Ideals over ω_2 and combinatorical principles on ω_1

Hiroshi Sakai

October 2, 2006

Abstract

An ideal I over $\mathcal{P}_{\kappa}\lambda$ is said to be σ -strategically closed, proper or semiproper if the corresponding poset \mathbb{P}_I is σ -strategically closed, proper or semiproper, respectively. In this note we prove the following:

- If there exists a σ -strategically closed, fine and κ -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$ then \Diamond_{ω_1} holds.
- If there exists a proper, fine and κ -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$ then CB, the completely bounding principle, does not hold.
- If there exists a semiproper, fine and κ -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$ then $\diamondsuit_{\omega_1}^*$ does not hold.

1 Introduction

An ideal I over $\mathcal{P}_{\kappa}\lambda$ is said to be σ -strategically closed, proper or semiproper if the corresponding poset \mathbb{P}_I is σ -strategically closed, proper or semiproper, respectively. (In usual I is said to be proper if whole $\mathcal{P}_{\kappa}\lambda$ is not in I. In this note this meaning of properness is included in being an ideal. See Section 2.) We prove the following:

Theorem 1.1. Assume that there exists a σ -strategically closed, fine and ω_2 -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$. Then \diamondsuit_{ω_1} holds.

Theorem 1.2. Assume that there exists a proper, fine and ω_2 -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$. Then CB, the completely bounding principle, does not hold.

Theorem 1.3. Assume that there exists a semiproper, fine and ω_2 -complete ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$. Then $\diamondsuit_{\omega_1}^*$ does not hold.

By Theorem 1.2 the existence of a proper ideal over $\mathcal{P}_{\omega_2}\lambda$ implies that NS_{ω_1} is not ω_2 -saturated. On the other hand, it is shown in Sakai [3] that the existence of a semiproper ideal over $\mathcal{P}_{\omega_2}\lambda$ and Martin's maximum are consistent. Thus the existence of a semiproper ideal over $\mathcal{P}_{\omega_2}\lambda$ does not imply that NS_{ω_1} is not ω_2 -saturated.

2 Preliminaries

Here we give our notations and facts about posets, ideals and combinatorical principles.

Posets: For the definition and basics of properness and semiproperness of posets, consult Jech [2]. The only fact that we use explicitly is that if \mathbb{P} is proper then \mathbb{P} preserves stationary subsets of $\mathcal{P}_{\omega_1}\gamma$ for every $\gamma \geq \omega_1$.

Here we present the definition of σ -strategically closure of posets. For a poset \mathbb{P} let $\mathbb{P}(\mathbb{P})$ be the following two players' game of GOOD and BAD of length ω :

BAD and GOOD in turn choose elements of $\mathbb P$ and construct a descending sequence in $\mathbb P$. In the 0-th stage, first BAD opens a game by choosing an arbitrary $p_0 \in \mathbb P$, and then GOOD plays a $q_0 \leq p_0$. In the n-th stage for n>0, first BAD plays $p_n \leq q_{n-1}$ and then GOOD plays $q_n \leq p_n$. GOOD wins if $\{q_n \mid n \in \omega\}$ has a lower bound in $\mathbb P$. Otherwise BAD wins.

A function $\tau: {}^{<\omega}\mathbb{P} \to \mathbb{P}$ is called a winning strategy for GOOD in $\mathfrak{D}(\mathbb{P})$ if GOOD wins in $\mathfrak{D}(\mathbb{P})$ whenever he plays $\tau(\langle p_m \mid m \leq n \rangle)$ in each n-th stage. \mathbb{P} is said to be σ -strategically closed if there exists a winning strategy for GOOD in the game $\mathfrak{D}(\mathbb{P})$.

Ideals: Let κ be a regular uncountable cardinal, and let λ be an ordinal with $\lambda \geq \kappa$.

A family I of subsets of $\mathcal{P}_{\kappa}\lambda$ is called a κ -ideal over $\mathcal{P}_{\kappa}\lambda$ if I is a fine κ -complete ideal over $\mathcal{P}_{\kappa}\lambda$ with $\mathcal{P}_{\kappa}\lambda \notin I$, that is, I satisfies the following:

- (1) $\bigcup \mathcal{X} \in I$ for every $\mathcal{X} \subseteq I$ with $|\mathcal{X}| < \kappa$. (κ -completeness)
- (2) $X \in I \land Y \subseteq X \rightarrow Y \in I$ for every $X, Y \subseteq \mathcal{P}_{\kappa}\lambda$. (downward closure)
- (3) $\{\gamma\} \in I$ for every $\gamma \in \lambda$. (fineness)
- (4) $\mathcal{P}_{\kappa}\lambda \notin I$. (properness in the usual meaning)

Here note that properness in the usual meaning is included in being a κ -ideal.

