
Semi-stationary reflection and weak square
Hiroshi Sakai

Results in this note will be included in a forthcoming
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1 Introduction
In this note we investigate how weak square principles are denied by the semi-
stationary reflection principle. First recall the semi-stationary reflection princi-
ple, introduced by Shelah [9]:

Notation 1.1. For countable sets x and y let

x� y
def⇔ x ⊆ y ∧ x ∩ ω1 = y ∩ ω1 .

Definition 1.2 (Shelah [9]). Let W be a set with ω1 ⊆ W . We say that
X ⊆ [W ]ω is semi-stationary in [W ]ω if the set {y ∈ [W ]ω | ∃x ∈ X, x� y} is
stationary in [W ]ω.

Definition 1.3 (Shelah [9]). Let W be a set with ω1 ⊆ W . Then the semi-
stationary reflection principle in [W ]ω, denoted as SSR([W ]ω), is the following
statement:

SSR([W ]
ω
) ≡ For every semi-stationary X ⊆ [W ]ω there exists W ′ ⊆ W

such that |W ′| = ω1 ⊆ W ′ and such that X ∩ [W ′]ω is semi-
stationary in [W ′]ω.

Let the semi-stationary reflection principle, denoted as SSR, be the statement
that SSR([W ]ω) holds for every W ⊇ ω1.

Shellac [9] proved that SSR holds if and only if every ω1-stationary preserving
forcing notion is semi-proper. The following is also known:

Fact 1.4. Both Martin’s Maximum and Rado’s Conjecture imply SSR.

Next we turn our attention to weak square principles. In this note we discuss
the following weak square principles, formulated by Schimmerling [8]:
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Definition 1.5 (Schimmerling [8]). Let λ be an uncountable cardinal and µ be
a cardinal with 1 ≤ µ ≤ λ. Then let �λ,µ be the following statement:

�λ,µ ≡ There exists a sequence 〈Cα | α < λ+〉 such that

(i) Cα is a set consisting of club subsets of α,

(ii) if cf(α) < λ, then each c ∈ Cα has the order-type < λ,

(iii) 1 ≤ |Cα| ≤ µ,

(iv) if c ∈ Cα, and β ∈ Lim(c), then c ∩ β ∈ Cα.

Let �λ,<µ be the statement obtained by replacing the property (iii) in �λ,µ with

(v) 1 ≤ |Cα| < µ.

A sequence ~C = 〈Cα | α < λ+〉 witnessing �λ,µ or �λ,<µ is called a �λ,µ-
sequence or a �λ,<µ-sequence, respectively.

Many large cardinal properties are known to imply the failure of the above
weak square principles. Among other things, sharp results have been obtained
on for what λ and µ Martin’s Maximum denies �λ,µ (See Devlin [1] for the
proof of Fact 1.6 (2)):

Fact 1.6 ((1),(3),(4): Cumming-Magidor [3], (2): Baumgartner). Assume Mar-
tin’s Maximum. Then we have the following:

(1) �λ,<cf(λ) fails for any uncountable cardinal λ.

(2) �ω1,ω1
fails.

(3) �λ,λ fails for any singular cardinal λ of cofinality ω.

(4) �λ,<λ fails for any singular cardinal λ of cofinality ω1.

Fact 1.7 (Cummings-Magidor [3]). If there exists a supercompact cardinal, then
there exists a class forcing extension in which Martin’s Maximum together with
both (I) and (II) below holds:

(I) �λ,cf(λ) holds for every cardinal λ with cf(λ) > ω1.

(II) �λ,λ holds for every singular cardinal λ of cofinality ω1.

As for Rado’s Conjecture Todorčević-Torres [12] obtained the following:

Fact 1.8 (Friedman-Krueger [5], Todorčević-Torres [12]). Assume Rado’s Con-
jecture. Then we have the following:
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(1) �λ,<cf(λ) fails for any uncountable cardinal λ.

(2) If CH fails in addition, then �ω1,ω1 fails.

(3) �λ,λ fails for any singular cardinal λ of cofinality ω.
Moreover by the same argument as Fact 1.7 we can prove the following:

Fact 1.9. If there exists a supercompact cardinal, then there exists a class forcing
extension in which Rado’s Conjecture together with both (I) and (II) below holds:

(I) �λ,cf(λ) holds for all cardinals λ with cf(λ) > ω1.

(II) �λ,λ holds for all singular cardinals λ of cofinality ω1.
Here note that (2) of Fact 1.8 is optimal because Rado’s Conjecture is con-

sistent with CH, and CH implies �ω1,ω1
. So Fact 1.8 is optimal except for the

case when λ is a singular cardinal of cofinality ω1. Todorčević-Torres [12] asked
the following question:

Question 1.10. How weak square principles at singular cardinals of cofinality
ω1 does Rado’s Conjecture deny?

In this note we will prove the following:

Main Theorem. Assume SSR. Then �λ,<λ fails for any singular cardinal λ
of cofinality ω1.

In particular, by Fact 1.4 we will obtain an answer to Question 1.10:

Corollary 1.11. Assume Rado’s Conjecture. Then �λ,<λ fails for any singular
cardinal λ of cofinality ω1.

