Notes on skinny stationary subsets of $\mathcal{P}_{\kappa}\lambda$

Hiroshi Sakai

1 Introduction

Definition 1.1 (Matsubara). Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$ and let S be a subset of $\mathcal{P}_{\kappa}\lambda$.

- (1) S is said to be skinny if $|\{x \in S \mid \sup x = \alpha\}| < \alpha^{<\kappa}$ for every $\alpha < \lambda$.
- (2) S is said to be skinnier if $|\{x \in S \mid \sup x = \alpha\}| \le \alpha$ for every $\alpha < \lambda$.
- (3) S is said to be skinniest if $|\{x \in S \mid \sup x = \alpha\}| \le 1$ for every $\alpha < \lambda$.

In this note, we consider the existence of stationary subsets of $\mathcal{P}_{\kappa}\lambda$ with these properties. First we give two situations in which skinniest stationary sets exist densely:

Proposition 1.2. Assume that V = L. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Then for every stationary $T \subseteq \mathcal{P}_{\kappa}\lambda$, there exists a skinniest stationary $S \subseteq T$.

Proposition 1.3. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Suppose that δ is an inaccessible cardinal $> \lambda$. Then $\operatorname{Col}(\lambda, < \delta)$ forces that for every stationary $T \subseteq \mathcal{P}_{\kappa}\lambda$, there exists a skinniest stationary $S \subseteq T$. Here $\operatorname{Col}(\lambda, < \delta)$ denotes the Lévy collapse which makes δ to be λ^+ .

We also prove the following:

Proposition 1.4. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Suppose that S is a skinnier stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $NS_{\lambda} \upharpoonright (\sup "S)$ is not λ^+ -saturated.

Hence if E is a stationary subset of λ consisting of ordinals of cofinality $< \kappa$ and $NS_{\lambda} \upharpoonright E$ is λ^+ -saturated then $T := \{x \in \mathcal{P}_{\kappa} \lambda \mid \sup x \in E\}$ is stationary but there are no skinnier stationary $S \subseteq T$.

Proposition 1.2 and 1.3 are proved in Section 2. Proposition 1.4 is proved in Section 3.

2 Densely existence

Here we prove Proposition 1.2 and 1.3. Our argument goes through the following diamond principle:

Definition 2.1 (Matsubara). Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$ and let T be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then let $\diamondsuit_{\lambda}(T)$ be the following principle:

- $\diamondsuit_{\lambda}(T) \equiv \text{there is a sequence } \langle b_{\alpha} \mid \alpha \in \sup "T \rangle \text{ such that}$
 - (i) $b_{\alpha} \subseteq \alpha$ for every $\alpha \in \sup "T$,
 - (ii) $\{x \in T \mid B \cap \sup x = b_{\sup x}\}\$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

We call a sequence $\langle b_{\alpha} \mid \alpha \in \sup "T \rangle \ a \ \Diamond_{\lambda}(T)$ -sequence.

First we show that $\diamondsuit_{\lambda}(T)$ implies that T contains a skinniest stationary subset:

Lemma 2.2 (Matsubara). Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$ and let T be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. If $\diamondsuit_{\lambda}(T)$ holds then there exists a skinniest stationary $S \subseteq T$.

Proof. We may assume that $x \cap \kappa \in \kappa$ and $\sup x \notin x$ for every $x \in T$. Assume that $\diamondsuit_{\lambda}(T)$ holds. Then we can easily take a sequence $\langle f_{\alpha} \mid \alpha \in \sup"T \rangle$ such that

- (i) f_{α} is a function from ${}^{<\omega}\alpha$ to α for each $\alpha \in \sup {}^{\omega}T$,
- (ii) $\{x \in T \mid F \upharpoonright^{<\omega} \sup x = f_{\sup x}\}\$ is stationary for every $F : {}^{<\omega}\lambda \to \lambda$.

