Note on least singular cardinal with $\operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)},\subseteq) > \lambda^+$

Hiroshi Sakai

April 28, 2011

1 Introduction

The Singular Cardinal Hypothesis (SCH) is a restriction of the Generalized Continuum Hypothesis (GCH) to singular cardinals, and it has been extensively studied by set theorists. First recall SCH:

$$\mathsf{SCH} \equiv \lambda^{\mathrm{cf}(\lambda)} = \lambda^+ \text{ for all singular cardinals } \lambda \text{ with } 2^{\mathrm{cf}(\lambda)} < \lambda.$$

Note that for a singular cardinal λ it holds that

$$\lambda^{\operatorname{cf}(\lambda)} = \operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq) \cdot 2^{\operatorname{cf}(\lambda)},$$

where for a directed set $\langle D, < \rangle$

$$cf(D, <) := min\{|X| \mid X \text{ is a } <\text{-cofinal subset of } D\}.$$

Thus the following SCH⁺ implies SCH:

$$\mathsf{SCH}^+ \equiv \mathrm{cf}([\lambda]^{\mathrm{cf}(\lambda)}, \subseteq) = \lambda^+ \text{ for all singular cardinals } \lambda.$$

In this note we review three basic theorems on the failure of SCH^+ due to Shelah [3]. The first one is a variant of Silver's theorem for SCH^+ :

Theorem 1.1 (Shelah [3]). Assume that SCH^+ fails, and let λ be the least singular cardinal at which SCH^+ fails. Then $cf(\lambda) = \omega$.

The second one is on the pseudo power. For the definition of the pseudo power of λ , denoted as pp(λ), see Section 2.1:

Theorem 1.2 (Shelah [3]). Assume that SCH^+ fails, and let λ be the least singular cardinal at which SCH^+ fails. Then $pp(\lambda) > \lambda^+$.

The last one is on a useful combinatorial consequence of the failure of SCH⁺. For definition of a better scale see Section 2.1:

Theorem 1.3 (Shelah [3]). Assume that SCH^+ fails, and let λ be the least singular cardinal at which SCH^+ fails. Then there exists a set A of regular cardinals such that

- (i) $\sup(A) = \lambda$, and o.t. $(A) = \omega$,
- (ii) $\langle \Pi A, <^* \rangle$ has a better scale of length λ^+ .

From the above theorems we have the following corollary:

Corollary 1.4. Assume that SCH fails. Then there exists a singular cardinal λ with the following properties:

- (i) $cf(\lambda) = \omega$.
- (ii) $pp(\lambda) > \lambda^+$.
- (iii) There exists a set A of regular cardinals such that $\sup(A) = \lambda$, such that o.t.(A) = ω and such that $\langle \Pi A, <^* \rangle$ has a better scale of length λ^+ .

Thm.1.1, 1.2 and 1.3 will be proved in Section 3, 4 and 5, respectively. In Section 2 we review basics on PCF theory used in this note. The author referred to Abraham-Magidor [1] for Section 2.

At the end of this section we present miscellaneous notation used in this note. See Section 2.1 for notation and basic definitions in PCF theory.

Let A be a set of ordinals. Then o.t.(A) denotes the order-type of A. Moreover Lim(A) denotes the set of all limit points in A, that is, the set $\{\alpha \in On \mid \sup(A \cap \alpha) = \alpha\}$.

For regular cardinals $\mu < \nu$ let

$$E^{\nu}_{\mu} := \{\alpha < \nu \mid \operatorname{cf}(\alpha) = \mu\}$$

$$E^{\nu}_{<\mu} := \{\alpha < \nu \mid \operatorname{cf}(\alpha) < \mu\}$$

$$E^{\nu}_{>\mu} := \{\alpha < \nu \mid \operatorname{cf}(\alpha) > \mu\}$$

Suppose that \mathcal{M} is a structure on which a well-ordering of its universe is definable. Then for $A \subseteq M$ let $\operatorname{Sk}^{\mathcal{M}}(A)$ denote the Skolem hull of A in \mathcal{M} , i.e. the smallest $M \prec \mathcal{M}$ with $A \subseteq M$.

Let μ be a limit ordinal. Then a set x is said to be internally approachable of length μ if there exists a \subseteq -increasing sequence $\langle x_{\xi} | \xi < \mu \rangle$ such that

- $\bullet \bigcup_{\xi < \mu} x_{\xi} = x,$
- $\langle x_{\xi} | \xi < \zeta \rangle \in x$ for all $\zeta < \mu$.

A sequence $\langle x_{\xi} | \xi < \mu \rangle$ as above is called an *internally approaching sequence* to x.

2 Basics in PCF theory

2.1 Notation and basic definitions

Here we give notation and basic definitions in PCF theory.

Let A be a set of cardinals. For a set $\mathcal{F} \subseteq {}^{A}\mathrm{On}$ let $\sup(\mathcal{F}) \in {}^{A}\mathrm{On}$ be such that

$$\sup(\mathcal{F})(\kappa) = \sup\{f(\kappa) \mid f \in \mathcal{F}\}\$$

for each $\kappa \in A$. Next let $f, g \in {}^{A}$ On. Then let

$$f < g \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \forall \kappa \in A, \ f(\kappa) < g(\kappa) \ ,$$
$$f < g \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \forall \kappa \in A, \ f(\kappa) < g(\kappa) \ .$$

For an ideal I over A let

$$f <_{I} g \overset{\text{def}}{\Leftrightarrow} \{\kappa \in A \mid f(\kappa) \not< g(\kappa)\} \in I,$$

$$f \leq_{I} g \overset{\text{def}}{\Leftrightarrow} \{\kappa \in A \mid f(\kappa) \not\leq g(\kappa)\} \in I,$$

$$f =_{I} g \overset{\text{def}}{\Leftrightarrow} \{\kappa \in A \mid f(\kappa) \neq g(\kappa)\} \in I.$$

For an ordinal ν let

$$f <_{\nu} g \stackrel{\text{def}}{\Leftrightarrow} \forall \kappa \in A \setminus \nu, \ f(\kappa) < g(\kappa) \ ,$$

$$f \leq_{\nu} g \stackrel{\text{def}}{\Leftrightarrow} \forall \kappa \in A \setminus \nu, \ f(\kappa) \leq g(\kappa) \ ,$$

$$f =_{\nu} g \stackrel{\text{def}}{\Leftrightarrow} \forall \kappa \in A \setminus \nu, \ f(\kappa) = g(\kappa) \ .$$

Finally let

$$f <^* g \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \exists \nu < \sup(A), \ f <_{\nu} g ,$$

$$f \leq^* g \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \exists \nu < \sup(A), \ f \leq_{\nu} g ,$$

$$f =^* g \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \exists \nu < \sup(A), \ f =_{\nu} g .$$

Note that $<^*$, \le^* and $=^*$ coincide $<_I$, \le_I and $=_I$ for the bounded ideal I over A, respectively.

Definition 2.1. Let A be a set of cardinals and I be an ideal over A. Suppose that \mathcal{F} is a subset of ${}^{A}\mathrm{On}$. Then $g \in {}^{A}\mathrm{On}$ is said to be the exact upper bound of \mathcal{F} with respect to $<_{I}$ if

- (i) $f <_I g$ for all $f \in \mathcal{F}$,
- (ii) for any $h \in {}^{A}\text{On}$ with $h <_{I} g$ there exists $f \in \mathcal{F}$ with $h <_{I} f$.

Note that \mathcal{F} may not have the exact upper bound with respect to $<_I$. Note also that the exact upper bound of \mathcal{F} with respect to $<_I$ is unique modulo I if it exists.

Definition 2.2. Let A be a set of cardinals and I be an ideal over A. A scale in $\langle \Pi A, <_I \rangle$ is a $<_I$ -increasing $<_I$ -cofinal sequence in ΠA whose length is a regular cardinal.

Note that if $\vec{f} = \langle f_{\alpha} \mid \alpha < \nu \rangle$ is a scale in $\langle \Pi A, <_I \rangle$, then the identity function on A is the exact upper bound of \vec{f} with respect to $<_I$. In general there may not be any scale in $\langle \Pi A, <_I \rangle$. But if I is a maximal ideal, then $\langle \Pi A, <_I \rangle$ has a scale because it is linear.

Note also that if $\langle \Pi A, <_I \rangle$ has scales, then all scales in $\langle \Pi A, <_I \rangle$ have the same length. Moreover if λ is a singular cardinal, A is a set of regular cardinals with $\sup(A) = \lambda$, and I is an ideal over A including the bounded ideal, then $\langle \Pi A, <_I \rangle$ is $<\lambda^+$ -directed. Thus the length of a scale in $\langle \Pi A, <_I \rangle$ must be greater than or equal to λ^+ for such A and I.

Definition 2.3. Let A be a set of cardinals and I be an ideal over A. Suppose that $\langle \Pi A, <_I \rangle$ has a scale. Then let

```
tcf(\Pi A, <_I) := the length of scales in \langle \Pi A, <_I \rangle.
```

 $tcf(\Pi A, <_I)$ is called the true cofinality of $\langle \Pi A, <_I \rangle$.

Definition 2.4. Let λ be a singular cardinal, and let Ω_{λ} be the set of all pairs $\langle A, I \rangle$ such that

- (i) A is a set of regular cardinals with $\sup(A) = \lambda$ and $o.t.(A) = \operatorname{cf}(\lambda)$,
- (ii) I is a maximal ideal over A including the bounded ideal.

Then let

$$pp(\lambda) := \sup\{tcf(\Pi A, I) \mid \langle A, I \rangle \in \Omega_{\lambda}\}.$$

 $pp(\lambda)$ is called the pseudo power of λ .

Note that $pp(\lambda) \ge \lambda^+$ by the remark before Def.2.3. Note also the following:

Proposition 2.5. $\operatorname{pp}(\lambda) \leq \operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq)$ for all singular cardinal λ .

Proof. Suppose that A is a set of regular cardinals with $\sup(A) = \lambda$ and $\operatorname{o.t.}(A) = \operatorname{cf}(\lambda)$ and that I is a maximal ideal over A including the bounded ideal. We prove that $\operatorname{tcf}(\Pi A, <_I) \leq \operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq)$. We may assume that $\min(A) > \operatorname{cf}(\lambda)$.