Note that this is also optimal by Fact 1.9.
Note also that (1), (2) and (3) of Fact 1.8 also follow from SSR:

(1) Cummings-Magidor [3] proved that for any uncountable cardinal λ if every
stationary subset of Eλ+

ω reflects, then �λ,<cf(λ) fails. Moreover it was proved
by Sakai [6] that for any regular cardinal µ ≥ ω2 if SSR([µ]ω) holds, then every
stationary subset of Eµ

ω reflects.
(2) It is known, due to Foreman-Magidor-Shelah [4], that SSR implies the Strong
Chang’s Conjecture. Next, Todorčević [11] proved that the Strong Chang’s
Conjecture implies the stationary reflection in [ω2]

ω. Finally it is known, due
to Friedman-Krueger [5], that if the stationary reflection in [ω2]

ω holds, and CH
fails, then �ω1,ω1

fails.
(3) Let λ be a singular cardinal of cofinality ω. Sakai-Veličković [7] proved that
if SSR([λ+]ω) holds, then for any sequence 〈λn | n < ω〉 of regular cardinals
converging to λ there are no better scales of length λ+ in Πn<ωλn. Moreover
it was proved in Cummings-Foreman-Magidor [2] that the latter statement (the
non-existence of better scales) implies the failure of �λ,λ.

Thus we have the following:
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Corollary 1.12. Assume SSR. Then we have the following:

(1) �λ,<cf(λ) fails for any uncountable cardinal λ.

(2) If CH fails in addition, then �ω1,ω1 fails.

(3) �λ,λ fails for any singular cardinal λ of cofinality ω.

(4) �λ,<λ fails for any singular cardinal λ of cofinality ω1.

Of course this is optimal.

2 Preliminaries
Here we give notation and basic facts used in this note.

First we present miscellaneous notations:
Let A be a set of ordinals. Lim(A) denotes the set of all limit points in A,

i.e. Lim(A) = {α ∈ A | sup(A ∩ α) = α}. Let ¯sup(A) := sup{α + 1 | α ∈ A},
i.e. ¯sup(A) is the least β ∈ On such that β > α for all α ∈ A. Note that if A
does not have the greatest element, then ¯sup(A) = sup(A). If A = {ai | i ∈ I}
for some index set I, then ¯sup(A) is also denoted as ¯supi∈I ai.

For a regular cardinal µ and a limit ordinal λ > µ we let Eλ
µ denote the set

{α < λ | cf(α) = µ}. For an ordinal η let η mod ω be n ∈ ω such that η − n is
a limit ordinal. Let A be a set and F : <ωA → A be a function. Then for each
B ⊆ A let clF (B) denote the closure of B under F , i.e. clF (B) is the smallest
B̄ ⊇ B such that F [<ωB̄] ⊆ B̄.

Next let M be a structure of a countable language in which a well-ordering
of its universe can be defined. For A ⊆ M let SkM(A) denote the Skolem hull
of A in M, i.e. SkM(A) is the smallest M ≺ M with A ⊆ M . We use the
following fact:

Fact 2.1 (folklore). Let θ be a regular uncountable cardinal, ∆ be a well-ordering
of Hθ and M be a structure obtained by adding countable many constants,
functions and predicates to 〈Hθ,∈,∆〉. Suppose that B ⊆ A ∈ M ≺ M. Let
M̄ := SkM(M ∪B). Then the following hold:

(1) M̄ = {f(b) | f : <ωA → Hθ, f ∈ M, b ∈ <ωB}.

(2) ¯sup(M̄ ∩ λ) = ¯sup(M ∩ λ) for any regular cardinal λ ∈ M with |A| < λ.

Proof. (1) Let N be the set in the right side of the equation. First note that
M ∪B ⊆ N and that if M ∪B ⊆ N ′ ≺ M, then N ⊆ N ′. So it suffices to show
that N ≺ M. We use the Tarski-Vaught criterion.

Suppose that ϕ is a formula, that d ∈ <ωN and that M |= ∃vϕ[v, d]. It
suffices to find c ∈ N such that M |= ϕ[c, d].
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Because d ∈ <ωN , we can take a function f : <ωA → Hθ in M and b ∈ <ωB

such that d = f(b). Then there exists a function g : <ωA → Hθ such that for
any a ∈ <ωA if M |= ∃vϕ[v, f(a)], then M |= ϕ[g(a), f(a)]. We can take such
g in M by the elementarity of M .

Then c := g(b) ∈ N . Moreover M |= ϕ[c, d] by the choice of g and the
assumption that M |= ∃vϕ[v, d]. Therefore c is as desired.

(2) Fix a regular cardinal λ ∈ M with |A| < λ. Clearly sup(M̄∩λ) ≥ sup(M∩λ).
For the converse inequality note that for any f : <ωA → Hθ in M and any
b ∈ <ωB it holds that

f(b) ≤ sup{f(a) | a ∈ <ωA ∧ f(a) ∈ λ} ∈ M ∩ λ .

by the elementarity of M and the fact that cf(λ) = λ > |A|. Then by (1) we
have that sup(M̄ ∩ λ) ≤ sup(M ∩ λ).

Next we give notation and a fact on PCF theory due to Shelah:
Let λ be a singular cardinal and 〈λξ | ξ < cf(λ)〉 be an increasing sequence

of regular cardinals converging to λ. For h, h′ ∈ Πξ<cf(λ)λξ and ζ < cf(λ) let

h <ζ h′ def⇔ ∀ξ ∈ cf(λ) \ ζ, h(ξ) < h′(ξ) .

