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Abstract

An ideal I over Pκλ is said to be σ-strategically closed, proper or
semiproper if the corresponding poset PI is σ-strategically closed, proper
or semiproper, respectively. In this note we prove the following:

• If there exists a σ-strategically closed, fine and κ-complete ideal over
Pω2λ for some λ ≥ ω2 then ♦ω1 holds.

• If there exists a proper, fine and κ-complete ideal over Pω2λ for some
λ ≥ ω2 then CB, the completely bounding principle, does not hold.

• If there exists a semiproper, fine and κ-complete ideal over Pω2λ for
some λ ≥ ω2 then ♦∗ω1 does not hold.

1 Introduction

An ideal I over Pκλ is said to be σ-strategically closed, proper or semiproper
if the corresponding poset PI is σ-strategically closed, proper or semiproper,
respectively. (In usual I is said to be proper if whole Pκλ is not in I. In this
note this meaning of properness is included in being an ideal. See Section 2.)
We prove the following:

Theorem 1.1. Assume that there exists a σ-strategically closed, fine and ω2-
complete ideal over Pω2λ for some λ ≥ ω2. Then ♦ω1 holds.

Theorem 1.2. Assume that there exists a proper, fine and ω2-complete ideal
over Pω2λ for some λ ≥ ω2. Then CB, the completely bounding principle, does
not hold.

Theorem 1.3. Assume that there exists a semiproper, fine and ω2-complete
ideal over Pω2λ for some λ ≥ ω2. Then ♦∗ω1

does not hold.

By Theorem 1.2 the existence of a proper ideal over Pω2λ implies that NSω1

is not ω2-saturated. On the other hand, it is shown in Sakai [3] that the existence
of a semiproper ideal over Pω2λ and Martin’s maximum are consistent. Thus
the existence of a semiproper ideal over Pω2λ does not imply that NSω1 is not
ω2-saturated.
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2 Preliminaries

Here we give our notations and facts about posets, ideals and combinatorical
principles.

Posets: For the definition and basics of properness and semiproperness of
posets, consult Jech [2]. The only fact that we use explicitly is that if P is
proper then P preserves stationary subsets of Pω1γ for every γ ≥ ω1.

Here we present the definition of σ-strategically closure of posets. For a
poset P let a(P) be the following two players’ game of GOOD and BAD of length
ω:

BAD p0 p1 p2 · · · pn · · ·
GOOD q0 q1 q2 · · · qn · · ·

BAD and GOOD in turn choose elements of P and construct a descending sequence
in P. In the 0-th stage, first BAD opens a game by choosing an arbitrary p0 ∈ P,
and then GOOD plays a q0 ≤ p0. In the n-th stage for n > 0, first BAD plays
pn ≤ qn−1 and then GOOD plays qn ≤ pn. GOOD wins if {qn | n ∈ ω} has a lower
bound in P. Otherwise BAD wins.

A function τ : <ωP→ P is called a winning strategy for GOOD in a(P) if GOOD
wins in a(P) whenever he plays τ(〈pm | m ≤ n〉) in each n-th stage. P is said to
be σ-strategically closed if there exists a winning strategy for GOOD in the game
a(P).

Ideals: Let κ be a regular uncountable cardinal, and let λ be an ordinal with
λ ≥ κ.

A family I of subsets of Pκλ is called a κ-ideal over Pκλ if I is a fine
κ-complete ideal over Pκλ with Pκλ /∈ I, that is, I satisfies the following:

(1)
⋃X ∈ I for every X ⊆ I with |X | < κ. (κ-completeness)

(2) X ∈ I ∧ Y ⊆ X → Y ∈ I for every X,Y ⊆ Pκλ. (downward closure)

(3) {γ} ∈ I for every γ ∈ λ. (fineness)

(4) Pκλ /∈ I. (properness in the usual meaning)

Here note that properness in the usual meaning is included in being a κ-ideal.
Let I be a κ-ideal over Pκλ. Then let PI denotes the poset of all I-positive

sets ordered by inclusions. That is PI = 〈P(Pκλ) \ I , ⊆〉. I is said to be σ-
strategically closed, proper or semiproper if PI is σ-strategically closed, proper
or semiproper, respectively.

