ω_1 -stationary preserving poset of size ω_1 which is not semi-proper

Hiroshi Sakai

1 Introduction

In this note, we discuss the existence of an ω_1 -stationary preserving poset of size ω_1 which is not semi-proper. First we will prove that the following combinatorial principle \diamondsuit^{++} , which strengthens \diamondsuit^+ , implies the existence of such a poset.

Notation 1.1. For a set M and a well-founded relation E on M let tcol(M, E) denote the transitive collapse of $\langle M, E \rangle$. If $E = \in \cap^2 M$, then we simply write tcol(M) for tcol(M, E).

Definition 1.2. Let \diamondsuit^{++} be the following combinatorial principle:

- $\diamondsuit^{++} \equiv \text{There exists a sequence } \vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle \text{ with the following properties:}$
 - (i) Each K_{α} is a countable set.
 - (ii) For any $A \subseteq \omega_1$ there is a club $C \subseteq \omega_1$ such that both $A \cap \alpha$ and $C \cap \alpha$ belong to K_{α} for each $\alpha \in C$.
 - (iii) The set

$$X_{\vec{K}} := \{ M \in [\mathcal{H}_{\omega_2}]^{\omega} \mid M \cap \omega_1 \in \omega_1 \wedge \operatorname{tcol}(M) = K_{M \cap \omega_1} \}$$
is stationary in $[\mathcal{H}_{\omega_2}]^{\omega}$.

A sequence $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ satisfying the properties (i)-(iii) above is called a \diamondsuit^{++} -sequence.

Proposition 1.3. If \diamondsuit^{++} holds, then there exists an ω_1 -stationary preserving poset of size ω_1 which is not semi-proper.

Prop.1.3 will be proved in Section 2. As for the consistency of \diamondsuit^{++} we will prove the following in Section 3:

Proposition 1.4. \diamondsuit^{++} holds in the constructible universe L.

Proposition 1.5. There exists a poset forcing \diamondsuit^{++} .

Thus we will have the following corollaries:

Corollary 1.6. In L there exists an ω_1 -stationary preserving poset of size ω_1 which is not semi-proper.

Corollary 1.7. There exists a poset forcing the existence of an ω_1 -stationary preserving poset of size ω_1 which is not semi-proper.

2 \diamondsuit^{++} and ω_1 -stationary preserving poset of size ω_1 which is not semi-proper

In this section we prove Prop.1.3. Note that a poset with the $<\omega_2$ -c.c. is semi-proper if and only if it is proper. Thus, it suffices to prove that if \diamondsuit^{++} holds, then there exists an ω_1 -stationary preserving poset of size ω_1 which is not proper. In fact, we will prove the following.

Proposition 2.1. If \diamondsuit^{++} implies holds, then there exists an ω_1 -stationary preserving poset of size ω_1 which does not preserve stationary subsets of $[\mathcal{H}_{\omega_2}]^{\omega}$.

First we slightly improve \diamondsuit^{++} :

Notation 2.2. Let ZFC⁻ denote the axiom system ZFC - Power Set Axiom.

Lemma 2.3. Assume \diamondsuit^{++} . Then there is a \diamondsuit^{++} -sequence $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ with the following properties:

- (iv) \vec{K} is \subseteq -increasing.
- (v) Each K_{α} is a countable transitive model of ZFC^- with $\vec{K} \upharpoonright \alpha \in K_{\alpha}$.

Proof. Let $\vec{K}' = \langle K'_{\alpha} \mid \alpha < \omega_1 \rangle$ be a \diamondsuit^{++} -sequence. By induction on $\alpha < \omega_1$ define $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ as follows: If K'_{α} is a countable transitive model of ZFC^- with $\bigcup_{\beta < \alpha} K_{\beta} \subseteq K'_{\alpha}$ and $\vec{K} \upharpoonright \alpha \in K'_{\alpha}$, then let $K_{\alpha} := K'_{\alpha}$. Otherwise let K_{α} be an arbitrary countable transitive model of ZFC^- with $(\bigcup_{\beta < \alpha} K_{\beta}) \cup K'_{\alpha} \subseteq K_{\alpha}$ and $\vec{K} \upharpoonright \alpha \in K_{\alpha}$.

