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1 Introduction

Definition 1.1 (Matsubara). Let k and A be reqular uncountable cardinals with
Kk < X and let S be a subset of Pi\.

(1) S is said to be skinny if |[{x € S |supz = a}| < a<" for every a < A.
(2) S is said to be skinnier if |[{x € S| supz = a}| < a for every o < A.
(3) S is said to be skinniest if |[{x € S |supz = a}| <1 for every a < A.

In this note, we consider the existence of stationary subsets of P, A with
these properties. First we give two situations in which skinniest stationary sets
exist densely:

Proposition 1.2. Assume that V = L. Let k and A be reqular uncountable car-
dinals with k < A. Then for every stationary T C P, there exists a skinniest
stationary S CT.

Proposition 1.3. Let k and A be regular uncountable cardinals with Kk < .
Suppose that 6 is an inaccessible cardinal > A. Then Col(\, < §) forces that
for every stationary T C P\, there exists a skinniest stationary S C 1. Here
Col(\, <6) denotes the Lévy collapse which makes & to be AT.

We also prove the following:

Proposition 1.4. Let k and X be regular uncountable cardinals with Kk < .
Suppose that S is a skinnier stationary subset of PxA. Then NSy [ (sup “S) is
not \*-saturated.

Hence if E is a stationary subset of A consisting of ordinals of cofinality < &
and NS, | E is AT-saturated then T := {z € P,\ | supz € E} is stationary but
there are no skinnier stationary S C T.

Proposition 1.2 and 1.3 are proved in Section 2. Proposition 1.4 is proved in
Section 3.

2 Densely existence

Here we prove Proposition 1.2 and 1.3. Our argument goes through the following
diamond principle:



Definition 2.1 (Matsubara). Let k and A be reqular uncountable cardinals with
Kk < X and let T be a stationary subset of P.A. Then let $A(T) be the following
principle:

OA(T) = there is a sequence (b, | o € sup “T') such that
(i) ba C « for every a € sup “T,
(ii) {x € T | BNsupx = bsup s} is stationary in PeA.

We call a sequence (by, | o € sup “T') a $a(T)-sequence.

First we show that {(7") implies that T' contains a skinniest stationary
subset:

Lemma 2.2 (Matsubara). Let k and A be regular uncountable cardinals with
Kk < X and let T be a stationary subset of PeA. If GA(T) holds then there exists
a skinniest stationary S CT.

Proof. We may assume that © Nk € k and supx ¢ z for every z € T. Assume
that $A(T) holds. Then we can easily take a sequence (f, | @ € sup“T) such
that

(i) fa is a function from <“« to « for each a € sup“T),
(ii) {x €T | F]<“supz = fsupo} is stationary for every F': <\ — .

For each a € sup“T, choose a y, € T such that supy, = a and y, is closed
under f,. If such y, does not exist then let y, be an arbitrary element of T
with supy, = a. Then S := {y, | @ € sup“T} is skinniest. We show that S is
stationary.

Take an arbitrary function F : <“X — \. It suffices to find an y € S
closed under F because y Nk € k for every y € S. By the property (ii) of
(fo | @ € sup“T), there is an = € T such that F [ <“supz = feup, and x is
closed under F'. Let « := sup x. Then, because z is closed under f,, y, is closed
under f,. But f, = F|<“«a and y, C a. Therefore y, is closed under F. [

We show that, in both situations of Proposition 1.2 and 1.3, {x(7") holds
for every stationary T' C P, A. By Lemma 2.2, this suffices. First we show this
in the situation of Proposition 1.2:

Lemma 2.3. Assume that V = L. Let k and X be reqular uncountable cardinals
with k < A. Then $A(T) holds for every stationary T C PyA.

Proof. Suppose that T" C P, is stationary. By reducing 7' if necessary, we
may assume that supz € z and x Nk € k for every x € T. By induction on
o € sup“T, take a b, C o as follows. Assume that o € sup“T and that bg has
been taken for each 8 € aNsup“T. Then let b, be the <p-least b C o with the
following property:

(¥*)o = For some f : <“a — «, there are no © € T N L, such that
bNsupz = bsyp, and b is closed under f.