Then let

h <∗ h′ def⇔ ∃ζ < cf(λ), h <ζ h′ .

Also let “≤ζ” and “≤∗” be the orders obtained by replacing “<” in the definition
of “<ζ” and “<∗” with “≤”.

A <∗-increasing <∗-cofinal sequence in Πξ<cf(λ)λξ of a regular length is
called a scale in Πξ<cf(λ)λξ. The following is well-known:

Fact 2.2 (Shelah [10]). For every singular cardinal λ there exists a strictly
increasing sequence 〈λξ | ξ < cf(λ)〉 of regular cardinals converging to λ such
that a scale in Πξ<cf(λ)λξ of length λ+ exists.

Next we give our notation on trees. In this note we only deal with subtrees
of <ωOn. For some technical reasons we use not only trees of height ω but also
those of finite height.

T ⊆ <ωOn is called a tree if T is closed under initial segments. Let T ⊆ <ωOn
be a tree. The height of T , denoted as ht(T ), is ¯sup{dom(t) | t ∈ T}. For A ⊆ ω
we let TA denote the set {t ∈ T | dom(t) ∈ A}. So T{n} is the n-th level of T
for n < ω. Let Teven := T{n<ω|n: even} and Todd := T{n<ω|n: odd}. For each t ∈ T
let SucT (t) denote the set {α | tˆ〈α〉 ∈ T}.

Suppose that k ≤ ω, and let ~µ = 〈µn | n < k〉 be a sequence of regular
cardinals. An unbounded (stationary) ~µ-tree is a tree T ⊆ <ωOn such that
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• ht(T ) = ω if k = ω, and ht(T ) = k + 1 if k < ω,

• SucT (t) is an unbounded (stationary) subset of µdom(t) for each t ∈ T with
dom(t) < k.

If µn = ν for all n < k, then “~µ-tree” is denoted as “ν-tree”.

Finally we present two facts on SSR. The first one is on the cardinal arith-
metic under SSR. Recall that SSR implies 2ω ≤ ω2 and SCH. The former is due
to Todorčević [11], and the latter is due to Sakai-Veličković [7]. Then we have
the following:

Fact 2.3. SSR implies that µω = µ for every regular cardinal µ ≥ ω2.

The second one is a technical fact proved in Sakai-Veličković [7] (Lemma
2.2):

Notation 2.4. For countable sets x, y ⊆ On we let x �∗ y denote that the
following (i)–(iii) hold:

(i) x� y.

(ii) ¯sup(x) = ¯sup(y).

(iii) ¯sup(x ∩ α) = ¯sup(y ∩ α) for all α ∈ x of cofinality ω1.

Fact 2.5 (Sakai-Veličković [7]). Let ν be a regular cardinal ≥ ω2, and assume
SSR([ν]ω). Then for any stationary X ⊆ [ν]ω there exists W ⊆ ν such that
|W | = ω1 ⊆ W and such that the set {y ∈ [W ]ω | ∃x ∈ X, x�∗ y} is stationary
in [W ]ω.

3 Proof of Main Theorem
Here we prove Main Theorem:

Main Theorem. Assume SSR. Then �λ,<λ fails for any singular cardinal λ
of cofinality ω1.

The proof of Main Theorem is based on the proof in Sakai-Veličković [7] of
the fact that SSR implies SCH. First we prove that �λ,<λ implies the existence
of a variant of a very good scale:

Lemma 3.1. Let λ be a singular cardinal of cofinality ω1, and suppose that
�λ,<λ holds. Then there exist an increasing sequence ~λ = 〈λξ | ξ < ω1〉 of
regular cardinals converging to λ, a scale ~h = 〈hα | α < λ+〉 in Πξ<ω1

λξ and a
stationary S ⊆ Eλ+

ω with the following property:
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(∗) For every δ ∈ Eλ+

ω1
there exist a club c ⊆ δ and ζ < ω1 such that

〈hα | α ∈ c ∩ S〉 is <ζ-increasing.

Proof. Let ~C = 〈Cα | α < λ+〉 be a sequence witnessing �λ,<λ. Then we can
take a cardinal µ < λ and a stationary S ⊆ Eλ+

ω such that 1 ≤ |Cα| ≤ µ for all
α ∈ S. By Fact 2.2 take an increasing sequence ~λ = 〈λξ | ξ < ω1〉 of regular
cardinals converging to λ and a scale ~h′ = 〈h′

α | α < λ+〉 in Πξ<ω1
λξ.

By induction on α < λ+ define hα ∈ Πξ<ω1
λξ as follows: If α /∈ S, then

let hα be an arbitrary element of Πξ<ω1
λξ such that h′

α ≤∗ hα and such that
hβ <∗ hα for all β < α. Suppose that α ∈ S. First for each c ∈ Cα let
hc ∈ Πξ<ω1λξ be such that

hc(ξ) =

{
¯sup{hβ(ξ) | β ∈ c} · · · if λξ > o.t.(c),

0 · · · otherwise.

Then let hα ∈ Πξ<ω1
λξ be such that

hα(ξ) =

{
max(h′

α(ξ) , ¯sup{hc(ξ) | c ∈ Cα} ) · · · if λξ > µ,

0 · · · otherwise.

