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1 Introduction

The Singular Cardinal Hypothesis (SCH) is a restriction of the Generalized
Continuum Hypothesis (GCH) to singular cardinals, and it has been extensively
studied by set theorists. First recall SCH:

SCH ≡ λcf(λ) = λ+ for all singular cardinals λ with 2cf(λ) < λ.

Note that for a singular cardinal λ it holds that

λcf(λ) = cf([λ]cf(λ),⊆) · 2cf(λ) ,

where for a directed set ⟨D,<⟩

cf(D, <) := min{|X| | X is a <-cofinal subset of D} .

Thus the following SCH+ implies SCH:

SCH+ ≡ cf([λ]cf(λ),⊆) = λ+ for all singular cardinals λ.

In this note we review three basic theorems on the failure of SCH+ due to
Shelah [3]. The first one is a variant of Silver’s theorem for SCH+:

Theorem 1.1 (Shelah [3]). Assume that SCH+ fails, and let λ be the least
singular cardinal at which SCH+ fails. Then cf(λ) = ω.

The second one is on the pseudo power. For the definition of the pseudo
power of λ, denoted as pp(λ), see Section 2.1:

Theorem 1.2 (Shelah [3]). Assume that SCH+ fails, and let λ be the least
singular cardinal at which SCH+ fails. Then pp(λ) > λ+.

The last one is on a useful combinatorial consequence of the failure of SCH+.
For definition of a better scale see Section 2.1:
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Theorem 1.3 (Shelah [3]). Assume that SCH+ fails, and let λ be the least
singular cardinal at which SCH+ fails. Then there exists a set A of regular
cardinals such that

(i) sup(A) = λ, and o.t.(A) = ω,

(ii) ⟨ΠA,<∗⟩ has a better scale of length λ+.

From the above theorems we have the following corollary:

Corollary 1.4. Assume that SCH fails. Then there exists a singular cardinal
λ with the following properties:

(i) cf(λ) = ω.

(ii) pp(λ) > λ+.

(iii) There exists a set A of regular cardinals such that sup(A) = λ, such that
o.t.(A) = ω and such that ⟨ΠA,<∗⟩ has a better scale of length λ+.

Thm.1.1, 1.2 and 1.3 will be proved in Section 3, 4 and 5, respectively. In
Section 2 we review basics on PCF theory used in this note. The author referred
to Abraham-Magidor [1] for Section 2.

At the end of this section we present miscellaneous notation used in this
note. See Section 2.1 for notation and basic definitions in PCF theory.

Let A be a set of ordinals. Then o.t.(A) denotes the order-type of A.
Moreover Lim(A) denotes the set of all limit points in A, that is, the set
{α ∈ On | sup(A ∩ α) = α}.

For regular cardinals µ < ν let

Eν
µ := {α < ν | cf(α) = µ}

Eν
<µ := {α < ν | cf(α) < µ}

Eν
>µ := {α < ν | cf(α) > µ}

Suppose that M is a structure on which a well-ordering of its universe is
definable. Then for A ⊆ M let SkM(A) denote the Skolem hull of A in M,
i.e. the smallest M ≺ M with A ⊆ M .

Let µ be a limit ordinal. Then a set x is said to be internally approachable
of length µ if there exists a ⊆-increasing sequence ⟨xξ | ξ < µ⟩ such that

•
∪

ξ<µ xξ = x,

• ⟨xξ | ξ < ζ⟩ ∈ x for all ζ < µ.

A sequence ⟨xξ | ξ < µ⟩ as above is called an internally approaching sequence
to x.

2



2 Basics in PCF theory

2.1 Notation and basic definitions

Here we give notation and basic definitions in PCF theory.
Let A be a set of cardinals. For a set F ⊆ AOn let sup(F) ∈ AOn be such

that

sup(F)(κ) = sup{f(κ) | f ∈ F}

for each κ ∈ A. Next let f, g ∈ AOn. Then let

f < g
def⇔ ∀κ ∈ A, f(κ) < g(κ) ,

f ≤ g
def⇔ ∀κ ∈ A, f(κ) ≤ g(κ) .

For an ideal I over A let

f <I g
def⇔ {κ ∈ A | f(κ) ̸< g(κ)} ∈ I,

f ≤I g
def⇔ {κ ∈ A | f(κ) ̸≤ g(κ)} ∈ I ,

f =I g
def⇔ {κ ∈ A | f(κ) ̸= g(κ)} ∈ I .

For an ordinal ν let

f <ν g
def⇔ ∀κ ∈ A \ ν, f(κ) < g(κ) ,

f ≤ν g
def⇔ ∀κ ∈ A \ ν, f(κ) ≤ g(κ) ,

f =ν g
def⇔ ∀κ ∈ A \ ν, f(κ) = g(κ) .

Finally let

f <∗ g
def⇔ ∃ν < sup(A), f <ν g ,

f ≤∗ g
def⇔ ∃ν < sup(A), f ≤ν g ,

f =∗ g
def⇔ ∃ν < sup(A), f =ν g .

Note that <∗, ≤∗ and =∗ coincide <I , ≤I and =I for the bounded ideal I over
A, respectively.

Definition 2.1. Let A be a set of cardinals and I be an ideal over A. Suppose
that F is a subset of AOn. Then g ∈ AOn is said to be the exact upper bound
of F with respect to <I if

(i) f <I g for all f ∈ F ,

(ii) for any h ∈ AOn with h <I g there exists f ∈ F with h <I f .

Note that F may not have the exact upper bound with respect to <I . Note
also that the exact upper bound of F with respect to <I is unique modulo I if
it exists.
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Definition 2.2. Let A be a set of cardinals and I be an ideal over A. A scale in
⟨ΠA, <I⟩ is a <I-increasing <I-cofinal sequence in ΠA whose length is a regular
cardinal.

Note that if f⃗ = ⟨fα | α < ν⟩ is a scale in ⟨ΠA,<I⟩, then the identity
function on A is the exact upper bound of f⃗ with respect to <I . In general
there may not be any scale in ⟨ΠA,<I⟩. But if I is a maximal ideal, then
⟨ΠA, <I⟩ has a scale because it is linear.

Note also that if ⟨ΠA,<I⟩ has scales, then all scales in ⟨ΠA,<I⟩ have the
same length. Moreover if λ is a singular cardinal, A is a set of regular cardinals
with sup(A) = λ, and I is an ideal over A including the bounded ideal, then
⟨ΠA, <I⟩ is < λ+-directed. Thus the length of a scale in ⟨ΠA,<I⟩ must be
greater than or equal to λ+ for such A and I.

Definition 2.3. Let A be a set of cardinals and I be an ideal over A. Suppose
that ⟨ΠA,<I⟩ has a scale. Then let

tcf(ΠA,<I) := the length of scales in ⟨ΠA,<I⟩.

tcf(ΠA,<I) is called the true cofinality of ⟨ΠA, <I⟩.

Definition 2.4. Let λ be a singular cardinal, and let Ωλ be the set of all pairs
⟨A, I⟩ such that

(i) A is a set of regular cardinals with sup(A) = λ and o.t.(A) = cf(λ),

(ii) I is a maximal ideal over A including the bounded ideal.

Then let

pp(λ) := sup{tcf(ΠA, I) | ⟨A, I⟩ ∈ Ωλ} .

pp(λ) is called the pseudo power of λ.