Take a \subseteq -cofinal $X \subseteq [\lambda]^{\operatorname{cf}(\lambda)}$ with $|X| = \operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq)$. For each $x \in X$ define $f_x \in \Pi A$ as $f_x(\kappa) = \sup(x \cap \kappa)$ for each $\kappa \in A$. Note that for any $g \in \Pi A$ if we take $x \in X$ with $g[A] \subseteq x$, then $g \leq f_x$. Hence $\{f_x \mid x \in X\}$ is $<_I$ -cofinal in ΠA . Therefore $\operatorname{tcf}(\Pi A, <_I) \leq |X| = \operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq)$.

Next we give the notion of good and better scales. We are interested in only good and better scales in $\langle \Pi A, <^* \rangle$ of length $\sup(A)^+$:

Definition 2.6. Let λ be a singular cardinal and A be a set of regular cardinals with $\sup(A) = \lambda$. Moreover let $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be a <*-increasing sequence in $^{A}\mathrm{On}$.

- (1) $\alpha \in \text{Lim}(\lambda^+)$ is called a good point for \vec{f} if there exist an unbounded $b \subseteq \alpha$ of order-type $\text{cf}(\alpha)$ and $\nu < \sup(A)$ such that $\langle f_\beta \mid \beta \in b \rangle$ is $<_{\nu}$ -increasing.
- (2) $\alpha \in \text{Lim}(\lambda^+)$ is called a better point for \vec{f} if there exist a club $c \subseteq \alpha$ of order-type $\text{cf}(\alpha)$ and $\sigma : c \to \sup(A)$ such that $f_{\beta} <_{\max(\sigma(\beta), \sigma(\gamma))} f_{\gamma}$ for each $\beta, \gamma \in c$ with $\beta < \gamma$.

In general better points may not be good. But note that all better points of cofinality $> cf(\sup(A))$ are good.

Definition 2.7. Let λ be a singular cardinal and A be a set of regular cardinals with $\sup(A) = \lambda$. Suppose that $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a scale in $\langle \Pi A, <^{*} \rangle$.

- (1) \vec{f} is called a good scale if every $\alpha \in E^{\lambda^+}_{>cf(\lambda)}$ is a good point for \vec{f} .
- (2) \vec{f} is called a better scale if every $\alpha \in E^{\lambda^+}_{> cf(\lambda)}$ is a better point for \vec{f} .

2.2 Exact upper bound

Here we present basic facts on the existence of the exact upper bound, which are building blocks of PCF theory.

First we give a condition for a $<^*$ -increasing sequence \vec{f} in A On which is equivalent to that \vec{f} has the exact upper bound with respect to $<^*$:

Lemma 2.8. Let λ be a singular cardinal and A be a set of regular cardinals with $|A| < \lambda = \sup(A)$. Moreover let μ be a regular cardinal such that $|A| < \mu < \lambda$. Then the following are equivalent for a <*-increasing sequence \vec{f} in A On of length λ^+ :

- (1) \vec{f} has the exact upper bound g with respect to $<^*$ such that $\operatorname{cf}(g(\kappa)) \ge \mu$ for all $\kappa \in A$.
- (2) There are stationary many good points for \vec{f} in $E_{\mu}^{\lambda^{+}}$.

It is not hard to prove that (1) implies (2):

Proof of Lem. 2.8 ((1) implies (2)). We may assume that $\mu < \min(A)$. Let $\vec{f} = \langle f_{\alpha} | \alpha < \lambda^{+} \rangle$ be a <*-increasing sequence in ^AOn, and suppose that \vec{f} has the

exact upper bound g with respect to $<^*$ such that $\operatorname{cf}(g(\kappa)) \geq \mu$ for all $\kappa \in A$. Suppose also that C is a club subset of λ^+ . We find a good point for \vec{f} in $C \cap E_{\mu}^{\lambda^+}$.

Let θ be a sufficiently large regular cardinal. Take a sequence $\langle M_{\xi} \mid \xi < \mu \rangle$ in $[\mathcal{H}_{\theta}]^{<\mu}$ such that

- $M_{\xi} \subseteq M_{\xi+1}$, and $M_{\xi} \in M_{\xi+1}$,
- $A \subseteq M_{\varepsilon} \prec \langle \mathcal{H}_{\theta}, \in, \lambda, \mu, A, \vec{f}, g, C \rangle$,

for each $\xi < \mu$. Let $M := \bigcup_{\xi < \mu} M_{\xi}$ and $\alpha := \sup(M \cap \lambda^+)$. Clearly $\alpha \in C \cap E_{\mu}^{\lambda^+}$. Thus it suffices to show that α is good for \vec{f} .

For each $\xi < \mu$ let $g_{\xi} \in {}^{A}$ On be such that

$$g_{\xi}(\kappa) = \sup(M_{\xi} \cap g(\kappa))$$

for each $\kappa \in A$. Then note the following:

- $g_{\xi} < g$ and $g_{\xi} \in M_{\xi+1}$ for each $\xi < \mu$.
- $\langle g_{\xi} | \xi < \mu \rangle$ is \leq -increasing.
- $f_{\beta} <^* g_{\xi}$ for any $\beta < \sup(M \cap \lambda^+)$.

For the last one note that if $\beta \in M_{\xi} \cap \lambda^+$, then $f_{\beta} <^* g_{\xi}$ because $f_{\beta}[A] \subseteq M_{\xi}$, and $f_{\beta} <^* g$.

For each $\xi < \mu$ we can take $\beta_{\xi} \in M_{\xi+1} \cap \lambda^+$ such that $g_{\xi} <^* f_{\beta_{\xi}}$ because g is the exact upper bound of \vec{f} . Note that $\sup(M_{\xi} \cap \lambda^+) < \beta_{\xi}$ for each $\xi < \mu$. Thus $\langle \beta_{\xi} \mid \xi < \mu \rangle$ is increasing cofinal in α .

Because $cf(\lambda) < \mu$, we can take $\nu < \lambda$ such that the set

$$b' := \{ \xi < \mu \mid g_{\xi} <_{\nu} f_{\beta_{\xi}} <_{\nu} g_{\xi+1} \}$$

is unbounded in μ . Note that if $\xi, \eta \in b'$, and $\xi < \eta$, then $f_{\beta_{\xi}} <_{\nu} f_{\beta_{\eta}}$ because $f_{\beta_{\xi}} <_{\nu} g_{\xi+1} \le g_{\eta} <_{\nu} f_{\beta_{\eta}}$. Thus $\langle f_{\beta_{\xi}} \mid \xi \in b' \rangle$ is $<_{\nu}$ -increasing. Then $b := \{\beta_{\xi} \mid \xi \in b'\}$ witnesses that α is good for \vec{f} .

To prove that (1) implies (2), we need preliminaries:

Notation 2.9. Let A be a set of regular cardinals. Suppose that $f \in {}^{A}\text{On}$ and that \mathfrak{g} is a function on A such that $\mathfrak{g}(\kappa)$ is a set of ordinals for each $\kappa \in A$. Then let $\text{proj}(f,\mathfrak{g})$ be the function on A such that

$$\operatorname{proj}(f,\mathfrak{g})(\kappa) = \begin{cases} \min(\mathfrak{g}(\kappa) \setminus f(\kappa)) & \cdots & \text{if } \mathfrak{g}(\kappa) \setminus f(\kappa) \neq \emptyset \\ 0 & \cdots & \text{if } \mathfrak{g}(\kappa) \setminus f(\kappa) = \emptyset \end{cases}$$

for each $\kappa \in A$.

Lemma 2.10. Let λ , A and μ be as in Lem.2.8. Suppose that $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a $<^*$ -increasing sequence in A On and that there are stationary many good points for \vec{f} in $E_{\mu}^{\lambda^{+}}$. Moreover let \mathfrak{g} be a function from A to $[On]^{<\mu}$. Then there exists $\alpha < \lambda^{+}$ such that $\operatorname{proj}(f_{\alpha}, \mathfrak{g}) =^* \operatorname{proj}(f_{\beta}, \mathfrak{g})$ for all $\beta \geq \alpha$.

Proof. For the contradiction assume that there are no $\alpha < \lambda^+$ as in Lem.2.10. Note that $\langle \operatorname{proj}(f_{\beta}, \mathfrak{g}) \mid \beta < \lambda^+ \rangle$ is \leq^* -increasing. Then we can take an unbounded $E \subseteq \lambda^+$ such that $\operatorname{proj}(f_{\beta}, \mathfrak{g}) \leq^* \operatorname{proj}(f_{\gamma}, \mathfrak{g})$ but $\operatorname{proj}(f_{\beta}, \mathfrak{g}) \not\geq^* \operatorname{proj}(f_{\gamma}, \mathfrak{g})$ for each $\beta, \gamma \in E$ with $\beta < \gamma$.

Take a good point $\alpha \in E_{\mu}^{\lambda^+}$ for \vec{f} such that $E \cap \alpha$ is unbounded in α , and suppose that $b \subseteq \alpha$ and $\nu < \lambda$ witness goodness of α . By shrinking b if necessary, we may assume that $\operatorname{proj}(f_{\beta}, \mathfrak{g}) \not\geq^* \operatorname{proj}(f_{\gamma}, \mathfrak{g})$ for each $\beta, \gamma \in b$ with $\beta < \gamma$.

For each $\beta \in b$ take $\kappa_{\beta} \in A \setminus \nu$ with

$$\operatorname{proj}(f_{\beta}, \mathfrak{g})(\kappa_{\beta}) < \operatorname{proj}(f_{\min(b \setminus \beta+1)}, \mathfrak{g})(\kappa_{\beta}).$$

Then we can take $\kappa \in A \setminus \nu$ such that $\kappa_{\beta} = \kappa$ for cofinally many $\beta \in b$ because $|A| < \mu = \text{o.t.}(b)$. Note that $\langle \text{proj}(f_{\beta}, \mathfrak{g})(\kappa) \mid \beta \in b \rangle$ is \leq -increasing because $\langle f_{\beta} \mid \beta \in b \rangle$ is $<_{\nu}$ -increasing. Moreover it is not eventually constant by the choice of κ . This contradicts that $|\mathfrak{g}(\kappa)| < \mu$.