Clearly ~h = 〈hα | α < λ+〉 is a scale in Πξ<ω1λξ. To check (∗) suppose that
α ∈ Eλ+

ω1
. Take an arbitrary c ∈ Cα. Note that o.t.(c) < λ. Hence we can take

ζ < ω1 with o.t.(c), µ < λζ . Then 〈hα | α ∈ Lim(c)∩ S〉 is <ζ-increasing by the
construction of ~h and the coherency of ~C.

By Lem.3.1 and Fact 2.3 it suffices for Main Theorem to show the following:

Lemma 3.2. Let λ be a singular cardinal of cofinality ω1 such that µω < λ for
all µ < λ. Suppose that there exist ~λ, ~h and S satisfying as in Lem.3.1. Then
SSR([λ+]ω) fails.

Below fix λ, ~λ, ~h and S as follows:

• λ is a singular cardinal of cofinality ω1 such that µω < λ for all µ < λ.

• ~λ = 〈λξ | ξ < ω1〉 is an increasing sequence of regular cardinals converging
to λ.

• ~h = 〈hα | α < λ+〉 is a scale in Πξ<ω1
λξ.

• S is a stationary subset of Eλ+

ω .

• ~λ, ~h and S satisfies (∗).

Because µω < λ for all µ < λ, by shrinking ~λ if necessary, we may assume the
following:
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• ω2 < λ0, and λξ > (supη<ξ λη)
ω for all ξ < ω1.

Next we give a stationary X ⊆ [λ+]ω witnessing the failure of SSR([λ+]ω) in
the sense of Fact 2.5. For this take ~b and ~S as in the previous section:

• ~b = 〈bξ | ξ < ω1〉 is a pairwise almost disjoint sequence of elements of [ω]ω.

• ~S = 〈Sξ
0 , S

ξ
1 | ξ < ω1〉 is a sequence such that Sξ

0 and Sξ
1 are disjoint

stationary subsets of Eλξ
ω1 .

Let X be the following set:

X := the set of all x ∈ [λ+]ω such that

(i) x ∩ ω1 ∈ ω1.
(ii) ¯sup(x) ∈ S.
(iii) ¯sup(x ∩ λη) > h ¯sup(x)(η) for all η ∈ x ∩ ω1.
(iv) There is ζ < x ∩ ω1 such that for every η ∈ x ∩ ω1 \ ζ

• min(x \ h ¯sup(x)(η)) ∈ Sη
1 if η mod ω ∈ bx∩ω1 ,

• min(x \ h ¯sup(x)(η)) ∈ Sη
0 if η mod ω /∈ bx∩ω1 .

All we have to prove are the following:

Lemma 3.3. X is stationary in [λ+]ω.

Lemma 3.4. There are no W ⊆ λ+ such that |W | = ω1 ⊆ W and such that
the set {y ∈ [W ]ω | ∃x ∈ X, x�∗ y} is stationary.

First we prove Lem.3.4:

Proof of Lem.3.4. For the contradiction assume that there exist such W . Note
that if x ∈ X, and x�∗ y, then y ∈ X. Thus X ∩ [W ]ω is stationary in [W ]ω.

Let δ := ¯sup(W ). By Fodor’s lemma take ζ < ω1 such that

Y := {x ∈ X ∩ [W ]ω | ζ witnesses that x satisfies (iv) of elements of X}

is stationary in [W ]ω. We may assume that ζ is a limit ordinal.
First suppose that cf(δ) < ω1. Let αn := min(W \hδ(ζ+n)) for each n ∈ ω.

Then there are club many y ∈ [W ]ω such that

• ¯sup(x) = δ,

• {αn | n < ω} ⊆ x.
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Hence we can take such x0, x1 ∈ Y with x0∩ω1 6= x1∩ω1 and x0∩ω1, x1∩ω1 ≥
ζ + ω. For each i = 0, 1 note that min(xi \ h ¯sup(xi)(ζ + n)) = αn for all n < ω

because αn ∈ xi ⊆ W , and ¯sup(xi) = δ. Hence, by the property (iv) of elements
of X, for each n < ω, αn ∈ Sζ+n

1 if n ∈ bxi∩ω1
, and αn ∈ Sζ+n

0 if n /∈ bxi∩ω1
.

This contradicts that Sζ+n
1 and Sζ+n

0 are disjoint and that bx0∩ω1 and bx1∩ω1

are almost disjoint.
Next suppose that cf( ¯sup(W )) = ω1. By (∗) we can take a club c ⊆ δ and

η < ω1 such that 〈hα | α ∈ c ∩ S〉 is <η-increasing. We may assume that η is a
limit ordinal ≥ ζ. For each n < ω let

βn := ¯sup{hα(η + n) | α ∈ c ∩ S} ,

γn := min(W \ βn) .

Then there are club many x ∈ [W ]ω such that

• ¯sup(x) ∈ c,

• x ∩ βn ⊆ ¯sup{hα(η + n) | α ∈ c ∩ S ∩ ¯sup(x)} for all n < ω,
(thus if ¯sup(x) ∈ c ∩ S, then x ∩ βn ⊆ h ¯sup(x)(η + n) for all n < ω,)

• {γn | n < ω} ⊆ x.

