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1 Introduction

The Singular Cardinal Hypothesis (SCH) is a restriction of the Generalized
Continuum Hypothesis (GCH) to singular cardinals, and it has been extensively
studied by set theorists. First recall SCH:

SCH = X\f(N) = X7 for all singular cardinals A with 26f(}) < .
Note that for a singular cardinal A it holds that
AT (AN, € . 2N
where for a directed set (D, <)
cf(D,<) := min{|X|| X is a <-cofinal subset of D} .
Thus the following SCH" implies SCH:
SCHT = cf([\]*™), C) = At for all singular cardinals .

In this note we review three basic theorems on the failure of SCHT due to
Shelah [3]. The first one is a variant of Silver’s theorem for SCH:

Theorem 1.1 (Shelah [3]). Assume that SCH fails, and let \ be the least
singular cardinal at which SCHY fails. Then cf(\) = w.

The second one is on the pseudo power. For the definition of the pseudo
power of A, denoted as pp(\), see Section 2.1:

Theorem 1.2 (Shelah [3]). Assume that SCHT fails, and let X be the least
singular cardinal at which SCH™ fails. Then pp()\) > AT.

The last one is on a useful combinatorial consequence of the failure of SCH™ .
For definition of a better scale see Section 2.1:



Theorem 1.3 (Shelah [3]). Assume that SCH fails, and let \ be the least
singular cardinal at which SCH™ fails. Then there exists a set A of reqular

cardinals such that
(i) sup(A) = A, and 0.t.(A) = w,
(ii) (IIA, <*) has a better scale of length \T.

From the above theorems we have the following corollary:

Corollary 1.4. Assume that SCH fails. Then there exists a singular cardinal
A with the following properties:

(i) ct(N) = w.
(ii) pp(A) > AT.

(iii) There exists a set A of reqular cardinals such that sup(A) = X, such that
0.t.(4) = w and such that (IIA, <*) has a better scale of length \*.

Thm.1.1, 1.2 and 1.3 will be proved in Section 3, 4 and 5, respectively. In
Section 2 we review basics on PCF theory used in this note. The author referred
to Abraham-Magidor [1] for Section 2.

At the end of this section we present miscellaneous notation used in this
note. See Section 2.1 for notation and basic definitions in PCF theory.

Let A be a set of ordinals. Then o.t.(A) denotes the order-type of A.
Moreover Lim(A) denotes the set of all limit points in A, that is, the set
{a € On | sup(ANa) = a}.

For regular cardinals p < v let

Bl = {a<v|cf(a) =p}
EZ, = {a<v]cf(a) <p}
EY, = {a<v|cf(a)>u}

Suppose that M is a structure on which a well-ordering of its universe is
definable. Then for A C M let Sk (A) denote the Skolem hull of 4 in M,
i.e. the smallest M < M with A C M.

Let i be a limit ordinal. Then a set z is said to be internally approachable
of length p if there exists a C-increasing sequence (z¢ | £ < p) such that

® UE<HCIJE:.’£,
o (z¢| &< ()€xforall (< p.

A sequence (z¢ | £ < p) as above is called an internally approaching sequence
to x.



2 Basics in PCF theory

2.1 Notation and basic definitions

Here we give notation and basic definitions in PCF theory.
Let A be a set of cardinals. For a set F C “On let sup(F) € 4On be such
that

sup(F)(x) = sup{f(x) | f € F}
for each k € A. Next let f,g € 4On. Then let

f<g ¥ vieA fr)<g),

f<yg &f Ve € A, f(k) <g(k).
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For an ideal I over A let

€ (ke A|f(r) £am)}el
(ke A|f(r) £g(r)}el,
(ke A|f(r)#g(r)}el.
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f<rg
f<ryg

f=rg

0=

0=

For an ordinal v let

0%

Vi € A\ v, f(k)
Ve € A\ v, f(k)
Ve € A\ v, f(k) =

f<vyg

f<ug

f=vyg
Finally let
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v <sup(4), f<, 9,
v <sup(4), f<, 9,
Jv <sup(4), f=v,9.

f<g
f<'g
f="g

Note that <*, <* and =* coincide <;, <; and =; for the bounded ideal I over
A, respectively.
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Definition 2.1. Let A be a set of cardinals and I be an ideal over A. Suppose
that F is a subset of “On. Then g € “On is said to be the exact upper bound
of F with respect to <y if

(i) f<rgforalfelF,
(ii) for any h € AO0n with h <; g there exists f € F with h <; f.

Note that F may not have the exact upper bound with respect to <;. Note
also that the exact upper bound of F with respect to <; is unique modulo I if
it exists.



Definition 2.2. Let A be a set of cardinals and I be an ideal over A. A scale in
(TIA, <1) is a <p-increasing <-cofinal sequence in ILA whose length is a regular

cardinal.

Note that if f = (fy | @ < v) is a scale in (IIA, <;), then the identity
function on A is the exact upper bound of f with respect to <;. In general
there may not be any scale in (ITA, <;). But if [ is a maximal ideal, then
(ITA, <1) has a scale because it is linear.

Note also that if (ILA, <;) has scales, then all scales in (ITA4, <;) have the
same length. Moreover if A is a singular cardinal, A is a set of regular cardinals
with sup(A4) = A, and T is an ideal over A including the bounded ideal, then
(ITA, <;) is < AT-directed. Thus the length of a scale in (ITA, <;) must be
greater than or equal to AT for such A and 1.

Definition 2.3. Let A be a set of cardinals and I be an ideal over A. Suppose
that (ILA, <;) has a scale. Then let

tef(IIA, <) := the length of scales in (IIA, <p).
tef(I1A, <1) is called the true cofinality of (ITA, <j).