We use the following fact:

Fact 2.1 (Gitik-Shelah [1]). Let κ be a regular uncountable cardinal and let λ
be an ordinal with λ ≥ κ. If I is a proper κ-ideal over Pκλ then I is precipitous.

Combinatorical principles: ♦ω1 , ♦∗ω1
and CB are the following principles:

♦ω1 ≡ There exists a sequence 〈fα | α ∈ ω1〉 such that
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(i) fα ∈ α2 for each α ∈ ω1,

(ii) for every F ∈ ω12 the set {α ∈ ω1 | F ¹ α = fα} is stationary
in ω1.

♦∗ω1
≡ There exists a sequence 〈Fα | α ∈ ω1〉 such that

(i) Fα is a countable subset of α2 for each α ∈ ω1,

(ii) for every F ⊆ ω12 the set {α ∈ ω1 | F ¹ α ∈ Fα} contains a
club in ω1.

CB ≡ For every function H : ω1 → ω1 there exists γ ∈ [ω1, ω2) and a
bijection π : ω1 → γ such that the set {α ∈ ω1 | H(α) < o.t.(π“ α)}
contains a club in ω1.

A sequence 〈fα | α ∈ ω1〉 witnessing ♦ω1 is called a ♦ω1-sequence, and a se-
quence 〈Fα ∈ ω1〉 witnessing ♦∗ω1

is called a ♦∗ω1
-sequence.

In the proof of Theorem 1.2 we use a diamond principle on Pω1λ. For an
ordinal λ ≥ ω1 let ♦ω1λ be the following principle:

♦ω1λ ≡ There exists a sequence 〈fx | x ∈ Pω1λ〉 such that

(i) fx ∈ x2 for each x ∈ Pω1λ,

(ii) for every F ⊆ λ2 the set {x ∈ Pω1λ | F ¹ x = fx} is stationary
in Pω1λ.

We call a sequence 〈fx | x ∈ Pω1λ〉 witnessing ♦ω1λ a ♦ω1λ-sequence.
Note that ♦ω1ω1 is equivalent to ♦ω1 . Hence it is independent of ZFC. On

the other hand, ♦ω1λ is a consequence of ZFC for λ ≥ ω2:

Fact 2.2 (Shelah). ♦ω1λ holds for every λ ≥ ω2.

This fact is a key of the proof of Theorem 1.2. The proof of this fact can be
found in Shioya [4].

3 σ-strategically closed ideal and ♦ω1

Here we prove Theorem 1.1. A key of our proof is the following theorem due to
Baumgartner:

Theorem 3.1 (Baumgartner). Suppose that P is a σ-strategically closed poset
which adds new subsets of ω1. Then °P ♦ω1 .

Theorem 1.1 is an easy corollary of the proof of Theorem 3.1. Outline of the
proof of Theorem 1.1 is as follows:

Suppose that I is a σ-strategically closed ideal over Pω2λ for some λ ≥ ω2.
Note that I is precipitous by Fact 2.1. Take a PI -generic filter G over V , let
M be the transitive collapse of the ultrapower of V by G, and let j : V →
M be the ultrapower map. Then the critical point of j is ωV

2 . In particular
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P(ω1)V ( P(ω1)M ⊆ P(ω1)V [G]. Hence ♦ω1 holds in V [G] by Theorem 3.1. In
fact, by a close investigation of the proof of Theorem 3.1, it turns out that a
♦ω1-sequence can be taken in M . Thus ♦ω1 holds in M . Then ♦ω1 holds in V
by the elementarity of j.