For each $\alpha \in \sup^{\alpha} T$, choose a $y_{\alpha} \in T$ such that $\sup y_{\alpha} = \alpha$ and y_{α} is closed under f_{α} . If such y_{α} does not exist then let y_{α} be an arbitrary element of T with $\sup y_{\alpha} = \alpha$. Then $S := \{y_{\alpha} \mid \alpha \in \sup^{\alpha} T\}$ is skinniest. We show that S is stationary.

Take an arbitrary function $F: {}^{<\omega}\lambda \to \lambda$. It suffices to find an $y \in S$ closed under F because $y \cap \kappa \in \kappa$ for every $y \in S$. By the property (ii) of $\langle f_{\alpha} \mid \alpha \in \sup^{\omega} T \rangle$, there is an $x \in T$ such that $F \upharpoonright {}^{<\omega} \sup x = f_{\sup x}$ and x is closed under F. Let $\alpha := \sup x$. Then, because x is closed under f_{α} , y_{α} is closed under f_{α} . But $f_{\alpha} = F \upharpoonright {}^{<\omega}\alpha$ and $y_{\alpha} \subseteq \alpha$. Therefore y_{α} is closed under F. \square

We show that, in both situations of Proposition 1.2 and 1.3, $\diamondsuit_{\lambda}(T)$ holds for every stationary $T \subseteq \mathcal{P}_{\kappa}\lambda$. By Lemma 2.2, this suffices. First we show this in the situation of Proposition 1.2:

Lemma 2.3. Assume that V = L. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Then $\diamondsuit_{\lambda}(T)$ holds for every stationary $T \subseteq \mathcal{P}_{\kappa}\lambda$.

Proof. Suppose that $T \subseteq \mathcal{P}_{\kappa}\lambda$ is stationary. By reducing T if necessary, we may assume that $\sup x \notin x$ and $x \cap \kappa \in \kappa$ for every $x \in T$. By induction on $\alpha \in \sup^{\alpha} T$, take a $b_{\alpha} \subseteq \alpha$ as follows. Assume that $\alpha \in \sup^{\alpha} T$ and that b_{β} has been taken for each $\beta \in \alpha \cap \sup^{\alpha} T$. Then let b_{α} be the $<_L$ -least $b \subseteq \alpha$ with the following property:

 $(*)_{\alpha} \equiv \text{For some } f: {}^{<\omega}\alpha \to \alpha, \text{ there are no } x \in T \cap L_{\alpha} \text{ such that } b \cap \sup x = b_{\sup x} \text{ and } b \text{ is closed under } f.$

If such b does not exist then let $b_{\alpha} := \emptyset$. We show that $\langle b_{\alpha} \mid \alpha \in \sup^{\alpha} T \rangle$ is a $\Diamond_{\lambda}(T)$ -sequence.

For the contradiction, assume that $\langle b_{\alpha} \mid \alpha \in \sup^* T \rangle$ is not a $\Diamond_{\lambda}(T)$ -sequence. Let B^* be the $<_L$ -least $B \subseteq \lambda$ such that $\{x \in T \mid B^* \cap \sup x = b_{\sup x}\}$ is nonstationary. Then for some $F : {}^{<\omega}\lambda \to \lambda$, there are no $x \in T$ such that $B^* \cap \sup x = b_{\sup x}$ and x is closed under F. Here note that B^* is the $<_L$ -least one for which such F exists. Let F^* be one of such F. Moreover let \mathcal{M} be the structure $\langle L_{\lambda^+}, \in, T, \langle b_{\alpha} \mid \alpha \in \sup^* T \rangle, B^*, F^* \rangle$.

Now, because T is stationary, $\{\sup x \mid x \in T \land x \text{ is closed under } F^*\}$ is stationary in λ . Hence there is an $x^* \in T$ such that x^* is closed under F^* and such that, letting M^* be the Skolem hull of $\sup x^*$ in \mathcal{M} , $M^* \cap \lambda = \sup x^*$. Then, by the standard argument using the transitive collapse of M^* , it is easy to see that $B^* \cap \sup x^*$ is the $<_L$ -least $b \subseteq \sup x^*$ satisfying $(*)_{\sup x^*}$. Thus $b_{\sup x^*} = B^* \cap \sup x^*$ by the construction of $\langle b_\alpha \mid \alpha \in \sup^* T \rangle$. Now $x^* \in T$, $B^* \cap \sup x^* = b_{\sup x^*}$ and x^* is closed under F^* . This contradicts the choice of B^* and F^* .