Definition 2.4. Let A be a singular cardinal, and let Q) be the set of all pairs
(A, I) such that

(i) A is a set of reqgular cardinals with sup(A) = A and o.t.(A) = cf(N),
(ii) T is a mazimal ideal over A including the bounded ideal.

Then let
pp(A) = sup{tcf(IIA,I) | (A, I) € Q\} .

pp(A) is called the pseudo power of .
Note that pp(A\) > AT by the remark before Def.2.3. Note also the following:

Proposition 2.5. pp(\) < cf([\]*"™), C) for all singular cardinal .

Proof. Suppose that A is a set of regular cardinals with sup(4) = X\ and
0.t.(A) = cf(\) and that I is a maximal ideal over A including the bounded
ideal. We prove that tcf(ITA, <;) < cf([A]f™) C). We may assume that
min(A4) > cf(\).

Take a C-cofinal X C [A]4¥ with |X| = cf([A]*™),C). For each z € X
define f, € IIA as f,(k) = sup(z N k) for each k € A. Note that for any g € ITA
if we take z € X with g[A] C z, then g < f,. Hence {f, | x € X} is <;-cofinal
in IIA. Therefore tcf(ITA, <r) < |X| = cf([A]f™), ). O



Next we give the notion of good and better scales. We are interested in only
good and better scales in (ITA, <*) of length sup(4)*:

Definition 2.6. Let A be a singular cardinal and A be a set of reqular cardinals
with sup(A) = X. Moreover let f = (fo | a < At) be a <*-increasing sequence
in AOn.

(1) a € Lim(AT") is called a good point for fif there exist an unbounded b C «

of order-type cf(a) and v < sup(A) such that (fg | B € b) is <,-increasing.

(2) a € Lim(A™") is called a better point for f if there exist a club ¢ C a of
order-type cf(a) and o : ¢ — sup(A) such that fz <max(o(8).0(+)) Jv for
each B, € c with 3 < 7.

In general better points may not be good. But note that all better points of
cofinality > cf(sup(A4)) are good.

Definition 2.7. Let A be a singular cardinal and A be a set of reqular cardinals
with sup(A) = X. Suppose that f = (fo | @ < A7) is a scale in (ILA, <*).

(1) fis called a good scale if every a € E;:f()) is a good point for f

(2) fis called a better scale if every o € Efcrfo\) is a better point for f

2.2 Exact upper bound

Here we present basic facts on the existence of the exact upper bound, which
are building blocks of PCF theory.

First we give a condition for a <*-increasing sequence f in 4On which is
equivalent to that f has the exact upper bound with respect to <*:

Lemma 2.8. Let A be a singular cardinal and A be a set of reqular cardinals with
|A] < A =sup(A). Moreover let i be a regular cardinal such that |A| < p < A.
Then the following are equivalent for a <*-increasing sequence f in AOn of
length AT :

(1) f has the ezact upper bound g with respect to <* such that cf(g(k)) > u
for all k € A.

(2) There are stationary many good points for fm EﬁJr.
It is not hard to prove that (1) implies (2):

Proof of Lem.2.8 ((1) implies (2)). We may assume that y < min(A). Let f =
(fa | @ < AT) be a <*-increasing sequence in “On, and suppose that fhas the



exact upper bound g with respect to <* such that cf(g(x)) > u for all k € A.
Suppose also that C is a club subset of AT. We find a good point for f in
CNE).

Let 6 be a sufficiently large regular cardinal. Take a sequence (M | £ < p)
in [Hg]<* such that

[ Mf - M§+17 and Mg S M§+1,

o AC M < (Ho, €\, A, f,9,C),

for each § < p. Let M :=J,_,, M¢ and o ::_'sup(Mﬂ)\Jr). Clearly o € CﬂE;Y.
Thus it suffices to show that a is good for f.
For each ¢ < p let g¢ € 4On be such that

9¢ (k) = sup(Me N g(x))

for each K € A. Then note the following:

o g¢ < gand ge € M¢iy for each { < p.

o (g¢ | € < p) is <-increasing.

o f3 <* ge for any 3 <sup(M NAT).
For the last one note that if 5 € Mg N AT, then fg <* g¢ because fz[A] C M,
and fz <* g.

For each ¢ < p we can take 3¢ € M¢yq N AT such that g <* fpe because g
is the exact upper bound of f Note that sup(Me N A1) < (¢ for each & < p.

Thus (B¢ | £ < p) is increasing cofinal in a.
Because cf(\) < u, we can take v < X such that the set

Vo= {E<pulge <u foe <v g1}

is unbounded in p. Note that if ,n € b, and £ < 7, then fg, <, fs, because
foe <v 9ev1 < gn <u f5,- Thus (fs, | £ € V') is <,-increasing. Then b := {f |
& € b'} witnesses that « is good for f O

To prove that (1) implies (2), we need preliminaries:

Notation 2.9. Let A be a set of reqular cardinals. Suppose that f € AOn and
that g is a function on A such that g(k) is a set of ordinals for each k € A.
Then let proj(f,g) be the function on A such that

min(g(r) \ f(K)) - i 8(k)\ f(r) #

proj(f,g)(r) = { 0 e ifg(r)\ F(r)

0
0

for each k € A.



Lemma 2.10. Let A, A and ju be as in Lem.2.8. Suppose that f = (fo ] < AT)
is a <*-increasing sequence in ‘*On and that there are stationary many good
points for f n E,Y. Moreover let g be a function from A to [On]<*. Then

there exists o < At such that proj(fa,g) =* proj(fg,g) for all f > .

Proof. For the contradiction assume that there are no o < AT as in Lem.2.10.

Note that (proj(fs,g) | 8 < AT) is <*-increasing. Then we can take an
unbounded E C AT such that proj(fs,g) <* proj(fy,g) but proj(fz,g) 2*
proj(fy,g) for each 38,y € E with 8 < .