First we give the proof of Theorem 3.1. Before starting, we prove the fol-
lowing:

Lemma 3.2. For every countable limit ordinal α there exists a map π : α2 → α2
with the following property:

For every sequence 〈hs, fs | s ∈ <ω2〉 such that

(1) s ⊆ t ⇔ hs ⊆ ht for each s, t ∈ <ω2,

(2) s ⊆ t ⇒ fs ⊆ ft for each s, t ∈ <ω2,

(3) supn∈ω(dom hb�n) = supn∈ω(dom fb�n) = α for every b ∈ ω2,

there exists b ∈ ω2 with π(
⋃

n∈ω hb�n) =
⋃

n∈ω fb�n.

Proof. First note that there are at most 2ω-many sequences 〈hs, fs | s ∈ <ω2〉
with the properties (1)-(3). Let 〈~zξ | ξ < 2ω〉 be an enumeration of such
sequences, and let ~zξ be 〈hξ

s, f
ξ
s | s ∈ <ω2〉.

Note also that the map b 7→ ⋃
n∈ω hξ

b�n is injective for each ξ < 2ω. Hence we
can inductively construct a seqeunce 〈bξ | ξ < 2ω〉 in ω2 so that 〈⋃n∈ω hξ

bξ�n |
ξ < 2ω〉 is pairwise distinct.

Then we can take a map π : ω2 → ω2 such that

π
( ⋃

n∈ω

hξ
bξ�n

)
=

⋃
n∈ω

fξ
bξ�n .

This π witnesses the lemma.

Now we give the proof of Theorem 3.1:

Proof of Thm.3.1. For each countable limit ordinal α take a map πα : α2 → α2
witnessing Lemma 3.2, and for each countable successor ordinal α let πα be the
identity map on α2. Also, take a P-name Ḣ of a function from ω1 to 2 which
does not belong to V . We show that

°P “ 〈πα(Ḣ ¹ α) | α ∈ ω1〉 is a ♦ω1-sequence ” .

Here note that °P “ Ḣ ¹ α ∈ V ” for each countable α because P is σ-strategically
closed.

Take an arbitrary p ∈ P, an arbitrary P-name of a function from ω1 to 2
and an arbitrary P-name Ċ of a club subset of ω1. It suffices to find q ≤ p and
α ∈ ω1 such that q °P “ α ∈ Ċ ∧ Ḟ ¹ α = πα(Ḣ ¹ α) ”.

Let τ be a winning strategy for GOOD in the game a(P). Let θ be a sufficiently
large regular cardinal, and take a countable elementary submodel M of 〈Hθ,∈〉
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with P, Ḣ, p, Ḟ , Ċ ∈ M . Let α be M ∩ ω1. Also, take an increasing cofinal
sequence 〈βn | n ∈ ω〉 in α.

By induction on the length of s ∈ <ω2 take ps, qs ∈ P ∩ M and hs, fs ∈
<α2∩M as follows. The induction hypothesis is that ps °P “ hs ⊆ Ḣ ∧ fs ⊆ Ḟ ”.

First let p∅ := p, q∅ := τ(〈p〉) and let h∅ = f∅ := ∅.
Suppose that ps, qs, hs and fs have been defined. Then we can take psˆ〈i〉 ∈

P ∩M and hsˆ〈i〉, fsˆ〈i〉 ∈ <α2 ∩M for i ∈ 2 so that

(I) hs ⊆ hsˆ〈i〉 ∧ fs ⊆ fsˆ〈i〉,

(II) β|s| ≤ domhsˆ〈i〉, dom fsˆ〈i〉,

(III) psˆ〈i〉 °P “ hs ⊆ Ḣ ∧ fs ⊆ Ḟ ”,

(IV) hsˆ〈0〉 6⊆ hsˆ〈1〉 ∧ hsˆ〈1〉 6⊆ hsˆ〈0〉.

(III) and (IV) can be realized because Ḣ is forced not to belong to V . Finally
let qs := τ(〈ps�m | m ≤ |s|〉). This completes the induction.

Now 〈hs, fs | s ∈ <ω2〉 satisfies the properties (1)-(3) in Lemma 3.2. Hence
we can take b ∈ ω2 with

πα

( ⋃
n∈ω

hb�n
)

=
⋃
n∈ω

fb�n .

