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1 Introduction
In this note, we discuss the existence of an ω1-stationary preserving poset of size
ω1 which is not semi-proper. First we will prove that the following combinatorial
principle ♦++, which strengthens ♦+, implies the existence of such a poset.

Notation 1.1. For a set M and a well-founded relation E on M let tcol(M,E)

denote the transitive collapse of 〈M,E〉. If E =∈ ∩ 2M , then we simply write
tcol(M) for tcol(M,E).

Definition 1.2. Let ♦++ be the following combinatorial principle:

♦++ ≡ There exists a sequence ~K = 〈Kα | α < ω1〉 with the following
properties:

(i) Each Kα is a countable set.

(ii) For any A ⊆ ω1 there is a club C ⊆ ω1 such that both A ∩ α

and C ∩ α belong to Kα for each α ∈ C.

(iii) The set

X ~K := {M ∈ [Hω2 ]
ω | M ∩ω1 ∈ ω1 ∧ tcol(M) = KM∩ω1}

is stationary in [Hω2
]ω.

A sequence ~K = 〈Kα | α < ω1〉 satisfying the properties (i)–(iii) above is called
a ♦++-sequence.

Proposition 1.3. If ♦++ holds, then there exists an ω1-stationary preserving
poset of size ω1 which is not semi-proper.

Prop.1.3 will be proved in Section 2. As for the consistency of ♦++ we will
prove the following in Section 3:
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Proposition 1.4. ♦++ holds in the constructible universe L.

Proposition 1.5. There exists a poset forcing ♦++.

Thus we will have the following corollaries:

Corollary 1.6. In L there exists an ω1-stationary preserving poset of size ω1

which is not semi-proper.

Corollary 1.7. There exists a poset forcing the existence of an ω1-stationary
preserving poset of size ω1 which is not semi-proper.

2 ♦++ and ω1-stationary preserving poset of size
ω1 which is not semi-proper

In this section we prove Prop.1.3. Note that a poset with the < ω2-c.c. is
semi-proper if and only if it is proper. Thus, it suffices to prove that if ♦++

holds, then there exists an ω1-stationary preserving poset of size ω1 which is
not proper. In fact, we will prove the following.

Proposition 2.1. If ♦++ implies holds, then there exists an ω1-stationary
preserving poset of size ω1 which does not preserve stationary subsets of [Hω2

]ω.

First we slightly improve ♦++:

Notation 2.2. Let ZFC− denote the axiom system ZFC− Power Set Axiom.

Lemma 2.3. Assume ♦++. Then there is a ♦++-sequence ~K = 〈Kα | α < ω1〉
with the following properties:

(iv) ~K is ⊆-increasing.

(v) Each Kα is a countable transitive model of ZFC− with ~K �α ∈ Kα.

Proof. Let ~K ′ = 〈K ′
α | α < ω1〉 be a ♦++-sequence. By induction on α < ω1

define ~K = 〈Kα | α < ω1〉 as follows: If K ′
α is a countable transitive model of

ZFC− with
⋃

β<α Kβ ⊆ K ′
α and ~K �α ∈ K ′

α, then let Kα := K ′
α. Otherwise let

Kα be an arbitrary countable transitive model of ZFC− with (
⋃

β<α Kβ)∪K ′
α ⊆

Kα and ~K �α ∈ Kα.
Then ~K satisfies the properties (iv) and (v) in Lem.2.3. Thus it suffices to

show that ~K is a ♦++-sequence. Clearly ~K satisfies the properties (i) and (ii)
in the definition of ♦++ (Def.1.2). Below we check (iii).
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Take an arbitrary function F : [Hω2
]<ω → Hω2

. We must find M ∈ X ~K

which is closed under F . Because ~K ′ is a ♦++-sequence, we can take M ∈ X ~K′

with M ≺ 〈Hω2
,∈, ~K, F 〉. Then M is closed under F . We show that M ∈ X ~K .

Let α := M ∩ ω1. It suffices to show that tcol(M) = Kα. First note that
K ′

α = tcol(M) because M ∈ X ~K′ . Thus K ′
α is a countable transitive model of

ZFC−. Note also that if we let τ : M → K ′
α be the transitive collapse, then

~K �α = τ( ~K). Hence
⋃

β<α Kβ ⊆ K ′
α, and ~K �α ∈ K ′

α. So Kα = K ′
α. Therefore

tcol(M) = K ′
α = Kα.