Lemma 2.11. Let λ , A and μ be as in Lem.2.8. Suppose that $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a $<^*$ -increasing sequence in A On and that there are stationary many good points for \vec{f} in $E_{\mu}^{\lambda^{+}}$. Then \vec{f} has the least upper bound with respect to \leq^* .

Proof. For the contradiction assume that \vec{f} has the least upper bound with respect to $<^*$.

By induction on $\xi < \mu$ take $g_{\xi} \in {}^{A}\mathrm{On}$, $\mathfrak{g}_{\xi} \in {}^{A}([\mathrm{On}]^{<\mu})$ and $\alpha_{\xi} < \lambda^{+}$ as follows: Let \mathfrak{g}_{0} be the constant function on A with its value \emptyset , and let $\alpha_{0} := 0$. Moreover let g_{0} be an arbitrary upper bound of \vec{f} with respect to \leq^{*} . Assume that $0 < \xi < \mu$ and that g_{η} and α_{η} have been defined for all $\eta < \xi$. First let \mathfrak{g}_{ξ} be the function on A such that $\mathfrak{g}_{\xi}(\kappa) = \{g_{\eta}(\kappa) \mid \eta < \xi\}$ for each $\kappa \in A$. Then by Lem.2.10 we can take $\alpha_{\xi} < \lambda^{+}$ such that $\mathrm{proj}(f_{\beta}, \mathfrak{g}_{\xi}) =^{*} \mathrm{proj}(f_{\alpha_{\xi}}, \mathfrak{g}_{\xi})$ for every $\beta \geq \alpha_{\xi}$. Note that $\mathrm{proj}(f_{\alpha_{\xi}}, \mathfrak{g}_{\xi})$ is an upper bound of \vec{f} with respect to \leq^{*} . Then by our assumption on the non-existence of the least upper bound, let g_{ξ} be an upper bound of \vec{f} with respect to \leq^{*} such that $\mathrm{proj}(f_{\alpha_{\xi}}, \mathfrak{g}_{\xi}) \not\leq^{*} g_{\xi}$.

Take $\alpha < \lambda^+$ such that $\alpha \geq \alpha_{\xi}$ for every $\xi < \mu$, and let $h_{\xi} := \operatorname{proj}(f_{\alpha}, \mathfrak{g}_{\xi})$ for each $\xi < \mu$. Note that $h_{\xi+1} \leq g_{\xi}$ and that $h_{\xi} \not\leq^* g_{\xi}$. Hence $h_{\xi} \not\leq^* h_{\xi+1}$ for each $\xi < \mu$. Thus for each $\xi < \mu$ there exists $\kappa_{\xi} \in A$ with $h_{\xi+1}(\kappa_{\xi}) < h_{\xi}(\kappa_{\xi})$. Then we can take $\kappa \in A$ such that $\kappa_{\xi} = \kappa$ for cofinally many $\xi < \mu$ because

 $|A| < \mu$. Here note that $\langle h_{\xi}(\kappa) \mid \xi < \mu \rangle$ is \leq -decreasing. Thus $\langle h_{\xi}(\kappa) \mid \xi < \mu \rangle$ includes an infinite <-decreasing subsequence. This is a contradiction.

Now we prove Lem.2.8:

Proof of Lem.2.8. By Lem.2.11 let $g \in {}^{A}$ On be the least upper bound of \vec{f} with respect to \leq^* . We prove that g is the exact upper bound and that $\mathrm{cf}(g(\kappa)) \geq \mu$ for all sufficiently large $\kappa \in A$.

First we prove that g is the exact upper bound. To prove this, take an arbitrary $h \in {}^{A}\text{On}$ such that $h <^{*} g$. Let \mathfrak{g} be the function on A such that $\mathfrak{g}(\kappa) = \{g(\kappa), h(\kappa)\}$ for each $\kappa \in A$. Then by Lem.2.10 we can take $\alpha < \lambda^{+}$ such that $\text{proj}(f_{\beta}, \mathfrak{g}) =^{*} \text{proj}(f_{\alpha}, \mathfrak{g})$ for every $\beta \geq \alpha$. Then $\text{proj}(f_{\alpha}, \mathfrak{g})$ is an upper bound of \vec{f} with respect to \leq^{*} . Hence $g \leq^{*} \text{proj}(f_{\alpha}, \mathfrak{g})$. Then it is easy to see that $h <^{*} f_{\alpha}$.

Next we prove that $\operatorname{cf}(g(\kappa)) \geq \mu$ for all sufficiently large $\kappa \in A$. For the contradiction assume not, i.e. assume that $B := \{\kappa \in A \mid \operatorname{cf}(g(\kappa)) < \mu\}$ is unbounded in λ . For each $\kappa \in B$ take a cofinal $b_{\kappa} \subseteq g(\kappa)$ of order-type $< \mu$, and let $\mathfrak g$ be a function on A such that

$$\mathfrak{g}(\kappa) = \begin{cases} b_{\kappa} \cup \{g(\kappa)\} & \cdots & \text{if } \kappa \in B \\ \{g(\kappa)\} & \cdots & \text{if } \kappa \in A \setminus B \end{cases}.$$

Then by the same argument as above we can take $\alpha < \lambda^+$ such that $g \leq^* \operatorname{proj}(f_\alpha, \mathfrak{g})$. Then $f_\alpha =^* g$ by the construction of \mathfrak{g} . This contradicts that $f_\alpha <^* f_{\alpha+1} \leq^* g$.

Using Lem.2.8 and a well-known fact on the ideal $I[\nu]$, we can prove the following:

Lemma 2.12. Let λ be a singular cardinal, and let A be a set of regular cardinals with $|A| < \lambda = \sup(A)$. Then for any sequence $\vec{h} = \langle h_{\alpha} \mid \alpha < \mu^{+} \rangle$ in ΠA there exists a $<^*$ -increasing sequence $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ with the following properties:

- (i) \vec{f} has the exact upper bound g with respect to $<^*$ such that $\langle \operatorname{cf}(g(\kappa)) \mid \kappa \in A \rangle$ converges to λ , i.e. for any $\mu < \lambda$ the set $\{\kappa \in A \mid \operatorname{cf}(g(\kappa)) \leq \mu\}$ is bounded in λ .
- (ii) $h_{\alpha} < f_{\alpha}$ for every $\alpha < \mu^{+}$.

Recall the ideal $I[\nu]$ and a well-known fact on it, due to Shelah [2], before proving Lem.2.12:

Definition 2.13. For a regular cardinal $\nu \geq \omega_2$ let $I[\nu]$ be the set of all $E \subseteq \nu$ with the following property:

There exists a sequence $\langle a_{\alpha} \mid \alpha < \nu \rangle$ of bounded subsets of ν and a club $C \subseteq \operatorname{Lim}(\nu)$ such that

- (i) o.t. $(a_{\alpha}) = \operatorname{cf}(\alpha)$,
- (ii) $\{a_{\alpha} \cap \gamma \mid \gamma < \alpha\} \subseteq \{a_{\beta} \mid \beta < \alpha\},\$

for all $\alpha \in E \cap C$.

Fact 2.14 (Shelah [2]). Let ν be a regular cardinal $\geq \omega_3$. Then there exists $E \in I[\nu]$ such that $E \cap E^{\nu}_{\mu}$ is stationary for every regular μ with $\mu^{++} < \nu$.

Proof of Lem. 2.12. Take an arbitrary sequence $\langle h_{\alpha} \mid \alpha < \lambda^{+} \rangle$ in ΠA . We construct \vec{f} satisfying the properties (i) and (ii) in Lem. 2.12.

By Fact 2.14 take $E \in I[\lambda^+]$ such that $E \cap E_\mu^{\lambda^+}$ is stationary for all regular $\mu < \lambda$. Suppose that $\langle a_\alpha \mid \alpha < \lambda^+ \rangle$ and $C \subseteq \operatorname{Lim}(\lambda^+)$ witness that $E \in I[\lambda^+]$. We may assume that $\langle a_\alpha \mid \alpha < \lambda^+ \rangle$ is one to one and that o.t. $(a_\alpha) < \lambda$ and $a_\alpha \subseteq \alpha$ for every $\alpha < \lambda^+$. For each $\alpha < \lambda^+$ let b_α be the set of all $\beta < \alpha$ such that a_β is an initial segment of a_α . Note the following:

- Each b_{α} is a subset of α of order-type $< \lambda$.
- If $\beta \in b_{\alpha}$, then $b_{\beta} = b_{\alpha} \cap \beta$.
- If $\alpha \in E \cap C$, then b_{α} is an unbounded subset of α of order-type $cf(\alpha)$.

By induction on $\alpha < \lambda^+$ take $f_{\alpha} \in \Pi A$ so that

- $f_{\beta} <^* f_{\alpha}$ for all $\beta < \alpha$,
- $h_{\alpha} <^* f_{\alpha}$,
- $\sup\{f_{\beta} \mid \beta \in b_{\alpha}\} <_{\text{o.t.}(b_{\alpha})} f_{\alpha}$.

We can take such f_{α} because $\langle \Pi A, <^* \rangle$ is $\leq \lambda$ -directed, and o.t. $(b_{\alpha}) < \lambda$.

Clearly \vec{f} satisfies the property (ii) in Lem.2.12. Note that if $\alpha \in E \cap C$, then $\langle f_{\beta} \mid \beta \in b_{\alpha} \rangle$ is $<_{\text{o.t.}(b_{\alpha})}$ -increasing. Hence each $\alpha \in E \cap C$ is a good point for \vec{f} . Then \vec{f} satisfies (i) in Lem.2.12 by the choice of E and Lem.2.8.

2.3 Maximal ideals and bounded ideal

Here we review the relationship between $\langle \Pi A, <_I \rangle$ for maximal ideals I and $\langle \Pi A, <^* \rangle$. More precisely we prove Lem.2.15 and 2.16 below:

Lemma 2.15. Let λ be a singular cardinal and A be a set of regular cardinals with $|A| < \lambda = \sup(A)$. Assume that $\operatorname{tcf}(\Pi A, <_I) = \lambda^+$ for every ideal I over A including the bounded ideal. Then $\operatorname{tcf}(\Pi A, <^*) = \lambda^+$.