Take a good point « € Eff for fsuch that £ N « is unbounded in «, and
suppose that b C a and v < A witness goodness of a. By shrinking b if necessary,
we may assume that proj(fs, g) 2* proj(fy,g) for each 8,y € b with 5 < 7.

For each € b take kg € A\ v with

proj(fs,8)(kg) < Proj(fmin(n\s+1),8)(Ks) -

Then we can take k € A\ v such that kg = k for cofinally many 5 € b because
|Al < p = o.t.(b). Note that (proj(fs,g)(k) | 8 € b) is <-increasing because
(fs | B € b) is <,-increasing. Moreover it is not eventually constant by the
choice of k. This contradicts that |g(k)| < p. O

Lemma 2.11. Let A, A and j1 be as in Lem.2.8. Suppose that f = (fo | a < AT)
is a <*-increasing sequence in “On and that there are stationary many good

points for f m Eff, Then fhas the least upper bound with respect to <*.

Proof. For the contradiction assume that f has the least upper bound with
respect to <*.

By induction on & < pu take g¢ € “On, g¢ € 4([On]<#) and ag < At as
follows: Let go be the constant function on A with its value @, and let o := 0.
Moreover let gy be an arbitrary upper bound of f with respect to <*. Assume
that 0 < £ < p and that g, and «, have been defined for all n < £. First let ge
be the function on A such that g¢(k) = {gn(k) | n < &} for each k € A. Then
by Lem.2.10 we can take ae < AT such that proj(fs,ge) =* proj(fa.,ge) for
every 3 > ag. Note that proj(fa,ge) is an upper bound of fwith respect to
<*. Then by our assumption on the non-existence of the least upper bound, let
g¢ be an upper bound of fwith respect to <* such that proj(fa,,ge) £* ge.

Take o < AT such that o > ag for every & < u, and let he := proj(fa, g¢)
for each & < p. Note that hepq1 < ge and that he €% g¢. Hence he £* heqq for
each £ < p. Thus for each & < p there exists kg € A with hej1(ke) < he(ke).

Then we can take x € A such that k¢ = & for cofinally many £ < p because



|A| < p. Here note that (he(x) | € < p) is <-decreasing. Thus (h¢(k) | £ < p)
includes an infinite <-decreasing subsequence. This is a contradiction. O

Now we prove Lem.2.8:

Proof of Lem.2.8. By Lem.2.11 let g € 4On be the least upper bound of fwith
respect to <*. We prove that g is the exact upper bound and that cf(g(k)) > u
for all sufficiently large x € A.

First we prove that g is the exact upper bound. To prove this, take an
arbitrary h € 4On such that h <* g. Let g be the function on A such that
g(r) = {9(k), h(r)} for each k € A. Then by Lem.2.10 we can take o < AT such
that proj(fs,8) =" proj(fa,g) for every 8 > «. Then proj(fa,g) is an upper
bound of fwith respect to <*. Hence g <* proj(fa,g). Then it is easy to see
that h <* f,.

Next we prove that cf(g(k)) > p for all sufficiently large x € A. For the
contradiction assume not, i.e. assume that B := {k € A | cf(g(k)) < p} is
unbounded in A. For each x € B take a cofinal b, C g(k) of order-type < p,
and let g be a function on A such that

{mu@mn .. ifkeB

alr) = {g(k)} - ifkeA\B

Then by the same argument as above we can take @ < AT such that g <*
proj(fa,8). Then f, =* g by the construction of g. This contradicts that
fa <* fa+1 <*g. O

Using Lem.2.8 and a well-known fact on the ideal I[v], we can prove the
following:

Lemma 2.12. Let X\ be a singular cardinal, and let A be a set of reqular cardinals
with |A| < X\ = sup(A). Then for any sequence h = (hy | a < ) in ILA there

erists a <*-increasing sequence f: (fo | @ < AT with the following properties:

(i) f has the ezact upper bound g with respect to <* such that (cf(g(k)) | Kk €
A) converges to A, i.e. for any p < X the set {k € A | cf(g(k)) < p} is
bounded in A.

(i1) he < fo for every a < pt.

Recall the ideal I[v] and a well-known fact on it, due to Shelah [2], before
proving Lem.2.12:

Definition 2.13. For a regular cardinal v > wsy let I[v] be the set of all E C v
with the following property:



There exists a sequence (aq | & < V) of bounded subsets of v and a
club C C Lim(v) such that

(i) o.t.(ay) = cf(a),
(ii) {aa Ny [y <a} C{ag |8 <a},
forallae ENC.

Fact 2.14 (Shelah [2]). Let v be a regular cardinal > ws. Then there exists
E € I[v] such that EN E}, is stationary for every regular p with putt <.

Proof of Lem.2.12. Take an arbitrary sequence (h, | a < AT) in ITA. We
construct f satisfying the properties (i) and (ii) in Lem.2.12.

By Fact 2.14 take E € I[A\"] such that EN Eﬁf is stationary for all regular
p < A. Suppose that (a, | @ < AT) and C C Lim(A") witness that E € I[AT].
We may assume that (a, | @ < AT) is one to one and that o.t.(as) < A and
aq C o for every o < AT, For each o < AT let b, be the set of all 3 < a such

that ag is an initial segment of a,. Note the following:
e Each b, is a subset of a of order-type < A.
o If B € by, then bg = b, N G.
o If « € ENC, then b, is an unbounded subset of a of order-type cf(a).
By induction on a < A" take f, € IIA so that
o f3<* fq forall f < a,
o hy <* fa,
e sup{fs | B € ba} <ot.(bs) fa-

We can take such f, because (IIA, <*) is < A-directed, and 0.t.(by) < A.
Clearly f satisfies the property (ii) in Lem.2.12. Note that if « € ENC,

then (fs | B € ba) is <o..(,)-increasing. Hence each o € ENC is a good point

for f Then fsatisﬁes (i) in Lem.2.12 by the choice of E and Lem.2.8. O

2.3 Maximal ideals and bounded ideal

Here we review the relationship between (IIA, <;) for maximal ideals I and
(ITA, <*). More precisely we prove Lem.2.15 and 2.16 below:

Lemma 2.15. Let \ be a singular cardinal and A be a set of regular cardinals
with |A] < X = sup(A). Assume that tcf(ILA, <;) = AT for every ideal I over
A including the bounded ideal. Then tcf(ITA, <*) = A*.