Now we present a poset P ~K which witnesses Prop.2.1:

Definition 2.4. Let ~K = 〈Kα | α < ω1〉 be a ♦++-sequence satisfying the
properties (iv) and (v) in Lem.2.3. Then let P ~K be the poset of all p ∈ <ω12

with p ∈ Kdom(p). p ≤ q in P ~K if p ⊇ q.

Note that ♦++ implies CH. Thus P ~K has the size ω1. So it suffices for
Prop.2.1 to prove the following:

Lemma 2.5. Suppose that ~K = 〈Kα | α < ω1〉 is a ♦++-sequence satisfying
the properties (iv) and (v) in Lem.2.3.

(1) P ~K is ω1-stationary preserving.

(2) X ~K in Def.1.2 defined in V becomes non-stationary in V P ~K .

Before proving Lem.2.5, note the following:

Lemma 2.6. Suppose that ~K = 〈Kα | α < ω1〉 is a ♦++-sequence satisfying
the properties (iv) and (v) in Lem.2.3 and that G is P ~K-generic filter over V .
Then dom(

⋃
G) = (ω1)

V .

Proof. In V it suffices to show that {q ∈ P ~K | dom(q) ≥ α} is dense. Take an
arbitrary p ∈ P ~K and an arbitrary α ∈ ω1 \ dom(p). Let q be the function on
α+1 such that q �dom(p) = p and such that q(β) = 0 for all β ∈ α+1\dom(p).
Then q ≤ p, and dom(q) ≥ α.

Now we prove Lem.2.5:

Proof of Lem.2.5. (1) We work in V . Suppose that S is a stationary subset of
ω1, that p ∈ P ~K and that Ċ is a P ~K-name for a club subset of ω1. It suffices to
find p∗ ≤ p and α∗ ∈ S such that p∗ 
 “α ∈ Ċ ”.
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Take a well-order ∆ of P ~K . Moreover for each α < ω1 let

P<α := P ~K ∩ <α2 ,

Dα := {q ∈ P ~K | q decides min(Ċ \ α)} .

Note that P<α ∈ Kα by the construction of P ~K and the properties (iv) and (v)
in Lem.2.3 of ~K. Note also that each Dα is a dense open subset of P ~K .

Because ~K is a ♦+-sequence, we can easily take a club B ⊆ ω1 such that

p , ∆ ∩ P<α , 〈Dβ ∩ P<α | β < α〉 , B ∩ α ∈ Kα

for each α ∈ B.
By induction on α < ω1 define pα ∈ P ~K as follows:

• p0 := p.

• pα+1 is the ∆-least q ≤ pα with q ∈ Dα and dom(q) ∈ B.

• pα :=
⋃

β<α pβ if α is a limit ordinal.

Here note that if α is a limit ordinal, then pα ∈ Kdom(pα), and so pα ∈ P ~K .
This is because dom(pα) ∈ B, and pα can be recovered from p, ∆ ∩ P<dom(pα),
〈Dβ ∩ P<dom(pα) | β < α〉 and B ∩ dom(pα), which are all in Kdom(α).

For each α < ω1 let γα be such that pα+1 
 “ min(Ċ \ α) = γα ”. Then,
because S is stationary, we can take a limit ordinal α∗ ∈ S such that dom(pα∗) =

α∗ and such that γα < α∗ for all α < α∗. Then p∗ := pα∗ ≤ p. Moreover it
holds that p∗ 
 “α∗ ∈ Ċ ”. Therefore these p∗ and α∗ are as desired.

(2) In V let H := Hω2
and X := X ~K . Suppose that G is a P ~K-generic filter

over V . We show that X is non-stationary in [H]ω in V [G].
First note that

⋃
G : ω1 → 2 by Lem.2.6 and that

⋃
G /∈ V . Let F :

ω12 ∩ V → ω1 be the function defined as follows:

F (f) := the least γ < ω1 with f(γ) 6= (
⋃
G)(γ).