Note that pp(λ) ≥ λ+ by the remark before Def.2.3. Note also the following:

Proposition 2.5. pp(λ) ≤ cf([λ]cf(λ),⊆) for all singular cardinal λ.

Proof. Suppose that A is a set of regular cardinals with sup(A) = λ and
o.t.(A) = cf(λ) and that I is a maximal ideal over A including the bounded
ideal. We prove that tcf(ΠA,<I) ≤ cf([λ]cf(λ),⊆). We may assume that
min(A) > cf(λ).

Take a ⊆-cofinal X ⊆ [λ]cf(λ) with |X| = cf([λ]cf(λ),⊆). For each x ∈ X

define fx ∈ ΠA as fx(κ) = sup(x∩κ) for each κ ∈ A. Note that for any g ∈ ΠA

if we take x ∈ X with g[A] ⊆ x, then g ≤ fx. Hence {fx | x ∈ X} is <I -cofinal
in ΠA. Therefore tcf(ΠA,<I) ≤ |X| = cf([λ]cf(λ),⊆).
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Next we give the notion of good and better scales. We are interested in only
good and better scales in ⟨ΠA,<∗⟩ of length sup(A)+:

Definition 2.6. Let λ be a singular cardinal and A be a set of regular cardinals
with sup(A) = λ. Moreover let f⃗ = ⟨fα | α < λ+⟩ be a <∗-increasing sequence
in AOn.

(1) α ∈ Lim(λ+) is called a good point for f⃗ if there exist an unbounded b ⊆ α

of order-type cf(α) and ν < sup(A) such that ⟨fβ | β ∈ b⟩ is <ν-increasing.

(2) α ∈ Lim(λ+) is called a better point for f⃗ if there exist a club c ⊆ α of
order-type cf(α) and σ : c → sup(A) such that fβ <max(σ(β),σ(γ)) fγ for
each β, γ ∈ c with β < γ.

In general better points may not be good. But note that all better points of
cofinality > cf(sup(A)) are good.

Definition 2.7. Let λ be a singular cardinal and A be a set of regular cardinals
with sup(A) = λ. Suppose that f⃗ = ⟨fα | α < λ+⟩ is a scale in ⟨ΠA,<∗⟩.

(1) f⃗ is called a good scale if every α ∈ Eλ+

>cf(λ) is a good point for f⃗ .

(2) f⃗ is called a better scale if every α ∈ Eλ+

>cf(λ) is a better point for f⃗ .

2.2 Exact upper bound

Here we present basic facts on the existence of the exact upper bound, which
are building blocks of PCF theory.

First we give a condition for a <∗-increasing sequence f⃗ in AOn which is
equivalent to that f⃗ has the exact upper bound with respect to <∗:

Lemma 2.8. Let λ be a singular cardinal and A be a set of regular cardinals with
|A| < λ = sup(A). Moreover let µ be a regular cardinal such that |A| < µ < λ.
Then the following are equivalent for a <∗-increasing sequence f⃗ in AOn of
length λ+:

(1) f⃗ has the exact upper bound g with respect to <∗ such that cf(g(κ)) ≥ µ

for all κ ∈ A.

(2) There are stationary many good points for f⃗ in Eλ+

µ .

It is not hard to prove that (1) implies (2):

Proof of Lem.2.8 ((1) implies (2)). We may assume that µ < min(A). Let f⃗ =
⟨fα | α < λ+⟩ be a <∗-increasing sequence in AOn, and suppose that f⃗ has the
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exact upper bound g with respect to <∗ such that cf(g(κ)) ≥ µ for all κ ∈ A.
Suppose also that C is a club subset of λ+. We find a good point for f⃗ in
C ∩ Eλ+

µ .
Let θ be a sufficiently large regular cardinal. Take a sequence ⟨Mξ | ξ < µ⟩

in [Hθ]<µ such that

• Mξ ⊆ Mξ+1, and Mξ ∈ Mξ+1,

• A ⊆ Mξ ≺ ⟨Hθ,∈, λ, µ, A, f⃗ , g, C⟩,

for each ξ < µ. Let M :=
∪

ξ<µ Mξ and α := sup(M∩λ+). Clearly α ∈ C∩Eλ+

µ .
Thus it suffices to show that α is good for f⃗ .

For each ξ < µ let gξ ∈ AOn be such that

gξ(κ) = sup(Mξ ∩ g(κ))

for each κ ∈ A. Then note the following:

• gξ < g and gξ ∈ Mξ+1 for each ξ < µ.

• ⟨gξ | ξ < µ⟩ is ≤-increasing.

• fβ <∗ gξ for any β < sup(M ∩ λ+).

For the last one note that if β ∈ Mξ ∩ λ+, then fβ <∗ gξ because fβ [A] ⊆ Mξ,
and fβ <∗ g.

For each ξ < µ we can take βξ ∈ Mξ+1 ∩ λ+ such that gξ <∗ fβξ
because g

is the exact upper bound of f⃗ . Note that sup(Mξ ∩ λ+) < βξ for each ξ < µ.
Thus ⟨βξ | ξ < µ⟩ is increasing cofinal in α.

Because cf(λ) < µ, we can take ν < λ such that the set

b′ := {ξ < µ | gξ <ν fβξ
<ν gξ+1}

is unbounded in µ. Note that if ξ, η ∈ b′, and ξ < η, then fβξ
<ν fβη because

fβξ
<ν gξ+1 ≤ gη <ν fβη . Thus ⟨fβξ

| ξ ∈ b′⟩ is <ν-increasing. Then b := {βξ |
ξ ∈ b′} witnesses that α is good for f⃗ .

To prove that (1) implies (2), we need preliminaries:

Notation 2.9. Let A be a set of regular cardinals. Suppose that f ∈ AOn and
that g is a function on A such that g(κ) is a set of ordinals for each κ ∈ A.
Then let proj(f, g) be the function on A such that

proj(f, g)(κ) =

{
min(g(κ) \ f(κ)) · · · if g(κ) \ f(κ) ̸= ∅

0 · · · if g(κ) \ f(κ) = ∅

for each κ ∈ A.
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Lemma 2.10. Let λ, A and µ be as in Lem.2.8. Suppose that f⃗ = ⟨fα | α < λ+⟩
is a <∗-increasing sequence in AOn and that there are stationary many good
points for f⃗ in Eλ+

µ . Moreover let g be a function from A to [On]<µ. Then
there exists α < λ+ such that proj(fα, g) =∗ proj(fβ , g) for all β ≥ α.

Proof. For the contradiction assume that there are no α < λ+ as in Lem.2.10.
Note that ⟨proj(fβ , g) | β < λ+⟩ is ≤∗-increasing. Then we can take an

unbounded E ⊆ λ+ such that proj(fβ , g) ≤∗ proj(fγ , g) but proj(fβ , g) ̸≥∗

proj(fγ , g) for each β, γ ∈ E with β < γ.
Take a good point α ∈ Eλ+

µ for f⃗ such that E ∩ α is unbounded in α, and
suppose that b ⊆ α and ν < λ witness goodness of α. By shrinking b if necessary,
we may assume that proj(fβ , g) ̸≥∗ proj(fγ , g) for each β, γ ∈ b with β < γ.

For each β ∈ b take κβ ∈ A \ ν with

proj(fβ , g)(κβ) < proj(fmin(b\β+1), g)(κβ) .