Hence we can take such x0, x1 ∈ Y with x0∩ω1 6= x1∩ω1 and x0∩ω1, x1∩ω1 ≥
η + ω. Here note that ¯sup(xi) ∈ S for each i = 0, 1 by the property (ii) of
elements of X. Hence min(xi \ h ¯sup(xi)(η + n)) = γn for all n < ω. Then, as
in the previous case, we get a contradiction by the property (iv) of elements of
X.

The rest of this section is devoted to the proof of Lem.3.3.
First we prepare notation:

• For each ξ ∈ ω1\ω let ~ηξ = 〈ηξn | n < ω: even〉 be a one to one enumeration
of ξ, and let ~η := 〈~ηξ | ξ ∈ ω1 \ ω〉.

• For each ξ ∈ ω1 \ ω and each n < ω let

µξ
n :=

{
ληξ

n
· · · if n is even,

λ+ · · · if n is odd,

and let ~µξ := 〈µξ
n | n < ω〉 for each ξ ∈ ω1 \ ω.

• For a set x with |x| ≤ ω1 let χx be the function in Πξ<ω1λξ such that
χx(ξ) = ¯sup(x ∩ λξ).

Lem.3.3 will follow from Lem.3.5 and 3.6 below. Lem.3.5 will be proved
later:
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Lemma 3.5. For any function F : <ω(λ+) → λ+ and any ζ ∈ ω1 \ ω there
exist ξ ∈ ω1 \ ζ, an unbounded ~µξ-tree T and a function f ∈ Πn:evenµ

ξ
n with the

following properties:

(i) clF (ξ ∪ ran(t)) ∩ ω1 = ξ for every t ∈ T .

(ii) For any t ∈ T and any even n ∈ dom(t),

• t(n) ∈ S
ηξ
n

1 if ηξn mod ω ∈ bξ,

• t(n) ∈ S
ηξ
n

0 if ηξn mod ω /∈ bξ.

(iii) clF (ξ ∪ ran(t)) ∩ t(n) ⊆ f(n) for all t ∈ T and all even n ∈ dom(t).

Lemma 3.6. There are stationary many x ∈ [λ+]ω1 such that ω1 ⊆ x, such
that ¯sup(x) ∈ S and such that χx ≤∗ h ¯sup(x).

Proof of Lem.3.6. Take an arbitrary function F : <ω(λ+) → λ. We find x ∈
[λ+]ω1 such that ω1 ⊆ x and such that χx ≤∗ h ¯sup(x).

Let θ be a suffciently large regular cardinal, and let M := 〈Hθ,∈, ~λ,~h, F 〉.
Then, because S is a stationary subset of Eλ+

ω , we can take an ⊆-increasing
∈-chain 〈Mn | n < ω〉 in [Hθ]

ω1 such that ω1 ⊆ Mn ≺ M for each n < ω and
such that δ := ¯supn<ω( ¯sup(Mn ∩ λ+)) ∈ S. Let M :=

⋃
n<ω Mn. We show that

x := M ∩λ+ is as desired. Note that ¯sup(x) = δ. Hence it suffices to prove that
χx ≤∗ hδ.

For each n < ω we can take δn < δ such that χMn
<∗ hδn because Mn ∈

M ≺ M. Take ζn < ω1 such that χMn
<ζn hδn <ζn hδ for each n < ω, and let

ζ := ¯supn<ω ζn < ω1. Then for each ξ ∈ ω1 \ ζ it holds that

¯sup(x ∩ λξ) = ¯supn<ω( ¯sup(Mn ∩ λξ)) ≤ ¯supn<ω hδn(ξ) ≤ hδ(ξ) .

Therefore χx ≤ζ hδ.

Before proving Lem.3.5, we prove Lem.3.3 using Lem.3.5 and 3.6:

Proof of Lem.3.3. Take an arbitrary function F : <ω(λ+) → λ+. We find x ∈ X

closed under F .
Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ and

M be the structure 〈Hθ,∈,∆, ~λ,~h, S, ~S,~b, ~η, F 〉. By Lem.3.6 take M ≺ M such
that |M | = ω1 ⊆ M , such that δ := ¯sup(M ∩ λ+) ∈ S and such that χM ≤∗ hδ.
Let ζ < ω1 be such that χM ≤ζ hδ.

By Lem.3.5 take ξ ∈ ω1 \ ζ + 1, an unbounded ~µξ-tree T and f ∈ Πn:evenµ
ξ
n

with the properties (i)–(iii) in Lem.3.5. We can take ξ, T and f in M by the
elementarity of M . Here note that f(n) ∈ M ∩ ληξ

n
for each even n.
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Take an increasing sequence 〈δn | n < ω〉 converging to δ. Moreover let
M̄ := SkM(M ∪λ). Note that ¯sup(M̄ ∩λ+) = δ by Fact 2.1. Then by induction
on n we can take αn ∈ M̄ so that

• αn ∈ SucT (〈αm | m < n〉),

• if n is odd, then δn < αn,

• if n is even, then hδ(η
ξ
n) < αn.

Let x := clF (ξ ∪ {αn | n < ω}). It suffices to show that x ∈ X. Note that
x ∩ ω1 = ξ. In particular, x satisfies the property (i) of elements of X.