We show that any M ∈ X is not closed under F . Fix M ∈ X, and let α :=

M ∩ ω1. Then Kα = tcol(M), and (
⋃

G) �α ∈ Kα by the construction of P ~K .
So there exists f ∈ ω12∩M such that τ(f) = (

⋃
G)�α, where τ : M → tcol(M)

is the collapsing map. But τ(f) = f � α, and thus f � α = (
⋃

G) � α. Then
F (f) ≥ α = M ∩ ω1. Therefore M is not closed under F .
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3 Consistency of ♦++

In this section we discuss the consistency of ♦++. First we prove that ♦++

holds in L:

Proposition 1.4. ♦++ holds in L.

Proof. We work in L. For each ordinal γ and each x ⊆ Lγ let Skγ(x) denotes
the Skolem hull of x in 〈Lγ ,∈, <L〉, that is, the smallest M ≺ 〈Lγ ,∈, <L〉 with
x ⊆ M .

For each α < ω1 define Kα as follows: If there are βα, γα, σα and aα such
that

• α < βα < γα < ω1,

• σα : Lγα → Lω3 is an elementary embedding with σα(βα) = ω2 and
σα(α) = ω1,

• aα ∈ Lγα
, and Lγα

= Skγα({aα}).

then let Kα := Lβα
. Otherwise, take δα such that

• α < δα < ω1,

• Lδα |= “ |α| = ω ”,

and let Kα := Lδα .
We show that ~K = 〈Kα | α < ω1〉 is a ♦++-sequence. Clearly ~K satisfies

the property (i) in Def.1.2. We check the properties (ii) and (iii).
First we check the property (ii). Take an arbitrary A ⊆ ω1. We show that

C := {α < ω1 | Skω2(α ∪ {A}) ∩ ω1 = α} .

witnesses the property (ii).
Suppose that α ∈ C. We must show that both A ∩ α and C ∩ α belong to

Kα. Let M := Skω2(α ∪ {A}). Moreover suppose that tcol(M) = Lβ , and let
τ : M → Lβ be the collapsing map.

Claim 1. Lβ ∈ Kα.

Proof of Claim 1. If α is as in the latter case of the definition of Kα, then the
claim follows from the fact that α is countable in Lδα = Kα and the fact that
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α = (ω1)
Lβ . Thus assume that α is as in the former case. For the contradiction

assume that β ≥ βα.
First suppose that β > βα. Note that βα is not a cardinal in Lβ because

α is the largest cardinal in Lβ . Then β > γα because βα is a cardinal in Lγα
.

Then γα must be countable in Lβ because Skγα({aα}) = Lγα
. So α is countable

in Lβ , too. This contradicts that α = (ω1)
Lβ .

Next suppose that β = βα. First note that Lβ = Skβ(α ∪ {τ(A)}). Then
|βα| = |β| = α in Lγα

. This contradicts that βα is a cardinal in Lγα
. �Claim1

From Claim 1 it follows that A ∩ α = τ(A) ∈ Kα. Moreover

C ∩ α = {α′ < α | Skβ(α′ ∪ {τ(A)}) ∩ α = α′} ∈ Kα .

This completes the check of the property (ii).
Next we check the property (iii). Take an arbitrary F : [Lω2 ]

<ω → Lω2 . It
suffices to find M ∈ [Lω2

]ω such that M is closed under F , such that M∩ω1 ∈ ω1

and such that tcol(M) = KM∩ω1
.

Let N := Skω3({F}) and α := N ∩ ω1 ∈ ω1. Moreover suppose that
tcol(N) = Lγ , and let τ : N → Lγ be the collapsing map. Then βα := τ(ω2),
γα := γ, aα := τ(F ) and σα := τ−1 witnesses that α is as in the former
case of the definition of Kα. Let M := N ∩ Lω2

. Then M ∩ ω1 = α ∈ ω1,
tcol(M) = Lβα

= Kα, and M is closed under F .

Next we show that ♦++ can be forced:

Proposition 1.5. There exists a poset forcing ♦++.

Because CH can be forced, it suffices to prove that under CH there exists a
poset forcing ♦++. We prove that the following poset forces ♦++ under CH:

Definition 3.1. Let P(♦++) be the poset of all (k,B) with the following prop-
erties:

(i) k is a function such that dom(k) < ω1.