Lemma 2.16. Let λ is a singular cardinal and A be a set of regular cardinals with $|A| < \lambda = \sup(A)$. Assume that there exists a maximal ideal I over A which includes the bounded ideal and such that $\operatorname{tcf}(\Pi A, <_I) > \lambda$. Then there exists an unbounded $B \subseteq A$ such that $\langle \Pi B, <^* \rangle$ is $\leq \lambda^+$ -directed.

We use the following lemma. A sequence \vec{f} in the following lemma is called a universal sequence in ΠA of length λ^+ :

Lemma 2.17. Suppose that λ is a singular cardinal and that A is a set of regular cardinals with $|A| < \lambda = \sup(A)$. Then there exists a $<^*$ -increasing sequence \vec{f} of length λ^+ with the following properties:

- (i) \vec{f} has the exact upper bound with respect to $<^*$.
- (ii) \vec{f} is $<_I$ -cofinal in ΠA for any maximal ideal I over A which includes the bounded ideal and such that $\operatorname{tcf}(\Pi A, <_I) = \lambda^+$.

Proof. By reducing A if necessary, we may assume that $\min(A) > |A|^+$. For the contradiction assume that there are no such \vec{f} . Note that this assumption together with Lem.2.12 implies the existence of a maximal ideal I over A which includes the bounded ideal and such that $\operatorname{tcf}(\Pi A, <_I) = \lambda^+$.

By induction on $\xi < |A|^+$ we define a $<^*$ -increasing sequence $\vec{f}_{\xi} = \langle f_{\xi,\alpha} | \alpha < \lambda^+ \rangle$ in ΠA and a maximal ideal I_{ξ} over A. Assume that $\xi < |A|^+$ and that \vec{f}_{η} and I_{η} have been defined for every $\eta < \xi$. First take a maximal ideal I_{ξ} over A such that

- I_{ξ} includes the bounded ideal,
- $\operatorname{tcf}(\Pi A, <_{I_{\varepsilon}}) = \lambda^{+},$
- if ξ is a successor ordinal, then $\vec{f}_{\xi-1}$ is not $<_{I_{\xi}}$ -cofinal in ΠA .

Next take a <*-increasing sequence $\vec{f}_{\xi} = \langle f_{\xi,\alpha} \mid \alpha < \lambda^+ \rangle$ in ΠA such that

- \vec{f}_{ξ} has the exact upper bound with respect to $<^*$,
- \vec{f}_{ξ} is $<_{I_{\xi}}$ -cofinal in ΠA ,
- $\sup\{f_{\eta,\alpha} \mid \eta < \xi\} \le f_{\xi,\alpha} \text{ for all } \alpha < \lambda^+,$
- if ξ is a successor ordinal, then $f_{\xi-1,\alpha} <_{I_{\xi}} f_{\xi,0}$ for all $\alpha < \lambda^+$.

We can take such \vec{f}_{ξ} by Lem.2.12 and the fact that $\xi < |A|^+ < \min(A)$.

Let $f := \sup\{f_{\xi,0} \mid \xi < |A|^+\} \in \Pi A$. For each $\xi < |A|^+$ take $\alpha_{\xi} < \lambda^+$ such that $f <_{I_{\xi}} f_{\xi,\alpha_{\xi}}$. Moreover take $\beta < \lambda^+$ such that $\beta > \alpha_{\xi}$ for all $\xi < |A|^+$. Let $A_{\xi} := \{\kappa \in A \mid f(\kappa) < f_{\xi,\beta}(\kappa)\}$ for each $\xi < |A|^+$.

Note that $\langle A_{\xi} \mid \xi < |A|^{+} \rangle$ is \subseteq -increasing because $\langle f_{\xi,\beta} \mid \xi < |A|^{+} \rangle$ is \leq -increasing. Moreover

$$f_{\xi,\beta} <_{I_{\xi+1}} f_{\xi+1,0} \le f <_{I_{\xi+1}} f_{\xi+1,\beta}$$

for each $\xi < |A|^+$. Hence $A_{\xi} \in I_{\xi+1}$, and $A_{\xi+1} \notin I_{\xi+1}$. So $\langle A_{\xi} \mid \xi < |A|^+ \rangle$ is a \subset -increasing sequence of subsets of A. This is a contradiction.

Using Lem.2.17 we can prove Lem.2.15 and 2.16 easily:

Proof of Lem. 2.15. Let $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be a universal sequence in ΠA , and let f be the exact upper bound of \vec{f} with respect to $<^*$. We may assume that $f(\kappa) \leq \kappa$ for all $\kappa \in A$.

Assume that $B := \{ \kappa \in A \mid f(\kappa) < \kappa \}$ is unbounded in A. Then we can take a maximal ideal I over A including the bounded ideal and containing $A \setminus B$. Then $\operatorname{tcf}(\Pi A, <_I) = \lambda^+$ by the assumption in Lem.2.15, but \vec{f} is not $<_I$ -cofinal in ΠA . This contradicts that \vec{f} is a universal sequence. So B is bounded in A, and this implies that \vec{f} is a scale in $\langle \Pi A, <^* \rangle$. Therefore $\operatorname{tcf}(\Pi A, <^*) = \lambda^+$. \square

Proof of Lem. 2.16. Let $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be a universal sequence in ΠA , and let f be the exact upper bound of \vec{f} with respect to $<^{*}$. We may assume that $f(\kappa) \leq \kappa$ for all $\kappa \in A$. We show that $B := \{ \kappa \in A \mid f(\kappa) < \kappa \}$ witnesses Lem. 2.16.

First note that if B is bounded in A, then \bar{f} is a scale in $\langle \Pi A, <^* \rangle$, and so is in $\langle \Pi A, <_I \rangle$ for all maximal ideal I over A including the bounded ideal. This contradicts the assumption in Lem.2.16. Thus B is unbounded in A.

To show that B is $\leq \lambda^+$ -unbounded, take an arbitrary $\mathcal{G} \subseteq \Pi B$ of cardinality $\leq \lambda^+$. By Lem.2.12 we can take a $<^*$ -increasing sequence $\langle h_\alpha \mid \alpha < \lambda^+ \rangle$ which has the exact upper bound h with respect to $<^*$ and such that for any $g \in \mathcal{G}$ there exists $\alpha < \lambda^+$ with $g \leq h_\alpha$. We may assume that $h(\kappa) \leq \kappa$ for all $\kappa \in B$. All we have to show is the set $C := \{ \kappa \in B \mid h(\kappa) = \kappa \}$ is bounded in B. (Then h yields an upper bound of \mathcal{G} in $\langle \Pi B, <^* \rangle$.)

Assume not. Take a maximal ideal I over A including the bounded ideal and containing $A \setminus C$. Note that $\langle h_{\alpha} \upharpoonright C \mid \alpha < \lambda^{+} \rangle$ is a scale in $\langle \Pi C, <^{*} \rangle$. Hence it yields a scale in $\langle \Pi A, <_{I} \rangle$ of length λ^{+} . That is, $\operatorname{tcf}(\Pi A, <_{I}) = \lambda^{+}$. But f is an upper bound of \vec{f} in $\langle \Pi A, <_{I} \rangle$ because $A \setminus B \in I$. This contradicts that \vec{f} is a universal sequence.

We end this section with corollaries of Lem.2.15 and 2.16 on the pseudo power:

Corollary 2.18. The following are equivalent for a singular cardinal λ :

- (1) $pp(\lambda) = \lambda^+$.
- (2) $\operatorname{tcf}(\Pi A, <_I) = \lambda^+$ for every set A of regular cardinals with $|A| < \lambda = \sup(A)$ and every maximal ideal I over A including the bounded ideal.

Proof. Clearly (2) implies (1). We prove the reverse implication.

Assume that (2) fails. Then there are a set A of regular cardinals with $|A| < \lambda = \sup(A)$ and a maximal ideal I over A including the bounded ideal such that $\operatorname{tcf}(\Pi A, <_I) > \lambda^+$. Then by Lem.2.16 we can take an unbounded $B \subseteq A$ such that $\langle \Pi B, <^* \rangle$ is $\leq \lambda^+$ -directed. By shrinking if necessary, we may assume that o.t. $(B) = \operatorname{cf}(\lambda)$. Because $\langle \Pi B, <^* \rangle$ is $\leq \lambda^+$ -directed, $\operatorname{tcf}(\Pi B, <_J) > \lambda^+$ for any maximal ideal J over B including the bounded ideal. Therefore $\operatorname{pp}(\lambda) > \lambda^+$, i.e. (1) fails.

Corollary 2.19. Assume that λ is a singular cardinal with $pp(\lambda) = \lambda^+$. Then $tcf(\Pi A, <^*) = \lambda^+$ for any set A of regular cardinals with $|A| < \lambda = \sup(A)$.

Proof. This is clear from Lem.2.15 and Cor.2.18.

3 Silver's theorem for SCH⁺

Here we prove Thm.1.1:

Theorem 1.1. Assume that SCH^+ fails, and let λ be the least singular cardinal at which SCH^+ fails. Then $cf(\lambda) = \omega$.

We use the following lemmata:

Lemma 3.1. Let λ be a singular cardinal of uncountable cofinality. Then there exists a club $C \subseteq \lambda$ such that $\langle \Pi C^+, <^* \rangle$ has a scale of length λ^+ , where $C^+ := \{ \nu^+ \mid \nu \in C \}$.

Proof. First take a club $B \subseteq \lambda$ which consists of singular cardinals and such that o.t. $(B) = \operatorname{cf}(\lambda) < \min(B)$. Then by Lem.2.12 we can take a <*-increasing sequence $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ in ΠB^{+} and the exact upper bound g of \vec{f} with respect to <* such that $\langle \operatorname{cf}(g(\nu^{+})) \mid \nu \in B \rangle$ converges to λ . We may assume that $g(\nu^{+}) \leq \nu^{+}$ for each $\nu \in B$.