If such b does not exist then let b, := (). We show that (b, | « € sup“T) is a
O (T)-sequence.

For the contradiction, assume that (b, | a € sup“T) is not a $A(T)-
sequence. Let B* be the <p-least B C A such that {x € T | B*Nsupx = bgyp s }
is nonstationary. Then for some F : <X — ), there are no x € T such that
B*Nsupx = bsypa and z is closed under F'. Here note that B* is the <p-least
one for which such F' exists. Let F* be one of such F. Moreover let M be the
structure (Ly+, €, T, (b | € sup“T), B*, F*).

Now, because T is stationary, {supx | © € T A z is closed under F*} is
stationary in A. Hence there is an 2* € T such that x* is closed under F* and
such that, letting M* be the Skolem hull of supa* in M, M* N A = supz*.
Then, by the standard argument using the transitive collapse of M*, it is easy
to see that B* Nsupz* is the <y-least b C supz* satisfying (*)sypg+. Thus
bsupz+ = B* Nsupz* by the construction of (b, | o € sup“T). Now z* € T,
B* Nsupx* = bgyp+ and x* is closed under F'*. This contradicts the choice of
B* and F™*. O

Next we do in the situation of Proposition 1.3:

Lemma 2.4. Let k and X\ be regular uncountable cardinals with k < X. Sup-
pose that § is an inaccessible cardinal. Then Col(\, < d) forces that for every
stationary T C P, Ox(T) holds.

To show this, we prove two lemmata:

Lemma 2.5. Suppose that k and \ are reqular uncountable cardinals such that
K < X and A<* = X. Let T be a stationary subset of P.A. Then Add())
forces that {x(T) holds. Here Add()\) denotes the poset <*2 ordered by reverse
inclusion.

Proof. Let P be the poset of all functions p such that dom(p) € A and p(a) C «
for every a € dom(p). The order is defined by reverse inclusion. It is easy to
see that P is forcing equivalent with Add(\). We show that if G is a P-generic
over V then ((JG (a) | a € sup“T) is a $a(T)-sequence. We work in V. Let
G be the canonical name for a P-generic filter. We may assume that sup = ¢x
and x Nk € k for every x € T

Take an arbitrary P-name B of a subset of A, an arbitrary P-name F' of a
function from <“X to A and an arbitrary p € P. We show that there is an p* < p
and an z* € T such that p* IF “BNsupz* = |JG (supz*) and 2* is closed
under F'”.

By induction on « € A\, we can construct a descending sequence (p, | @ € \)
below p such that p, decides BNa and F'| <“« for each o € A. Let B C X and
F: <“)X — X be the evaluations of B and F by (p, | & € ). That is,

e B={B3er(Bac)p.F“BeB},
e F(a) = A if and only if p, IF “F(a) = 87 for some o € \.



Now, because T is stationary, there is an z* € T such that z* is closed
under F' and dom(p,) < supa* for every a < supz*. Let p’ := Ua<supr* Da-
First note that p/ I “F | <“supaz* = F | <“supz*”. Hence p’ IF “z* is
closed under 7. Note also that p - “BnN supz® = B Nsupz®” and that
dom(p’) C supa*. Take an p* < p’ such that p*(supa*) = B Nsupz*. Then
p* Ik “Bnsupz = U G (supz*)”. Therefore p* and z* are those desired. [

Although the second one can be proved by the similar argument as the first
one, we give proof.

Lemma 2.6. Let k and X\ be regular uncountable cardinals with k < A. Suppose
that T is a stationary subset of Px X such that $a(T') holds. Then every A-closed
forcing preserves {A(T).

Proof. Let (b, | o € sup“T) be a {$a(T)-sequence. Take an arbitrary A-closed
poset P. We show that (b, | o € sup“T’) remains to be a $x(T)-sequence in
the generic extension by P. We may assume that supz ¢ x and x Nk € & for
eachz € T.