Lemma 2.16. Let X\ is a singular cardinal and A be a set of regular cardinals
with |A] < X\ = sup(A). Assume that there exists a mazimal ideal I over A
which includes the bounded ideal and such that tcf(ILA, <;) > X. Then there
exists an unbounded B C A such that (ILB, <*) is < AT -directed.

We use the following lemma. A sequence f in the following lemma is called
a universal sequence in IIA of length A™:

Lemma 2.17. Suppose that X is a singular cardinal and that A is a set of
regular cardinals with |A| < XA = sup(A). Then there exists a <*-increasing

sequence f of length AT with the following properties:
(i) fhas the exact upper bound with respect to <*.

(i) fis <y-cofinal in 1A for any mazimal ideal I over A which includes the
bounded ideal and such that tcf(ILA, <r) = AT.

Proof. By reducing A if necessary, we may assume that min(A4) > |A|T. For
the contradiction assume that there are no such f Note that this assumption
together with Lem.2.12 implies the existence of a maximal ideal I over A which
includes the bounded ideal and such that tcf(ITA, <;) = AT,

By induction on & < |A|*T we define a <*-increasing sequence fz = (fea |
a < AT) in ITA and a maximal ideal I over A. Assume that £ < |A|* and that
f?; and I,, have been defined for every n < £. First take a maximal ideal Iz over
A such that

e [, includes the bounded ideal,
o tcf(ITA, <7,) = AT,
e if £ is a successor ordinal, then fé_l is not <15—coﬁna1 in ITA.
Next take a <*-increasing sequence fé = (fe,a | @ < AT) in IIA such that
) f;: has the exact upper bound with respect to <*,
o fe is <j,-cofinal in IIA,
o sup{fya|n <& < feq foral a <At
e if § is a successor ordinal, then f¢ 14 <7, feo for all a < AT,

We can take such fz by Lem.2.12 and the fact that & < |A|" < min(A).

Let f:=sup{feo | & < |A]*T} € ITA. For each { < |A|* take ae < AT such
that f <7, fe.ae. Moreover take 8 < A™ such that § > ag for all £ < |A|*. Let
A¢ :={rk € A| f(k) < fep(r)} for each & < |A|*.

10



Note that (Ae | € < |A|T) is C-increasing because (fes | & < |A]T) is
<-increasing. Moreover

fes <t ferro < f <ty ferip

for each & < |A|". Hence A¢ € I¢yq, and Aeqq & Ier. So (Ae | € < |A]T) is a
C-increasing sequence of subsets of A. This is a contradiction. O

Using Lem.2.17 we can prove Lem.2.15 and 2.16 easily:

Proof of Lem.2.15. Let f = (fo | & < AT) be a universal sequence in ITA, and
let f be the exact upper bound of ]? with respect to <*. We may assume that
f(k) <k for all kK € A.

Assume that B := {k € A| f(k) < K} is unbounded in A. Then we can take
a maximal ideal I over A including the bounded ideal and containing A\ B.
Then tcf(ITA, <7) = AT by the assumption in Lem.2.15, but fis not <j-cofinal
in ITA. This contradicts that f is a universal sequence. So B is bounded in A,
and this implies that f is a scale in (ITA, <*). Therefore tcf(ITA, <*) = AT. O

Proof of Lem.2.16. Let j?: (fa | @ < AT) be a universal sequence in ITA, and
let f be the exact upper bound of f with respect to <*. We may assume that
f(k) < k for all kK € A. We show that B := {k € A | f(k) < k} witnesses
Lem.2.16.

First note that if B is bounded in A, then fis a scale in (ITA, <*), and so
is in (ITA, <) for all maximal ideal I over A including the bounded ideal. This
contradicts the assumption in Lem.2.16. Thus B is unbounded in A.

To show that B is < AT-unbounded, take an arbitrary G C I1B of cardinality
< AT. By Lem.2.12 we can take a <*-increasing sequence (h, | @ < AT) which
has the exact upper bound h with respect to <* and such that for any g € G
there exists o < At with g < h,. We may assume that h(k) < & for all kK € B.
All we have to show is the set C':= {k € B | h(k) = k} is bounded in B. (Then
h yields an upper bound of G in (IIB, <*).)

Assume not. Take a maximal ideal I over A including the bounded ideal
and containing A\ C. Note that (h, [C | @ < A1) is a scale in (IIC, <*). Hence
it yields a scale in (ITA, <j) of length A*. That is, tcf(IIA, <;) = AT. But f is
an upper bound of fin (TTA, <1) because A\ B € I. This contradicts that fis

a universal sequence. O

We end this section with corollaries of Lem.2.15 and 2.16 on the pseudo
power:

Corollary 2.18. The following are equivalent for a singular cardinal \:

11



(1) pp(A) = AT

(2) tef(IIA, <) = AT for every set A of reqular cardinals with |A] < X\ =
sup(A4) and every mazimal ideal I over A including the bounded ideal.

Proof. Clearly (2) implies (1). We prove the reverse implication.