Then \vec{K} satisfies the properties (iv) and (v) in Lem.2.3. Thus it suffices to show that \vec{K} is a \diamondsuit^{++} -sequence. Clearly \vec{K} satisfies the properties (i) and (ii) in the definition of \diamondsuit^{++} (Def.1.2). Below we check (iii).

Take an arbitrary function $F: [\mathcal{H}_{\omega_2}]^{<\omega} \to \mathcal{H}_{\omega_2}$. We must find $M \in X_{\vec{K}}$ which is closed under F. Because \vec{K}' is a \diamondsuit^{++} -sequence, we can take $M \in X_{\vec{K}'}$ with $M \prec \langle \mathcal{H}_{\omega_2}, \in, \vec{K}, F \rangle$. Then M is closed under F. We show that $M \in X_{\vec{K}}$. Let $\alpha := M \cap \omega_1$. It suffices to show that $\operatorname{tcol}(M) = K_{\alpha}$. First note that $K'_{\alpha} = \operatorname{tcol}(M)$ because $M \in X_{\vec{K}'}$. Thus K'_{α} is a countable transitive model of ZFC^- . Note also that if we let $\tau : M \to K'_{\alpha}$ be the transitive collapse, then $\vec{K} \upharpoonright \alpha = \tau(\vec{K})$. Hence $\bigcup_{\beta < \alpha} K_{\beta} \subseteq K'_{\alpha}$, and $\vec{K} \upharpoonright \alpha \in K'_{\alpha}$. So $K_{\alpha} = K'_{\alpha}$. Therefore $\operatorname{tcol}(M) = K'_{\alpha} = K_{\alpha}$.

Now we present a poset $\mathbb{P}_{\vec{K}}$ which witnesses Prop.2.1:

Definition 2.4. Let $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ be a \diamondsuit^{++} -sequence satisfying the properties (iv) and (v) in Lem.2.3. Then let $\mathbb{P}_{\vec{K}}$ be the poset of all $p \in {}^{<\omega_1} 2$ with $p \in K_{\text{dom}(p)}$. $p \leq q$ in $\mathbb{P}_{\vec{K}}$ if $p \supseteq q$.

Note that \diamondsuit^{++} implies CH. Thus $\mathbb{P}_{\vec{K}}$ has the size ω_1 . So it suffices for Prop.2.1 to prove the following:

Lemma 2.5. Suppose that $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ is a \diamondsuit^{++} -sequence satisfying the properties (iv) and (v) in Lem.2.3.

- (1) $\mathbb{P}_{\vec{K}}$ is ω_1 -stationary preserving.
- (2) $X_{\vec{k}}$ in Def.1.2 defined in V becomes non-stationary in $V^{\mathbb{P}_{\vec{k}}}$.

Before proving Lem.2.5, note the following:

Lemma 2.6. Suppose that $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ is a \diamondsuit^{++} -sequence satisfying the properties (iv) and (v) in Lem.2.3 and that G is $\mathbb{P}_{\vec{K}}$ -generic filter over V. Then $\operatorname{dom}(\bigcup G) = (\omega_1)^V$.

Proof. In V it suffices to show that $\{q \in \mathbb{P}_{\vec{K}} \mid \operatorname{dom}(q) \geq \alpha\}$ is dense. Take an arbitrary $p \in \mathbb{P}_{\vec{K}}$ and an arbitrary $\alpha \in \omega_1 \setminus \operatorname{dom}(p)$. Let q be the function on $\alpha+1$ such that $q \upharpoonright \operatorname{dom}(p) = p$ and such that $q(\beta) = 0$ for all $\beta \in \alpha+1 \setminus \operatorname{dom}(p)$. Then $q \leq p$, and $\operatorname{dom}(q) \geq \alpha$.