Next we do in the situation of Proposition 1.3:

Lemma 2.4. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Suppose that δ is an inaccessible cardinal. Then $\operatorname{Col}(\lambda, < \delta)$ forces that for every stationary $T \subseteq \mathcal{P}_{\kappa}\lambda$, $\diamondsuit_{\lambda}(T)$ holds.

To show this, we prove two lemmata:

Lemma 2.5. Suppose that κ and λ are regular uncountable cardinals such that $\kappa < \lambda$ and $\lambda^{<\kappa} = \lambda$. Let T be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $\mathrm{Add}(\lambda)$ forces that $\diamondsuit_{\lambda}(T)$ holds. Here $\mathrm{Add}(\lambda)$ denotes the poset ${}^{<\lambda}2$ ordered by reverse inclusion.

Proof. Let \mathbb{P} be the poset of all functions p such that $\operatorname{dom}(p) \in \lambda$ and $p(\alpha) \subseteq \alpha$ for every $\alpha \in \operatorname{dom}(p)$. The order is defined by reverse inclusion. It is easy to see that \mathbb{P} is forcing equivalent with $\operatorname{Add}(\lambda)$. We show that if G is a \mathbb{P} -generic over V then $\langle \bigcup G(\alpha) \mid \alpha \in \sup^* T \rangle$ is a $\diamondsuit_{\lambda}(T)$ -sequence. We work in V. Let G be the canonical name for a \mathbb{P} -generic filter. We may assume that $\sup x \notin x$ and $x \cap \kappa \in \kappa$ for every $x \in T$.

Take an arbitrary \mathbb{P} -name \dot{B} of a subset of λ , an arbitrary \mathbb{P} -name \dot{F} of a function from ${}^{<\omega}\lambda$ to λ and an arbitrary $p\in\mathbb{P}$. We show that there is an $p^*\leq p$ and an $x^*\in T$ such that $p^*\Vdash \text{``}\dot{B}\cap\sup x^*=\bigcup\dot{G}\ (\sup x^*)$ and x^* is closed under \dot{F} ."

By induction on $\alpha \in \lambda$, we can construct a descending sequence $\langle p_{\alpha} \mid \alpha \in \lambda \rangle$ below p such that p_{α} decides $\dot{B} \cap \alpha$ and $\dot{F} \upharpoonright^{<\omega} \alpha$ for each $\alpha \in \lambda$. Let $B \subseteq \lambda$ and $F : {}^{<\omega} \lambda \to \lambda$ be the evaluations of \dot{B} and \dot{F} by $\langle p_{\alpha} \mid \alpha \in \lambda \rangle$. That is,

- $B = \{ \beta \in \lambda \mid (\exists \alpha \in \lambda) \ p_{\alpha} \Vdash "\beta \in \dot{B}" \},$
- $F(a) = \beta$ if and only if $p_{\alpha} \Vdash$ " $\dot{F}(a) = \beta$ " for some $\alpha \in \lambda$.

Now, because T is stationary, there is an $x^* \in T$ such that x^* is closed under F and $\operatorname{dom}(p_{\alpha}) < \sup x^*$ for every $\alpha < \sup x^*$. Let $p' := \bigcup_{\alpha < \sup x^*} p_{\alpha}$. First note that $p' \Vdash \text{``}\dot{F} \upharpoonright ^{<\omega} \sup x^* = F \upharpoonright ^{<\omega} \sup x^*$. Hence $p' \Vdash \text{``}x^*$ is closed under \dot{F} . Note also that $p' \Vdash \text{``}\dot{B} \cap \sup x^* = B \cap \sup x^*$ and that $\operatorname{dom}(p') \subseteq \sup x^*$. Take an $p^* \le p'$ such that $p^*(\sup x^*) = B \cap \sup x^*$. Then $p^* \Vdash \text{``}\dot{B} \cap \sup x = \bigcup \dot{G} (\sup x^*)$. Therefore p^* and x^* are those desired.