Let I be a κ -ideal over $\mathcal{P}_{\kappa}\lambda$. Then let \mathbb{P}_{I} denotes the poset of all I-positive sets ordered by inclusions. That is $\mathbb{P}_{I} = \langle \mathcal{P}(\mathcal{P}_{\kappa}\lambda) \setminus I, \subseteq \rangle$. I is said to be σ -strategically closed, proper or semiproper if \mathbb{P}_{I} is σ -strategically closed, proper or semiproper, respectively.

We use the following fact:

Fact 2.1 (Gitik-Shelah [1]). Let κ be a regular uncountable cardinal and let λ be an ordinal with $\lambda \geq \kappa$. If I is a proper κ -ideal over $\mathcal{P}_{\kappa}\lambda$ then I is precipitous.

Combinatorical principles: $\Diamond_{\omega_1}, \Diamond_{\omega_1}^*$ and CB are the following principles:

 $\diamondsuit_{\omega_1} \equiv \text{There exists a sequence } \langle f_\alpha \mid \alpha \in \omega_1 \rangle \text{ such that}$

- (i) $f_{\alpha} \in {}^{\alpha}2$ for each $\alpha \in \omega_1$,
- (ii) for every $F \in {}^{\omega_1}2$ the set $\{\alpha \in \omega_1 \mid F \upharpoonright \alpha = f_\alpha\}$ is stationary in ω_1 .
- $\diamondsuit_{\omega_1}^* \equiv \text{There exists a sequence } \langle \mathcal{F}_{\alpha} \mid \alpha \in \omega_1 \rangle \text{ such that}$
 - (i) \mathcal{F}_{α} is a countable subset of $^{\alpha}2$ for each $\alpha \in \omega_1$,
 - (ii) for every $F \subseteq {}^{\omega_1}2$ the set $\{\alpha \in \omega_1 \mid F \upharpoonright \alpha \in \mathcal{F}_{\alpha}\}$ contains a club in ω_1 .
- CB \equiv For every function $H: \omega_1 \to \omega_1$ there exists $\gamma \in [\omega_1, \omega_2)$ and a bijection $\pi: \omega_1 \to \gamma$ such that the set $\{\alpha \in \omega_1 \mid H(\alpha) < \text{o.t.}(\pi^*\alpha)\}$ contains a club in ω_1 .

A sequence $\langle f_{\alpha} \mid \alpha \in \omega_1 \rangle$ witnessing \Diamond_{ω_1} is called a \Diamond_{ω_1} -sequence, and a sequence $\langle \mathcal{F}_{\alpha} \in \omega_1 \rangle$ witnessing $\Diamond_{\omega_1}^*$ is called a $\Diamond_{\omega_1}^*$ -sequence.

In the proof of Theorem 1.2 we use a diamond principle on $\mathcal{P}_{\omega_1}\lambda$. For an ordinal $\lambda \geq \omega_1$ let $\diamondsuit_{\omega_1}\lambda$ be the following principle:

- $\diamondsuit_{\omega_1\lambda} \equiv \text{There exists a sequence } \langle f_x \mid x \in \mathcal{P}_{\omega_1}\lambda \rangle \text{ such that}$
 - (i) $f_x \in {}^x 2$ for each $x \in \mathcal{P}_{\omega_1} \lambda$,
 - (ii) for every $F \subseteq {}^{\lambda}2$ the set $\{x \in \mathcal{P}_{\omega_1}\lambda \mid F \upharpoonright x = f_x\}$ is stationary in $\mathcal{P}_{\omega_1}\lambda$.

We call a sequence $\langle f_x \mid x \in \mathcal{P}_{\omega_1} \lambda \rangle$ witnessing $\Diamond_{\omega_1 \lambda}$ a $\Diamond_{\omega_1 \lambda}$ -sequence.