Now we prove Lem.2.5:

Proof of Lem.2.5. (1) We work in V. Suppose that S is a stationary subset of ω_1 , that $p \in \mathbb{P}_{\vec{K}}$ and that \dot{C} is a $\mathbb{P}_{\vec{K}}$ -name for a club subset of ω_1 . It suffices to find $p^* \leq p$ and $\alpha^* \in S$ such that $p^* \Vdash ``\alpha \in \dot{C}$ ".

Take a well-order Δ of $\mathbb{P}_{\vec{K}}$. Moreover for each $\alpha < \omega_1$ let

$$\begin{array}{rcl} \mathbb{P}_{<\alpha} &:= & \mathbb{P}_{\vec{K}} \cap {}^{<\alpha} 2 \; , \\ \\ D_{\alpha} &:= & \left\{ q \in \mathbb{P}_{\vec{K}} \mid q \text{ decides } \min(\dot{C} \setminus \alpha) \right\} . \end{array}$$

Note that $\mathbb{P}_{<\alpha} \in K_{\alpha}$ by the construction of $\mathbb{P}_{\vec{K}}$ and the properties (iv) and (v) in Lem.2.3 of \vec{K} . Note also that each D_{α} is a dense open subset of $\mathbb{P}_{\vec{K}}$.

Because \vec{K} is a \diamondsuit^+ -sequence, we can easily take a club $B \subseteq \omega_1$ such that

$$p, \Delta \cap \mathbb{P}_{<\alpha}, \langle D_{\beta} \cap \mathbb{P}_{<\alpha} \mid \beta < \alpha \rangle, B \cap \alpha \in K_{\alpha}$$

for each $\alpha \in B$.

By induction on $\alpha < \omega_1$ define $p_{\alpha} \in \mathbb{P}_{\vec{K}}$ as follows:

- $p_0 := p$.
- $p_{\alpha+1}$ is the Δ -least $q \leq p_{\alpha}$ with $q \in D_{\alpha}$ and $dom(q) \in B$.
- $p_{\alpha} := \bigcup_{\beta < \alpha} p_{\beta}$ if α is a limit ordinal.

Here note that if α is a limit ordinal, then $p_{\alpha} \in K_{\text{dom}(p_{\alpha})}$, and so $p_{\alpha} \in \mathbb{P}_{\vec{K}}$. This is because $\text{dom}(p_{\alpha}) \in B$, and p_{α} can be recovered from $p, \Delta \cap \mathbb{P}_{<\text{dom}(p_{\alpha})}$, $\langle D_{\beta} \cap \mathbb{P}_{<\text{dom}(p_{\alpha})} \mid \beta < \alpha \rangle$ and $B \cap \text{dom}(p_{\alpha})$, which are all in $K_{\text{dom}(\alpha)}$.

For each $\alpha < \omega_1$ let γ_{α} be such that $p_{\alpha+1} \Vdash$ " $\min(\dot{C} \setminus \alpha) = \gamma_{\alpha}$ ". Then, because S is stationary, we can take a limit ordinal $\alpha^* \in S$ such that $\dim(p_{\alpha^*}) = \alpha^*$ and such that $\gamma_{\alpha} < \alpha^*$ for all $\alpha < \alpha^*$. Then $p^* := p_{\alpha^*} \leq p$. Moreover it holds that $p^* \Vdash$ " $\alpha^* \in \dot{C}$ ". Therefore these p^* and α^* are as desired.

(2) In V let $H := \mathcal{H}_{\omega_2}$ and $X := X_{\vec{K}}$. Suppose that G is a $\mathbb{P}_{\vec{K}}$ -generic filter over V. We show that X is non-stationary in $[H]^{\omega}$ in V[G].