Note that 〈pb�n, qb�n | n ∈ ω〉 is a sequence of moves in a(P) in which GOOD
has played according to a winning strategy τ . Hence we can take a lower bound
q of {pb�n | n ∈ ω}. Then

q °P “ Ḣ ¹ α =
⋃
n∈ω

hb�n ∧ Ḟ ¹ α =
⋃
n∈ω

fb�n

by the construction of 〈ps, hs, fs | s ∈ <ω2〉. Thus

q °P “ Ḟ ¹ α = πα(Ḣ ¹ α) ” .

Recall that p0 = p. Thus q ≤ p. Therefore q and α are ones we desired.
This completes the proof.

Using the above proof, we can prove Theorem 1.1:

Proof of Thm.1.1. Suppose that λ ≥ ω2 and that I is a σ-strategically closed
ω2-ideal over Pω2λ. Note that I is precipitous by Fact 2.1. Take a PI -generic
filter G over V , let M be the transitive collapse of the ultrapower of V by G,
and let j : V → M be the ultrapower map.

First note that |ωV
2 | = ω1 in M because the critical point of j is ωV

2 . Hence
we can take F ∈ ω12 ∩M which is not in V .

Next, in V , for each countable limit ordinal α take a map πα : α2 → α2
witnessing Lemma 3.2, and for each countable successor ordinal α let πα be the
identity map on α2. Here note that for each α ∈ ω1, α2 is absolute among V ,
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V [G] and M because PI is σ-strategically closed. Hence j(πα) = πα for each
α ∈ ω1. Thus 〈πα | α ∈ ω1〉 = j(〈πα | α ∈ ω1〉) ∈ M .

Now 〈πα(H ¹ α) | α ∈ ω1〉 is in M . Moreover 〈πα(H ¹ α) | α ∈ ω1〉 is a
♦ω1-sequence in V [G] by the proof of Theorem 3.1, and thus so in M . Therefore
♦ω1 holds in M . Then ♦ω1 holds in V by the elementarity of j.

4 Proper ideal and CB

Here we prove Theorem 1.2. Theorem 1.2 is a corollayr of (the proof of) the
following Theorem:

Theorem 4.1. Suppose that P is a proper poset which collapses ω2, that is,
°P “ |ωV

2 | = ω1 ”. Then °P ¬CB.

The proof of Theorem 1.2 is as follows. Suppose that I is a proper ω2-ideal
over Pω2λ. Take a PI -generic filter G over V , let M be the transitive collapse
of the ultrapower of V by G, and let j : V → M the ultrapower map. Then
ωV

2 < ωM
2 ≤ ω

V [G]
2 because the critical point of j is ωV

2 . Hence CB does not hold
in V [G] by Theorem 4.1. In fact the close observation of the proof of Theorem
4.1 proves that CB does not hold in M . Then CB does not hold in V by the
elementarity of j.

Prior to the proof of Theorem 4.1, we reformulate CB:

Lemma 4.2. The following are equivalent:

(1) CB

(2) For every function H : ω1 → ω1 there exists γ ∈ [ω1, ω2) such that the set
{x ∈ Pω1γ | x ∩ ω1 ∈ ω1 ∧ H(x ∩ ω1) < o.t. x} contains a club in Pω1γ.

(3) For every δ ∈ [ω1, ω2) and every function H : Pω1δ → ω1, there exists
γ ∈ [δ, ω2) such that the set {x ∈ Pω1γ | H(x∩ δ) < o.t. x} contains a club
in Pω1γ.

Proof. (1)⇒(2): Suppose that CB holds. To show that (2) holds, take an
arbitrary fucntion H : ω1 → ω1. By CB there exists γ ∈ [ω1, ω2) and a bijection
π : ω1 → γ such that the set C := {α ∈ ω1 | H(α) < o.t.(π“α)} contains a club
in ω1. Let C∗ be the set of all x ∈ Pω1γ such that x ∩ ω1 ∈ C∗ and x is closed
under π and π−1. Then C∗ contains a club in Pω1γ.