Next note that x ⊆ M̄ ∩ λ+ because ξ ∪ {αn | n < ω} ⊆ M̄ ≺ M. Hence
δ = supn∈ω δn ≤ ¯sup(x) ≤ ¯sup(M̄ ∩ λ+) = δ. So ¯sup(x) = δ. Then it follows
that x satisfies the properties (ii) and (iii) of elements of X.

It remains to check the property (iv) of elements of X. For this first note
that x∩αn ⊆ f(n) for each even n < ω by the property (iii) of Lem.3.5. Hence
if n is even, and ηξn > ζ, then

x ∩ αn ⊆ f(n) < ¯sup(M ∩ ληξ
n
) ≤ hδ(η

ξ
n) < αn ,

and so min(x \ hδ(η
ξ
n)) = αn. Then the property (iv) of elements of X follows

from the property (ii) of Lem.3.5.

We must prove Lem.3.5. First we prove a weak version of Lem.3.5:

Lemma 3.7. For any function F : <ω(λ+) → λ+ and any ζ ∈ ω1 \ω there exist
ξ ∈ ω1 \ ζ, a stationary ~µξ-tree T and a function f on Teven with the following
properties:

(i) clF (ξ ∪ ran(t)) ∩ ω1 = ξ for every t ∈ T .

(ii) For any t ∈ T and any even n ∈ dom(t),

• t(n) ∈ S
ηξ
n

1 if ηξn mod ω ∈ bξ,

• t(n) ∈ S
ηξ
n

0 if ηξn mod ω /∈ bξ.

(iii) f(t) < µξ
dom(t) for each t ∈ Teven.

(iv) clF (ξ ∪ ran(t)) ∩ t(n) ⊆ f(t�n) for all t ∈ T and all even n ∈ dom(t).

Proof. Take an arbitrary function F : <ω(λ+) → λ+ and an arbitrary ζ ∈ ω1\ω.
To find ξ, T and f as in the lemma, we use games.

For each α ∈ Eλ
ω1

take a club dα ⊆ α of order-type ω1, and let 〈δαξ | ξ < ω1〉
be the increasing enumeration of dα. Let ~d := 〈dα | α ∈ Eλ

ω1
〉.
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For each ξ < ω1 let a(ξ) be the following two players game of length ω:

I C0 C1 · · · Cn · · ·
II α0 α1 · · · αn · · ·

At the n-th stage first player I chooses a club Cn ⊆ µξ
n. Then II chooses αn ∈ Cn.

If n is even, then II must chooses αn so that αn ∈ S
ηξ
n

1 if ηξn mod ω ∈ bξ and so
that αn ∈ S

ηξ
n

0 if ηξn mod ω /∈ bξ. Player II wins if

• clF (ξ ∪ {αn | n < ω}) ∩ ω1 ⊆ ξ,

• clF (ξ ∪ {αn | n < ω}) ∩ αm ⊆ δαm

ξ for all m < ω.

Otherwise I wins.
Note that a(ξ) is a closed game for II. Hence it is determined. We claim the

following:

Claim. There is ξ ∈ ω1 \ ζ such that II has a winning strategy for a(ξ).

Proof of Claim. Assume not. Then I has a winning strategy τξ for a(ξ) for each
ξ ∈ ω1 \ ζ. We may assume that τξ is a function on <ω(λ+) such that τξ(t) is a
club subset of µξ

dom(t) for each t ∈ <ω(λ+). Let ~τ := 〈τξ | ξ ∈ ω1 \ ζ〉.
Let θ be a sufficiently large regular cardinal, and take a countable M ≺

〈Hθ,∈, ~λ, ~S, F, ζ, ~d, ~τ〉. Let ξ∗ := M ∩ ω1. Note that

• ¯sup(M ∩ α) = δαξ∗ for all α ∈ Eλ
ω1

∩M

by the elementarity of M . For each n < ω let η∗n and µ∗
n be ηξ

∗

n and µξ∗

n ,
respectively.

By induction on n < ω we can take αn ∈ M as follows:

• αn ∈
⋂
{τξ(〈αm | m < n〉) | ξ ∈ ω1 \ ζ ∧ µξ

n = µ∗
n}.

• Suppose that n is even. Then αn ∈ S
η∗
n

1 if η∗n mod ω ∈ bξ∗ , and αn ∈ S
η∗
n

0

if η∗n mod ω /∈ bξ∗ .

We can take such αn ∈ M because
⋂
{τξ(〈αm | m < n〉) | ξ ∈ ω1 \ζ ∧ µξ

n = µ∗
n}

is a club subset of µ∗
n which is in M , and S

η∗
n

0 and S
η∗
n

1 are stationary subsets of
µ∗
n which are in M .

Let Cn := τξ∗(〈αm | m < n〉) for each n < ω.
Then 〈Cn, αn | n < ω〉 is a legal play in a(ξ∗) in which I has moved according

to the winning strategy τξ∗ . On the other hand, x := clF (ξ
∗∪{αn | n < ω}) ⊆ M

because ξ∗ ∪ {αn | n < ω} ⊆ M ≺ M. Hence x ∩ ω1 = ξ∗, and x ∩ αmδαm

ξ∗ for
each even m. Thus II wins a(ξ∗) with this play. This is a contradiction. �Claim
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Fix ξ ∈ ω1 \ ζ such that II has a winning strategy τ for a(ξ). Moreover let
T ′ be the set of all 〈αn | n < l〉 (l < ω) which is a sequence II’s moves according
to τ against some I’s moves 〈Cn | n < l〉. Then we can easily check that T ′ is a
stationary ~µξ-tree with the following properties:

• clF (ξ ∪ ran(t)) ∩ ω1 = ξ for all t ∈ T ′.