Note that if $g(\nu^+) < \nu^+$, then $\operatorname{cf}(g(\nu^+)) < \nu$. Thus if there are stationary many $\nu \in B$ with $g(\nu^+) < \nu^+$, then, by Fodor's lemma, we can take $\mu < \lambda$ such that $\operatorname{cf}(g(\nu^+)) < \mu$ for stationary many $\nu \in B$. This contradicts that $\langle \operatorname{cf}(g(\nu^+)) \mid \nu \in B \rangle$ converges to λ . Therefore there are club many $\nu \in B$ with $g(\nu^+) = \nu^+$. Let C be a club subset of B consisting of ν with $g(\nu^+) = \nu^+$. Then $\langle f_{\alpha} \upharpoonright C^+ \mid \alpha < \mu^+ \rangle$ is a scale in $\langle \Pi C^+, <^* \rangle$.

Lemma 3.2. Assume that λ is a singular cardinal and that $\operatorname{cf}([\nu]^{\operatorname{cf}(\nu)}, \subseteq) = \nu^+$ for all singular cardinals $\nu < \lambda$. Then $\operatorname{cf}([\nu]^{\mu}, \subseteq) = \nu$ for all regular cardinals μ, ν with $\mu < \nu < \lambda$.

Proof. Take an arbitrary regular cardinal $\mu < \lambda$. We prove the lemma by induction on ν .

If $\nu = \mu^+$, then $\operatorname{cf}([\nu]^{\mu}, \subseteq) = \nu$ because ν is \subseteq -cofinal in $[\nu]^{\mu}$. If ν is the successor cardinal of a regular cardinal $\nu' > \mu$, then

$$\operatorname{cf}([\nu]^{\mu}, \subseteq) = \operatorname{cf}([\nu]^{\nu'}, \subseteq) \cdot \operatorname{cf}([\nu']^{\mu}, \subseteq) = \nu \cdot \nu' = \nu.$$

If ν is a limit cardinal, then

$$\operatorname{cf}([\nu]^{\mu},\subseteq) = \sup\{\operatorname{cf}([\nu']^{\mu},\subseteq) \mid \nu' \text{ is a regular cardinal } < \nu\} = \nu.$$

Suppose that ν is the successor cardinal of a singular cardinal $\nu' > \mu$. Then

$$\operatorname{cf}([\nu]^\mu,\subseteq) \ = \ \operatorname{cf}([\nu]^{\nu'},\subseteq) \cdot \operatorname{cf}([\nu']^\mu,\subseteq) \ = \ \nu \cdot \operatorname{cf}([\nu']^\mu,\subseteq) \ .$$

Moreover it is easy to see that

$$\operatorname{cf}([\nu']^{\mu}, \subseteq) \leq \operatorname{cf}([\nu']^{\operatorname{cf}(\nu')}, \subseteq) = \nu$$

because
$$\operatorname{cf}([\nu'']^{\mu}, \subseteq) = \nu''$$
 for all regular $\nu'' < \nu$. So $\operatorname{cf}([\nu]^{\mu}, \subseteq) = \nu$.

Now we prove Thm.1.1:

Proof of Thm.1.1. Assume that λ is a singular cardinal of uncountable cofinality and that $\operatorname{cf}([\nu]^{\operatorname{cf}(\nu)},\subseteq)=\nu^+$ for all singular cardinals $\nu<\lambda$. We show that $\operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)},\subseteq)=\lambda^+$. It suffices to find a \subseteq -cofinal $X\subseteq[\lambda]^{\subseteq\operatorname{cf}(\lambda)}$ of cardinality λ^+ .

By Lem.3.1 take a club $C \subseteq \lambda$ and a scale $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ in $\langle \Pi C^{+}, <^{*} \rangle$. We may assume that o.t. $(C) = \operatorname{cf}(\lambda)$ and that C consists of singular cardinals $> \operatorname{cf}(\lambda)$. For each μ with $\operatorname{cf}(\lambda) < \mu < \lambda$ take a \subseteq -cofinal subset $\{y_{\mu,\gamma} \mid \gamma < \mu\}$ of $[\mu]^{\operatorname{cf}(\lambda)}$. Moreover for each $\nu \in C$ and $\gamma < \nu^{+}$ take an injection $\sigma_{\nu,\gamma} : \gamma \to \nu$.

Now for each $\alpha < \lambda^+$, each regular μ with $\operatorname{cf}(\lambda) < \mu < \lambda$ and each $\delta < \mu$ let

$$x_{\alpha,\mu,\delta} := \bigcup \{ y_{\nu^+,\gamma} \mid \nu \in C \land \gamma < f_{\alpha}(\nu^+) \land \sigma_{\nu,f_{\alpha}(\nu^+)}(\gamma) \in y_{\mu,\delta} \} .$$

Note that $x_{\alpha,\mu,\delta} \in [\lambda]^{\leq cf(\lambda)}$. Let X be the collection of all such $x_{\alpha,\mu,\delta}$'s. Then $|X| = \lambda^+$ clearly.

We prove that X is \subseteq -cofinal. Take an arbitrary $x \in [\lambda]^{\operatorname{cf}(\lambda)}$. Let $f \in \Pi C^+$ be such that $x \cap \nu^+ \subseteq y_{\nu^+, f(\nu^+)}$ for each $\nu \in C$. Then we can take $\alpha < \lambda^+$

such that $f <^* f_{\alpha}$. Then by Fodor's lemma we can take a regular μ such that $cf(\lambda) < \mu < \lambda$ and such that the set

$$B := \{ \nu \in C \mid f(\nu^+) < f_{\alpha}(\nu^+) \land \sigma_{\nu, f_{\alpha}(\nu^+)}(f(\nu^+)) < \mu \}$$

is stationary in λ . Then we can take $\delta < \mu$ such that

$$\{\sigma_{\nu,f_{\alpha}(\nu^+)}(f(\nu^+)) \mid \nu \in B\} \subseteq y_{\mu,\delta}$$
.

Note that $x \cap \nu^+ \subseteq x_{\alpha,\mu,\delta}$ for each $\nu \in B$. Then $x \subseteq x_{\alpha,\mu,\delta}$ because B is unbounded in λ .

4 Pseudo power

In this section we prove Thm.1.2:

Theorem 1.2. Assume that SCH⁺ fails, and let λ be the least singular cardinal at which SCH⁺ fails. Then $pp(\lambda) > \lambda^+$.

For this we need preliminaries. First we prove a lemma on the relationship between $\mathrm{cf}([\lambda]^{\mathrm{cf}(\lambda)},\subseteq)$ and the product of all regular cardinals below λ :

Lemma 4.1. Suppose that λ is a singular cardinal such that $\operatorname{cf}([\nu]^{\operatorname{cf}(\lambda)}, \subseteq) < \lambda$ for all $\nu < \lambda$. Let R be the set of all regular cardinals $< \lambda$. Then the following are equivalent:

- (1) $\operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq) = \lambda^+$.
- (2) There exists $\mathcal{F} \subseteq \Pi R$ of cardinality λ^+ such that for any $A \subseteq R$ with $\sup(A) = \lambda$ and $|A| = \operatorname{cf}(\lambda)$ and for any $g \in \Pi A$ there exists $f \in \mathcal{F}$ with $g <^* f \upharpoonright A$.

We can easily prove that (1) implies (2) by a similar argument as in the proof of Prop.2.5. The main part of Lem.4.1 is that (2) implies (1). The following lemma is a core of Lem.4.1:

Lemma 4.2. Let λ be a singular cardinal and R be the set of all regular cardinals below λ . Assume (2) in Lem.4.1. Moreover let θ be a sufficiently large regular cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta, \lambda \rangle$. Suppose that $M, N \in [\mathcal{H}_{\theta}]^{\mathrm{cf}(\lambda)^{+}}$ satisfies the following properties:

- (i) $M, N \prec \mathcal{M}$.
- (ii) Both M and N are internally approachable of length $cf(\lambda)^+$.

(iii) $\sup(M \cap \lambda^+) = \sup(N \cap \lambda^+).$

Then there exists $\nu < \lambda$ such that $N \cap \lambda \subseteq Sk^{\mathcal{M}}(M \cup \nu)$.

Proof. First we define $\nu < \lambda$ witnessing the lemma. For this we need preparations.

By (2) in Lem.4.1 and the $\leq \lambda$ -directedness of $\langle \Pi R, <^* \rangle$ we can take a $<^*$ -increasing sequence $\vec{f} = \langle f_\alpha \mid \alpha < \lambda^+ \rangle$ such that for any cofinal $A \subseteq R$ with $|A| = \operatorname{cf}(\lambda)$ and any $g \in \Pi A$ there exists $\alpha < \lambda^+$ with $g <^* f_\alpha \upharpoonright A$. Let \vec{f} is the Δ -least such sequence. Note that $\vec{f} \in M, N$.

Let $\langle N_{\xi} | \xi < \operatorname{cf}(\lambda)^{+} \rangle$ be an internally approaching sequence to N. We may assume that $|N_{\xi}| = \operatorname{cf}(\lambda)$ for all $\xi < \operatorname{cf}(\lambda)^{+}$ and that $\sup(R \cap N_{0}) = \lambda$. For each $\xi < \operatorname{cf}(\lambda)^{+}$ let $g_{\xi} \in \Pi(R \cap N_{\xi})$ be such that $g_{\xi}(\kappa) = \sup(N_{\xi} \cap \kappa)$ for each $\kappa \in R \cap N_{\xi}$ with $\kappa > \operatorname{cf}(\lambda)$.

Let $\alpha := \sup(M \cap \lambda^+) = \sup(N \cap \lambda^+)$. Note that both $M \cap \lambda^+$ and $N \cap \lambda^+$ are countably closed. Hence $M \cap N \cap \lambda^+$ is unbounded in α . Note also that $g_{\xi} \in N$ for each ξ . Then, by the choice of \vec{f} , for each $\xi < \operatorname{cf}(\lambda)^+$ we can take $\beta_{\xi} \in M \cap N \cap \lambda^+$ such that $g_{\xi} <^* f_{\beta_{\xi}} \upharpoonright (R \cap N_{\xi})$. Then we can take $\nu < \lambda$ such that $\nu > \operatorname{cf}(\lambda)$ and such that the set

$$b := \{ \xi < \operatorname{cf}(\lambda)^+ \mid g_{\xi} <_{\nu} f_{\beta_{\xi}} \upharpoonright (R \cap N_{\xi}) \}$$

is unbounded in $cf(\lambda)^+$.