Take an arbitrary P-name B of a subset of \, an arbitrary P-name F of a
function from <“X to A and an arbitrary p € P. It suffices to find a p* < p and
an z* € T such that p* IFp Bn Sup ™ = bgup o~ and z* is closed under F.

By induction on @ < A, we can construct a descending sequence (p, | @ € \)
such that p, decides BN« and F' | <“a. Let B and F be the evaluations of B
and F by (ps | v € A).

Then, because (b, | o € sup“T) is a $a(T)-sequence, there is an z* € T
such that BNsup 2* = bgup .= and 2* is closed under F'. Let p* := pgupo~. Then
p* IF “Bnsupz* = BNsupz* and F | <“supz* = F | <“supz*”. Hence
p* Ik “B Nsup x* = bgup o= and z* is closed under F7. Thus p* and x* are those
desired. O

Lemma 2.4 easily follows from the above two lemmata:

Proof of Lemma 2.4. Suppose that G is a Col(\, < d)-generic filter over V. In
V[G], take an arbitrary stationary T C P,A. Then T € V[G N Col(\, <~)] for
some 7 < A. Let Gy denotes G N Col(A, < 7). Note that, in V, Col(}, < §)
is forcing equivalent with Col(\, <) x Add(\) x Col(A, < §). Note also that
Add(X) and Col(\, <9) are absolute among all models between V' and V[G].
Take an Add(\)-generic filter Gy and a Col(\, < §)-generic filter G2 such
that V[G] = V[Go][G1][G2])- Then {$aA(T) holds in V[Gy][G1] by Lemma 2.5.
Moreover, because Col(A, <) is A-closed, {A(T) still holds in V[Gy][G1][G2] =
V[G] by Lemma 2.6. O

3 Nonsaturation of suprema

Here we prove Proposition 1.4. Our argument goes through a combinatorial
principle obtained from weakening the &-principle. First we introduce this



combinatorial principle. Below, for regular uncountable cardinals k < A,
B2, = {aeX|cf(a) <K} .

Definition 3.1. Suppose that k and \ are regular uncountable cardinals with
K < X and that E C E2, is stationary. Then let #x <.(E) and &3 _ (E) be
the following principles:

M) .(E) = There is a sequence (by | @ € E) such that

(i) by € Py for each a € E,
(ii) {o € E | BN by is unbounded in o} is stationary for
every unbounded B C .

A, _.(E) = There is a sequence (by | a € E) such that
(") bo € Pra and |by| < « for every a € E,

(it") {a € E|(3b € by) BNb is unbounded in o} is station-
ary for every unbounded B C \.

We call a sequence (by, | o € E) satisfying (1) and (ii) a @y <. (E)-sequence. Also
we call a sequence (by | o € E) satisfying (') and (ii’) a #; _, (E)-sequence.

We only use &, _,. The following is easy:

Lemma 3.2. Suppose that k and X\ are reqular uncountable cardinals with kK < A
and that S C P\ is skinnier stationary. Then Q;<K(sup “S) holds.

Proof. We may assume that supz ¢ x for every z € S. For each a € sup“S,
let b, the set of all € S with supa = a. Then the sequence (b, | @ € sup“S)
satisfies (i’). We show that this sequence satisfies (ii’).

Take an arbitrary unbounded B C A. Let F' : A — X be such that F(«a) =
min(B \ (a + 1)) and let S’ be the set of all z € S closed under F. Note
that if € P, is closed under F' then B Nsup z is unbounded in sup z. Hence
sup“S’ C{a € E | (3 € b,) BNbisunbounded in « }. But sup“S’ is stationary
in A because S’ is stationary in P,\. Therefore {a € E | (b € b,) BNb is
unbounded in a'} is stationary in . O

Now the following suffices for Proposition 1.4:

Lemma 3.3. Suppose that k and A are reqular uncountable cardinals with k < A
and that E C E2, is stationary. If &5 _, (E) holds then NSy | E is not A*-
saturated.