• For any t ∈ T ′ and any even n ∈ dom(t) we have that t(n) ∈ S
ηξ
n

1 if
ηξn mod ω ∈ bξ and that t(n) ∈ S

ηξ
n

0 if ηξn mod ω /∈ bξ.

• clF (ξ ∪ ran(t)) ∩ t(n) ⊆ δ
t(n)
ξ for all t ∈ T ′ and all even n ∈ dom(t).

For each t ∈ T ′
even by Fodor’s lemma take δt < µξ

dom(t) and a stationary
St ⊆ SucT ′(t) such that δαξ = δt for all α ∈ St. Let T be the set of all t ∈ T ′

such that t(n) ∈ St�n for all even n ∈ dom(t), and let f be the function on Teven

such that f(t) = δt. Then T and f are as desired.

Clearly Lem.3.5 follows from Lem.3.7 together with Lem.3.8 below:

Lemma 3.8. Let k ≤ ω and, let ~µ = 〈µn | n < k〉 be a sequence of regular
cardinals ≥ ω2 such that (sup{µm | µm < µn})ω < µn for all n < k. Suppose
that T is an unbounded ~µ-tree, that A ⊆ {n < k | ∀m ∈ k \ {n}, µm 6= µn} and
that f is a function on TA with f(t) < µdom(t). Then there are an unbounded
~µ-tree T̂ ⊆ T and a function f̂ ∈ Πn∈Aµn such that f(t) ≤ f̂(dom(t)) for all
t ∈ T̂A.

Before proving Lem.3.8 we need some preliminaries.
For ~µ = 〈µn | n < k〉 and A as in Lem.3.8 let

A− := {n < k | ∀m ∈ A, µn < µm} ,

A+ := {n < k | ∀m ∈ A, µn > µm} .

Note that A− ∪̇ A ∪̇A+ = k.
Lem.3.8 will be proved by induction on the order-type of {µn | n < k}. In

fact we prove a slightly stronger assertion, the following (])~µ, holds for every
~µ = 〈µn | n < k〉 as in Lem.3.8:

(])~µ For any T , A and f as in Lem.3.8 there are an unbounded ~µ-tree T̂ ⊆ T

and a function f̂ ∈ Πn∈Aµn such that

(i) f(t) ≤ f̂(dom(t)) for all t ∈ T̂A,
(ii) SucT̂ (t) = SucT (t) for all t ∈ T̂A− .

The following lemma is a core of Lem.3.8:

Lemma 3.9. Let k, ~µ, T , A and f be as in Lem.3.8. Suppose that (])~ν holds
for every sequence ~ν = 〈νn | n < l〉 of regular cardinals ≥ ω2 such that
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• (sup{νm | νm < νn})ω < νn for all n < l,

• o.t.{νn | n < l} ≤ o.t.{µn | n ∈ A− ∪A}.

Then there are an unbounded ~µ-tree T̂ ⊆ T and a function f̂ ∈ Πn∈Aµn such
that

(i) f(t) ≤ f̂(dom(t)) for all t ∈ T̂A,

(ii) SucT̂ (t) = SucT (t) for all t ∈ T̂A− .

Proof. We use games. For each f̂ ∈ Πn∈Aµn let a(f̂) be the following two
players game of length k:

I β0 β1 · · · βn · · ·
II α0 α1 · · · αn · · ·

Moves at the n-th stage depend on whether n ∈ A− or not. If n ∈ A−, then
I chooses βn ∈ SucT (〈αm | m < n〉), and II plays αn := βn. (So essentially II
does nothing in this case.) If n /∈ A−, then I chooses βn < µn, and II chooses
αn ∈ SucT (〈αm | m < n〉) \βn. II wins if f(〈αm | m < n〉) ≤ f̂(n) for all n ∈ A.
Otherwise I wins.

Note that a(f̂) is a closed game for II. So a(f̂) is determined.

Claim. There is f̂ ∈ Πn∈Aµn such that II has a winning strategy for a(f̂).

Proof of Claim. Assume not. Then I has a winning strategy τf̂ for a(f̂) for each
f̂ ∈ Πn∈Aµn.

Note that ¯sup{τf̂ (t) | f̂ ∈ Πn∈Aµn} < µdom(t) for each t ∈ TA+ because
|Πn∈Aµn| < µdom(t) by the assumption on ~µ in Lem.3.8. So for each t ∈ TA+

we can take

αt ∈ SucT (t) \ ¯sup{τf̂ (t) | f̂ ∈ Πn∈Aµn} .

Let

T ′ := {t ∈ T | ∀n ∈ dom(t) ∩A+, t(n) = αt�n} .

So T ′ is a tree which does not branch at levels in A+.
Next we take a collapse U of T ′

A−∪A: Let σ : o.t.(A− ∪A) → A− ∪A be the
increasing enumeration of A− ∪A, and let

U := {t ◦ σ | t ∈ T ′} ,
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where t◦σ denotes the function on σ−1[(A−∪A)∩dom(t)] such that t◦σ(m) =

t(σ(m)).
Let νm := µσ(m) for m < o.t.(A− ∪A), and let ~ν = 〈νm | m < o.t.(A− ∪A)〉.

