha}$ and $m \in \omega$ such that $(C_m \cap \alpha) \setminus \gamma = c \setminus \gamma$.

Proof of Claim. Fix $\alpha \in E_{\leq \kappa}^{\lambda}$. Take an unbounded $b \subseteq \alpha$ of order-type $\mathrm{cf}(\alpha)$. Because F is a cofinal branch of T, for each $u \in [\alpha]^{\leq \kappa}$ we can take $\alpha_u \in \lambda \setminus \alpha$ such that $F \upharpoonright u = d_{\alpha_u} \upharpoonright u$. Then by Rmk.6 and Lem.7, for each $u \in [\alpha]^{\leq \kappa}$ with $\overline{\sup}(u) = \alpha$, we can take $\gamma_u \in b$, $c_u \in \mathcal{C}_{\alpha}$ and $m_u \in \omega$ such that

$$(C_{m_u} \cap u) \setminus \gamma_u = (c_u \cap u) \setminus \gamma_u.$$

Then we can take $\gamma \in b$, $c \in \mathcal{C}_{\alpha}$ and $m \in \omega$ such that there are \subseteq -cofinally many $u \in [\alpha]^{<\kappa}$ with $(\gamma_u, c_u, m_u) = (\gamma, c, m)$. Then γ , c and m witness the claim clearly. \square_{Claim}

For each $\alpha \in E_{<\kappa}^{\lambda}$ take $\gamma_{\alpha} < \alpha$, $c_{\alpha}^{*} \in \mathcal{C}_{\alpha}$ and $m_{\alpha} \in \omega$ witnessing the claim above. By Fodor's lemma we can take $\gamma < \lambda$ and $m \in \omega$ such that the set $B_{0} := \{\alpha \in E_{<\kappa}^{\lambda} \mid (\gamma_{\alpha}, m_{\alpha}) = (\gamma, m)\}$ is stationary in λ . Here note that $|\{c_{\alpha}^{*} \cap \gamma \mid \alpha^{*} \in B_{0}\}| < \lambda$ by the coherency of $\vec{\mathcal{C}}$. Therefore we can take $c^{*} \subseteq \gamma$ such that the set $B_{1} := \{\alpha \in B_{0} \mid c_{\alpha}^{*} \cap \gamma = c^{*}\}$ is stationary.

100

$$C := (C_m \setminus \gamma) \cup c^*.$$

Then $C \cap \alpha = c_{\alpha}^*$ for every $\alpha \in B_1$ by the construction of B_1 . Using this fact, it is easy to see that C is club in λ and that $C \cap \alpha \in \mathcal{C}_{\alpha}$ for every $\alpha \in \text{Lim}(C)$. This contradicts that $\vec{\mathcal{C}}$ is a $\square(\lambda, <\kappa)$ -sequence.

This completes the proof of Thm.5.