(ii) For each α ∈ dom(k), k(α) is a countable transitive model of ZFC− with
k �α ∈ k(α).

(iii) B is a countable subset of <ω(ω1)

(k0,B0) ≤ (k1,B1) in P(♦++) if the following hold:
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(i) k0 ⊇ k1, and B0 ⊇ B1.

(ii) B �<ωα ∈ k0(α) for any B ∈ B1 and any α ∈ dom(k0) \ dom(k1).

Before proving that P(♦++) forces ♦++, note the following properties of
P(♦++), which can be easily proved by the standard arguments:

Lemma 3.2. P(♦++) is σ-closed and has the < (2ω)+-c.c. Thus P(♦++)

preserves ω1. Moreover if CH holds in V , then P(♦++) preserves all cardinals.

Lemma 3.3. Suppose that G is a P(♦++)-generic filter over V , and let K :=⋃
{k | ∃B, (k,B) ∈ G}. Then the following hold in V [G]:

(1) dom(K) = ω1.

(2) For any B ⊆ <ω(ω1) in V there exists γ < ω1 such that B ∩ <ωα ∈ K(α)

for all α ∈ ω1 \ γ.

(3) G is equal to the collection of all (k,B) ∈ P(♦++) such that k ⊆ K and
such that B �<ωα ∈ K(α) for all α ∈ ω1 \ dom(k) and all B ∈ B.

Now we prove that P(♦++) forces ♦++ under CH:

Lemma 3.4. Assume CH. Then P(♦++) forces ♦++.

In the proof we use the following notation:

Notation 3.5. Let P be a poset and M be a set. g is called an (M,P)-generic
filter if g is a filter on P∩M , and g intersects all dense subset of P which is in
M . Moreover for a P-generic filter G over V let

M [G] := {ȧG | ȧ is a P-name in M} ,

where ȧG denote the evaluation of ȧ by G.

Proof of Lem.3.4. Let P := P(♦++). Suppose that G is a P-generic filter over
V and let K :=

⋃
{k | ∃B, (k,B) ∈ G}. We show that K (= 〈K(α) | α < ω1〉)

is a ♦++-sequence in V [G].
dom(K) = ω1 by Lem.3.3 (1), and clearly K satisfies the property (i) in the

definition of ♦++ (Def.1.2). So we check the properties (ii) and (iii).

First we check the property (ii) in Def.1.2. We work in V [G]. Take an
arbitrary A ⊆ ω1. We construct a club C ⊆ ω1 such that both A∩α and C ∩α

belong to K(α) for all α ∈ C.
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Let Ȧ ∈ V be a P-name for A. Because P has the <ω2-c.c., we may assume
that Ȧ ∈ (Hω2)

V . In V take a sufficiently large regular cardinal θ and an
N ′ ≺ 〈(Hθ)

V ,∈,P(♦++), Ȧ〉 of size ω1 such that N ′ ∩ (Hω2
)V is transitive. Let

N := tcol(N ′), τ : N ′ → N be the collapsing map and Q := τ(P). Note that
τ(Ȧ) = Ȧ because Ȧ ∈ (Hω2

)V , and N ′ ∩ (Hω2
)V is transitive. Note also that

τ [G ∩ N ′] = G ∩ N ′ = G ∩ N because P(♦++) ⊆ (Hω2)
V and that G ∩ N is

Q-generic over N .
In V take a surjection π : ω1 → N such that π(0) = Q and π(1) = Ȧ, and

let E := {(β, α) ∈ 2(ω1) | π(β) ∈ π(α)}. Note that N = tcol(ω1, E) and the
collapsing map is π. Moreover for each α ∈ ω1 \ 2 let Nα := tcol(α,E ∩ 2α),
πα : α → Nα be the collapsing map, Qα := πα(0), and Ȧα := πα(1).

In V [G] take δ ∈ ω1 \ 2 such that E ∩ 2α ∈ K(α) for all α ∈ ω1 \ δ. Then let
C be the set of all α ∈ ω1 \ δ with the following property:

• 〈α,E ∩ 2α〉 ≺ 〈ω1, E〉.