Then we can take κ ∈ A \ ν such that κβ = κ for cofinally many β ∈ b because
|A| < µ = o.t.(b). Note that ⟨proj(fβ , g)(κ) | β ∈ b⟩ is ≤-increasing because
⟨fβ | β ∈ b⟩ is <ν-increasing. Moreover it is not eventually constant by the
choice of κ. This contradicts that |g(κ)| < µ.

Lemma 2.11. Let λ, A and µ be as in Lem.2.8. Suppose that f⃗ = ⟨fα | α < λ+⟩
is a <∗-increasing sequence in AOn and that there are stationary many good
points for f⃗ in Eλ+

µ . Then f⃗ has the least upper bound with respect to ≤∗.

Proof. For the contradiction assume that f⃗ has the least upper bound with
respect to ≤∗.

By induction on ξ < µ take gξ ∈ AOn, gξ ∈ A([On]<µ) and αξ < λ+ as
follows: Let g0 be the constant function on A with its value ∅, and let α0 := 0.
Moreover let g0 be an arbitrary upper bound of f⃗ with respect to ≤∗. Assume
that 0 < ξ < µ and that gη and αη have been defined for all η < ξ. First let gξ

be the function on A such that gξ(κ) = {gη(κ) | η < ξ} for each κ ∈ A. Then
by Lem.2.10 we can take αξ < λ+ such that proj(fβ , gξ) =∗ proj(fαξ

, gξ) for
every β ≥ αξ. Note that proj(fαξ

, gξ) is an upper bound of f⃗ with respect to
≤∗. Then by our assumption on the non-existence of the least upper bound, let
gξ be an upper bound of f⃗ with respect to ≤∗ such that proj(fαξ

, gξ) ̸≤∗ gξ.
Take α < λ+ such that α ≥ αξ for every ξ < µ, and let hξ := proj(fα, gξ)

for each ξ < µ. Note that hξ+1 ≤ gξ and that hξ ̸≤∗ gξ. Hence hξ ̸≤∗ hξ+1 for
each ξ < µ. Thus for each ξ < µ there exists κξ ∈ A with hξ+1(κξ) < hξ(κξ).
Then we can take κ ∈ A such that κξ = κ for cofinally many ξ < µ because
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|A| < µ. Here note that ⟨hξ(κ) | ξ < µ⟩ is ≤-decreasing. Thus ⟨hξ(κ) | ξ < µ⟩
includes an infinite <-decreasing subsequence. This is a contradiction.

Now we prove Lem.2.8:

Proof of Lem.2.8. By Lem.2.11 let g ∈ AOn be the least upper bound of f⃗ with
respect to ≤∗. We prove that g is the exact upper bound and that cf(g(κ)) ≥ µ

for all sufficiently large κ ∈ A.
First we prove that g is the exact upper bound. To prove this, take an

arbitrary h ∈ AOn such that h <∗ g. Let g be the function on A such that
g(κ) = {g(κ), h(κ)} for each κ ∈ A. Then by Lem.2.10 we can take α < λ+ such
that proj(fβ , g) =∗ proj(fα, g) for every β ≥ α. Then proj(fα, g) is an upper
bound of f⃗ with respect to ≤∗. Hence g ≤∗ proj(fα, g). Then it is easy to see
that h <∗ fα.

Next we prove that cf(g(κ)) ≥ µ for all sufficiently large κ ∈ A. For the
contradiction assume not, i.e. assume that B := {κ ∈ A | cf(g(κ)) < µ} is
unbounded in λ. For each κ ∈ B take a cofinal bκ ⊆ g(κ) of order-type < µ,
and let g be a function on A such that

g(κ) =

{
bκ ∪ {g(κ)} · · · if κ ∈ B

{g(κ)} · · · if κ ∈ A \ B
.

Then by the same argument as above we can take α < λ+ such that g ≤∗

proj(fα, g). Then fα =∗ g by the construction of g. This contradicts that
fα <∗ fα+1 ≤∗ g.

Using Lem.2.8 and a well-known fact on the ideal I[ν], we can prove the
following:

Lemma 2.12. Let λ be a singular cardinal, and let A be a set of regular cardinals
with |A| < λ = sup(A). Then for any sequence h⃗ = ⟨hα | α < µ+⟩ in ΠA there
exists a <∗-increasing sequence f⃗ = ⟨fα | α < λ+⟩ with the following properties:

(i) f⃗ has the exact upper bound g with respect to <∗ such that ⟨cf(g(κ)) | κ ∈
A⟩ converges to λ, i.e. for any µ < λ the set {κ ∈ A | cf(g(κ)) ≤ µ} is
bounded in λ.

(ii) hα < fα for every α < µ+.

Recall the ideal I[ν] and a well-known fact on it, due to Shelah [2], before
proving Lem.2.12:

Definition 2.13. For a regular cardinal ν ≥ ω2 let I[ν] be the set of all E ⊆ ν

with the following property:
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There exists a sequence ⟨aα | α < ν⟩ of bounded subsets of ν and a
club C ⊆ Lim(ν) such that

(i) o.t.(aα) = cf(α),

(ii) {aα ∩ γ | γ < α} ⊆ {aβ | β < α},

for all α ∈ E ∩ C.

Fact 2.14 (Shelah [2]). Let ν be a regular cardinal ≥ ω3. Then there exists
E ∈ I[ν] such that E ∩ Eν

µ is stationary for every regular µ with µ++ < ν.

Proof of Lem.2.12. Take an arbitrary sequence ⟨hα | α < λ+⟩ in ΠA. We
construct f⃗ satisfying the properties (i) and (ii) in Lem.2.12.

By Fact 2.14 take E ∈ I[λ+] such that E ∩ Eλ+

µ is stationary for all regular
µ < λ. Suppose that ⟨aα | α < λ+⟩ and C ⊆ Lim(λ+) witness that E ∈ I[λ+].
We may assume that ⟨aα | α < λ+⟩ is one to one and that o.t.(aα) < λ and
aα ⊆ α for every α < λ+. For each α < λ+ let bα be the set of all β < α such
that aβ is an initial segment of aα. Note the following:

• Each bα is a subset of α of order-type < λ.

• If β ∈ bα, then bβ = bα ∩ β.

• If α ∈ E ∩ C, then bα is an unbounded subset of α of order-type cf(α).

By induction on α < λ+ take fα ∈ ΠA so that

• fβ <∗ fα for all β < α,

• hα <∗ fα,

• sup{fβ | β ∈ bα} <o.t.(bα) fα.

We can take such fα because ⟨ΠA,<∗⟩ is ≤ λ-directed, and o.t.(bα) < λ.
Clearly f⃗ satisfies the property (ii) in Lem.2.12. Note that if α ∈ E ∩ C,

then ⟨fβ | β ∈ bα⟩ is <o.t.(bα)-increasing. Hence each α ∈ E ∩C is a good point
for f⃗ . Then f⃗ satisfies (i) in Lem.2.12 by the choice of E and Lem.2.8.