Although the second one can be proved by the similar argument as the first one, we give proof.

Lemma 2.6. Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$. Suppose that T is a stationary subset of $\mathcal{P}_{\kappa}\lambda$ such that $\diamondsuit_{\lambda}(T)$ holds. Then every λ -closed forcing preserves $\diamondsuit_{\lambda}(T)$.

Proof. Let $\langle b_{\alpha} \mid \alpha \in \sup^{\alpha} T \rangle$ be a $\Diamond_{\lambda}(T)$ -sequence. Take an arbitrary λ -closed poset \mathbb{P} . We show that $\langle b_{\alpha} \mid \alpha \in \sup^{\alpha} T \rangle$ remains to be a $\Diamond_{\lambda}(T)$ -sequence in the generic extension by \mathbb{P} . We may assume that $\sup x \notin x$ and $x \cap \kappa \in \kappa$ for each $x \in T$.

Take an arbitrary \mathbb{P} -name \dot{B} of a subset of λ , an arbitrary \mathbb{P} -name \dot{F} of a function from ${}^{<\omega}\lambda$ to λ and an arbitrary $p\in\mathbb{P}$. It suffices to find a $p^*\leq p$ and an $x^*\in T$ such that $p^*\Vdash_{\mathbb{P}}$ " $\dot{B}\cap\sup x^*=b_{\sup x^*}$ and x^* is closed under \dot{F} ".

By induction on $\alpha < \lambda$, we can construct a descending sequence $\langle p_{\alpha} \mid \alpha \in \lambda \rangle$ such that p_{α} decides $\dot{B} \cap \alpha$ and $\dot{F} \upharpoonright^{<\omega} \alpha$. Let B and F be the evaluations of B and \dot{F} by $\langle p_{\alpha} \mid \alpha \in \lambda \rangle$.

Then, because $\langle b_{\alpha} \mid \alpha \in \sup"T \rangle$ is a $\Diamond_{\lambda}(T)$ -sequence, there is an $x^* \in T$ such that $B \cap \sup x^* = b_{\sup x^*}$ and x^* is closed under F. Let $p^* := p_{\sup x^*}$. Then $p^* \Vdash \text{``} \dot{B} \cap \sup x^* = B \cap \sup x^*$ and $\dot{F} \upharpoonright ^{<\omega} \sup x^* = F \upharpoonright ^{<\omega} \sup x^*$. Hence $p^* \Vdash \text{``} \dot{B} \cap \sup x^* = b_{\sup x^*}$ and x^* is closed under \dot{F} . Thus p^* and x^* are those desired.

Lemma 2.4 easily follows from the above two lemmata:

Proof of Lemma 2.4. Suppose that G is a $\operatorname{Col}(\lambda,<\delta)$ -generic filter over V. In V[G], take an arbitrary stationary $T\subseteq \mathcal{P}_\kappa\lambda$. Then $T\in V[G\cap\operatorname{Col}(\lambda,<\gamma)]$ for some $\gamma<\lambda$. Let G_0 denotes $G\cap\operatorname{Col}(\lambda,<\gamma)$. Note that, in V, $\operatorname{Col}(\lambda,<\delta)$ is forcing equivalent with $\operatorname{Col}(\lambda,<\gamma)\times\operatorname{Add}(\lambda)\times\operatorname{Col}(\lambda,<\delta)$. Note also that $\operatorname{Add}(\lambda)$ and $\operatorname{Col}(\lambda,<\delta)$ are absolute among all models between V and V[G].