We prove that this ν witnesses the lemma. Let $\bar{M} := \operatorname{Sk}^{\mathcal{M}}(M \cup \nu)$. We must show that $N \cap \lambda \subseteq \bar{M}$. We claim the following:

Claim 1. $N \cap \overline{M} \cap \kappa$ is unbounded in $N \cap \kappa$ for every $\kappa \in R \cap N \cap \overline{M}$.

Proof of Claim 1. Fix $\kappa \in R \cap N \cap \overline{M}$. If $\kappa \leq \nu$, then the claim is clear because $\kappa \subseteq \overline{M}$. So suppose that $\kappa > \nu$. Note that $\kappa > \operatorname{cf}(\lambda)$.

First note that $\{f_{\beta_{\xi}}(\kappa) \mid \xi \in b\} \subseteq N \cap \overline{M} \cap \kappa$ because $\vec{f}, \kappa \in N \cap \overline{M}$, and $\beta_{\xi} \in N \cap \overline{M}$ for each $\xi \in H$. Hence it suffices to show that the set $\{f_{\beta_{\xi}}(\kappa) \mid \xi \in b\}$ is unbounded in $N \cap \kappa$.

For this note that if $\xi \in b$, and $\kappa \in N_{\xi}$, then $\sup(N_{\xi} \cap \kappa) = g_{\xi}(\kappa) < f_{\beta_{\xi}}(\kappa)$ because $\operatorname{cf}(\lambda), \nu < \kappa$. Moreover

$$N\cap\kappa \ = \ \bigcup\{N_\xi\cap\kappa\mid \xi\in b\,\wedge\,\kappa\in N_\xi\}$$

because b is unbounded in $\operatorname{cf}(\lambda)^+$. Therefore $\{f_{\beta_{\xi}}(\kappa) \mid \xi \in b\}$ is unbounded in $N \cap \kappa$.

Claim 2. $N \cap \overline{M} \cap \delta$ is unbounded in $N \cap \delta$ for every limit ordinal $\delta \in N \cap \overline{M} \cap \lambda$.

Proof of Claim 2. Fix a limit ordinal $\delta \in N \cap \bar{M} \cap \lambda$. Then $\operatorname{cf}(\delta) \in R \cap N \cap \bar{M}$. Take an increasing continuous cofinal $\sigma : \operatorname{cf}(\delta) \to \delta$ in $N \cap \bar{M}$. Note that $\sup(N \cap \operatorname{cf}(\delta)) = \sup(N \cap \bar{M} \cap \operatorname{cf}(\delta))$ by the previous claim. Then by the elementarity of N and \bar{M} it is easy to see that

$$\sup(N \cap \delta) = \sigma(\sup(N \cap \operatorname{cf}(\delta))) = \sigma(\sup(N \cap \overline{M} \cap \operatorname{cf}(\delta))) = \sup(N \cap \overline{M} \cap \delta)$$

if $\sup(N \cap \operatorname{cf}(\delta)) = \sup(N \cap \overline{M} \cap \operatorname{cf}(\delta)) < \operatorname{cf}(\delta)$. Otherwise, it is also easy to see that $\sup(N \cap \delta) = \sup(N \cap \overline{M} \cap \delta) = \delta$. \square_{Claim2}

Using Claim 2, we can easily show that $N \cap \lambda \subseteq \bar{M}$: For the contradiction assume that $\gamma \in N \cap \lambda$ and that $\gamma \notin \bar{M}$. Let δ be $\min(N \cap \bar{M})$. Note that $\delta < \lambda$ because $N \cap \bar{M} \cap \lambda$ is unbounded in λ . Moreover δ is a limit ordinal $> \gamma$ by the elementarity of N and \bar{M} . Then we can take $\delta' > \gamma$ in $N \cap \bar{M} \cap \delta$ by Claim 2. This contradicts the choice of δ .

Lem.4.1 easily follows from Lem.4.2:

Proof of Lem.4.1. By a similar argument as in the proof of Prop.2.5 it is easily proved that (1) implies (2). We prove that (2) implies (1). Assume (1). We will find a \subseteq -cofinal $X \subseteq [\lambda]^{cf(\lambda)}$ of cardinality λ^+ .

Take a sufficiently large regular cardinal θ and a well-ordering Δ of \mathcal{H}_{θ} . Let \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta, \lambda \rangle$. Moreover let

$$Z := \{ M \in [\mathcal{H}_{\theta}]^{\operatorname{cf}(\lambda)^{+}} \mid M \prec M \wedge M \text{ is i.a. of length } \operatorname{cf}(\lambda)^{+} \},$$

$$E := \{ \sup(M \cap \lambda^{+}) \mid M \in Z \}.$$

For each $\alpha \in E$ choose $M_{\alpha} \in Z$ such that $\sup(M_{\alpha} \cap \lambda^{+}) = \alpha$. Moreover for each $\alpha \in E$ and $\nu < \lambda$ let $M_{\alpha,\nu}$ be $\operatorname{Sk}^{\mathcal{M}}(M_{\alpha} \cup \nu)$. Note that $|M_{\alpha,\nu}| < \lambda$. By the assumption of Lem.4.1 take a \subseteq -cofinal $X_{\alpha,\nu} \subseteq [M_{\alpha,\nu} \cap \lambda]^{\operatorname{cf}(\lambda)}$ of cardinality $< \lambda$ for each $\alpha \in E$ and $\nu < \lambda$. Then let $X := \bigcup \{X_{\alpha,\nu} \mid \alpha \in E \land \nu < \lambda\}$.

Clearly $X \subseteq [\lambda]^{\operatorname{cf}(\lambda)}$, and $|X| = \lambda^+$. Thus it suffices to show that X is \subseteq -cofinal in $[\lambda]^{\operatorname{cf}(\lambda)}$.

Take an arbitrary $y \in [\lambda]^{\operatorname{cf}(\lambda)}$. We find $x \in X$ with $x \supseteq y$. First we can take $N \in Z$ with $y \subseteq N$. Let $\alpha := \sup(N \cap \lambda^+) \in E$. By Lem.4.2 there exists $\nu < \lambda$ with $N \cap \lambda \subseteq M_{\alpha,\nu}$. Then $y \in [M_{\alpha,\nu} \cap \lambda]^{\operatorname{cf}(\lambda)}$, and so there exists $x \in X_{\alpha,\nu}$ with $x \supseteq y$ by the \subseteq -cofinality of $X_{\alpha,\nu}$. This x is as desired.

Next we examine what happens if $pp(\lambda) = \lambda^+$ holds for the least singular cardinal λ at which SCH^+ fails:

Lemma 4.3. Suppose that λ is a singular cardinal such that $\operatorname{cf}([\nu]^{\operatorname{cf}(\lambda)}, \subseteq) < \lambda$ for all $\nu < \lambda$ and such that $\operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq) > \lambda^+$. Assume that $\operatorname{pp}(\lambda) = \lambda^+$. Let R be the set of all regular cardinals below λ . Then there exists a set $D \subseteq \lambda$ with the following properties:

- (i) $\sup(D) = \lambda$, and $|D| = \operatorname{cf}(\lambda)$.
- (ii) D consists of limit cardinals of cofinality $> cf(\lambda)^+$.
- (iii) For any $k \in \Pi D$ and any $\mathcal{F} \subseteq \Pi R$ of cardinality $\leq \lambda^+$ there exist a set $A \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$ and $g \in \Pi A$ such that
 - $\sup(A) = \lambda$, and $|A| = \operatorname{cf}(\lambda)$,
 - $g \not<^* f \upharpoonright A$ for any $f \in \mathcal{F}$.

Proof. Take a sufficiently large regular cardinal θ and a well-ordering Δ of \mathcal{H}_{θ} , and let $\mathcal{M} := \langle \mathcal{H}_{\theta}, \in, \Delta, \lambda \rangle$. Take $M \prec \mathcal{M}$ such that $|M| = \mathrm{cf}(\lambda)^+$ and such that M is internally approachable of length $\mathrm{cf}(\lambda)^+$. Let $\langle M_{\xi} \mid \xi < \mathrm{cf}(\lambda)^+ \rangle$ be an internally approaching sequence to M such that $|M_{\xi}| \leq \mathrm{cf}(\lambda)$ for each ξ . Moreover let

$$\bar{\mathcal{F}} := \bigcup \{ \mathcal{F} \in M \mid \mathcal{F} \subseteq \Pi R \wedge |\mathcal{F}| \leq \lambda^+ \} .$$

Note that $\bar{\mathcal{F}} \subseteq \Pi R$ and that $|\bar{\mathcal{F}}| = \lambda^+$. Then by Lem.4.1 we can take an unbounded $A \subseteq R$ and $g \in \Pi A$ such that $|A| = \mathrm{cf}(\lambda)$ and such that $g \not<^* f \upharpoonright A$ for any $f \in \bar{\mathcal{F}}$. Let $A_0 := M \cap A$ and $A_1 := A \setminus M$.

Claim. $\sup(A_1) = \lambda$, and $g \upharpoonright A_1 \not<^* f \upharpoonright A_1$ for any $f \in \bar{\mathcal{F}}$.

Proof of Claim. Claim is clear if $\sup(A_0) < \lambda$. So assume that $\sup(A_0) = \lambda$.

First we prove that there exists $f_0 \in \bar{\mathcal{F}}$ with $g \upharpoonright A_0 <^* f_0 \upharpoonright A_0$: Take $\xi < \operatorname{cf}(\lambda)^+$ such that $A_0 \subseteq M_{\xi}$, and let $B := R \cap M_{\xi}$. Then $\operatorname{tcf}(\Pi B, <^*) = \lambda^+$ by Cor.2.19 and our assumption that $\operatorname{pp}(\lambda) = \lambda^+$. Moreover $B \in M$. Hence we can take $\mathcal{F} \subseteq \Pi R$ in M such that $|\mathcal{F}| = \lambda^+$ and such that for any $h \in \Pi B$ there exists $f \in \mathcal{F}$ with $h <^* f \upharpoonright B$. So there exists $f_0 \in \bar{\mathcal{F}}$ with $g \upharpoonright A_0 <^* f_0 \upharpoonright A_0$.