First note that $\bigcup G: \omega_1 \to 2$ by Lem.2.6 and that $\bigcup G \notin V$. Let $F: \omega_1 2 \cap V \to \omega_1$ be the function defined as follows:

$$F(f) := \text{ the least } \gamma < \omega_1 \text{ with } f(\gamma) \neq (\bigcup G)(\gamma).$$

We show that any $M \in X$ is not closed under F. Fix $M \in X$, and let $\alpha := M \cap \omega_1$. Then $K_{\alpha} = \operatorname{tcol}(M)$, and $(\bigcup G) \upharpoonright \alpha \in K_{\alpha}$ by the construction of $\mathbb{P}_{\vec{K}}$. So there exists $f \in {}^{\omega_1}2 \cap M$ such that $\tau(f) = (\bigcup G) \upharpoonright \alpha$, where $\tau : M \to \operatorname{tcol}(M)$ is the collapsing map. But $\tau(f) = f \upharpoonright \alpha$, and thus $f \upharpoonright \alpha = (\bigcup G) \upharpoonright \alpha$. Then $F(f) \geq \alpha = M \cap \omega_1$. Therefore M is not closed under F.

3 Consistency of \Diamond^{++}

In this section we discuss the consistency of \diamondsuit^{++} . First we prove that \diamondsuit^{++} holds in L:

Proposition 1.4. \diamondsuit^{++} holds in L.

Proof. We work in L. For each ordinal γ and each $x \subseteq L_{\gamma}$ let $\operatorname{Sk}^{\gamma}(x)$ denotes the Skolem hull of x in $\langle L_{\gamma}, \in, <_L \rangle$, that is, the smallest $M \prec \langle L_{\gamma}, \in, <_L \rangle$ with $x \subseteq M$.

For each $\alpha < \omega_1$ define K_{α} as follows: If there are β_{α} , γ_{α} , σ_{α} and a_{α} such that

- $\alpha < \beta_{\alpha} < \gamma_{\alpha} < \omega_1$
- $\sigma_{\alpha}: L_{\gamma_{\alpha}} \to L_{\omega_{3}}$ is an elementary embedding with $\sigma_{\alpha}(\beta_{\alpha}) = \omega_{2}$ and $\sigma_{\alpha}(\alpha) = \omega_{1}$,
- $a_{\alpha} \in L_{\gamma_{\alpha}}$, and $L_{\gamma_{\alpha}} = \operatorname{Sk}^{\gamma_{\alpha}}(\{a_{\alpha}\})$.

then let $K_{\alpha} := L_{\beta_{\alpha}}$. Otherwise, take δ_{α} such that

- $\alpha < \delta_{\alpha} < \omega_1$,
- $L_{\delta_{\alpha}} \models "|\alpha| = \omega "$,

and let $K_{\alpha} := L_{\delta_{\alpha}}$.

We show that $\vec{K} = \langle K_{\alpha} \mid \alpha < \omega_1 \rangle$ is a \diamondsuit^{++} -sequence. Clearly \vec{K} satisfies the property (i) in Def.1.2. We check the properties (ii) and (iii).

First we check the property (ii). Take an arbitrary $A \subseteq \omega_1$. We show that

$$C := \{ \alpha < \omega_1 \mid \operatorname{Sk}^{\omega_2}(\alpha \cup \{A\}) \cap \omega_1 = \alpha \} .$$

witnesses the property (ii).

Suppose that $\alpha \in C$. We must show that both $A \cap \alpha$ and $C \cap \alpha$ belong to K_{α} . Let $M := \operatorname{Sk}^{\omega_2}(\alpha \cup \{A\})$. Moreover suppose that $\operatorname{tcol}(M) = L_{\beta}$, and let $\tau : M \to L_{\beta}$ be the collapsing map.

Claim 1. $L_{\beta} \in K_{\alpha}$.

Proof of Claim 1. If α is as in the latter case of the definition of K_{α} , then the claim follows from the fact that α is countable in $L_{\delta_{\alpha}} = K_{\alpha}$ and the fact that

 $\alpha = (\omega_1)^{L_\beta}$. Thus assume that α is as in the former case. For the contradiction assume that $\beta \geq \beta_\alpha$.