Note that $\diamondsuit_{\omega_1\omega_1}$ is equivalent to \diamondsuit_{ω_1} . Hence it is independent of ZFC. On the other hand, $\diamondsuit_{\omega_1\lambda}$ is a consequence of ZFC for $\lambda \geq \omega_2$:

Fact 2.2 (Shelah). $\diamondsuit_{\omega_1\lambda}$ holds for every $\lambda \geq \omega_2$.

This fact is a key of the proof of Theorem 1.2. The proof of this fact can be found in Shioya [4].

3 σ -strategically closed ideal and \diamondsuit_{ω_1}

Here we prove Theorem 1.1. A key of our proof is the following theorem due to Baumgartner:

Theorem 3.1 (Baumgartner). Suppose that \mathbb{P} is a σ -strategically closed poset which adds new subsets of ω_1 . Then $\Vdash_{\mathbb{P}} \diamondsuit_{\omega_1}$.

Theorem 1.1 is an easy corollary of the proof of Theorem 3.1. Outline of the proof of Theorem 1.1 is as follows:

Suppose that I is a σ -strategically closed ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$. Note that I is precipitous by Fact 2.1. Take a \mathbb{P}_I -generic filter G over V, let M be the transitive collapse of the ultrapower of V by G, and let $j:V\to M$ be the ultrapower map. Then the critical point of j is ω_2^V . In particular $\mathcal{P}(\omega_1)^V \subsetneq \mathcal{P}(\omega_1)^M \subseteq \mathcal{P}(\omega_1)^{V[G]}$. Hence \diamondsuit_{ω_1} holds in V[G] by Theorem 3.1. In fact, by a close investigation of the proof of Theorem 3.1, it turns out that a \diamondsuit_{ω_1} -sequence can be taken in M. Thus \diamondsuit_{ω_1} holds in M. Then \diamondsuit_{ω_1} holds in V by the elementarity of j.

First we give the proof of Theorem 3.1. Before starting, we prove the following:

Lemma 3.2. For every countable limit ordinal α there exists a map π : ${}^{\alpha}2 \rightarrow {}^{\alpha}2$ with the following property:

For every sequence $\langle h_s, f_s \mid s \in {}^{<\omega} 2 \rangle$ such that

- (1) $s \subseteq t \Leftrightarrow h_s \subseteq h_t \text{ for each } s, t \in {}^{<\omega}2,$
- (2) $s \subseteq t \implies f_s \subseteq f_t \text{ for each } s, t \in {}^{<\omega}2,$
- (3) $\sup_{n \in \omega} (\operatorname{dom} h_{b \upharpoonright n}) = \sup_{n \in \omega} (\operatorname{dom} f_{b \upharpoonright n}) = \alpha \text{ for every } b \in {}^{\omega}2,$

there exists $b \in {}^{\omega}2$ with $\pi(\bigcup_{n \in \omega} h_{b \upharpoonright n}) = \bigcup_{n \in \omega} f_{b \upharpoonright n}$.

Proof. First note that there are at most 2^{ω} -many sequences $\langle h_s, f_s \mid s \in {}^{<\omega} 2 \rangle$ with the properties (1)-(3). Let $\langle \vec{z}_{\xi} \mid \xi < 2^{\omega} \rangle$ be an enumeration of such sequences, and let \vec{z}_{ξ} be $\langle h_s^{\xi}, f_s^{\xi} \mid s \in {}^{<\omega} 2 \rangle$.

Note also that the map $b \mapsto \bigcup_{n \in \omega} h_{b \mid n}^{\xi}$ is injective for each $\xi < 2^{\omega}$. Hence we can inductively construct a sequence $\langle b_{\xi} \mid \xi < 2^{\omega} \rangle$ in ${}^{\omega}2$ so that $\langle \bigcup_{n \in \omega} h_{b_{\xi} \mid n}^{\xi} \mid \xi < 2^{\omega} \rangle$ is pairwise distinct.