Then $\sup(A_1) = \lambda$ by the choice of g. Moreover if there exists $f_1 \in \bar{\mathcal{F}}$ such that $g \upharpoonright A_1 <^* f_1 \upharpoonright A_1$, then $\sup\{f_0, f_1\} \in \bar{\mathcal{F}}$, and $g <^* \sup\{f_0, f_1\} \upharpoonright A$. This contradicts the choice of g. Therefore $g \upharpoonright A_1 \not<^* f \upharpoonright A_1$ for any $f \in \bar{\mathcal{F}}$. \square_{Claim}

Let

$$D' := \{ \min(M \cap \lambda \setminus \kappa) \mid \kappa \in A_1 \} .$$

Note that D' is an unbounded subset of λ of size $cf(\lambda)$ and that D' consists of limit cardinals of cofinality $> cf(\lambda)^+$. Take $\eta < cf(\lambda)^+$ with $D' \subseteq M_{\eta}$, and let

$$D := \{ \nu \in M_{\eta} \mid \nu \text{ is a limit cardinal of cofinality} > \operatorname{cf}(\lambda)^{+} \}.$$

Note that $D' \subseteq D \in M$. We show that D witnesses the lemma. It suffices to check the property (iii).

Assume not. Then by the elementarity of M we can take a counter-example $k, \mathcal{F} \in M$ of the property (iii) for D. Note that $k(\nu) \in M \cap \nu$ for each $\nu \in D$ because $k, \nu \in M$. Thus for each $\kappa \in A_1$, if we let $\nu = \min(M \cap On \setminus \kappa)$, then $\kappa \in [k(\nu), \nu)$. Hence $A_1 \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$. Moreover $g \upharpoonright A_1 \not<^* f \upharpoonright A_1$ for any $f \in \mathcal{F}$ by Claim above and the construction of $\bar{\mathcal{F}}$. This contradicts that k, \mathcal{F} is a counter-example.

Using the previous lemma, next we prove the following. The difference from the previous one is the property (ii) of D:

Lemma 4.4. Suppose that λ is a singular cardinal such that $\operatorname{cf}([\nu]^{\operatorname{cf}(\lambda)}, \subseteq) < \lambda$ for all $\nu < \lambda$ and such that $\operatorname{cf}([\lambda]^{\operatorname{cf}(\lambda)}, \subseteq) > \lambda^+$. Assume that $\operatorname{pp}(\lambda) = \lambda^+$. Let R be the set of all regular cardinals below λ . Then there exists a set $D \subseteq \lambda$ with the following properties:

- (i) $\sup(D) = \lambda$, and $|D| = \operatorname{cf}(\lambda)$.
- (ii) D consists of limit cardinals, and $\sup_{\nu \in D} \operatorname{cf}(\nu) < \lambda$.
- (iii) For any $k \in \Pi D$ and any $\mathcal{F} \subseteq \Pi R$ of cardinality $\leq \lambda^+$ there exist $A \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$ and $g \in \Pi A$ such that
 - $\sup(A) = \lambda$, and $|A| = \operatorname{cf}(\lambda)$,
 - $g \not<^* f \upharpoonright A$ for any $f \in \mathcal{F}$.

For this we use the following lemma:

Lemma 4.5. Let λ be a singular cardinal, A be a set of regular cardinals with $|A| < \lambda = \sup(A)$ and μ be a regular cardinal with $|A| < \mu < \lambda$. Suppose that $\vec{f} = \langle f_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a scale in $\langle \Pi A, <^{*} \rangle$. Then there are stationary many $\alpha \in E_{\mu}^{\lambda^{+}}$ such that $\langle f_{\beta} \mid \beta < \alpha \rangle$ has the exact upper bound g with respect to $<^{*}$ with $\operatorname{cf}(g(\kappa)) = \mu$ for all $\kappa \in A$.

Proof. If $\alpha \in E_{\mu}^{\lambda^+}$ is a good point for \vec{f} , and $b \subseteq \alpha$ and $\nu < \lambda$ witness goodness of α , then, using the fact that $|A| < \mu$, it is easy to see that the function $g \in {}^{A}$ On defined as

$$g(\kappa) = \begin{cases} \sup_{\beta \in b} f_{\beta}(\kappa) & \cdots & \text{if } \kappa \in A \setminus \nu \\ \mu & \cdots & \text{if } \kappa \in A \cap \nu \end{cases}$$

is the exact upper bound of $\langle f_{\beta} \mid \beta < \alpha \rangle$. Moreover $\mathrm{cf}(g(\kappa)) = \mu$ for all $\kappa \in A$. Then Lem.4.5 follows from Lem.2.8.

Proof of Lem.4.4. For the contradiction assume not.

Let D be a subset of λ obtained by Lem.4.3, and let $B := \{ \operatorname{cf}(\nu) \mid \nu \in D \}$. Note that $|B| < \lambda = \sup(B)$. Then $\operatorname{tcf}(\Pi B, <^*) = \lambda^+$ by Cor.2.19 and the assumption that $\operatorname{pp}(\lambda) = \lambda^+$. Let $\vec{h}' = \langle h'_{\alpha} \mid \alpha < \lambda^+ \rangle$ be a scale in $\langle \Pi B, <^* \rangle$.

By Lem.4.5 we may assume that there are stationary many $\alpha \in E_{\mathrm{cf}(\lambda)^+}^{\lambda^+}$ such that h'_{α} is the exact upper bound of $\langle h'_{\beta} \mid \beta < \alpha \rangle$ with respect to $<^*$ and such that $\mathrm{cf}(h'_{\alpha}(\kappa)) = \mathrm{cf}(\lambda)^+$ for all $\kappa \in B$. Let E be the set of all such α .

Next for each $\nu \in D$ take an increasing continuous sequence $\langle \delta_{\nu,\gamma} \mid \gamma < \operatorname{cf}(\nu) \rangle$ of cardinals $\langle \nu \rangle$ which converges to ν and such that $\langle \delta_{\nu,0} \mid \nu \in D \rangle$ converges to λ . We can take such sequences because D is nonstationary in λ . Then for each $\alpha < \lambda^+$ define $h_{\alpha} \in \Pi D$ by $h_{\alpha}(\nu) = \delta_{\nu,h'_{\alpha}(\operatorname{cf}(\nu))}$. Moreover let I be the ideal over D consisting of all $D' \subseteq D$ such that $\{\operatorname{cf}(\nu) \mid \nu \in D'\}$ is bounded in λ . Note the following:

- $\vec{h} := \langle h_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a scale in $\langle \Pi D, <_{I} \rangle$.
- For each $\alpha \in E$, h_{α} is the exact upper bound of $\langle h_{\beta} \mid \beta < \alpha \rangle$ with respect to $\langle I \rangle$.
- For each $\alpha \in E$, $h_{\alpha}(\nu)$ is a limit cardinal of cofinality $cf(\lambda)^+$ for all $\nu \in D$.

Because Lem.4.4 fails, for each $\alpha \in E$ the set $\{h_{\alpha}(\nu) \mid \nu \in D\}$ does not satisfies the property (iii) in Lem.4.4. Hence for each $\alpha \in E$ we can take $k_{\alpha}^{0} \in \Pi D$ and $\mathcal{F}_{\alpha}^{0} \subseteq \Pi R$ such that

- $k_{\alpha}^0 < h_{\alpha}$,
- for any $A \subseteq R \cap \bigcup_{\nu \in D} [k_{\alpha}^{0}(\nu), h_{\alpha}(\nu))$ with $\sup(A) = \lambda$ and $|A| = \operatorname{cf}(\lambda)$ and for any $g \in \Pi A$ there exists $f \in \mathcal{F}_{\alpha}^{0}$ with $g <^{*} f \upharpoonright A$.

Then for each $\alpha \in E$ we can also take $\gamma_{\alpha} < \alpha$ such that $k_{\alpha}^{0} <_{I} h_{\gamma_{\alpha}}$. By Fodor's lemma take $\gamma < \lambda^{+}$ such that the set $\{\alpha \in E \mid \gamma_{\alpha} = \gamma\}$ is stationary. Let $\mathcal{F}^{0} := \bigcup \{\mathcal{F}_{\alpha}^{0} \mid \alpha \in E \land \gamma_{\alpha} = \gamma\}$.

Moreover take a cofinal $C \subseteq \lambda$ of order-type $\operatorname{cf}(\lambda)$, and for each $\mu \in C$ let $D_{\mu} := \{ \nu \in D \mid \operatorname{cf}(\nu) < \mu \}$. Because Lem.4.4 fails, for each $\mu \in C$ we can take $k_{\mu}^{1} \in \Pi D_{\mu}$ and $\mathcal{F}_{\mu}^{1} \subseteq \Pi R$ of cardinality $\leq \lambda^{+}$ such that

• for any $A \subseteq R \cap \bigcup_{\nu \in D_{\mu}} [k_{\mu}^{1}(\nu), \nu)$ with $\sup(A) = \lambda$ and $|A| = \operatorname{cf}(\lambda)$ and for any $g \in \Pi A$ there exists $f \in \mathcal{F}_{\mu}^{1}$ with $g <^{*} f \upharpoonright A$.

Let $\mathcal{F}^1 := \bigcup \{\mathcal{F}^1_\mu \mid \mu \in C\}.$

Let $\mathcal{F} := \{ \sup\{f^0, f^1\} \mid f^0 \in \mathcal{F}^0 \wedge f^1 \in \mathcal{F}^1 \}$. Moreover take $k \in \Pi D$ such that $h_{\gamma} < k$ and such that $k_{\mu}^1 < k \upharpoonright D_{\mu}$ for all $\mu \in C$. We can take such k because $\mathrm{cf}(\nu) > \mathrm{cf}(\lambda)^+$ for all $\nu \in D$.

Because D witnesses Lem.4.3, we can take a set $A \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$ and $g \in \Pi A$ such that

- $\sup(A) = \lambda$, and $|A| = \operatorname{cf}(\lambda)$,
- $g \not<^* f \upharpoonright A$ for any $f \in \mathcal{F}$.