First suppose that $\beta > \beta_{\alpha}$. Note that β_{α} is not a cardinal in L_{β} because α is the largest cardinal in L_{β} . Then $\beta > \gamma_{\alpha}$ because β_{α} is a cardinal in $L_{\gamma_{\alpha}}$. Then γ_{α} must be countable in L_{β} because $\operatorname{Sk}^{\gamma_{\alpha}}(\{a_{\alpha}\}) = L_{\gamma_{\alpha}}$. So α is countable in L_{β} , too. This contradicts that $\alpha = (\omega_{1})^{L_{\beta}}$.

Next suppose that $\beta = \beta_{\alpha}$. First note that $L_{\beta} = \operatorname{Sk}^{\beta}(\alpha \cup \{\tau(A)\})$. Then $|\beta_{\alpha}| = |\beta| = \alpha$ in $L_{\gamma_{\alpha}}$. This contradicts that β_{α} is a cardinal in $L_{\gamma_{\alpha}}$. \square_{Claim1}

From Claim 1 it follows that $A \cap \alpha = \tau(A) \in K_{\alpha}$. Moreover

$$C \cap \alpha = \{\alpha' < \alpha \mid \operatorname{Sk}^{\beta}(\alpha' \cup \{\tau(A)\}) \cap \alpha = \alpha'\} \in K_{\alpha}.$$

This completes the check of the property (ii).

Next we check the property (iii). Take an arbitrary $F: [L_{\omega_2}]^{<\omega} \to L_{\omega_2}$. It suffices to find $M \in [L_{\omega_2}]^{\omega}$ such that M is closed under F, such that $M \cap \omega_1 \in \omega_1$ and such that $\operatorname{tcol}(M) = K_{M \cap \omega_1}$.

Let $N := \operatorname{Sk}^{\omega_3}(\{F\})$ and $\alpha := N \cap \omega_1 \in \omega_1$. Moreover suppose that $\operatorname{tcol}(N) = L_{\gamma}$, and let $\tau : N \to L_{\gamma}$ be the collapsing map. Then $\beta_{\alpha} := \tau(\omega_2)$, $\gamma_{\alpha} := \gamma$, $a_{\alpha} := \tau(F)$ and $\sigma_{\alpha} := \tau^{-1}$ witnesses that α is as in the former case of the definition of K_{α} . Let $M := N \cap L_{\omega_2}$. Then $M \cap \omega_1 = \alpha \in \omega_1$, $\operatorname{tcol}(M) = L_{\beta_{\alpha}} = K_{\alpha}$, and M is closed under F.

Next we show that \diamondsuit^{++} can be forced:

Proposition 1.5. There exists a poset forcing \diamondsuit^{++} .

Because CH can be forced, it suffices to prove that under CH there exists a poset forcing \diamondsuit^{++} . We prove that the following poset forces \diamondsuit^{++} under CH:

Definition 3.1. Let $\mathbb{P}(\diamondsuit^{++})$ be the poset of all (k,\mathcal{B}) with the following properties:

- (i) k is a function such that $dom(k) < \omega_1$.
- (ii) For each $\alpha \in \text{dom}(k)$, $k(\alpha)$ is a countable transitive model of ZFC^- with $k \upharpoonright \alpha \in k(\alpha)$.
- (iii) \mathcal{B} is a countable subset of $<\omega(\omega_1)$
- $(k_0, \mathcal{B}_0) \leq (k_1, \mathcal{B}_1)$ in $\mathbb{P}(\diamondsuit^{++})$ if the following hold:

- (i) $k_0 \supseteq k_1$, and $\mathcal{B}_0 \supseteq \mathcal{B}_1$.
- (ii) $B \upharpoonright^{<\omega} \alpha \in k_0(\alpha)$ for any $B \in \mathcal{B}_1$ and any $\alpha \in \text{dom}(k_0) \setminus \text{dom}(k_1)$.

Before proving that $\mathbb{P}(\diamondsuit^{++})$ forces \diamondsuit^{++} , note the following properties of $\mathbb{P}(\diamondsuit^{++})$, which can be easily proved by the standard arguments:

Lemma 3.2. $\mathbb{P}(\diamondsuit^{++})$ is σ -closed and has the $<(2^{\omega})^+$ -c.c. Thus $\mathbb{P}(\diamondsuit^{++})$ preserves ω_1 . Moreover if CH holds in V, then $\mathbb{P}(\diamondsuit^{++})$ preserves all cardinals.