Assume that (2) fails. Then there are a set A of regular cardinals with
|A] < A =sup(A) and a maximal ideal I over A including the bounded ideal such
that tef(ITA, <;) > AT. Then by Lem.2.16 we can take an unbounded B C A
such that (ILB, <*) is < AT-directed. By shrinking if necessary, we may assume
that o.t.(B) = cf()\). Because (IIB, <*) is < AT-directed, tcf(I1B, <;) > AT for
any maximal ideal J over B including the bounded ideal. Therefore pp(A\) > AT,
ie. (1) fails. O

Corollary 2.19. Assume that X is a singular cardinal with pp(\) = AT. Then
tef(ILA, <*) = AT for any set A of reqular cardinals with |A| < X\ = sup(A).

Proof. This is clear from Lem.2.15 and Cor.2.18. O

3 Silver’s theorem for SCH™

Here we prove Thm.1.1:

Theorem 1.1. Assume that SCHT fails, and let \ be the least singular cardinal
at which SCHY fails. Then cf(\) = w.

We use the following lemmata:

Lemma 3.1. Let A be a singular cardinal of uncountable cofinality. Then there
exists a club C C X\ such that IICY, <*) has a scale of length A\, where CT :=
{vt|veC}.

Proof. First take a club B C X which consists of singular cardinals and such
that o.t.(B) = ¢f(\) < min(B). Then by Lem.2.12 we can take a <*-increasing
sequence f = (fo | @ < AT) in IIB* and the exact upper bound g of f with
respect to <* such that (cf(g(r)) | v € B) converges to A\. We may assume
that g(v™) < vT for each v € B.

Note that if g(v*) < vT, then cf(g(v*)) < v. Thus if there are stationary
many v € B with g(vT) < v*, then, by Fodor’s lemma, we can take p < A
such that cf(g(v™)) < p for stationary many v € B. This contradicts that
(cf(g(vh)) | v € B) converges to A\. Therefore there are club many v € B with
g(vT) = vT. Let C be a club subset of B consisting of v with g(v*) = v+.
Then (f, [CT | a < p) is a scale in (IICT, <*). O

12



Lemma 3.2. Assume that X is a singular cardinal and that cf([v]f®), C) = v+
for all singular cardinals v < . Then cf([v]*,C) = v for all reqular cardinals
W, v with p < v < A\.

Proof. Take an arbitrary regular cardinal g4 < A. We prove the lemma by
induction on v.
If v = p*, then cf([v]*,C) = v because v is C-cofinal in [v]#. If v is the

successor cardinal of a regular cardinal v/ > u, then
(W], Q) = cf(V]”, Q) cf(V]*, Q) = v/ = v.
If v is a limit cardinal, then
cf([v)*,C) = sup{cf([/']*,CQ) | V' is a regular cardinal < v} = v.

Suppose that v is the successor cardinal of a singular cardinal v’ > u. Then

’

cf (], Q) = cf(p]”, Q) cf(V]",C) = v-ef(]",9).
Moreover it is easy to see that

(), C) < cf(V]F), Q) = v

because cf([v"|*, C) = v" for all regular v"" < v. So cf([v]*,C) = v. O

Now we prove Thm.1.1:

Proof of Thm.1.1. Assume that A is a singular cardinal of uncountable cofinality
and that cf([]**), C) = v* for all singular cardinals v < X\. We show that
cf([A]FN) C) = A+, Tt suffices to find a C-cofinal X C [A|<¢f(N) of cardinality
AT,

By Lem.3.1 take a club C' C X and a scale f = (fo | @ < AT) in (IICH, <*).
We may assume that o.t.(C') = cf(\) and that C consists of singular cardinals
> cf(A). For each p with cf(X) < p < X take a C-cofinal subset {y,~ | v < u}
of [11]**™). Moreover for each v € C and v < vt take an injection o, : y — v.

Now for each o < AT, each regular p with cf(\) < < A and each § < p let

LTa,p,s = U{yu+,'y | veCA 7 < fa(V+) A O'V,fa(zfr)(’}/) € yu,é} .

Note that x4 5 € [N=M. Let X be the collection of all such z,,, 5’s. Then
| X| = AT clearly.

We prove that X is C-cofinal. Take an arbitrary = € [A\]). Let f € IC*
be such that x NvT C Yo+, f+) for each v € C. Then we can take o < AT

13



such that f <* f,. Then by Fodor’s lemma we can take a regular p such that
cf(A) < p < X and such that the set

B = {veC|fw") <faW") Aowson(fT) <u}

is stationary in A. Then we can take § < p such that

{Uu,fa(v+)(f(y+)) | S B} - Yu,s -

Note that N vt C 4,5 for each v € B. Then x C x4, because B is
unbounded in A. O

4 Pseudo power
In this section we prove Thm.1.2:

Theorem 1.2. Assume that SCH™ fails, and let \ be the least singular cardinal
at which SCHY fails. Then pp(\) > AT,

For this we need preliminaries. First we prove a lemma on the relationship
between cf([A]f™™)| C) and the product of all regular cardinals below \:

Lemma 4.1. Suppose that X is a singular cardinal such that cf([v]*"™, C) < A
for all v < X. Let R be the set of all reqular cardinals < X. Then the following
are equivalent:

(1) cf(NFV, C) = AT

(2) There exists F C IIR of cardinality \™ such that for any A C R with
sup(A) = X and |A| = cf(N\) and for any g € I1A there exists f € F with
g<*flA.

We can easily prove that (1) implies (2) by a similar argument as in the proof

of Prop.2.5. The main part of Lem.4.1 is that (2) implies (1). The following
lemma is a core of Lem.4.1:

Lemma 4.2. Let A be a singular cardinal and R be the set of all reqular cardinals
below A. Assume (2) in Lem.4.1. Moreover let 6 be a sufficiently large regular
cardinal, A be a well-ordering of Ho and M be the structure (Hg, €, A, \).
Suppose that M, N € [7‘[9]Cf(>‘)+ satisfies the following properties:

(i) M,N < M.