It suffices to show that if x ∈ C∗ then H(x ∩ ω1) < o.t.(x). Suppose that
x ∈ C∗. Then x = π“(x ∩ ω1) because x is closed under π and π−1. Then,
because x ∩ ω1 ∈ C, H(x ∩ ω1) < o.t. π“(x ∩ ω1) = o.t. x.

(2)⇒(3): Assume that (2) holds. To show that (3) holds, take an arbitrary
δ ∈ [ω1, ω2) and an arbitrary function H : Pω1δ → ω1. Take a bijection τ :
ω1 → δ and let F : ω1 → ω1 be the function defined as F (α) := H(τ“α) for
each α ∈ ω1. Then, by (2) there exists γ ∈ [ω1, ω2) such that C := {x ∈ Pω1γ |
x ∩ ω1 ∈ ω1 ∧ F (x ∩ ω1) < o.t. x} contains a club.
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Note that if γ ≤ γ′ < ω2 then the set {x ∈ Pω1γ
′ | x∩ω1 ∈ ω1 ∧ F (x∩ω1) <

o.t. x} contains a club. This is because the set {x ∈ Pω1γ
′ | x∩ γ ∈ C} contains

a club and F (x ∩ ω1) < o.t.(x ∩ γ) ≤ o.t. x for every x ∈ Pω1γ
′ with x ∩ γ ∈ C.

Hence we may assume that γ ≥ δ.
Then C∗ := {x ∈ C | x is closed under τ, τ−1} contains a club in Pω1γ.

Note that x ∩ δ = τ“(x ∩ ω1) for every x ∈ C∗. Hence for every x ∈ C∗,

H(x ∩ δ) = H(τ“(x ∩ ω1)) = F (x ∩ ω1) < o.t. x .

Therefore (3) holds.

(3)⇒(1): Assume that (3) holds. Take an arbitrary function H : ω1 → ω1.
Then, by (3) there exists γ ∈ [ω1, ω2) such that C := {x ∈ Pω1γ | x ∩ ω1 ∈
ω1 ∧ H(x ∩ ω1) < o.t.(x)}.

Take a bijection π : ω1 → γ and let C∗ := {α ∈ ω1 | π“α ∈ C ∧ (π“α)∩ω1 =
α}. Then C∗ contains a club in ω1. Moreover for each α ∈ C∗,

H(α) = H((π“α) ∩ ω1) < o.t.(π“α) .

Therefore (1) holds.

Now we prove the Theorem 4.1:

Proof of Thm.4.1. By Fact 2.2 we can take a sequence 〈bz | z ∈ Pω1ω2〉 with
the following properties:

(i) bz ⊆ z × z for every z ∈ Pω1ω2.

(ii) For every B ⊆ ω2×ω2 the set {z ∈ Pω1ω2 | B∩ (z× z) = bz} is stationary
in Pω1ω2.

Define a function H : Pω1ω2 → ω1 as follows: If bz is a well-ordering of z then
let H(z) be ln(bz), the length of the well-ordering bz. Otherwise let H(z) be 0.

Recall that P collapses ω2. Hence, by Lemma 4.2, it suffices to show that

°P “ {x ∈ Pω1γ | H(x ∩ ωV
2 ) ≥ o.t. x} is stationary in Pω1γ ”

for every γ ≥ ω2. But P is proper. Thus the following claim suffices for this:

Claim . For every γ ≥ ω2 the set {x ∈ Pω1γ | H(x∩ω2) ≥ o.t. x} is stationary
in Pω1γ.

` It suffices to show that the following:

(?) For every X ⊆ γ with |X| = ω2 ⊆ X, the set {x ∈ Pω1X | H(x∩ω2) ≥
o.t. x} is stationary in Pω1X.

Suppose that X ⊆ γ and |X| = ω2 ⊆ X. Take a bijection π : ω2 → X. Let
B be the well-ordering of ω2 induced from π, that is, let B := {〈ξ, η〉 | π(ξ) <
π(η)}. Moreover let S be the set of all x ∈ Pω1γ such that
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(I) x is closed under π and π−1,

(II) B ∩ (x ∩ ω2 × x ∩ ω2) = bx∩ω2 .