Take an $Add(\lambda)$ -generic filter G_1 and a $Col(\lambda, < \delta)$ -generic filter G_2 such that $V[G] = V[G_0][G_1][G_2]$. Then $\diamondsuit_{\lambda}(T)$ holds in $V[G_0][G_1]$ by Lemma 2.5. Moreover, because $Col(\lambda, < \delta)$ is λ -closed, $\diamondsuit_{\lambda}(T)$ still holds in $V[G_0][G_1][G_2] = V[G]$ by Lemma 2.6.

3 Nonsaturation of suprema

Here we prove Proposition 1.4. Our argument goes through a combinatorial principle obtained from weakening the \$\mathbb{a}\seta-principle. First we introduce this

combinatorial principle. Below, for regular uncountable cardinals $\kappa < \lambda$,

$$E_{<\kappa}^{\lambda} := \{ \alpha \in \lambda \mid \operatorname{cf}(\alpha) < \kappa \} .$$

Definition 3.1. Suppose that κ and λ are regular uncountable cardinals with $\kappa < \lambda$ and that $E \subseteq E^{\lambda}_{<\kappa}$ is stationary. Then let $\spadesuit_{\lambda,<\kappa}(E)$ and $\spadesuit^{-}_{\lambda,<\kappa}(E)$ be the following principles:

- $\spadesuit_{\lambda, < \kappa}(E) \equiv There is a sequence \langle b_{\alpha} \mid \alpha \in E \rangle such that$
 - (i) $b_{\alpha} \in \mathcal{P}_{\kappa} \alpha$ for each $\alpha \in E$,
 - (ii) $\{\alpha \in E \mid B \cap b_{\alpha} \text{ is unbounded in } \alpha \}$ is stationary for every unbounded $B \subseteq \lambda$.
- $\spadesuit_{\lambda, \leq \kappa}^-(E) \equiv \text{ There is a sequence } \langle \mathfrak{b}_{\alpha} \mid \alpha \in E \rangle \text{ such that }$
 - (i') $\mathfrak{b}_{\alpha} \subseteq \mathcal{P}_{\kappa} \alpha$ and $|\mathfrak{b}_{\alpha}| \leq \alpha$ for every $\alpha \in E$,
 - (ii') $\{\alpha \in E \mid (\exists b \in \mathfrak{b}_{\alpha}) \ B \cap b \text{ is unbounded in } \alpha \} \text{ is stationary for every unbounded } B \subseteq \lambda.$

We call a sequence $\langle \mathfrak{b}_{\alpha} \mid \alpha \in E \rangle$ satisfying (i) and (ii) a $\spadesuit_{\lambda, < \kappa}(E)$ -sequence. Also we call a sequence $\langle \mathfrak{b}_{\alpha} \mid \alpha \in E \rangle$ satisfying (i') and (ii') a $\spadesuit_{\lambda, < \kappa}^{-}(E)$ -sequence.

We only use $\spadesuit_{\lambda, \leq \kappa}^-$. The following is easy:

Lemma 3.2. Suppose that κ and λ are regular uncountable cardinals with $\kappa < \lambda$ and that $S \subseteq \mathcal{P}_{\kappa} \lambda$ is skinnier stationary. Then $\spadesuit_{\lambda, < \kappa}^-(\sup "S)$ holds.

Proof. We may assume that $\sup x \notin x$ for every $x \in S$. For each $\alpha \in \sup^{\alpha} S$, let \mathfrak{b}_{α} the set of all $x \in S$ with $\sup x = \alpha$. Then the sequence $\langle \mathfrak{b}_{\alpha} \mid \alpha \in \sup^{\alpha} S \rangle$ satisfies (i'). We show that this sequence satisfies (ii').

Take an arbitrary unbounded $B \subseteq \lambda$. Let $F : \lambda \to \lambda$ be such that $F(\alpha) = \min(B \setminus (\alpha+1))$ and let S' be the set of all $x \in S$ closed under F. Note that if $x \in \mathcal{P}_{\kappa}\lambda$ is closed under F then $B \cap \sup x$ is unbounded in $\sup x$. Hence $\sup^{\kappa} S' \subseteq \{\alpha \in E \mid (\exists b \in \mathfrak{b}_{\alpha}) \ B \cap b \text{ is unbounded in } \alpha \}$. But $\sup^{\kappa} S'$ is stationary in λ because S' is stationary in $\mathcal{P}_{\kappa}\lambda$. Therefore $\{\alpha \in E \mid (\exists b \in \mathfrak{b}_{\alpha}) \ B \cap b \text{ is unbounded in } \alpha \}$ is stationary in λ .