Then we can take a map $\pi: {}^{\omega}2 \to \omega 2$ such that

$$\pi\Big(\bigcup_{n\in\omega}h^{\xi}_{b_{\xi}\upharpoonright n}\Big) \;=\; \bigcup_{n\in\omega}f^{\xi}_{b_{\xi}\upharpoonright n}\;.$$

This π witnesses the lemma

Now we give the proof of Theorem 3.1:

Proof of Thm.3.1. For each countable limit ordinal α take a map $\pi_{\alpha}: {}^{\alpha}2 \to {}^{\alpha}2$ witnessing Lemma 3.2, and for each countable successor ordinal α let π_{α} be the identity map on ${}^{\alpha}2$. Also, take a \mathbb{P} -name \dot{H} of a function from ω_1 to 2 which does not belong to V. We show that

$$\Vdash_{\mathbb{P}}$$
 " $\langle \pi_{\alpha}(\dot{H} \upharpoonright \alpha) \mid \alpha \in \omega_1 \rangle$ is a \Diamond_{ω_1} -sequence".

Here note that $\Vdash_{\mathbb{P}}$ " $\dot{H} \upharpoonright \alpha \in V$ " for each countable α because \mathbb{P} is σ -strategically closed.

Take an arbitrary $p \in \mathbb{P}$, an arbitrary \mathbb{P} -name of a function from ω_1 to 2 and an arbitrary \mathbb{P} -name \dot{C} of a club subset of ω_1 . It suffices to find $q \leq p$ and $\alpha \in \omega_1$ such that $q \Vdash_{\mathbb{P}}$ " $\alpha \in \dot{C} \land \dot{F} \upharpoonright \alpha = \pi_{\alpha}(\dot{H} \upharpoonright \alpha)$ ".

Let τ be a winning strategy for GOOD in the game $\supset(\mathbb{P})$. Let θ be a sufficiently large regular cardinal, and take a countable elementary submodel M of $\langle \mathcal{H}_{\theta}, \in \rangle$

with $\mathbb{P}, \dot{H}, p, \dot{F}, \dot{C} \in M$. Let α be $M \cap \omega_1$. Also, take an increasing cofinal sequence $\langle \beta_n \mid n \in \omega \rangle$ in α .

By induction on the length of $s \in {}^{<\omega}2$ take $p_s, q_s \in \mathbb{P} \cap M$ and $h_s, f_s \in {}^{<\alpha}2 \cap M$ as follows. The induction hypothesis is that $p_s \Vdash_{\mathbb{P}} "h_s \subseteq \dot{H} \wedge f_s \subseteq \dot{F}"$.

First let $p_{\emptyset} := p$, $q_{\emptyset} := \tau(\langle p \rangle)$ and let $h_{\emptyset} = f_{\emptyset} := \emptyset$.

Suppose that p_s , q_s , h_s and f_s have been defined. Then we can take $p_{s^{\hat{}}\langle i\rangle} \in \mathbb{P} \cap M$ and $h_{s^{\hat{}}\langle i\rangle}$, $f_{s^{\hat{}}\langle i\rangle} \in {}^{<\alpha}2 \cap M$ for $i \in 2$ so that

- (I) $h_s \subseteq h_{s^{\hat{}}\langle i \rangle} \land f_s \subseteq f_{s^{\hat{}}\langle i \rangle},$
- (II) $\beta_{|s|} \leq \operatorname{dom} h_{s^{\hat{}}\langle i\rangle}, \operatorname{dom} f_{s^{\hat{}}\langle i\rangle},$
- (III) $p_{s^{\hat{}}\langle i\rangle} \Vdash_{\mathbb{P}} "h_s \subseteq \dot{H} \land f_s \subseteq \dot{F} "$,
- (IV) $h_{s^{\hat{}}\langle 0\rangle} \not\subseteq h_{s^{\hat{}}\langle 1\rangle} \wedge h_{s^{\hat{}}\langle 1\rangle} \not\subseteq h_{s^{\hat{}}\langle 0\rangle}$.

(III) and (IV) can be realized because \dot{H} is forced not to belong to V. Finally let $q_s := \tau(\langle p_{s \upharpoonright m} \mid m \leq |s| \rangle)$. This completes the induction.