(ii) Both M and N are internally approachable of length cf(\)T.

14



(i11) sup(M NAT) = sup(N NAT).
Then there exists v < \ such that NN\ C Sk™ (M Uv).

Proof. First we define v < A witnessing the lemma. For this we need prepara-
tions.

By (2) in Lem.4.1 and the < A-directedness of (IR, <*) we can take a <*-
increasing sequence j? = (fo | @ < A") such that for any cofinal A C R with
|A| = cf(X) and any g € TIA there exists o < AT with g <* f, [ A. Let fis the
A-least such sequence. Note that f € M,N.

Let (N¢ | € < cf(A\)1) be an internally approaching sequence to N. We may
assume that |[N¢| = cf(\) for all & < cf(A\)" and that sup(R N Ny) = . For
each £ < cf(A\)* let ge € II(R N N¢) be such that ge(k) = sup(Ng N k) for each
k € RN N¢ with k > cf(N).

Let a := sup(M NAT) = sup(N N AT). Note that both M N AT and N N AT
are countably closed. Hence M N N N A" is unbounded in «. Note also that
ge € N for each £. Then, by the choice of f, for each £ < cf(A\)™ we can take
fe € M NN N AT such that ge <* fg, [ (RN N¢). Then we can take v < A such
that v > cf()\) and such that the set

b = {f < Cf()\)+ | ge <v fﬁs MRQNE)}

is unbounded in cf(\)7.
We prove that this v witnesses the lemma. Let M := Sk™ (M Uv). We must
show that NN A C M. We claim the following:

Claim 1. N N M Nk is unbounded in N Nk for every xk € ROAN N M.

Proof of Claim 1. Fix K € RONNNM. If k < v, then the claim is clear because
x C M. So suppose that x > v. Note that £ > cf()).

First note that {fg, (k) | £ € b} € N N M Nk because f.k € NN M, and
Be € NNM for each & € H. Hence it suffices to show that the set {f3, (k) | £ € b}
is unbounded in N N k.

For this note that if £ € b, and k € Ng, then sup(Ne N k) = ge(K) < f, (K)

because cf(\), v < k. Moreover
Nnk = | J{Nenk[£€b A ke N}

because b is unbounded in cf(X\)*. Therefore {fg, () | £ € b} is unbounded in
NN k. Hctaim1

Claim 2. NNM N6 is unbounded in NN& for every limit ordinal 6 € NNMN.
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Proof of Claim 2. Fix a limit ordinal § € NN M NA. Then cf(§) € RONNNM.
Take an increasing continuous cofinal o : cf(§) — & in N N M. Note that
sup(N N cf(§)) = sup(N N M N cf(5)) by the previous claim. Then by the
elementarity of N and M it is easy to see that

sup(N N6) = o(sup(N Ncf(8))) = o(sup(NNM Necf(5))) = sup(N N M NJ)

if sup(N Necf(8)) = sup(N N M Ncf(8)) < cf(8). Otherwise, it is also easy to see
that sup(N N6) =sup(NNM N6) = 4. Uctaim2

Using Claim 2, we can easily show that N N A C M: For the contradiction
assume that v € NN\ and that v ¢ M. Let § be min(N N M). Note that § < A
because N N M N\ is unbounded in A. Moreover 4 is a limit ordinal > ~ by the
elementarity of N and M. Then we can take 6 > v in N N M NJ by Claim 2.
This contradicts the choice of 4. O

Lem.4.1 easily follows from Lem.4.2:

Proof of Lem.4.1. By a similar argument as in the proof of Prop.2.5 it is easily
proved that (1) implies (2). We prove that (2) implies (1). Assume (1). We will
find a C-cofinal X C [A]™) of cardinality A*.

Take a sufficiently large regular cardinal § and a well-ordering A of Hy. Let
M be the structure (Hg, €, A, A). Moreover let

Z = {M e [Hol™™" | M < M A M is i.a. of length cf(\)T}
E = {sup(MNX")|MeZ}.

For each « € E choose M,, € Z such that sup(M, N A1) = a. Moreover for
each @ € E and v < X let M, , be SkM(Ma Uv). Note that |M,,| < A\. By
the assumption of Lem.4.1 take a C-cofinal X, , C [M,,, N\ of cardinality
< Aforeach a € F and v < A. Then let X := J{Xo, |a € EAV <A}

Clearly X C [\, and |X| = A*. Thus it suffices to show that X is
C-cofinal in [A]*fV),

Take an arbitrary y € [A\]*!™). We find z € X with z D y. First we can take
N € Z with y C N. Let a:=sup(N NA") € E. By Lem.4.2 there exists v < A
with NN C M,,,. Theny € [M,,, N )\]Cfo‘), and so there exists z € X, , with
x 2 y by the C-cofinality of X, ,. This z is as desired. O

Next we examine what happens if pp(A) = AT holds for the least singular
cardinal \ at which SCH™ fails:
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Lemma 4.3. Suppose that X is a singular cardinal such that cf([v]M, C) < A
for all v < X\ and such that cf([N]"™), C) > X\T. Assume that pp(\) = AT Let
R be the set of all regular cardinals below \. Then there exists a set D C X\ with
the following properties:

(i) sup(D) = A, and |D| = cf(N).
(ii) D consists of limit cardinals of cofinality > cf(\)*.

(iii) For any k € ID and any F C IIR of cardinality < A% there exist a set
ACRNU,eplk(v),v) and g € IIA such that

e sup(A) =\, and |A| = cf(N),
e g£* fTA forany f € F.

Proof. Take a sufficiently large regular cardinal 6 and a well-ordering A of Hy,
and let M := (Hg, €,A,\). Take M < M such that |[M| = cf(\)* and such
that M is internally approachable of length cf(A\)*. Let (Mg | £ < cf(A)T) be
an internally approaching sequence to M such that |Mg| < cf(X) for each &.
Moreover let

Fo= |JIFeM|FCORA|F|<AT}.