2.3 Maximal ideals and bounded ideal

Here we review the relationship between ⟨ΠA,<I⟩ for maximal ideals I and
⟨ΠA, <∗⟩. More precisely we prove Lem.2.15 and 2.16 below:

Lemma 2.15. Let λ be a singular cardinal and A be a set of regular cardinals
with |A| < λ = sup(A). Assume that tcf(ΠA,<I) = λ+ for every ideal I over
A including the bounded ideal. Then tcf(ΠA,<∗) = λ+.
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Lemma 2.16. Let λ is a singular cardinal and A be a set of regular cardinals
with |A| < λ = sup(A). Assume that there exists a maximal ideal I over A

which includes the bounded ideal and such that tcf(ΠA,<I) > λ. Then there
exists an unbounded B ⊆ A such that ⟨ΠB,<∗⟩ is ≤ λ+-directed.

We use the following lemma. A sequence f⃗ in the following lemma is called
a universal sequence in ΠA of length λ+:

Lemma 2.17. Suppose that λ is a singular cardinal and that A is a set of
regular cardinals with |A| < λ = sup(A). Then there exists a <∗-increasing
sequence f⃗ of length λ+ with the following properties:

(i) f⃗ has the exact upper bound with respect to <∗.

(ii) f⃗ is <I-cofinal in ΠA for any maximal ideal I over A which includes the
bounded ideal and such that tcf(ΠA,<I) = λ+.

Proof. By reducing A if necessary, we may assume that min(A) > |A|+. For
the contradiction assume that there are no such f⃗ . Note that this assumption
together with Lem.2.12 implies the existence of a maximal ideal I over A which
includes the bounded ideal and such that tcf(ΠA,<I) = λ+.

By induction on ξ < |A|+ we define a <∗-increasing sequence f⃗ξ = ⟨fξ,α |
α < λ+⟩ in ΠA and a maximal ideal Iξ over A. Assume that ξ < |A|+ and that
f⃗η and Iη have been defined for every η < ξ. First take a maximal ideal Iξ over
A such that

• Iξ includes the bounded ideal,

• tcf(ΠA,<Iξ
) = λ+,

• if ξ is a successor ordinal, then f⃗ξ−1 is not <Iξ
-cofinal in ΠA.

Next take a <∗-increasing sequence f⃗ξ = ⟨fξ,α | α < λ+⟩ in ΠA such that

• f⃗ξ has the exact upper bound with respect to <∗,

• f⃗ξ is <Iξ
-cofinal in ΠA,

• sup{fη,α | η < ξ} ≤ fξ,α for all α < λ+,

• if ξ is a successor ordinal, then fξ−1,α <Iξ
fξ,0 for all α < λ+.

We can take such f⃗ξ by Lem.2.12 and the fact that ξ < |A|+ < min(A).
Let f := sup{fξ,0 | ξ < |A|+} ∈ ΠA. For each ξ < |A|+ take αξ < λ+ such

that f <Iξ
fξ,αξ

. Moreover take β < λ+ such that β > αξ for all ξ < |A|+. Let
Aξ := {κ ∈ A | f(κ) < fξ,β(κ)} for each ξ < |A|+.
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Note that ⟨Aξ | ξ < |A|+⟩ is ⊆-increasing because ⟨fξ,β | ξ < |A|+⟩ is
≤-increasing. Moreover

fξ,β <Iξ+1 fξ+1,0 ≤ f <Iξ+1 fξ+1,β

for each ξ < |A|+. Hence Aξ ∈ Iξ+1, and Aξ+1 /∈ Iξ+1. So ⟨Aξ | ξ < |A|+⟩ is a
⊂-increasing sequence of subsets of A. This is a contradiction.

Using Lem.2.17 we can prove Lem.2.15 and 2.16 easily:

Proof of Lem.2.15. Let f⃗ = ⟨fα | α < λ+⟩ be a universal sequence in ΠA, and
let f be the exact upper bound of f⃗ with respect to <∗. We may assume that
f(κ) ≤ κ for all κ ∈ A.

Assume that B := {κ ∈ A | f(κ) < κ} is unbounded in A. Then we can take
a maximal ideal I over A including the bounded ideal and containing A \ B.
Then tcf(ΠA, <I) = λ+ by the assumption in Lem.2.15, but f⃗ is not <I -cofinal
in ΠA. This contradicts that f⃗ is a universal sequence. So B is bounded in A,
and this implies that f⃗ is a scale in ⟨ΠA,<∗⟩. Therefore tcf(ΠA,<∗) = λ+.

Proof of Lem.2.16. Let f⃗ = ⟨fα | α < λ+⟩ be a universal sequence in ΠA, and
let f be the exact upper bound of f⃗ with respect to <∗. We may assume that
f(κ) ≤ κ for all κ ∈ A. We show that B := {κ ∈ A | f(κ) < κ} witnesses
Lem.2.16.

First note that if B is bounded in A, then f⃗ is a scale in ⟨ΠA,<∗⟩, and so
is in ⟨ΠA,<I⟩ for all maximal ideal I over A including the bounded ideal. This
contradicts the assumption in Lem.2.16. Thus B is unbounded in A.

To show that B is ≤ λ+-unbounded, take an arbitrary G ⊆ ΠB of cardinality
≤ λ+. By Lem.2.12 we can take a <∗-increasing sequence ⟨hα | α < λ+⟩ which
has the exact upper bound h with respect to <∗ and such that for any g ∈ G
there exists α < λ+ with g ≤ hα. We may assume that h(κ) ≤ κ for all κ ∈ B.
All we have to show is the set C := {κ ∈ B | h(κ) = κ} is bounded in B. (Then
h yields an upper bound of G in ⟨ΠB, <∗⟩.)

Assume not. Take a maximal ideal I over A including the bounded ideal
and containing A\C. Note that ⟨hα �C | α < λ+⟩ is a scale in ⟨ΠC,<∗⟩. Hence
it yields a scale in ⟨ΠA,<I⟩ of length λ+. That is, tcf(ΠA,<I) = λ+. But f is
an upper bound of f⃗ in ⟨ΠA,<I⟩ because A \B ∈ I. This contradicts that f⃗ is
a universal sequence.

We end this section with corollaries of Lem.2.15 and 2.16 on the pseudo
power:

Corollary 2.18. The following are equivalent for a singular cardinal λ:
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(1) pp(λ) = λ+.

(2) tcf(ΠA,<I) = λ+ for every set A of regular cardinals with |A| < λ =
sup(A) and every maximal ideal I over A including the bounded ideal.

Proof. Clearly (2) implies (1). We prove the reverse implication.
Assume that (2) fails. Then there are a set A of regular cardinals with

|A| < λ = sup(A) and a maximal ideal I over A including the bounded ideal such
that tcf(ΠA,<I) > λ+. Then by Lem.2.16 we can take an unbounded B ⊆ A

such that ⟨ΠB,<∗⟩ is ≤ λ+-directed. By shrinking if necessary, we may assume
that o.t.(B) = cf(λ). Because ⟨ΠB,<∗⟩ is ≤ λ+-directed, tcf(ΠB,<J) > λ+ for
any maximal ideal J over B including the bounded ideal. Therefore pp(λ) > λ+,
i.e. (1) fails.

Corollary 2.19. Assume that λ is a singular cardinal with pp(λ) = λ+. Then
tcf(ΠA,<∗) = λ+ for any set A of regular cardinals with |A| < λ = sup(A).

Proof. This is clear from Lem.2.15 and Cor.2.18.

3 Silver’s theorem for SCH+

Here we prove Thm.1.1:

Theorem 1.1. Assume that SCH+ fails, and let λ be the least singular cardinal
at which SCH+ fails. Then cf(λ) = ω.