Now $\langle h_s, f_s \mid s \in {}^{<\omega}2 \rangle$ satisfies the properties (1)-(3) in Lemma 3.2. Hence we can take $b \in {}^{\omega}2$ with

$$\pi_{\alpha}\Big(\bigcup_{n\in\omega}h_{b\uparrow n}\,\Big)\;=\;\bigcup_{n\in\omega}f_{b\uparrow n}\;.$$

Note that $\langle p_{b \mid n}, q_{b \mid n} \mid n \in \omega \rangle$ is a sequence of moves in $\mathfrak{I}(\mathbb{P})$ in which GOOD has played according to a winning strategy τ . Hence we can take a lower bound q of $\{p_{b \mid n} \mid n \in \omega\}$. Then

$$q \Vdash_{\mathbb{P}} ``\dot{H} \upharpoonright \alpha = \bigcup_{n \in \omega} h_{b \upharpoonright n} \land \dot{F} \upharpoonright \alpha = \bigcup_{n \in \omega} f_{b \upharpoonright n}$$

by the construction of $\langle p_s, h_s, f_s \mid s \in {}^{<\omega}2 \rangle$. Thus

$$q \Vdash_{\mathbb{P}} "\dot{F} \upharpoonright \alpha = \pi_{\alpha} (\dot{H} \upharpoonright \alpha) ".$$

Recall that $p_0 = p$. Thus $q \leq p$. Therefore q and α are ones we desired. This completes the proof.

Using the above proof, we can prove Theorem 1.1:

Proof of Thm.1.1. Suppose that $\lambda \geq \omega_2$ and that I is a σ -strategically closed ω_2 -ideal over $\mathcal{P}_{\omega_2}\lambda$. Note that I is precipitous by Fact 2.1. Take a \mathbb{P}_I -generic filter G over V, let M be the transitive collapse of the ultrapower of V by G, and let $j: V \to M$ be the ultrapower map.

First note that $|\omega_2^V| = \omega_1$ in M because the critical point of j is ω_2^V . Hence we can take $F \in {}^{\omega_1}2 \cap M$ which is not in V.

Next, in V, for each countable limit ordinal α take a map $\pi_{\alpha}: {}^{\alpha}2 \to {}^{\alpha}2$ witnessing Lemma 3.2, and for each countable successor ordinal α let π_{α} be the identity map on ${}^{\alpha}2$. Here note that for each $\alpha \in \omega_1$, ${}^{\alpha}2$ is absolute among V,

V[G] and M because \mathbb{P}_I is σ -strategically closed. Hence $j(\pi_\alpha) = \pi_\alpha$ for each $\alpha \in \omega_1$. Thus $\langle \pi_\alpha \mid \alpha \in \omega_1 \rangle = j(\langle \pi_\alpha \mid \alpha \in \omega_1 \rangle) \in M$.

Now $\langle \pi_{\alpha}(H \upharpoonright \alpha) \mid \alpha \in \omega_1 \rangle$ is in M. Moreover $\langle \pi_{\alpha}(H \upharpoonright \alpha) \mid \alpha \in \omega_1 \rangle$ is a \Diamond_{ω_1} -sequence in V[G] by the proof of Theorem 3.1, and thus so in M. Therefore \Diamond_{ω_1} holds in M. Then \Diamond_{ω_1} holds in V by the elementarity of j.

4 Proper ideal and CB

Here we prove Theorem 1.2. Theorem 1.2 is a corollary of (the proof of) the following Theorem:

Theorem 4.1. Suppose that \mathbb{P} is a proper poset which collapses ω_2 , that is, $\Vdash_{\mathbb{P}} "|\omega_2^V| = \omega_1$ ". Then $\Vdash_{\mathbb{P}} \neg \mathsf{CB}$.

The proof of Theorem 1.2 is as follows. Suppose that I is a proper ω_2 -ideal over $\mathcal{P}_{\omega_2}\lambda$. Take a \mathbb{P}_I -generic filter G over V, let M be the transitive collapse of the ultrapower of V by G, and let $j:V\to M$ the ultrapower map. Then $\omega_2^V<\omega_2^M\leq\omega_2^{V[G]}$ because the critical point of j is ω_2^V . Hence CB does not hold in V[G] by Theorem 4.1. In fact the close observation of the proof of Theorem 4.1 proves that CB does not hold in M. Then CB does not hold in V by the elementarity of j.