Note that F C IIR and that || = AT. Then by Lem.4.1 we can take an
unbounded A C R and g € TIA such that |A| = cf()\) and such that g £* fTA
for any f € F. Let Ag:= M NAand A; := A\ M.

Claim. sup(A;) =\, and g[ Ay £* f| Ay for any f € F.

Proof of Claim. Claim is clear if sup(A4p) < A. So assume that sup(4y) = A.
First we prove that there exists fo € F with g | Ag <* fo | Ag: Take
& < cf(A)T such that Ay C Mg, and let B := RN Mg. Then tcf(IIB, <*) = AT
by Cor.2.19 and our assumption that pp(A) = A*. Moreover B € M. Hence we
can take F C IIR in M such that |F| = AT and such that for any h € ILB there
exists f € F with h <* f[|B. So there exists fo € F with g Ay <* fo | Ao.
Then sup(4;) = A by the choice of g. Moreover if there exists f; € F such
that g | A1 <* fi | Ay, then sup{fo, fi} € F, and g <* sup{fo, f1} | A. This
contradicts the choice of g. Therefore g[ Ay ¢* f]A; forany f € F.  Oclaim

Let

D' :={min(M NA\k)|K € A}.
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Note that D’ is an unbounded subset of A of size cf(\) and that D’ consists of
limit cardinals of cofinality > cf(A\)*. Take n < c¢f(A\)* with D’ C M, and let

D := {ve M, |vis alimit cardinal of cofinality > cf(A)*} .

Note that D’ € D € M. We show that D witnesses the lemma. It suffices to
check the property (iii).

Assume not. Then by the elementarity of M we can take a counter-example
k,F € M of the property (iii) for D. Note that k(v) € M Nv for each v € D
because k,v € M. Thus for each k € Ay, if we let v = min(M N On \ k), then
k€ [k(v),v). Hence Ay € RN, cplk(v),v). Moreover g Ay £* f] Ay for any
f € F by Claim above and the construction of F. This contradicts that k, F is
a counter-example. O

Using the previous lemma, next we prove the following. The difference from

the previous one is the property (ii) of D:
Lemma 4.4. Suppose that X is a singular cardinal such that cf([v]™M, C) < A
for all v < X\ and such that cf([N]M), C) > \T. Assume that pp(\) = \T. Let
R be the set of all regular cardinals below \. Then there exists a set D C \ with
the following properties:

(i) sup(D) = A, and |D| = cf(N).
(i1) D consists of limit cardinals, and sup,cp cf(v) < A.
(i1i) For any k € 1ID and any F C IIR of cardinality < X\ there exist A C
RN, cplk(v),v) and g € ITA such that
e sup(A) = A, and |A] = cf()N),
e g£* flA forany f € F.
For this we use the following lemma:

Lemma 4.5. Let )\ be a singular cardinal, A be a set of reqular cardinals with
|A| < A =sup(A) and p be a regular cardinal with |A| < p < A. Suppose that
F={(fa | @ < AT) is a scale in (ILA,<*). Then there are stationary many
a € Eff such that (fg | B < «) has the exact upper bound g with respect to <*
with cf(g(k)) = p for all k € A.

Proof. If a € E;}Jr is a good point for f, and b C o and v < A witness goodness
of @, then, using the fact that |A| < p, it is easy to see that the function g € 4On
defined as

su k) -+ HreA\v
o - ifke ANy
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is the exact upper bound of (f3 | 8 < «). Moreover cf(g(k)) = u for all k € A.
Then Lem.4.5 follows from Lem.2.8. O

Proof of Lem.4.4. For the contradiction assume not.

Let D be a subset of A obtained by Lem.4.3, and let B := {cf(v) | v € D}.
Note that |B| < A = sup(B). Then tcf(IIB,<*) = At by Cor.2.19 and the
assumption that pp(A) = AT, Let b’ = (k) | @ < AT) be a scale in (ILB, <*).

By Lem.4.5 we may assume that there are stationary many o € Ei‘fh)+ such
that hy, is the exact upper bound of (hj; | 8 < a) with respect to <* and such
that cf(h/, (k) = cf(A\)T for all kK € B. Let E be the set of all such a.

Next for each v € D take an increasing continuous sequence (d, , | v < cf(v))
of cardinals < v which converges to v and such that (, | v € D) converges to
A. We can take such sequences because D is nonstationary in A. Then for each
a < \T define hy € IID by ha(v) = 6,4 (cf(r)). Moreover let I be the ideal
over D consisting of all D’ C D such that {cf(v) | v € D'} is bounded in A.
Note the following;:

o h:=(hy | < At) is a scale in (ILD, <;).

e For each o € E, h,, is the exact upper bound of (hg | 8 < «) with respect
to <;g.

e For each a € E, hy(v) is a limit cardinal of cofinality cf(\)™ for all v € D.

Because Lem.4.4 fails, for each o € E the set {h,(v) | v € D} does not
satisfies the property (iii) in Lem.4.4. Hence for each « € E we can take
k2 € ID and F2 C IIR such that

o kY < hyg,

o for any A C RNU,cplkS(v), ha(v)) with sup(A) = X and |A| = cf()) and
for any g € I1A there exists f € FQ with g <* f ] A.

Then for each o € E we can also take 7, < « such that k2 <; h., . By Fodor’s
lemma take v < A* such that the set {« € F | 7, = 7} is stationary. Let
FO=H{F|a € EAve =7}

Moreover take a cofinal C' C X of order-type cf()\), and for each p € C let
D, :={v e D |cf(v) < p}. Because Lem.4.4 fails, for each u € C' we can take
ki € IID,, and fi C IIR of cardinality < A" such that

e forany A C RN UVED# [k} (v),v) with sup(A) = X and |A| = cf(\) and
for any g € I1A there exists f € .7:& with g <* fTA.
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Let F':= U{F, | neC}.