We use the following lemmata:

Lemma 3.1. Let λ be a singular cardinal of uncountable cofinality. Then there
exists a club C ⊆ λ such that ⟨ΠC+, <∗⟩ has a scale of length λ+, where C+ :=
{ν+ | ν ∈ C}.

Proof. First take a club B ⊆ λ which consists of singular cardinals and such
that o.t.(B) = cf(λ) < min(B). Then by Lem.2.12 we can take a <∗-increasing
sequence f⃗ = ⟨fα | α < λ+⟩ in ΠB+ and the exact upper bound g of f⃗ with
respect to <∗ such that ⟨cf(g(ν+)) | ν ∈ B⟩ converges to λ. We may assume
that g(ν+) ≤ ν+ for each ν ∈ B.

Note that if g(ν+) < ν+, then cf(g(ν+)) < ν. Thus if there are stationary
many ν ∈ B with g(ν+) < ν+, then, by Fodor’s lemma, we can take µ < λ

such that cf(g(ν+)) < µ for stationary many ν ∈ B. This contradicts that
⟨cf(g(ν+)) | ν ∈ B⟩ converges to λ. Therefore there are club many ν ∈ B with
g(ν+) = ν+. Let C be a club subset of B consisting of ν with g(ν+) = ν+.
Then ⟨fα �C+ | α < µ+⟩ is a scale in ⟨ΠC+, <∗⟩.

12



Lemma 3.2. Assume that λ is a singular cardinal and that cf([ν]cf(ν),⊆) = ν+

for all singular cardinals ν < λ. Then cf([ν]µ,⊆) = ν for all regular cardinals
µ, ν with µ < ν < λ.

Proof. Take an arbitrary regular cardinal µ < λ. We prove the lemma by
induction on ν.

If ν = µ+, then cf([ν]µ,⊆) = ν because ν is ⊆-cofinal in [ν]µ. If ν is the
successor cardinal of a regular cardinal ν′ > µ, then

cf([ν]µ,⊆) = cf([ν]ν
′
,⊆) · cf([ν′]µ,⊆) = ν · ν′ = ν .

If ν is a limit cardinal, then

cf([ν]µ,⊆) = sup{cf([ν′]µ,⊆) | ν′ is a regular cardinal < ν} = ν .

Suppose that ν is the successor cardinal of a singular cardinal ν′ > µ. Then

cf([ν]µ,⊆) = cf([ν]ν
′
,⊆) · cf([ν′]µ,⊆) = ν · cf([ν′]µ,⊆) .

Moreover it is easy to see that

cf([ν′]µ,⊆) ≤ cf([ν′]cf(ν
′),⊆) = ν

because cf([ν′′]µ,⊆) = ν′′ for all regular ν′′ < ν. So cf([ν]µ,⊆) = ν.

Now we prove Thm.1.1:

Proof of Thm.1.1. Assume that λ is a singular cardinal of uncountable cofinality
and that cf([ν]cf(ν),⊆) = ν+ for all singular cardinals ν < λ. We show that
cf([λ]cf(λ),⊆) = λ+. It suffices to find a ⊆-cofinal X ⊆ [λ]≤cf(λ) of cardinality
λ+.

By Lem.3.1 take a club C ⊆ λ and a scale f⃗ = ⟨fα | α < λ+⟩ in ⟨ΠC+, <∗⟩.
We may assume that o.t.(C) = cf(λ) and that C consists of singular cardinals
> cf(λ). For each µ with cf(λ) < µ < λ take a ⊆-cofinal subset {yµ,γ | γ < µ}
of [µ]cf(λ). Moreover for each ν ∈ C and γ < ν+ take an injection σν,γ : γ → ν.

Now for each α < λ+, each regular µ with cf(λ) < µ < λ and each δ < µ let

xα,µ,δ :=
∪

{yν+,γ | ν ∈ C ∧ γ < fα(ν+) ∧ σν,fα(ν+)(γ) ∈ yµ,δ} .

Note that xα,µ,δ ∈ [λ]≤cf(λ). Let X be the collection of all such xα,µ,δ’s. Then
|X| = λ+ clearly.

We prove that X is ⊆-cofinal. Take an arbitrary x ∈ [λ]cf(λ). Let f ∈ ΠC+

be such that x ∩ ν+ ⊆ yν+,f(ν+) for each ν ∈ C. Then we can take α < λ+
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such that f <∗ fα. Then by Fodor’s lemma we can take a regular µ such that
cf(λ) < µ < λ and such that the set

B := {ν ∈ C | f(ν+) < fα(ν+) ∧ σν,fα(ν+)(f(ν+)) < µ}

is stationary in λ. Then we can take δ < µ such that

{σν,fα(ν+)(f(ν+)) | ν ∈ B} ⊆ yµ,δ .

Note that x ∩ ν+ ⊆ xα,µ,δ for each ν ∈ B. Then x ⊆ xα,µ,δ because B is
unbounded in λ.

4 Pseudo power

In this section we prove Thm.1.2:

Theorem 1.2. Assume that SCH+ fails, and let λ be the least singular cardinal
at which SCH+ fails. Then pp(λ) > λ+.

For this we need preliminaries. First we prove a lemma on the relationship
between cf([λ]cf(λ),⊆) and the product of all regular cardinals below λ:

Lemma 4.1. Suppose that λ is a singular cardinal such that cf([ν]cf(λ),⊆) < λ

for all ν < λ. Let R be the set of all regular cardinals < λ. Then the following
are equivalent:

(1) cf([λ]cf(λ),⊆) = λ+.

(2) There exists F ⊆ ΠR of cardinality λ+ such that for any A ⊆ R with
sup(A) = λ and |A| = cf(λ) and for any g ∈ ΠA there exists f ∈ F with
g <∗ f �A.

We can easily prove that (1) implies (2) by a similar argument as in the proof
of Prop.2.5. The main part of Lem.4.1 is that (2) implies (1). The following
lemma is a core of Lem.4.1:

Lemma 4.2. Let λ be a singular cardinal and R be the set of all regular cardinals
below λ. Assume (2) in Lem.4.1. Moreover let θ be a sufficiently large regular
cardinal, ∆ be a well-ordering of Hθ and M be the structure ⟨Hθ,∈, ∆, λ⟩.
Suppose that M, N ∈ [Hθ]cf(λ)+ satisfies the following properties:

(i) M, N ≺ M.

(ii) Both M and N are internally approachable of length cf(λ)+.
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(iii) sup(M ∩ λ+) = sup(N ∩ λ+).

Then there exists ν < λ such that N ∩ λ ⊆ SkM(M ∪ ν).

Proof. First we define ν < λ witnessing the lemma. For this we need prepara-
tions.

By (2) in Lem.4.1 and the ≤ λ-directedness of ⟨ΠR,<∗⟩ we can take a <∗-
increasing sequence f⃗ = ⟨fα | α < λ+⟩ such that for any cofinal A ⊆ R with
|A| = cf(λ) and any g ∈ ΠA there exists α < λ+ with g <∗ fα �A. Let f⃗ is the
∆-least such sequence. Note that f⃗ ∈ M,N .