Prior to the proof of Theorem 4.1, we reformulate CB:

Lemma 4.2. The following are equivalent:

- (1) CB
- (2) For every function $H: \omega_1 \to \omega_1$ there exists $\gamma \in [\omega_1, \omega_2)$ such that the set $\{x \in \mathcal{P}_{\omega_1} \gamma \mid x \cap \omega_1 \in \omega_1 \land H(x \cap \omega_1) < \text{o.t. } x\}$ contains a club in $\mathcal{P}_{\omega_1} \gamma$.
- (3) For every $\delta \in [\omega_1, \omega_2)$ and every function $H : \mathcal{P}_{\omega_1} \delta \to \omega_1$, there exists $\gamma \in [\delta, \omega_2)$ such that the set $\{x \in \mathcal{P}_{\omega_1} \gamma \mid H(x \cap \delta) < \text{o.t. } x\}$ contains a club in $\mathcal{P}_{\omega_1} \gamma$.

Proof. (1) \Rightarrow (2): Suppose that CB holds. To show that (2) holds, take an arbitrary function $H: \omega_1 \to \omega_1$. By CB there exists $\gamma \in [\omega_1, \omega_2)$ and a bijection $\pi: \omega_1 \to \gamma$ such that the set $C:= \{\alpha \in \omega_1 \mid H(\alpha) < \text{o.t.}(\pi^*\alpha)\}$ contains a club in ω_1 . Let C^* be the set of all $x \in \mathcal{P}_{\omega_1} \gamma$ such that $x \cap \omega_1 \in C^*$ and x is closed under π and π^{-1} . Then C^* contains a club in $\mathcal{P}_{\omega_1} \gamma$.

It suffices to show that if $x \in C^*$ then $H(x \cap \omega_1) < \text{o.t.}(x)$. Suppose that $x \in C^*$. Then $x = \pi^*(x \cap \omega_1)$ because x is closed under π and π^{-1} . Then, because $x \cap \omega_1 \in C$, $H(x \cap \omega_1) < \text{o.t.} \pi^*(x \cap \omega_1) = \text{o.t.} x$.

(2) \Rightarrow (3): Assume that (2) holds. To show that (3) holds, take an arbitrary $\delta \in [\omega_1, \omega_2)$ and an arbitrary function $H: \mathcal{P}_{\omega_1} \delta \to \omega_1$. Take a bijection $\tau: \omega_1 \to \delta$ and let $F: \omega_1 \to \omega_1$ be the function defined as $F(\alpha) := H(\tau^*\alpha)$ for each $\alpha \in \omega_1$. Then, by (2) there exists $\gamma \in [\omega_1, \omega_2)$ such that $C := \{x \in \mathcal{P}_{\omega_1} \gamma \mid x \cap \omega_1 \in \omega_1 \land F(x \cap \omega_1) < \text{o.t. } x\}$ contains a club.

Note that if $\gamma \leq \gamma' < \omega_2$ then the set $\{x \in \mathcal{P}_{\omega_1} \gamma' \mid x \cap \omega_1 \in \omega_1 \land F(x \cap \omega_1) < \text{o.t. } x\}$ contains a club. This is because the set $\{x \in \mathcal{P}_{\omega_1} \gamma' \mid x \cap \gamma \in C\}$ contains a club and $F(x \cap \omega_1) < \text{o.t.}(x \cap \gamma) \leq \text{o.t. } x$ for every $x \in \mathcal{P}_{\omega_1} \gamma'$ with $x \cap \gamma \in C$. Hence we may assume that $\gamma \geq \delta$.

Then $C^* := \{x \in C \mid x \text{ is closed under } \tau, \tau^{-1}\}$ contains a club in $\mathcal{P}_{\omega_1}\gamma$. Note that $x \cap \delta = \tau^*(x \cap \omega_1)$ for every $x \in C^*$. Hence for every $x \in C^*$,

$$H(x \cap \delta) = H(\tau^{"}(x \cap \omega_1)) = F(x \cap \omega_1) < \text{o.t. } x.$$

Therefore (3) holds.

(3) \Rightarrow (1): Assume that (3) holds. Take an arbitrary function $H: \omega_1 \to \omega_1$. Then, by (3) there exists $\gamma \in [\omega_1, \omega_2)$ such that $C:=\{x \in \mathcal{P}_{\omega_1}\gamma \mid x \cap \omega_1 \in \omega_1 \land H(x \cap \omega_1) < \text{o.t.}(x)\}.$

Take a bijection $\pi : \omega_1 \to \gamma$ and let $C^* := \{ \alpha \in \omega_1 \mid \pi^* \alpha \in C \land (\pi^* \alpha) \cap \omega_1 = \alpha \}$. Then C^* contains a club in ω_1 . Moreover for each $\alpha \in C^*$,

$$H(\alpha) = H((\pi "\alpha) \cap \omega_1) < \text{o.t.}(\pi "\alpha)$$
.