Lemma 3.3. Suppose that G is a $\mathbb{P}(\diamondsuit^{++})$ -generic filter over V, and let $K := \bigcup \{k \mid \exists \mathcal{B}, \ (k, \mathcal{B}) \in G\}$. Then the following hold in V[G]:

- (1) $dom(K) = \omega_1$.
- (2) For any $B \subseteq {}^{<\omega}(\omega_1)$ in V there exists $\gamma < \omega_1$ such that $B \cap {}^{<\omega}\alpha \in K(\alpha)$ for all $\alpha \in \omega_1 \setminus \gamma$.
- (3) G is equal to the collection of all $(k, \mathcal{B}) \in \mathbb{P}(\diamondsuit^{++})$ such that $k \subseteq K$ and such that $B \upharpoonright^{<\omega} \alpha \in K(\alpha)$ for all $\alpha \in \omega_1 \setminus \text{dom}(k)$ and all $B \in \mathcal{B}$.

Now we prove that $\mathbb{P}(\diamondsuit^{++})$ forces \diamondsuit^{++} under CH:

Lemma 3.4. Assume CH. Then $\mathbb{P}(\diamondsuit^{++})$ forces \diamondsuit^{++} .

In the proof we use the following notation:

Notation 3.5. Let \mathbb{P} be a poset and M be a set. g is called an (M, \mathbb{P}) -generic filter if g is a filter on $\mathbb{P} \cap M$, and g intersects all dense subset of \mathbb{P} which is in M. Moreover for a \mathbb{P} -generic filter G over V let

$$M[G] := \{\dot{a}^G \mid \dot{a} \text{ is a } \mathbb{P}\text{-name in } M\},$$

where \dot{a}^G denote the evaluation of \dot{a} by G.

Proof of Lem.3.4. Let $\mathbb{P} := \mathbb{P}(\diamondsuit^{++})$. Suppose that G is a \mathbb{P} -generic filter over V and let $K := \bigcup \{k \mid \exists \mathcal{B}, \ (k, \mathcal{B}) \in G\}$. We show that $K \ (= \langle K(\alpha) \mid \alpha < \omega_1 \rangle)$ is a \diamondsuit^{++} -sequence in V[G].

 $\operatorname{dom}(K) = \omega_1$ by Lem.3.3 (1), and clearly K satisfies the property (i) in the definition of \diamondsuit^{++} (Def.1.2). So we check the properties (ii) and (iii).

First we check the property (ii) in Def.1.2. We work in V[G]. Take an arbitrary $A \subseteq \omega_1$. We construct a club $C \subseteq \omega_1$ such that both $A \cap \alpha$ and $C \cap \alpha$ belong to $K(\alpha)$ for all $\alpha \in C$.

Let $\dot{A} \in V$ be a \mathbb{P} -name for A. Because \mathbb{P} has the $<\omega_2$ -c.c., we may assume that $\dot{A} \in (\mathcal{H}_{\omega_2})^V$. In V take a sufficiently large regular cardinal θ and an $N' \prec \langle (\mathcal{H}_{\theta})^V, \in, \mathbb{P}(\diamondsuit^{++}), \dot{A} \rangle$ of size ω_1 such that $N' \cap (\mathcal{H}_{\omega_2})^V$ is transitive. Let $N := \operatorname{tcol}(N'), \ \tau : N' \to N$ be the collapsing map and $\mathbb{Q} := \tau(\mathbb{P})$. Note that $\tau(\dot{A}) = \dot{A}$ because $\dot{A} \in (\mathcal{H}_{\omega_2})^V$, and $N' \cap (\mathcal{H}_{\omega_2})^V$ is transitive. Note also that $\tau[G \cap N'] = G \cap N' = G \cap N$ because $\mathbb{P}(\diamondsuit^{++}) \subseteq (\mathcal{H}_{\omega_2})^V$ and that $G \cap N$ is \mathbb{Q} -generic over N.