Our proof of this lemma is based on that of Shelah’s well-known theorem
that there are no ws-saturated normal ideal over wy concentrating on E?. As
is Shelah’s theorem, a key object of proof of Lemma 3.3 is a strongly pairwise
almost disjoint family. First recall the notion of strongly pairwise almost disjoint
family:



Definition 3.4. Let \ be a limit ordinal and let B be a family of unbounded
subsets of X. B is said to be strongly pairwise almost disjoint if for every B’ C B
with |B'| < A, there is a 0 : B' — X such that By N By C max{o(B1),0(Ba)} for
each distinct By, By € B'.

We prove two lemmata on a strongly pairwise almost disjoint family. The
first one is standard:

Lemma 3.5. Let A\ be a reqular cardinal. Then there is a strongly pairwise
almost disjoint family of unbounded subsets of X which has the size .

Proof. By the standard argument, we can take a pairwise almost disjoint family
B of unbounded subsets of A with |B| = AT. We show that B is strongly pairwise
almost disjoint.

Take an arbitrary B’ C B with |[B'| < A. Let (Be | £ < |B|) be a 1-1
enumeration of B’. For each & < |B|, let 0(B¢) := sup{sup(B¢ N B,) | n < &}
Note that if £ < |B’| then o(B¢) < A by the regularity of A. Now, clearly, o is
a witness for B’ of that B is strongly pairwise almost disjoint. O

The second one is easy but is a key. In the following, the only interesting
case is when cf(\) < |A| and b is an unbounded subset of A with |b| < |A].

Lemma 3.6. Suppose that X\ is a limit ordinal and that B is a strongly pairwise
almost disjoint family of unbounded subsets of \. Let b be a subset of A\ with
o]t < A\. Then

{B € B| BNb is unbounded in A} < |b|.

Proof. For the contradiction, assume not. Then b is an unbounded subset of A
and hence cf(A) < |[b|. Take a B/ C {B € B | BNb is unbounded in A} with
|B'| = |b|". Let o : B® — X be a witness of that B is strongly pairwise almost
disjoint.

Then there is an a* < A such that |[o071“a*| = |[b|* because cf(\) < [b]*. Let
B*:={B\a* | B€ B A o(B) < a*}. Then B* is pairwise disjoint, |B*| = |b|"
and b intersects with every member of B*. This is a contradiction. O

Now we can prove Lemma 3.3 easily:

Proof of Lemma 5.5. For the contradiction, assume that #; _, (E) holds and

that NS, [ £ is AT-saturated. Take a &) _, (E)-sequence (b, | o € E). Let P
denote the corresponding poset of NSy [ £, that is, the poset of all stationary
subsets of E ordered by inclusion. Moreover, by Lemma 3.5, take a strongly
pairwise almost disjoint family B of unbounded subsets of A such that |B| = A\T.

Let G be the canonical name for P-generic filter and, in VF, let j : V —
M = U(V, G) be the generic elementary embedding. Moreover let by be a
P-name for the A-th element of j((b, | & € E)) and let A be a P-name of the
set {B € B| (3b € b)) BNbis unbounded in A}. Here note that PP forces the
following:



e 3 remains to be strongly pairwise almost disjoint.

e x remains to be a re.gular cardinal and b.)\ C P.A. In particular, b7 <
Kk < A for every b € by.

° |b.>\‘ <A

(The first one follows from the fact that P has the At-c.c.) Hence IFp “|A] < \”
by Lemma 3.6. Then, because P has the AT-c.c., we can take an A* € V such
that |A*] = X and IFp “A C A*7.
Take a B € B\ A*. Then
lFp “ (Vb € b)) BNbis bounded in A” .

On the other hand, E* := {a« € E | (3b € b,) BNb is unbounded in o} is
stationary and

E* IFp “(3b € b)) j(B)Nbis unbounded in A7 .
But IFp “5(B)N A = B”. Hence
E* Ikp “(3b € b.,\) B Nbis unbounded in A7 .

This is a contradiction. O