Now the following suffices for Proposition 1.4:

Lemma 3.3. Suppose that κ and λ are regular uncountable cardinals with $\kappa < \lambda$ and that $E \subseteq E^{\lambda}_{<\kappa}$ is stationary. If $\spadesuit^{-}_{\lambda,<\kappa}(E)$ holds then $NS_{\lambda} \upharpoonright E$ is not λ^{+} -saturated.

Our proof of this lemma is based on that of Shelah's well-known theorem that there are no ω_3 -saturated normal ideal over ω_2 concentrating on $E_{\omega}^{\omega_2}$. As is Shelah's theorem, a key object of proof of Lemma 3.3 is a strongly pairwise almost disjoint family. First recall the notion of strongly pairwise almost disjoint family:

Definition 3.4. Let λ be a limit ordinal and let \mathcal{B} be a family of unbounded subsets of λ . \mathcal{B} is said to be strongly pairwise almost disjoint if for every $\mathcal{B}' \subseteq \mathcal{B}$ with $|\mathcal{B}'| \leq \lambda$, there is a $\sigma : \mathcal{B}' \to \lambda$ such that $B_1 \cap B_2 \subseteq \max\{\sigma(B_1), \sigma(B_2)\}$ for each distinct $B_1, B_2 \in \mathcal{B}'$.

We prove two lemmata on a strongly pairwise almost disjoint family. The first one is standard:

Lemma 3.5. Let λ be a regular cardinal. Then there is a strongly pairwise almost disjoint family of unbounded subsets of λ which has the size λ^+ .

Proof. By the standard argument, we can take a pairwise almost disjoint family \mathcal{B} of unbounded subsets of λ with $|\mathcal{B}| = \lambda^+$. We show that \mathcal{B} is strongly pairwise almost disjoint.

Take an arbitrary $\mathcal{B}' \subseteq \mathcal{B}$ with $|\mathcal{B}'| \leq \lambda$. Let $\langle B_{\xi} \mid \xi < |\mathcal{B}'| \rangle$ be a 1-1 enumeration of \mathcal{B}' . For each $\xi < |\mathcal{B}'|$, let $\sigma(B_{\xi}) := \sup\{\sup\{\sup(B_{\xi} \cap B_{\eta}) \mid \eta < \xi\}$. Note that if $\xi < |\mathcal{B}'|$ then $\sigma(B_{\xi}) < \lambda$ by the regularity of λ . Now, clearly, σ is a witness for \mathcal{B}' of that \mathcal{B} is strongly pairwise almost disjoint.

The second one is easy but is a key. In the following, the only interesting case is when $cf(\lambda) < |\lambda|$ and b is an unbounded subset of λ with $|b| < |\lambda|$.

Lemma 3.6. Suppose that λ is a limit ordinal and that \mathcal{B} is a strongly pairwise almost disjoint family of unbounded subsets of λ . Let b be a subset of λ with $|b|^+ \leq \lambda$. Then

$$|\{B \in \mathcal{B} \mid B \cap b \text{ is unbounded in } \lambda\}| \leq |b|$$
.

Proof. For the contradiction, assume not. Then b is an unbounded subset of λ and hence $\operatorname{cf}(\lambda) \leq |b|$. Take a $\mathcal{B}' \subseteq \{B \in \mathcal{B} \mid B \cap b \text{ is unbounded in } \lambda\}$ with $|\mathcal{B}'| = |b|^+$. Let $\sigma : \mathcal{B}' \to \lambda$ be a witness of that \mathcal{B} is strongly pairwise almost disjoint.