Let F := {sup{f°, f*} | f® € F° A f* € F'}. Moreover take k € ILD such
that h, < k and such that k), < k[ D, for all u € C. We can take such k
because cf(r) > cf(\)T for all v € D.

Because D witnesses Lem.4.3, we can take a set A C RN{J
g € I1A such that

veD [k(y)’ V) and

e sup(A) = ), and |A| = cf(N),
o g£* flA forany f € F.

Here note that sup(ANv) < v for all v € D because |A| = cf(\) < cf(v). Then
we can take a € E such that

® Yo =7,
o {veD|hy(v) <sup(ANv)} el

Take pu < A so that k2 (v) < hy(v) < ha(v) and sup(ANv) < he(v) for all
veD\D,. Let

A = AmUyeD\D“[k(V)yV) - UyeD\D“[kg(V)vha(V))~

Then we can take 0 € F2 and p° < X such that g A° <p0 01 A° by the choice
of k2 and F2.
Next let

Al = AﬁuyeD#[k‘(y),y).

Then we can take f* € F, and p' < A such that g[ A" <, f'TA"
Let f := sup{f°, f'} and p := max{p°®,p'}. Note that f € F and that
p < A. Moreover g <, f[A. This contradicts that the choice of A and g. O

Now we prove Thm.1.2:
Proof of Thm.1.2. For the contradiction assume that A\ is the least singular
cardinal at which SCH™ fails and that pp(\) = A*. Let R be the set of all
regular cardinals below .

Then A\ satisfies the assumption of Lem.4.4. Let D be a set obtained by
Lem.4.4. Then it is easy to see that

jo= (D, <) < ef([sup,ep ()T, C) < A

By reducing D if necessary, we may assume that min(D) > u. Take a <-cofinal
K CTID of cardinality p such that k(v) > p for all k € K and all v € D.
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Note that cf([v]*#,C) < vT for all v € D by Lem.3.2. Then for each v € D
we can take a <*-increasing sequence h, = (dy~ | v <vt) in (R Nv) such
that for any A C RN v of cardinality < p and any g € IIA there exists v < v
with g <* d, | A.

Next note that tef(ILDT, <*) = AT by Cor.2.19 and the assumption that
pp(A\) = AT. Here DT denotes the set {vT | v € D}. Let (eq | @« < A1) be a
scale in (IID*, <*). Moreover for each o < AT define f, € IR as

falk) = sup{d, . o+ (k) |k <veD} --- if K >cf(N)
“ B 0 -+ otherwise

for each k € R.

By the choice of D, for each k& € K we can take Ay € RN, cplk(v),v)
and g € ITA, such that sup(Ax) = A, such that |Ag| = cf(A\) and such that
gk £ fal Ag for any o < A*. Let A :=J, o Ax, and define g € I1A as

g(k) = sup{gr(k) |k € K A Kk € Ay}

for each Kk € A.

Take e € IIDT such that g | ANv <* d, ) | ANv for each v € D.
Moreover take a@ < AT such that e <* e,. Let p < A be such that e <p €q.
Then g [ ANv <* fo [ ANv for each v € D\ p. Take k € K such that
gIANY <) falANv for each v e D\ p.

Here recall that g, < g and that Ay € RN, cplk(v),v). Hence gy <, faol
Aj. This contradicts the choice of A and gy. O

5 Better scale

In this section we prove Thm.1.3.

Theorem 1.3. Assume that SCHT fails, and let X be the least singular cardinal
at which SCH™ fails. Then there exists a set A of reqular cardinals below X such
that

(i) 0.t.(A) = w, and sup(4) = A,
(11) (ITA, <*) has a better scale of length ™.
By Thm.1.2 it suffices to prove the following:
Proposition 5.1. Suppose that \ is a singular cardinal with pp(\) > A\*. Then

there exists a set A of reqular cardinals such that
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(i) 0.t.(A) = cf()N), and sup(A4) = A,
(ii) (ILA, <*) has a better scale of length A*.

Proof. By Lem.2.16 and the fact that pp(A) > AT we can take a set B of
regular cardinals such that sup(B) = A, such that o.t.(B) = cf(\) and such that
(1B, <*) is < AT-directed. Moreover take a club ¢, C « for each o € Lim(A™).

Because (IIB,<*) is < AT-directed, we can inductively construct a <*-
increasing sequence f = (fs | B < AT) in IIB so that the following holds
for all B < A\*:

(%) sup{fy | v € ca N B} <* f5 for all @ < AT.

For each € Lim(A™) let 0y, : ¢ — A be the function such that

sup{fy | v € ca N B} <ou(8) f5 -

Then ¢, and o, witnesses that « is a better point for f In particular, every
a € Eé;o\) is a better (hence good) point for f

Then by Lem.2.8 f has the exact upper bound f with respect to <* such
that (cf(f(k)) | kK € B) converges to A\. Take an unbounded B’ C B with
(cf(f(r)) | k € B’ strictly increasing. Moreover let A := {cf(f(x)) | k € B'}.

For each k € B’ take a club D, C f(k) of order-type cf(f(k)). Moreover
for each 3 < AT let gg € IIA be such that for each k € B’, gg(cf(k)) =
0:6.(f5(s) N D) if fa() < ().

Note that (gg | 8 < A\T) is <*-increasing <*-cofinal sequence in ITA. Hence
we can take a club E C A1 such that (gs | 8 € E) is <*-increasing and <*-
cofinal in ITA. Let (8, | @ < A1) be the increasing enumeration of E, and
let ho := gp,. Then it is easy to see that (h, | @ < AT) is a better scale in
(ITA, <*). O
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