Let ⟨Nξ | ξ < cf(λ)+⟩ be an internally approaching sequence to N . We may
assume that |Nξ| = cf(λ) for all ξ < cf(λ)+ and that sup(R ∩ N0) = λ. For
each ξ < cf(λ)+ let gξ ∈ Π(R ∩ Nξ) be such that gξ(κ) = sup(Nξ ∩ κ) for each
κ ∈ R ∩ Nξ with κ > cf(λ).

Let α := sup(M ∩ λ+) = sup(N ∩ λ+). Note that both M ∩ λ+ and N ∩ λ+

are countably closed. Hence M ∩ N ∩ λ+ is unbounded in α. Note also that
gξ ∈ N for each ξ. Then, by the choice of f⃗ , for each ξ < cf(λ)+ we can take
βξ ∈ M ∩ N ∩ λ+ such that gξ <∗ fβξ

�(R ∩ Nξ). Then we can take ν < λ such
that ν > cf(λ) and such that the set

b := {ξ < cf(λ)+ | gξ <ν fβξ
�(R ∩ Nξ)}

is unbounded in cf(λ)+.
We prove that this ν witnesses the lemma. Let M̄ := SkM(M ∪ν). We must

show that N ∩ λ ⊆ M̄ . We claim the following:

Claim 1. N ∩ M̄ ∩ κ is unbounded in N ∩ κ for every κ ∈ R ∩ N ∩ M̄ .

Proof of Claim 1. Fix κ ∈ R∩N ∩ M̄ . If κ ≤ ν, then the claim is clear because
κ ⊆ M̄ . So suppose that κ > ν. Note that κ > cf(λ).

First note that {fβξ
(κ) | ξ ∈ b} ⊆ N ∩ M̄ ∩ κ because f⃗ , κ ∈ N ∩ M̄ , and

βξ ∈ N∩M̄ for each ξ ∈ H. Hence it suffices to show that the set {fβξ
(κ) | ξ ∈ b}

is unbounded in N ∩ κ.
For this note that if ξ ∈ b, and κ ∈ Nξ, then sup(Nξ ∩ κ) = gξ(κ) < fβξ

(κ)
because cf(λ), ν < κ. Moreover

N ∩ κ =
∪

{Nξ ∩ κ | ξ ∈ b ∧ κ ∈ Nξ}

because b is unbounded in cf(λ)+. Therefore {fβξ
(κ) | ξ ∈ b} is unbounded in

N ∩ κ. �Claim1

Claim 2. N∩M̄∩δ is unbounded in N∩δ for every limit ordinal δ ∈ N∩M̄∩λ.
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Proof of Claim 2. Fix a limit ordinal δ ∈ N ∩ M̄ ∩λ. Then cf(δ) ∈ R∩N ∩ M̄ .
Take an increasing continuous cofinal σ : cf(δ) → δ in N ∩ M̄ . Note that
sup(N ∩ cf(δ)) = sup(N ∩ M̄ ∩ cf(δ)) by the previous claim. Then by the
elementarity of N and M̄ it is easy to see that

sup(N ∩ δ) = σ(sup(N ∩ cf(δ))) = σ(sup(N ∩ M̄ ∩ cf(δ))) = sup(N ∩ M̄ ∩ δ)

if sup(N ∩ cf(δ)) = sup(N ∩ M̄ ∩ cf(δ)) < cf(δ). Otherwise, it is also easy to see
that sup(N ∩ δ) = sup(N ∩ M̄ ∩ δ) = δ. �Claim2

Using Claim 2, we can easily show that N ∩ λ ⊆ M̄ : For the contradiction
assume that γ ∈ N ∩λ and that γ /∈ M̄ . Let δ be min(N ∩M̄). Note that δ < λ

because N ∩ M̄ ∩λ is unbounded in λ. Moreover δ is a limit ordinal > γ by the
elementarity of N and M̄ . Then we can take δ′ > γ in N ∩ M̄ ∩ δ by Claim 2.
This contradicts the choice of δ.

Lem.4.1 easily follows from Lem.4.2:

Proof of Lem.4.1. By a similar argument as in the proof of Prop.2.5 it is easily
proved that (1) implies (2). We prove that (2) implies (1). Assume (1). We will
find a ⊆-cofinal X ⊆ [λ]cf(λ) of cardinality λ+.

Take a sufficiently large regular cardinal θ and a well-ordering ∆ of Hθ. Let
M be the structure ⟨Hθ,∈,∆, λ⟩. Moreover let

Z := {M ∈ [Hθ]cf(λ)+ | M ≺ M ∧ M is i.a. of length cf(λ)+} ,

E := {sup(M ∩ λ+) | M ∈ Z} .

For each α ∈ E choose Mα ∈ Z such that sup(Mα ∩ λ+) = α. Moreover for
each α ∈ E and ν < λ let Mα,ν be SkM(Mα ∪ ν). Note that |Mα,ν | < λ. By
the assumption of Lem.4.1 take a ⊆-cofinal Xα,ν ⊆ [Mα,ν ∩λ]cf(λ) of cardinality
< λ for each α ∈ E and ν < λ. Then let X :=

∪
{Xα,ν | α ∈ E ∧ ν < λ}.

Clearly X ⊆ [λ]cf(λ), and |X| = λ+. Thus it suffices to show that X is
⊆-cofinal in [λ]cf(λ).

Take an arbitrary y ∈ [λ]cf(λ). We find x ∈ X with x ⊇ y. First we can take
N ∈ Z with y ⊆ N . Let α := sup(N ∩ λ+) ∈ E. By Lem.4.2 there exists ν < λ

with N ∩λ ⊆ Mα,ν . Then y ∈ [Mα,ν ∩λ]cf(λ), and so there exists x ∈ Xα,ν with
x ⊇ y by the ⊆-cofinality of Xα,ν . This x is as desired.

Next we examine what happens if pp(λ) = λ+ holds for the least singular
cardinal λ at which SCH+ fails:
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Lemma 4.3. Suppose that λ is a singular cardinal such that cf([ν]cf(λ),⊆) < λ

for all ν < λ and such that cf([λ]cf(λ),⊆) > λ+. Assume that pp(λ) = λ+. Let
R be the set of all regular cardinals below λ. Then there exists a set D ⊆ λ with
the following properties:

(i) sup(D) = λ, and |D| = cf(λ).

(ii) D consists of limit cardinals of cofinality > cf(λ)+.

(iii) For any k ∈ ΠD and any F ⊆ ΠR of cardinality ≤ λ+ there exist a set
A ⊆ R ∩

∪
ν∈D[k(ν), ν) and g ∈ ΠA such that

• sup(A) = λ, and |A| = cf(λ),

• g ̸<∗ f �A for any f ∈ F .

Proof. Take a sufficiently large regular cardinal θ and a well-ordering ∆ of Hθ,
and let M := ⟨Hθ,∈,∆, λ⟩. Take M ≺ M such that |M | = cf(λ)+ and such
that M is internally approachable of length cf(λ)+. Let ⟨Mξ | ξ < cf(λ)+⟩ be
an internally approaching sequence to M such that |Mξ| ≤ cf(λ) for each ξ.
Moreover let

F̄ :=
∪

{F ∈ M | F ⊆ ΠR ∧ |F| ≤ λ+} .

Note that F̄ ⊆ ΠR and that |F̄ | = λ+. Then by Lem.4.1 we can take an
unbounded A ⊆ R and g ∈ ΠA such that |A| = cf(λ) and such that g ̸<∗ f �A

for any f ∈ F̄ . Let A0 := M ∩ A and A1 := A \ M .