Therefore
$$(1)$$
 holds.

Now we prove the Theorem 4.1:

Proof of Thm.4.1. By Fact 2.2 we can take a sequence $\langle b_z \mid z \in \mathcal{P}_{\omega_1} \omega_2 \rangle$ with the following properties:

- (i) $b_z \subseteq z \times z$ for every $z \in \mathcal{P}_{\omega_1} \omega_2$.
- (ii) For every $B \subseteq \omega_2 \times \omega_2$ the set $\{z \in \mathcal{P}_{\omega_1}\omega_2 \mid B \cap (z \times z) = b_z\}$ is stationary in $\mathcal{P}_{\omega_1}\omega_2$.

Define a function $H: \mathcal{P}_{\omega_1}\omega_2 \to \omega_1$ as follows: If b_z is a well-ordering of z then let H(z) be $\ln(b_z)$, the length of the well-ordering b_z . Otherwise let H(z) be 0. Recall that \mathbb{P} collapses ω_2 . Hence, by Lemma 4.2, it suffices to show that

$$\Vdash_{\mathbb{P}} \text{``}\{x\in\mathcal{P}_{\omega_1}\gamma\mid H(x\cap\omega_2^V)\geq \text{o.t.}\,x\} \text{ is stationary in }\mathcal{P}_{\omega_1}\gamma\text{''}$$

for every $\gamma \geq \omega_2$. But \mathbb{P} is proper. Thus the following claim suffices for this:

Claim. For every $\gamma \geq \omega_2$ the set $\{x \in \mathcal{P}_{\omega_1} \gamma \mid H(x \cap \omega_2) \geq \text{o.t. } x\}$ is stationary in $\mathcal{P}_{\omega_1} \gamma$.

⊢ It suffices to show that the following:

(*) For every $X \subseteq \gamma$ with $|X| = \omega_2 \subseteq X$, the set $\{x \in \mathcal{P}_{\omega_1}X \mid H(x \cap \omega_2) \geq \text{o.t. } x\}$ is stationary in $\mathcal{P}_{\omega_1}X$.

Suppose that $X \subseteq \gamma$ and $|X| = \omega_2 \subseteq X$. Take a bijection $\pi : \omega_2 \to X$. Let B be the well-ordering of ω_2 induced from π , that is, let $B := \{\langle \xi, \eta \rangle \mid \pi(\xi) < \pi(\eta) \}$. Moreover let S be the set of all $x \in \mathcal{P}_{\omega_1} \gamma$ such that

- (I) x is closed under π and π^{-1} ,
- (II) $B \cap (x \cap \omega_2 \times x \cap \omega_2) = b_{x \cap \omega_2}$.

Then S is staionary by the choice of $\langle b_z \mid z \in \mathcal{P}_{\omega_1}\omega_2 \rangle$. Note that $x = \pi^{"}(x \cap \omega_2)$ for each $x \in S$. Hence, by (II) and the construction of H,

o.t.
$$x = \text{o.t.}(\pi^{"}(x \cap \omega_2))$$

= $\ln(B \cap (x \cap \omega_2 \times x \cap \omega_2)) = \ln(b_{x \cap \omega_2}) = H(x \cap \omega_2)$.

 \dashv

for each $x \in S$.

Now we have proved (\star) , and this completes the proof of the claim.

This completes the proof of Theorem 4.1.

We prove Theorem 1.2:

Proof of Thm.1.2. Assume that $\lambda \geq \omega_2$ and I is a proper ω_2 -ideal over $\mathcal{P}_{\omega_2}\lambda$. Note that I is precipitous by Fact 2.1. Let G be a \mathbb{P}_I -generic filter over V, M be the transitive collapse of the ultrapower of V by G, and let $j:V\to M$ be the ultrapower map. By the elementarity of j, it suffices to show that CB does not hold in M. Let δ be ω_2^V . Note that $\delta < j(\delta) = \omega_2^M$.

not hold in M. Let δ be ω_2^V . Note that $\delta < j(\delta) = \omega_2^M$. In V, define $H: (\mathcal{P}_{\omega_1}\delta)^V \to \omega_1$ as in the proof of Theorem 4.1. Let $H^* := j(H) \cap (\mathcal{P}_{\omega_1}\delta)^M \in M$. We show that if $\gamma \in [\delta, \omega_2^M)$ then the set $\{x \in (\mathcal{P}_{\omega_1}\gamma)^M \mid H^*(x \cap \delta) \geq \text{o.t. } x\}$ is stationary in M. By Lemma 4.2 this suffices.