Note that U is an unbounded ~ν-tree. Note also that (])~ν holds by the assumption
in the lemma.

Let B := σ−1[A] and B− := σ−1[A−]. Moreover let g be the function on UB

such that g(t ◦ σ) = f(t) for each t ∈ T ′
A.

Then by (])~ν we can take an unbounded ~ν-tree Û ⊆ U and a function
ĝ ∈ Πm∈Bνm such that

(i) g(u) ≤ ĝ(dom(u)) for all u ∈ ÛB ,

(ii) SucÛ (u) = SucU (u) for all u ∈ ÛB− .

Let T ∗ := {t ∈ T ′ | t ◦ σ ∈ Û} and f̂∗ := ĝ ◦ σ−1 ∈ Πn∈Aµn. Then it is easy
to see the following:

• SucT∗(t) = {αt} for all t ∈ T ∗
A+ .

• SucT∗(t) is unbounded in µdom(t) for all t ∈ T ∗
A.

• SucT∗(t) = SucT (t) for all t ∈ T ∗
A− .

• f(t) ≤ f̂∗(dom(t)) for all t ∈ T ∗
A.

Now by induction on n < k we take βn < µn and αn ∈ SucT∗(〈αm | m < n〉).
First let βn := τf̂∗(〈αm | m < n〉). Then take αn as follows:

• If n ∈ A−, then let αn := βn.

• If n ∈ A, then take αn ∈ SucT∗(〈αm | m < n〉) \ βn.

• If n ∈ A+, then let αn := α〈αm|m<n〉.

From the observation on T ∗ in the previous paragraph we can take such αn ∈
SucT∗(〈αm | m < n〉).

Here note that if n ∈ A+, then

αn = α〈αm|m<n〉 ≥ ¯sup{τf̂ (〈αm | m < n〉) | f̂ ∈ Πn∈Aµn} ≥ βn

by the choice of α〈αm|m<n〉. Hence 〈βn, αn | n < k〉 is a legal play of a(f̂∗) in
which I has moved according to the winning strategy τf̂∗ .

On the other hand, recall that f(t) ≤ f̂∗(dom(t)) for all t ∈ T ∗
A. Hence

f(〈αm | m < n〉) ≤ f̂∗(n) for all n ∈ A, that is, II wins a(f̂∗) with 〈αn | n < k〉.
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This is a contradiction. �Claim

Let f̂ ∈ Πn∈Aµn be such that II has a winning strategy τ for a(f̂), and let
T̂ be the set of all 〈αn | n < l〉 (l < k if k = ω, and l ≤ k if k < ω) which is a
sequence of II’s moves according to τ against some I’s moves 〈βn | n < l〉. Then
it is easy to see that T̂ and f̂ are as desired.

Proof of Lem.3.8. By induction on o.t.{µn | n < k} we show that (])~µ holds for
all ~µ = 〈µn | n < k〉 as in Lem.3.8. Note that if o.t.{µn | n < k} = 0, then (])~µ

trivially holds.

(Successor step) Suppose that o.t.{µn | n < k} is successor and that T , A and
f are as in Lem.3.8. Let µ∗ := max{µn | n < k}. If µ∗ /∈ {µn | n ∈ A}, then
(])~µ follows from the induction hypothesis and Lem.3.9.

Assume that µ∗ ∈ {µn | n ∈ A}. Then there is a unique n∗ < k such
that µn∗ = µ∗. By the induction hypothesis and Lem.3.9 we can take an
unbounded ~µ-tree T̂ ⊆ T and f̂ ′ ∈ Πn∈A\{n∗}µn such that f(t) ≤ f̂ ′(dom(t))

for all t ∈ T̂A\{n∗} and such that SucT̂ (t) = SucT (t) for all t ∈ T̂A− .
Here note that

|T̂{n∗}| = max{µn | n < n∗} < µn∗ .

So ¯sup{f(t) | t ∈ T̂{n∗}} < µn∗ . Let f̂ ∈ Πn∈Aµn be an extension of f̂ ′ such
that f̂(n∗) = ¯sup{f(t) | t ∈ T̂{n∗}}. Then T̂ and f̂ are as desired.

(Limit step) Suppose that o.t.{µn | n < k} is limit and that T , A and f are as
in Lem.3.8. Note that k = ω. Take an increasing sequence 〈ρm | m < ω〉 which
converges to supn<ω µn and such that ρ0 = min{µn | n ∈ A}. For each m < ω

let Am := A ∩ [ρm, ρm+1).
Then, by the induction hypothesis and Lem.3.9, by induction on m < ω we

can easily take Tm and fm such that

(i) T 0 = T ,

(ii) Tm+1 is an unbounded ~µ-tree with Tm+1 ⊆ Tm,

(iii) fm ∈ Πn∈Amµn,

(iv) f(t) ≤ fm(dom(t)) for all t ∈ (Tm+1)Am ,

(v) SucTm+1(t) = SucTm(t) for all t ∈ (Tm+1)A−
m

.

Let T̂ :=
⋂

m<ω Tm and f̂ :=
⋃

m<ω fm. Note that T̂ is an unbounded ~µ-tree
by (ii) and (v) above. Then it is easy to check that T̂ and f̂ are as desired.
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