Claim. sup(A1) = λ, and g �A1 ̸<∗ f �A1 for any f ∈ F̄ .

Proof of Claim. Claim is clear if sup(A0) < λ. So assume that sup(A0) = λ.
First we prove that there exists f0 ∈ F̄ with g � A0 <∗ f0 � A0: Take

ξ < cf(λ)+ such that A0 ⊆ Mξ, and let B := R ∩ Mξ. Then tcf(ΠB,<∗) = λ+

by Cor.2.19 and our assumption that pp(λ) = λ+. Moreover B ∈ M . Hence we
can take F ⊆ ΠR in M such that |F| = λ+ and such that for any h ∈ ΠB there
exists f ∈ F with h <∗ f �B. So there exists f0 ∈ F̄ with g �A0 <∗ f0 �A0.

Then sup(A1) = λ by the choice of g. Moreover if there exists f1 ∈ F̄ such
that g � A1 <∗ f1 � A1, then sup{f0, f1} ∈ F̄ , and g <∗ sup{f0, f1} � A. This
contradicts the choice of g. Therefore g �A1 ̸<∗ f �A1 for any f ∈ F̄ . �Claim

Let

D′ := {min(M ∩ λ \ κ) | κ ∈ A1} .
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Note that D′ is an unbounded subset of λ of size cf(λ) and that D′ consists of
limit cardinals of cofinality > cf(λ)+. Take η < cf(λ)+ with D′ ⊆ Mη, and let

D := {ν ∈ Mη | ν is a limit cardinal of cofinality > cf(λ)+} .

Note that D′ ⊆ D ∈ M . We show that D witnesses the lemma. It suffices to
check the property (iii).

Assume not. Then by the elementarity of M we can take a counter-example
k,F ∈ M of the property (iii) for D. Note that k(ν) ∈ M ∩ ν for each ν ∈ D

because k, ν ∈ M . Thus for each κ ∈ A1, if we let ν = min(M ∩ On \ κ), then
κ ∈ [k(ν), ν). Hence A1 ⊆ R∩

∪
ν∈D[k(ν), ν). Moreover g �A1 ̸<∗ f �A1 for any

f ∈ F by Claim above and the construction of F̄ . This contradicts that k,F is
a counter-example.

Using the previous lemma, next we prove the following. The difference from
the previous one is the property (ii) of D:

Lemma 4.4. Suppose that λ is a singular cardinal such that cf([ν]cf(λ),⊆) < λ

for all ν < λ and such that cf([λ]cf(λ),⊆) > λ+. Assume that pp(λ) = λ+. Let
R be the set of all regular cardinals below λ. Then there exists a set D ⊆ λ with
the following properties:

(i) sup(D) = λ, and |D| = cf(λ).

(ii) D consists of limit cardinals, and supν∈D cf(ν) < λ.

(iii) For any k ∈ ΠD and any F ⊆ ΠR of cardinality ≤ λ+ there exist A ⊆
R ∩

∪
ν∈D[k(ν), ν) and g ∈ ΠA such that

• sup(A) = λ, and |A| = cf(λ),

• g ̸<∗ f �A for any f ∈ F .

For this we use the following lemma:

Lemma 4.5. Let λ be a singular cardinal, A be a set of regular cardinals with
|A| < λ = sup(A) and µ be a regular cardinal with |A| < µ < λ. Suppose that
f⃗ = ⟨fα | α < λ+⟩ is a scale in ⟨ΠA,<∗⟩. Then there are stationary many
α ∈ Eλ+

µ such that ⟨fβ | β < α⟩ has the exact upper bound g with respect to <∗

with cf(g(κ)) = µ for all κ ∈ A.

Proof. If α ∈ Eλ+

µ is a good point for f⃗ , and b ⊆ α and ν < λ witness goodness
of α, then, using the fact that |A| < µ, it is easy to see that the function g ∈ AOn
defined as

g(κ) =

{
supβ∈b fβ(κ) · · · if κ ∈ A \ ν

µ · · · if κ ∈ A ∩ ν
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is the exact upper bound of ⟨fβ | β < α⟩. Moreover cf(g(κ)) = µ for all κ ∈ A.
Then Lem.4.5 follows from Lem.2.8.

Proof of Lem.4.4. For the contradiction assume not.
Let D be a subset of λ obtained by Lem.4.3, and let B := {cf(ν) | ν ∈ D}.

Note that |B| < λ = sup(B). Then tcf(ΠB,<∗) = λ+ by Cor.2.19 and the
assumption that pp(λ) = λ+. Let h⃗′ = ⟨h′

α | α < λ+⟩ be a scale in ⟨ΠB, <∗⟩.
By Lem.4.5 we may assume that there are stationary many α ∈ Eλ+

cf(λ)+ such
that h′

α is the exact upper bound of ⟨h′
β | β < α⟩ with respect to <∗ and such

that cf(h′
α(κ)) = cf(λ)+ for all κ ∈ B. Let E be the set of all such α.

Next for each ν ∈ D take an increasing continuous sequence ⟨δν,γ | γ < cf(ν)⟩
of cardinals < ν which converges to ν and such that ⟨δν,0 | ν ∈ D⟩ converges to
λ. We can take such sequences because D is nonstationary in λ. Then for each
α < λ+ define hα ∈ ΠD by hα(ν) = δν,h′

α(cf(ν)). Moreover let I be the ideal
over D consisting of all D′ ⊆ D such that {cf(ν) | ν ∈ D′} is bounded in λ.
Note the following:

• h⃗ := ⟨hα | α < λ+⟩ is a scale in ⟨ΠD, <I⟩.

• For each α ∈ E, hα is the exact upper bound of ⟨hβ | β < α⟩ with respect
to <I .

• For each α ∈ E, hα(ν) is a limit cardinal of cofinality cf(λ)+ for all ν ∈ D.

Because Lem.4.4 fails, for each α ∈ E the set {hα(ν) | ν ∈ D} does not
satisfies the property (iii) in Lem.4.4. Hence for each α ∈ E we can take
k0

α ∈ ΠD and F0
α ⊆ ΠR such that

• k0
α < hα,

• for any A ⊆ R∩
∪

ν∈D[k0
α(ν), hα(ν)) with sup(A) = λ and |A| = cf(λ) and

for any g ∈ ΠA there exists f ∈ F0
α with g <∗ f �A.

Then for each α ∈ E we can also take γα < α such that k0
α <I hγα . By Fodor’s

lemma take γ < λ+ such that the set {α ∈ E | γα = γ} is stationary. Let
F0 :=

∪
{F0

α | α ∈ E ∧ γα = γ}.
Moreover take a cofinal C ⊆ λ of order-type cf(λ), and for each µ ∈ C let

Dµ := {ν ∈ D | cf(ν) < µ}. Because Lem.4.4 fails, for each µ ∈ C we can take
k1

µ ∈ ΠDµ and F1
µ ⊆ ΠR of cardinality ≤ λ+ such that

• for any A ⊆ R ∩
∪

ν∈Dµ
[k1

µ(ν), ν) with sup(A) = λ and |A| = cf(λ) and
for any g ∈ ΠA there exists f ∈ F1

µ with g <∗ f �A.
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Let F1 :=
∪
{F1

µ | µ ∈ C}.
Let F := {sup{f0, f1} | f0 ∈ F0 ∧ f1 ∈ F1}. Moreover take k ∈ ΠD such

that hγ < k and such that k1
µ < k � Dµ for all µ ∈ C. We can take such k

because cf(ν) > cf(λ)+ for all ν ∈ D.
Because D witnesses Lem.4.3, we can take a set A ⊆ R∩

∪
ν∈D[k(ν), ν) and

g ∈ ΠA such that

• sup(A) = λ, and |A| = cf(λ),

• g ̸<∗ f �A for any f ∈ F .