Then there is an $\alpha^* < \lambda$ such that $|\sigma^{-1} \, {}^{"} \, \alpha^*| = |b|^+$ because $\operatorname{cf}(\lambda) < |b|^+$. Let $\mathcal{B}^* := \{B \setminus \alpha^* \mid B \in \mathcal{B}' \wedge \sigma(B) < \alpha^*\}$. Then \mathcal{B}^* is pairwise disjoint, $|\mathcal{B}^*| = |b|^+$ and b intersects with every member of \mathcal{B}^* . This is a contradiction.

Now we can prove Lemma 3.3 easily:

Proof of Lemma 3.3. For the contradiction, assume that $\spadesuit_{\lambda,<\kappa}^-(E)$ holds and that $\mathrm{NS}_{\lambda} \upharpoonright E$ is λ^+ -saturated. Take a $\spadesuit_{\lambda,<\kappa}^-(E)$ -sequence $\langle \mathfrak{b}_{\alpha} \mid \alpha \in E \rangle$. Let \mathbb{P} denote the corresponding poset of $\mathrm{NS}_{\lambda} \upharpoonright E$, that is, the poset of all stationary subsets of E ordered by inclusion. Moreover, by Lemma 3.5, take a strongly pairwise almost disjoint family \mathcal{B} of unbounded subsets of λ such that $|\mathcal{B}| = \lambda^+$.

Let \dot{G} be the canonical name for \mathbb{P} -generic filter and, in $V^{\mathbb{P}}$, let $j:V\to M\cong \mathrm{Ult}(V,\dot{G})$ be the generic elementary embedding. Moreover let $\dot{\mathfrak{b}}_{\lambda}$ be a \mathbb{P} -name for the λ -th element of $j(\langle \mathfrak{b}_{\alpha} \mid \alpha \in E \rangle)$ and let $\dot{\mathcal{A}}$ be a \mathbb{P} -name of the set $\{B \in \mathcal{B} \mid (\exists b \in \dot{\mathfrak{b}}_{\lambda}) \ B \cap b$ is unbounded in λ . Here note that \mathbb{P} forces the following:

- \mathcal{B} remains to be strongly pairwise almost disjoint.
- κ remains to be a regular cardinal and $\hat{\mathfrak{b}}_{\lambda} \subseteq \mathcal{P}_{\kappa}\lambda$. In particular, $|b|^+ \leq \kappa < \lambda$ for every $b \in \hat{\mathfrak{b}}_{\lambda}$.
- $|\dot{\mathfrak{b}_{\lambda}}| \leq \lambda$.

(The first one follows from the fact that \mathbb{P} has the λ^+ -c.c.) Hence $\Vdash_{\mathbb{P}}$ " $|\dot{\mathcal{A}}| \leq \lambda$ " by Lemma 3.6. Then, because \mathbb{P} has the λ^+ -c.c., we can take an $\mathcal{A}^* \in V$ such that $|\mathcal{A}^*| = \lambda$ and $\Vdash_{\mathbb{P}}$ " $\dot{\mathcal{A}} \subseteq \mathcal{A}^*$ ".

Take a $B \in \mathcal{B} \setminus \mathcal{A}^*$. Then

$$\Vdash_{\mathbb{P}}$$
 " $(\forall b \in \dot{\mathfrak{b}_{\lambda}}) \ B \cap b$ is bounded in λ ".

On the other hand, $E^*:=\{\alpha\in E\mid (\exists b\in \mathfrak{b}_\alpha)\ B\cap b \text{ is unbounded in }\alpha\}$ is stationary and

$$E^* \Vdash_{\mathbb{P}}$$
 " $(\exists b \in \dot{\mathfrak{b}_{\lambda}}) \ j(B) \cap b$ is unbounded in λ ".

But $\Vdash_{\mathbb{P}}$ " $j(B) \cap \lambda = B$ ". Hence

$$E^* \Vdash_{\mathbb{P}} "(\exists b \in \dot{\mathfrak{b}_{\lambda}}) \ B \cap b \text{ is unbounded in } \lambda".$$

This is a contradiction.