Take an arbitrary $\gamma \in [\delta, \omega_2^M)$. First note that $H^* \upharpoonright (\mathcal{P}_{\omega_1} \delta)^V = H$ because j does not move elements of $(\mathcal{P}_{\omega_1} \delta)^V$. Hence, in V[G], the set $\{x \in (\mathcal{P}_{\omega_1} \gamma)^{V[G]} \mid H^*(x \cap \delta) \geq \text{o.t. } x\}$ is stationary by the proof of Theorem 4.1. But $(\mathcal{P}_{\omega_1} \gamma)^M$ contains a club in $(\mathcal{P}_{\omega_1} \gamma)^{V[G]}$ because $|\gamma| = \omega_1$ in M. Hence, in M, the set $\{x \in (\mathcal{P}_{\omega_1} \delta)^M \mid H^*(x \cap \delta) \geq \text{o.t. } x\}$ is stationary.

This completes the proof.

5 Semiproper ideals and $\diamondsuit_{\omega_1}^*$

Theorem 1.3 follows the following fact and theorem:

Fact 5.1 (Sakai [3]). If there exists a semiproper ω_2 -ideal over $\mathcal{P}_{\omega_2}\lambda$ for some $\lambda \geq \omega_2$ then Chang's Conjecture holds.

Theorem 5.2 (Someone). Chang's Conjecture implies that $\diamondsuit_{\omega_1}^*$ does not hold.

Here we give the proof of Theorem 5.2:

Proof of Thm.5.2. Assume that Chang's Conjecture holds and that there is a $\diamondsuit_{\omega_1}^*$ -sequence $\langle \mathcal{F}_\alpha \mid \alpha \in \omega_1 \rangle$. Take a pairwise distinct sequence $\langle F_\gamma \mid \gamma \in \omega_2 \rangle$. For each $\gamma \in \omega_2$ let $C_\gamma \subseteq \omega_1$ be a club such that $C \subseteq \{\alpha \in \omega_1 \mid F_\gamma \upharpoonright \alpha \in \mathcal{F}_\alpha\}$.

Define partial functions P and Q on $\omega_2 \times \omega_2$ as follows. For each distinct $\gamma, \delta \in \omega_2$ let $P(\gamma, \delta)$ be the least $\beta \in \omega_1$ such that $F_{\gamma}(\beta) \neq F_{\delta}(\beta)$. For each $\gamma \in \omega_2$ and each $\beta \in \omega_1$ let $Q(\gamma, \beta)$ be $\min(C_{\gamma} \setminus (\beta + 1))$.

By Chang's Conjecture there exists an elementary submodel M of the structure $\langle \omega_2, P, Q \rangle$ such that $|M \cap \omega_1| = \omega$ and $|M| = \omega_1$. Let $\alpha := \sup(M \cap \omega_1) \in \omega_1$. Then for every $\gamma \in M$, $\alpha \in C_{\gamma}$ because M is closed under Q and C_{γ} is a club. Hence $F_{\gamma} \upharpoonright \alpha \in \mathcal{F}_{\alpha}$ for every $\gamma \in M$. Moreover $F_{\gamma} \upharpoonright \alpha \neq F_{\delta} \upharpoonright \alpha$ for every distinct $\gamma, \delta \in M$ because M is closed under P. Hence $|\mathcal{F}_{\alpha}| \geq |M| = \omega_1$. This contradicts that \mathcal{F}_{α} is countable.

References

- [1] M. Gitik and S. Shelah, ideals.
- [2] T. Jech, Set Theory, 3rd edition, Springer, 2000.
- [3] H. Sakai, Semiproper ideals, Fund. Math. 186 (2005), 251-267.
- [4] M. Shioya, Diamond principle on $[\lambda]^{\omega}$, preprint.