In V take a surjection $\pi: \omega_1 \to N$ such that $\pi(0) = \mathbb{Q}$ and $\pi(1) = \dot{A}$, and let $E := \{(\beta, \alpha) \in {}^2(\omega_1) \mid \pi(\beta) \in \pi(\alpha)\}$. Note that $N = \operatorname{tcol}(\omega_1, E)$ and the collapsing map is π . Moreover for each $\alpha \in \omega_1 \setminus 2$ let $N_\alpha := \operatorname{tcol}(\alpha, E \cap {}^2\alpha)$, $\pi_\alpha: \alpha \to N_\alpha$ be the collapsing map, $\mathbb{Q}_\alpha := \pi_\alpha(0)$, and $\dot{A}_\alpha := \pi_\alpha(1)$.

In V[G] take $\delta \in \omega_1 \setminus 2$ such that $E \cap {}^2\alpha \in K(\alpha)$ for all $\alpha \in \omega_1 \setminus \delta$. Then let C be the set of all $\alpha \in \omega_1 \setminus \delta$ with the following property:

- $\langle \alpha, E \cap {}^{2}\alpha \rangle \prec \langle \omega_{1}, E \rangle$.
- Letting G_{α} be the set of all $(k, \mathcal{B}) \in \mathbb{Q}_{\alpha}$ such that
 - $k \subseteq K \upharpoonright \alpha,$
 - $-B \cap {}^{<\omega}\beta \in K(\beta)$ for all $\beta \in \alpha \setminus \text{dom}(k)$ and all $B \in \mathcal{B}$,

 G_{α} is \mathbb{Q}_{α} -generic over N_{α} .

• The map $\iota_{\alpha}: N_{\alpha}[G_{\alpha}] \to N[G \cap N]$, defined as

$$\iota_{\alpha}(\pi_{\alpha}(\beta)^{G_{\alpha}}) := \pi(\beta)^{G \cap N}$$

for each $\beta < \alpha$ such that $\pi_{\alpha}(\beta)$ is a \mathbb{Q}_{α} -name, is an elementary embedding.

It is not hard to see that C is club in ω_1 . Here note that if $\alpha \in C$, then $N_{\alpha}, \pi_{\alpha}, \mathbb{Q}_{\alpha}, \dot{A}_{\alpha}, G_{\alpha} \in K(\alpha)$ because $E \cap {}^{2}\alpha, K \upharpoonright \alpha \in K(\alpha)$, and $K(\alpha)$ is a transitive model of ZFC⁻. Thus $A \cap \alpha = (\dot{A}_{\alpha})^{G_{\alpha}} \in K(\alpha)$ for all $\alpha \in C$. Finally note that if $\alpha \in C$, then $C \cap \alpha$ equals to the set of all $\beta < \alpha$ with the following properties:

- $\langle \beta, E \cap {}^{2}\beta \rangle \prec \langle \alpha, E \cap {}^{2}\alpha \rangle$,
- G_{β} is a \mathbb{Q}_{β} -generic over N_{β} .

• The map $\iota_{\beta,\alpha}:N_{\beta}[G_{\beta}]\to N_{\alpha}[G_{\alpha}]$, defined as

$$\iota_{\beta,\alpha}(\pi_{\beta}(\gamma)^{G_{\beta}}) := \pi_{\alpha}(\gamma)^{G_{\alpha}}$$

for each $\gamma < \beta$ such that $\pi_{\beta}(\gamma)$ is a \mathbb{Q}_{β} -name, is an elementary embedding.

Thus if $\alpha \in C$, then $C \cap \alpha$ is recovered from $E \upharpoonright^2 \alpha$ and $K \upharpoonright \alpha$ in $K(\alpha)$. This completes the check of the property (ii) in Def.1.2.