Here note that sup(A ∩ ν) < ν for all ν ∈ D because |A| = cf(λ) < cf(ν). Then
we can take α ∈ E such that

• γα = γ,

• {ν ∈ D | hα(ν) ≤ sup(A ∩ ν)} ∈ I.

Take µ < λ so that k0
α(ν) < hγ(ν) < hα(ν) and sup(A ∩ ν) < hα(ν) for all

ν ∈ D \ Dµ. Let

A0 := A ∩
∪

ν∈D\Dµ
[k(ν), ν) ⊆

∪
ν∈D\Dµ

[k0
α(ν), hα(ν)) .

Then we can take f0 ∈ F0
α and ρ0 < λ such that g �A0 <ρ0 f0 �A0 by the choice

of k0
α and F0

α.
Next let

A1 := A ∩
∪

ν∈Dµ
[k(ν), ν) .

Then we can take f1 ∈ F1
µ and ρ1 < λ such that g �A1 <ρ1 f1 �A1.

Let f := sup{f0, f1} and ρ := max{ρ0, ρ1}. Note that f ∈ F and that
ρ < λ. Moreover g <ρ f �A. This contradicts that the choice of A and g.

Now we prove Thm.1.2:

Proof of Thm.1.2. For the contradiction assume that λ is the least singular
cardinal at which SCH+ fails and that pp(λ) = λ+. Let R be the set of all
regular cardinals below λ.

Then λ satisfies the assumption of Lem.4.4. Let D be a set obtained by
Lem.4.4. Then it is easy to see that

µ := cf(ΠD,<) ≤ cf([ supν∈D cf(ν) ]cf(λ),⊆) < λ .

By reducing D if necessary, we may assume that min(D) > µ. Take a <-cofinal
K ⊆ ΠD of cardinality µ such that k(ν) > µ for all k ∈ K and all ν ∈ D.
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Note that cf([ν]µ,⊆) ≤ ν+ for all ν ∈ D by Lem.3.2. Then for each ν ∈ D

we can take a <∗-increasing sequence h⃗ν = ⟨dν,γ | γ < ν+⟩ in Π(R ∩ ν) such
that for any A ⊆ R ∩ ν of cardinality ≤ µ and any g ∈ ΠA there exists γ < ν+

with g <∗ dν,γ �A.
Next note that tcf(ΠD+, <∗) = λ+ by Cor.2.19 and the assumption that

pp(λ) = λ+. Here D+ denotes the set {ν+ | ν ∈ D}. Let ⟨eα | α < λ+⟩ be a
scale in ⟨ΠD+, <∗⟩. Moreover for each α < λ+ define fα ∈ ΠR as

fα(κ) =

{
sup{dν,eα(ν+)(κ) | κ < ν ∈ D} · · · if κ > cf(λ)

0 · · · otherwise

for each κ ∈ R.
By the choice of D, for each k ∈ K we can take Ak ⊆ R ∩

∪
ν∈D[k(ν), ν)

and gk ∈ ΠAk such that sup(Ak) = λ, such that |Ak| = cf(λ) and such that
gk ̸<∗ fα �Ak for any α < λ+. Let A :=

∪
k∈K Ak, and define g ∈ ΠA as

g(κ) = sup{gk(κ) | k ∈ K ∧ κ ∈ Ak}

for each κ ∈ A.
Take e ∈ ΠD+ such that g � A ∩ ν <∗ dν,e(ν) � A ∩ ν for each ν ∈ D.

Moreover take α < λ+ such that e <∗ eα. Let ρ < λ be such that e <ρ eα.
Then g � A ∩ ν <∗ fα � A ∩ ν for each ν ∈ D \ ρ. Take k ∈ K such that
g �A ∩ ν <k(ν) fα �A ∩ ν for each ν ∈ D \ ρ.

Here recall that gk ≤ g and that Ak ⊆ R ∩
∪

ν∈D[k(ν), ν). Hence gk <ρ fα �
Ak. This contradicts the choice of Ak and gk.

5 Better scale

In this section we prove Thm.1.3.

Theorem 1.3. Assume that SCH+ fails, and let λ be the least singular cardinal
at which SCH+ fails. Then there exists a set A of regular cardinals below λ such
that

(i) o.t.(A) = ω, and sup(A) = λ,

(ii) ⟨ΠA,<∗⟩ has a better scale of length λ+.

By Thm.1.2 it suffices to prove the following:

Proposition 5.1. Suppose that λ is a singular cardinal with pp(λ) > λ+. Then
there exists a set A of regular cardinals such that
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(i) o.t.(A) = cf(λ), and sup(A) = λ,

(ii) ⟨ΠA,<∗⟩ has a better scale of length λ+.

Proof. By Lem.2.16 and the fact that pp(λ) > λ+ we can take a set B of
regular cardinals such that sup(B) = λ, such that o.t.(B) = cf(λ) and such that
⟨ΠB, <∗⟩ is ≤ λ+-directed. Moreover take a club cα ⊆ α for each α ∈ Lim(λ+).

Because ⟨ΠB,<∗⟩ is ≤ λ+-directed, we can inductively construct a <∗-
increasing sequence f⃗ = ⟨fβ | β < λ+⟩ in ΠB so that the following holds
for all β < λ+:

(∗) sup{fγ | γ ∈ cα ∩ β} <∗ fβ for all α < λ+.

For each α ∈ Lim(λ+) let σα : cα → λ be the function such that

sup{fγ | γ ∈ cα ∩ β} <σα(β) fβ .

Then cα and σα witnesses that α is a better point for f⃗ . In particular, every
α ∈ Eλ+

>cf(λ) is a better (hence good) point for f⃗ .

Then by Lem.2.8 f⃗ has the exact upper bound f with respect to <∗ such
that ⟨cf(f(κ)) | κ ∈ B⟩ converges to λ. Take an unbounded B′ ⊆ B with
⟨cf(f(κ)) | κ ∈ B′⟩ strictly increasing. Moreover let A := {cf(f(κ)) | κ ∈ B′}.

For each κ ∈ B′ take a club Dκ ⊆ f(κ) of order-type cf(f(κ)). Moreover
for each β < λ+ let gβ ∈ ΠA be such that for each κ ∈ B′, gβ(cf(κ)) =
o.t.(fβ(κ) ∩ Dκ) if fβ(κ) < f(κ).

Note that ⟨gβ | β < λ+⟩ is ≤∗-increasing <∗-cofinal sequence in ΠA. Hence
we can take a club E ⊆ λ+ such that ⟨gβ | β ∈ E⟩ is <∗-increasing and <∗-
cofinal in ΠA. Let ⟨βα | α < λ+⟩ be the increasing enumeration of E, and
let hα := gβα . Then it is easy to see that ⟨hα | α < λ+⟩ is a better scale in
⟨ΠA, <∗⟩.
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