Stationary reflection and 2^{ω_1}

Hiroshi Sakai

We show that the stationary reflection principle in the space $[\lambda]^{\omega}$ does not implies $2^{\omega_1} = \omega_2$. More precisely, we prove the following:

Definition 1. For a cardinal $\lambda \geq \omega_2$, let $SR(\lambda)$ be the following stationary reflection principle:

 $\mathsf{SR}(\lambda) \equiv \textit{For every stationary } S \subseteq [\lambda]^\omega \textit{ there exists an } X \textit{ such that } |X| = \omega_1 \subseteq X \textit{ and } S \cap [X]^\omega \textit{ is stationary in } [X]^\omega.$

Theorem 2. Suppose that there is a supercompact cardinal. Then there is a poset \mathbb{P} which forces the following:

- (1) $SR(\lambda)$ holds for every cardinal $\lambda \geq \omega_2$.
- (2) $2^{\omega_1} = \omega_3$

Before starting the proof, we make some preliminaries. First we give notations on posets:

Notation 3. For a regular cardinal γ and a set A of ordinals, let $\operatorname{Col}(\gamma, A)$ denote the Lévy collapse which adds surjections from γ to α for all $\alpha \in A$. Also, let $\operatorname{Add}(\gamma, A)$ denote the poset adding A-many new subsets of γ . More precisely,

$$\operatorname{Col}(\gamma, A) = \text{the set of all partial functions } p \text{ on } \gamma \times A \text{ such that } |p| < \gamma$$

and $p(\xi, \alpha) \in \alpha \text{ for every } \xi \in \gamma$,

$$Add(\gamma, A) = the \ set \ of \ all \ partial \ functions \ p : \gamma \times A \to 2 \ with \ |p| < \gamma.$$

In both $Col(\gamma, A)$ and $Add(\gamma, A)$, the order is defined by reverse inclusions.

Next we review a standard fact on a sufficient condition for $SR(\lambda)$:

Lemma 4. Let λ be a cardinal $\geq \omega_2$ and assume that there is a proper forcing extension of V in which an elementary embedding $j:V\to M$ with the following properties is definable:

- (1) M is a transitive model of ZFC.
- (2) $\operatorname{crit}(j) = \omega_2^V \text{ and } j(\omega_2^V) > \lambda.$
- (3) $j "\lambda \in M$.

Then $SR(\lambda)$ holds in V.

Proof. In V, take an arbitrary stationary $S \subseteq [\lambda]^{\omega}$. Let W be a proper forcing extension of V and let $j:V\to M$ be an elementary embedding with the properties (1)-(3) which is definable in W. Working in W, we show that, in V, there is an X such that $|X| = \omega_1 \subseteq X$ and $S \cap [X]^{\omega}$ is stationary. Note that ω_1 is absolute among V, M and W.

First note that S remains stationary in $[\lambda]^{\omega}$ because W is a proper forcing extension of V. Hence $\{j``s \mid s \in S\}$ is stationary in $[j``\lambda]^{\omega}$. Here note that if $s \in S$ then j``s = j(s) because s is countable in V. Thus $\{j``s \mid s \in S\} \subseteq j(S) \cap [j``\lambda]^{\omega}$. Therefore $j(S) \cap [j``\lambda]^{\omega}$ is stationary in $[j``\lambda]^{\omega}$. This holds also in M. Moreover it follows from (2) that $|j``\lambda| = \omega_1 \subseteq j``\lambda$ in M. Hence, in M, there is an X such that $|X| = \omega_1 \subseteq X$ and $j(S) \cap [X]^{\omega}$ is stationary. Then, by the elementarity of j, in V, there is an X such that $|X| = \omega_1 \subseteq X$ and $S \cap [X]^{\omega}$ is stationary. \square

Now we prove Theorem 2:

Proof of Theorem 2. Suppose that κ is a supercompact cardinal. We show that $\operatorname{Col}(\omega_1,\kappa) \times \operatorname{Add}(\omega_1,\kappa^+)$ forces (1) and (2) of Theorem 2. Let $G \times H$ be a $\operatorname{Col}(\omega_1,\kappa) \times \operatorname{Add}(\omega_1,\kappa^+)$ -generic filter over V. First of all, note that $\operatorname{Col}(\omega_1,\kappa) \times \operatorname{Add}(\omega_1,\kappa^+)$ has the κ -c.c. Hence, in V[G][H], $\kappa = \omega_2$ and $(\kappa^+)^V = \omega_3$. Thus $2^{\omega_1} = \omega_3$ in V[G][H]. We show that, in V[G][H], $\operatorname{SR}(\lambda)$ holds for every cardinal $\lambda > \kappa$.

Let $\lambda \geq \kappa$ be a cardinal in V[G][H]. Note that $\mathsf{SR}(\lambda)$ becomes stronger as λ becomes larger. Hence we may assume that $\lambda \geq (\kappa^+)^V$. In V, take a λ -supercompact embedding $j:V\to M$. Before proceeding, we make a remark here. Below, several models of ZFC will appear. But they are all σ -closed forcing extensions of V or M. Hence ω_1 , $\mathsf{Col}(\omega_1,*)$ and $\mathsf{Add}(\omega_1,*)$ are absolute among them

Consider $j(\operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, \kappa^+))$. The following hold in both V and M:

- $j(\operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, \kappa^+)) \cong \operatorname{Col}(\omega_1, \kappa) \times \operatorname{Col}(\omega_1, [\kappa, j(\kappa)]) \times \operatorname{Add}(\omega_1, j^*\kappa^+) \times \operatorname{Add}(\omega_1, j(\kappa^+) \setminus j^*\kappa^+).$
- $j \upharpoonright \operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, \kappa^+)$ is an isomorphism between $\operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, \kappa^+)$ and $\operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, j^*\kappa^+)$.

(Note that all objects above belong to M because $\lambda \geq \kappa^+$ and $j: V \to M$ is a λ -supercompact embedding.) In particular, $G \times j$ "H is $\operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, j$ " κ^+)-generic over M.

Let $\bar{G} \times \bar{H}$ be a $\operatorname{Col}(\omega_1, [\kappa, j(\kappa))) \times \operatorname{Add}(\omega_1, j(\kappa^+) \setminus j"\kappa^+)$ -generic filter over V[G][H]. Then $\bar{G} \times \bar{H}$ is also generic over M[G][j"H]. Moreover $p \in G \times H$ if and only if $j(p) \in G \times \bar{G} \times j"H \times \bar{H}$ for every $p \in \operatorname{Col}(\omega_1, \kappa) \times \operatorname{Add}(\omega_1, \kappa^+)$. Hence, in $V[G][H][\bar{G}][\bar{H}]$, the elementary embedding $j: V \to M$ can be extended to $j^*: V[G][H] \to M[G][\bar{G}][j"H][\bar{H}]$.

Now, $V[G][H][\bar{G}][\bar{H}]$ is a σ -closed forcing extension of V[G][H]. Moreover $j^*:V[G][H]\to M[G][\bar{G}][j^*H][\bar{H}]$ satisfies the properties (1)-(3) in Lemma 4 for V[G][H]. Hence, by Lemma 4, $\mathsf{SR}(\lambda)$ holds in V[G][H]. This completes the proof.