Here note that $\sup(A \cap \nu) < \nu$ for all $\nu \in D$ because $|A| = \operatorname{cf}(\lambda) < \operatorname{cf}(\nu)$. Then we can take $\alpha \in E$ such that

- $\gamma_{\alpha} = \gamma$,
- $\{\nu \in D \mid h_{\alpha}(\nu) < \sup(A \cap \nu)\} \in I$.

Take $\mu < \lambda$ so that $k_{\alpha}^{0}(\nu) < h_{\gamma}(\nu) < h_{\alpha}(\nu)$ and $\sup(A \cap \nu) < h_{\alpha}(\nu)$ for all $\nu \in D \setminus D_{\mu}$. Let

$$A^0 \ := \ A \cap \textstyle \bigcup_{\nu \in D \backslash D_\mu} [k(\nu), \nu) \ \subseteq \ \textstyle \bigcup_{\nu \in D \backslash D_\mu} [k_\alpha^0(\nu), h_\alpha(\nu)) \ .$$

Then we can take $f^0 \in \mathcal{F}^0_{\alpha}$ and $\rho^0 < \lambda$ such that $g \upharpoonright A^0 <_{\rho^0} f^0 \upharpoonright A^0$ by the choice of k^0_{α} and \mathcal{F}^0_{α} .

Next let

$$A^1 := A \cap \bigcup_{\nu \in D_n} [k(\nu), \nu)$$
.

Then we can take $f^1 \in \mathcal{F}^1_\mu$ and $\rho^1 < \lambda$ such that $g \upharpoonright A^1 <_{\rho^1} f^1 \upharpoonright A^1$.

Let $f := \sup\{f^0, f^1\}$ and $\rho := \max\{\rho^0, \rho^1\}$. Note that $f \in \mathcal{F}$ and that $\rho < \lambda$. Moreover $g <_{\rho} f \upharpoonright A$. This contradicts that the choice of A and g.

Now we prove Thm.1.2:

Proof of Thm.1.2. For the contradiction assume that λ is the least singular cardinal at which SCH⁺ fails and that $pp(\lambda) = \lambda^+$. Let R be the set of all regular cardinals below λ .

Then λ satisfies the assumption of Lem.4.4. Let D be a set obtained by Lem.4.4. Then it is easy to see that

$$\mu := \operatorname{cf}(\Pi D, <) \leq \operatorname{cf}(\lceil \sup_{\nu \in D} \operatorname{cf}(\nu) \rceil^{\operatorname{cf}(\lambda)}, \subseteq) < \lambda.$$

By reducing D if necessary, we may assume that $\min(D) > \mu$. Take a <-cofinal $\mathcal{K} \subseteq \Pi D$ of cardinality μ such that $k(\nu) > \mu$ for all $k \in \mathcal{K}$ and all $\nu \in D$.

Note that $\operatorname{cf}([\nu]^{\mu}, \subseteq) \leq \nu^{+}$ for all $\nu \in D$ by Lem.3.2. Then for each $\nu \in D$ we can take a $<^*$ -increasing sequence $\vec{h}_{\nu} = \langle d_{\nu,\gamma} \mid \gamma < \nu^{+} \rangle$ in $\Pi(R \cap \nu)$ such that for any $A \subseteq R \cap \nu$ of cardinality $\leq \mu$ and any $g \in \Pi A$ there exists $\gamma < \nu^{+}$ with $g <^* d_{\nu,\gamma} \upharpoonright A$.

Next note that $\operatorname{tcf}(\Pi D^+, <^*) = \lambda^+$ by Cor.2.19 and the assumption that $\operatorname{pp}(\lambda) = \lambda^+$. Here D^+ denotes the set $\{\nu^+ \mid \nu \in D\}$. Let $\langle e_\alpha \mid \alpha < \lambda^+ \rangle$ be a scale in $\langle \Pi D^+, <^* \rangle$. Moreover for each $\alpha < \lambda^+$ define $f_\alpha \in \Pi R$ as

$$f_{\alpha}(\kappa) = \begin{cases} \sup\{d_{\nu,e_{\alpha}(\nu^{+})}(\kappa) \mid \kappa < \nu \in D\} & \cdots & \text{if } \kappa > \text{cf}(\lambda) \\ 0 & \cdots & \text{otherwise} \end{cases}$$

for each $\kappa \in R$.

By the choice of D, for each $k \in \mathcal{K}$ we can take $A_k \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$ and $g_k \in \Pi A_k$ such that $\sup(A_k) = \lambda$, such that $|A_k| = \operatorname{cf}(\lambda)$ and such that $g_k \not<^* f_\alpha \upharpoonright A_k$ for any $\alpha < \lambda^+$. Let $A := \bigcup_{k \in \mathcal{K}} A_k$, and define $g \in \Pi A$ as

$$g(\kappa) = \sup\{g_k(\kappa) \mid k \in \mathcal{K} \land \kappa \in A_k\}$$

for each $\kappa \in A$.

Take $e \in \Pi D^+$ such that $g \upharpoonright A \cap \nu <^* d_{\nu,e(\nu)} \upharpoonright A \cap \nu$ for each $\nu \in D$. Moreover take $\alpha < \lambda^+$ such that $e <^* e_{\alpha}$. Let $\rho < \lambda$ be such that $e <_{\rho} e_{\alpha}$. Then $g \upharpoonright A \cap \nu <^* f_{\alpha} \upharpoonright A \cap \nu$ for each $\nu \in D \setminus \rho$. Take $k \in \mathcal{K}$ such that $g \upharpoonright A \cap \nu <_{k(\nu)} f_{\alpha} \upharpoonright A \cap \nu$ for each $\nu \in D \setminus \rho$.

Here recall that $g_k \leq g$ and that $A_k \subseteq R \cap \bigcup_{\nu \in D} [k(\nu), \nu)$. Hence $g_k <_{\rho} f_{\alpha} \upharpoonright A_k$. This contradicts the choice of A_k and g_k .

5 Better scale

In this section we prove Thm.1.3.

Theorem 1.3. Assume that SCH^+ fails, and let λ be the least singular cardinal at which SCH^+ fails. Then there exists a set A of regular cardinals below λ such that

- (i) o.t.(A) = ω , and sup(A) = λ ,
- (ii) $\langle \Pi A, <^* \rangle$ has a better scale of length λ^+ .

By Thm.1.2 it suffices to prove the following:

Proposition 5.1. Suppose that λ is a singular cardinal with $pp(\lambda) > \lambda^+$. Then there exists a set A of regular cardinals such that

- (i) o.t.(A) = cf(λ), and sup(A) = λ ,
- (ii) $\langle \Pi A, <^* \rangle$ has a better scale of length λ^+ .

Proof. By Lem.2.16 and the fact that $pp(\lambda) > \lambda^+$ we can take a set B of regular cardinals such that $sup(B) = \lambda$, such that $o.t.(B) = cf(\lambda)$ and such that $\langle \Pi B, \langle ^* \rangle$ is $\leq \lambda^+$ -directed. Moreover take a club $c_{\alpha} \subseteq \alpha$ for each $\alpha \in Lim(\lambda^+)$.

Because $\langle \Pi B, <^* \rangle$ is $\leq \lambda^+$ -directed, we can inductively construct a $<^*$ -increasing sequence $\vec{f} = \langle f_\beta \mid \beta < \lambda^+ \rangle$ in ΠB so that the following holds for all $\beta < \lambda^+$:

(*) $\sup\{f_{\gamma} \mid \gamma \in c_{\alpha} \cap \beta\} <^* f_{\beta} \text{ for all } \alpha < \lambda^+.$

For each $\alpha \in \text{Lim}(\lambda^+)$ let $\sigma_\alpha : c_\alpha \to \lambda$ be the function such that

$$\sup\{f_{\gamma} \mid \gamma \in c_{\alpha} \cap \beta\} <_{\sigma_{\alpha}(\beta)} f_{\beta} .$$

Then c_{α} and σ_{α} witnesses that α is a better point for \vec{f} . In particular, every $\alpha \in E_{> cf(\lambda)}^{\lambda^+}$ is a better (hence good) point for \vec{f} .

Then by Lem.2.8 \vec{f} has the exact upper bound f with respect to $<^*$ such that $\langle \operatorname{cf}(f(\kappa)) \mid \kappa \in B \rangle$ converges to λ . Take an unbounded $B' \subseteq B$ with $\langle \operatorname{cf}(f(\kappa)) \mid \kappa \in B' \rangle$ strictly increasing. Moreover let $A := \{\operatorname{cf}(f(\kappa)) \mid \kappa \in B' \}$.

For each $\kappa \in B'$ take a club $D_{\kappa} \subseteq f(\kappa)$ of order-type $\mathrm{cf}(f(\kappa))$. Moreover for each $\beta < \lambda^+$ let $g_{\beta} \in \Pi A$ be such that for each $\kappa \in B'$, $g_{\beta}(\mathrm{cf}(\kappa)) = \mathrm{o.t.}(f_{\beta}(\kappa) \cap D_{\kappa})$ if $f_{\beta}(\kappa) < f(\kappa)$.

Note that $\langle g_{\beta} \mid \beta < \lambda^{+} \rangle$ is \leq^{*} -increasing $<^{*}$ -cofinal sequence in ΠA . Hence we can take a club $E \subseteq \lambda^{+}$ such that $\langle g_{\beta} \mid \beta \in E \rangle$ is $<^{*}$ -increasing and $<^{*}$ -cofinal in ΠA . Let $\langle \beta_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be the increasing enumeration of E, and let $h_{\alpha} := g_{\beta_{\alpha}}$. Then it is easy to see that $\langle h_{\alpha} \mid \alpha < \lambda^{+} \rangle$ is a better scale in $\langle \Pi A, <^{*} \rangle$.

References

- [1] U. Abraham and M. Magidor, *Cardinal arithmetic*, in Handbook of Set Theory.
- [2] S. Shelah, Reflecting stationary sets and successors of singular cardinals, Arch. Math. Logic **31** (1991), no.1, 25–53.
- [3] S. Shelah, Cardinal Arithmetic, Oxford University Press, 1994.