Then S is staionary by the choice of 〈bz | z ∈ Pω1ω2〉. Note that x =
π“(x ∩ ω2) for each x ∈ S. Hence, by (II) and the construction of H,

o.t. x = o.t.(π“(x ∩ ω2))
= ln(B ∩ (x ∩ ω2 × x ∩ ω2)) = ln(bx∩ω2) = H(x ∩ ω2) .

for each x ∈ S.
Now we have proved (?), and this completes the proof of the claim. a

This completes the proof of Theorem 4.1.

We prove Theorem 1.2:

Proof of Thm.1.2. Assume that λ ≥ ω2 and I is a proper ω2-ideal over Pω2λ.
Note that I is precipitous by Fact 2.1. Let G be a PI -generic filter over V , M
be the transitive collapse of the ultrapower of V by G, and let j : V → M be
the ultrapower map. By the elementarity of j, it suffices to show that CB does
not hold in M . Let δ be ω2

V . Note that δ < j(δ) = ω2
M .

In V , define H : (Pω1δ)
V → ω1 as in the proof of Theorem 4.1. Let H∗ :=

j(H)∩(Pω1δ)
M ∈ M . We show that if γ ∈ [δ, ω2

M ) then the set {x ∈ (Pω1γ)M |
H∗(x ∩ δ) ≥ o.t. x} is stationary in M . By Lemma 4.2 this suffices.

Take an arbitrary γ ∈ [δ, ω2
M ). First note that H∗ ¹ (Pω1δ)

V = H because
j does not move elements of (Pω1δ)

V . Hence, in V [G], the set {x ∈ (Pω1γ)V [G] |
H∗(x ∩ δ) ≥ o.t. x} is stationary by the proof of Theorem 4.1. But (Pω1γ)M

contains a club in (Pω1γ)V [G] because |γ| = ω1 in M . Hence, in M , the set
{x ∈ (Pω1δ)

M | H∗(x ∩ δ) ≥ o.t. x} is stationary.
This completes the proof.

5 Semiproper ideals and ♦∗ω1

Theorem 1.3 follows the following fact and theorem:

Fact 5.1 (Sakai [3]). If there exists a semiproper ω2-ideal over Pω2λ for some
λ ≥ ω2 then Chang’s Conjecture holds.

Theorem 5.2 (Someone). Chang’s Conjecture implies that ♦∗ω1
does not hold.

Here we give the proof of Theorem 5.2:

Proof of Thm.5.2. Assume that Chang’s Conjecture holds and that there is a
♦∗ω1

-sequence 〈Fα | α ∈ ω1〉. Take a pairwise distinct sequence 〈Fγ | γ ∈ ω2〉.
For each γ ∈ ω2 let Cγ ⊆ ω1 be a club such that C ⊆ {α ∈ ω1 | Fγ ¹ α ∈ Fα}.

Define partial functions P and Q on ω2 × ω2 as follows. For each distinct
γ, δ ∈ ω2 let P (γ, δ) be the least β ∈ ω1 such that Fγ(β) 6= Fδ(β). For each
γ ∈ ω2 and each β ∈ ω1 let Q(γ, β) be min(Cγ \ (β + 1)).
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By Chang’s Conjecture there exists an elementary submodel M of the struc-
ture 〈ω2, P, Q〉 such that |M∩ω1| = ω and |M | = ω1. Let α := sup(M∩ω1) ∈ ω1.
Then for every γ ∈ M , α ∈ Cγ because M is closed under Q and Cγ is a club.
Hence Fγ ¹ α ∈ Fα for every γ ∈ M . Moreover Fγ ¹ α 6= Fδ ¹ α for every
distinct γ, δ ∈ M because M is closed under P . Hence |Fα| ≥ |M | = ω1. This
contradicts that Fα is countable.
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