Next we check the property (iii) in Def.1.2. We work in V. Let \dot{G} be the canonical \mathbb{P} -name for a \mathbb{P} -generic filter. Moreover let \dot{K} be the canonical \mathbb{P} -name for $\bigcup \{k \mid \exists \mathcal{B}, \ (k, \mathcal{B}) \in \dot{G}\}.$

Take an arbitrary $(k, \mathcal{B}) \in \mathbb{P}$ and an arbitrary \mathbb{P} -name \dot{F} for a function from $[(\mathcal{H}_{\omega_2})^{V^{\mathbb{P}}}]^{<\omega}$ to $(\mathcal{H}_{\omega_2})^{V^{\mathbb{P}}}$. It suffices to find $(k^*, \mathcal{B}^*) \leq (k, \mathcal{B})$ and a \mathbb{P} -name \dot{x} of a countable subset of $(\mathcal{H}_{\omega_2})^{V^{\mathbb{P}}}$ such that (k^*, \mathcal{B}^*) forces that \dot{x} is closed under \dot{F} , that $\dot{x} \cap \omega_1 \in \omega_1$ and that $\operatorname{tcol}(\dot{x}) = \dot{K}(\dot{x} \cap \omega_1)$.

Take a sufficiently large regular cardinal θ and a countable elementary submodel \bar{M} of $\langle \mathcal{H}_{\theta}, \in, \mathbb{P}, (h, \mathcal{B}), \dot{F} \rangle$. Let $M := \bar{M} \cap \mathcal{H}_{\omega_2}$ and $\alpha := \bar{M} \cap \omega_1$. Furthermore take an (\bar{M}, \mathbb{P}) -generic filter g containing (k, \mathcal{B}) , and let

$$k^{**} := \bigcup \{k' \mid \exists \mathcal{B}', \ (k', \mathcal{B}') \in g\},$$

$$\mathcal{B}^{*} := \bigcup \{\mathcal{B}' \mid \exists k', \ (k', \mathcal{B}') \in g\}.$$

Note that $dom(k^{**}) = \alpha$ and that $\mathcal{B}^* = \mathcal{P}({}^{<\omega}(\omega_1)) \cap \bar{M}$. Note also that (k^{**}, \mathcal{B}^*) is a lower bound of g.

Let $\bar{K}_{\alpha} := \operatorname{tcol}(\bar{M})$, and $\tau : \bar{M} \to \bar{K}_{\alpha}$ be the transitive collapse, and let $K_{\alpha} := \tau[M] = \tau(\mathcal{H}_{\omega_2})$. Note that $\tau[g]$ is a $\tau(\mathbb{Q})$ -generic filter over \bar{K}_{α} . Let k^* be the function on $\alpha + 1$ which extends k^{**} and such that $k^*(\alpha) = K_{\alpha}[\tau[g]]$.

We show that (k^*, \mathcal{B}^*) and $\dot{x} := M[\dot{G}]$ are as desired. First remark that $k^* \upharpoonright \alpha = k^{**} \in K_{\alpha}[\tau[g]]$. Moreover for all $B \in \mathcal{P}({}^{<\omega}(\omega_1)) \cap \bar{M} = \mathcal{B}^*$ we have that $B \cap {}^2\alpha = \tau(B) \in K[\tau[g]]$. Thus $(k^*, \mathcal{B}^*) \leq (k^{**}, \mathcal{B}^*)$, In particular $(k^*, \mathcal{B}^*) \leq (k, \mathcal{B})$. Moreover (k^*, \mathcal{B}^*) is a lower bound of g. Hence (k^*, \mathcal{B}^*) forces that $M[\dot{G}] \cap \omega_1 = M \cap \omega_1 = \alpha$ and that $\operatorname{tcol}(M[\dot{G}]) = K_{\alpha}[\tau[g]] = \dot{K}(\alpha)$. Finally (h^*, \mathcal{B}^*) forces that $M[\dot{G}]$ is closed under \dot{F} by the (\bar{M}, \mathbb{P}) -genericity of g. Therefore (k^*, \mathcal{B}^*) and $\dot{x} = M[\dot{G}]$ are as desired.

This completes the proof of Prop.1.5.