• Letting Gα be the set of all (k,B) ∈ Qα such that

– k ⊆ K �α,

– B ∩ <ωβ ∈ K(β) for all β ∈ α \ dom(k) and all B ∈ B,

Gα is Qα-generic over Nα.

• The map ια : Nα[Gα] → N [G ∩N ], defined as

ια(πα(β)
Gα) := π(β)G∩N

for each β < α such that πα(β) is a Qα-name, is an elementary embedding.

It is not hard to see that C is club in ω1. Here note that if α ∈ C, then
Nα, πα,Qα, Ȧα, Gα ∈ K(α) because E ∩ 2α,K � α ∈ K(α), and K(α) is a
transitive model of ZFC−. Thus A∩ α = (Ȧα)

Gα ∈ K(α) for all α ∈ C. Finally
note that if α ∈ C, then C ∩ α equals to the set of all β < α with the following
properties:

• 〈β,E ∩ 2β〉 ≺ 〈α,E ∩ 2α〉,

• Gβ is a Qβ-generic over Nβ .

8



• The map ιβ,α : Nβ [Gβ ] → Nα[Gα], defined as

ιβ,α(πβ(γ)
Gβ ) := πα(γ)

Gα

for each γ < β such that πβ(γ) is a Qβ-name, is an elementary embedding.

Thus if α ∈ C, then C ∩ α is recovered from E � 2α and K � α in K(α). This
completes the check of the property (ii) in Def.1.2.

Next we check the property (iii) in Def.1.2. We work in V . Let Ġ be the
canonical P-name for a P-generic filter. Moreover let K̇ be the canonical P-name
for

⋃
{k | ∃B, (k,B) ∈ Ġ}.

Take an arbitrary (k,B) ∈ P and an arbitrary P-name Ḟ for a function from
[(Hω2

)V
P
]<ω to (Hω2

)V
P . It suffices to find (k∗,B∗) ≤ (k,B) and a P-name ẋ of

a countable subset of (Hω2
)V

P such that (k∗,B∗) forces that ẋ is closed under
Ḟ , that ẋ ∩ ω1 ∈ ω1 and that tcol(ẋ) = K̇(ẋ ∩ ω1).

Take a sufficiently large regular cardinal θ and a countable elementary sub-
model M̄ of 〈Hθ,∈,P, (h,B), Ḟ 〉. Let M := M̄ ∩ Hω2

and α := M̄ ∩ ω1. Fur-
thermore take an (M̄,P)-generic filter g containing (k,B), and let

k∗∗ :=
⋃

{k′ | ∃B′, (k′,B′) ∈ g} ,

B∗ :=
⋃

{B′ | ∃k′, (k′,B′) ∈ g} .

Note that dom(k∗∗) = α and that B∗ = P(<ω(ω1))∩M̄ . Note also that (k∗∗,B∗)

is a lower bound of g.
Let K̄α := tcol(M̄), and τ : M̄ → K̄α be the transitive collapse, and let

Kα := τ [M ] = τ(Hω2
). Note that τ [g] is a τ(Q)-generic filter over K̄α. Let k∗

be the function on α+ 1 which extends k∗∗ and such that k∗(α) = Kα[τ [g]].
We show that (k∗,B∗) and ẋ := M [Ġ] are as desired. First remark that

k∗ � α = k∗∗ ∈ Kα[τ [g]]. Moreover for all B ∈ P(<ω(ω1)) ∩ M̄ = B∗ we
have that B ∩ 2α = τ(B) ∈ K[τ [g]]. Thus (k∗,B∗) ≤ (k∗∗,B∗), In particular
(k∗,B∗) ≤ (k,B). Moreover (k∗,B∗) is a lower bound of g. Hence (k∗,B∗)

forces that M [Ġ] ∩ ω1 = M ∩ ω1 = α and that tcol(M [Ġ]) = Kα[τ [g]] = K̇(α).
Finally (h∗,B∗) forces that M [Ġ] is closed under Ḟ by the (M̄,P)-genericity of
g. Therefore (k∗,B∗) and ẋ = M [Ġ] are as desired.

This completes the proof of Prop.1.5.
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