## Preservation of ¬CG by finite support product of Cohen forcing

## Hiroshi Sakai

## December 16, 2007

We show that the negation of club guessing principle is preserved by a finite support product of Cohen forcings. Thus the negation of club guessing principle gives no upper bound to  $2^{\omega}$ .

First we fix our notations:

**Definition 1.** Let CG, the club guessing principle, be the following principle:

 $\mathsf{CG} \equiv \mathit{There\ exists\ a\ sequence\ } \langle b_\alpha \mid \alpha \in \mathit{Lim}(\omega_1) \rangle \mathit{\ with\ the\ following\ properties:}$ 

- (i)  $b_{\alpha}$  is an unbounded subset of  $\alpha$  for each  $\alpha \in \text{Lim}(\omega_1)$ ,
- (ii) for every club  $C \subseteq \omega_1$  there exist  $\alpha \in \text{Lim}(\omega_1)$  and  $\gamma < \alpha$  with  $b_{\alpha} \setminus \gamma \subseteq C$ .

A sequence  $\langle b_{\alpha} \mid \alpha \in \operatorname{Lim}(\omega_1) \rangle$  satisfying (i) and (ii) above is called a CG-sequence.

**Definition 2.** For a set X let Q(X) be the poset of all finite partial functions  $p: X \times \omega \to 2$  ordered by reverse inclusions. (Let  $Q(\emptyset)$  be the trivial poset  $\{\emptyset\}$ .)

We prove the following:

**Proposition 3.** Assume  $\neg CG$ . Then  $\Vdash_{Q(X)}$  " $\neg CG$ " for every set X.

To prove the above proposition we make some easy preparations. First we make a preparation on Q(X). Note that Q(X) has the c.c.c. The following is standard:

**Lemma 4.** Let X be a set,  $\alpha$  be a countable ordinal and  $\dot{b}$  be a Q(X)-name of a subset of  $\alpha$ . Then there exists a countable  $Y \subseteq X$  such that for every  $\beta < \alpha$  and every  $p \in Q(X)$  the following hold:

- (1) If  $p \Vdash_{Q(X)} "\beta \in \dot{b} "$  then  $p \upharpoonright Y \times \omega \Vdash_{Q(X)} "\beta \in \dot{b} "$ .
- (2) If  $p \Vdash_{Q(X)} "\beta \notin \dot{b}$  " then  $p \upharpoonright Y \times \omega \Vdash_{Q(X)} "\beta \notin \dot{b}$ ".

*Proof.* For each  $\beta < \alpha$  take a maximal antichain  $R_{\beta} \subseteq Q(X)$  which consists of conditions deciding whether  $\beta \in \dot{b}$  or not.  $R_{\beta}$  is countable because Q(X) has the c.c.c. Let R be  $\bigcup_{n \in \omega} R_{\beta}$ . Because  $\alpha$  is countable R is countable, too.

Then we can take a countable  $Y \subseteq X$  such that  $R \subseteq Q(Y)$ . We show that this Y witnesses the lemma. Take an arbitrary  $\beta < \alpha$  and an arbitrary  $p \in Q(X)$ . We prove only (2). (1) can be proved in the same way. (In the proof of Prop.3 we only use (2).)

We show that if  $p \upharpoonright Y \times \omega \not\Vdash_{Q(X)}$  " $\beta \notin \dot{b}$ " then  $p \not\Vdash_{Q(X)}$  " $\beta \notin \dot{b}$ ". Suppose that  $p \upharpoonright Y \times \omega \not\Vdash_{Q(X)}$  " $\beta \notin \dot{b}$ ". Then there exists  $r \in R_{\beta}$  which is compatible with  $p \upharpoonright Y \times \omega$  and forces that  $\beta \in \dot{b}$ . Note that p and r are compatible because  $\text{dom}(r) \subseteq Y \times \omega$ , and  $p \upharpoonright Y \times \omega$  and r are compatible. Therefore  $p \not\Vdash_{Q(X)}$  " $\beta \notin \dot{b}$ ".

Next we give a preparation on club subsets of  $\omega_1$ :

**Notation 5.** Let C denote the set of all club subsets of  $\omega_1$ . For a subset C' of C we say that C' is  $\subseteq$ -dense if for every  $C \in C$  there exists  $C' \in C'$  such that  $C' \subseteq C$ .

Note that if  $\mathcal{C}'$  is  $\subseteq$ -dense then the property (ii) in the definition of  $\mathsf{CG}$  is equivalent to the following:

(ii)' For every  $C' \in \mathcal{C}'$  there exist  $\alpha \in \text{Lim}(\omega_1)$  and  $\gamma < \alpha$  with  $b_\alpha \setminus \gamma \subseteq C'$ .

The following is easy:

**Lemma 6.** Suppose that  $\langle C_n \mid n \in \omega \rangle$  is a sequence of subsets of C with  $\bigcup_{n \in \omega} C_n = C$ . Then there exists  $n \in \omega$  such that  $C_n$  is  $\subseteq$ -dense.

*Proof.* For the contradiction, assume that  $C_n$  is not  $\subseteq$ -dense for every  $n \in \omega$ . Then for each  $n \in \omega$  we can take  $C_n \in \mathcal{C}$  such that there are no  $C \in \mathcal{C}_n$  with  $C \subseteq C_n$ . Let  $C^*$  be  $\bigcap_{n \in \omega} C_n$ .

Then  $C^* \in \mathcal{C}$ . On the other hand there are no  $C \in \mathcal{C}$  such that  $C \subseteq C^*$  by the construction of  $C^*$  and the fact that  $\bigcup_{n \in \omega} \mathcal{C}_n = \mathcal{C}$ . This is a contradiction.  $\square$ 

Now we proceed to the proof of the proposition:

*Proof of Prop.3.* We show that if there exists a set X with  $\Vdash_{Q(X)}$  "CG" then CG holds in V. By the homogeneity of Q(X) this suffices for the proposition. We work in V.

Suppose that there exists a set X with  $\Vdash_{Q(X)}$  "CG". First of all note that  $\omega_1$  is absolute between V and  $V^{Q(X)}$  because Q(X) has the c.c.c. Let  $\langle \dot{b}_{\alpha} \mid \alpha \in \operatorname{Lim}(\omega_1) \rangle$  be the sequence of Q(X)-names of a CG-sequence, that is,  $\Vdash_{Q(X)}$  " $\langle \dot{b}_{\alpha} \mid \alpha \in \operatorname{Lim}(\omega_1) \rangle$  is a CG-sequence".

For each  $\alpha \in \text{Lim}(\omega_1)$  let  $Y_{\alpha}$  be a countable subset of X obtained from Lemma 4 for  $X, \alpha, \dot{b}_{\alpha}$ . We claim the following.  $\mathcal{C}$  below is the one defined in V, that is, the set of all club  $C \subseteq \omega_1$  with  $C \in V$ .

**Claim**. For every  $C \in \mathcal{C}$  there exist  $\alpha \in \text{Lim}(\omega_1)$ ,  $\gamma < \alpha$  and  $p \in Q(Y_\alpha)$  such that  $p \Vdash_{Q(X)} "\dot{b}_{\alpha} \setminus \gamma \subseteq C "$ .

*Proof of Claim.* Take an arbitrary  $C \in \mathcal{C}$ . Then there exist  $\alpha \in \text{Lim}(\omega_1)$ ,  $\gamma < \alpha$  and  $p \in Q(X)$  such that  $p \Vdash_{Q(X)}$  " $b_{\alpha} \setminus \gamma \subseteq C$ ". This is because  $\langle b_{\alpha} \mid \alpha \in \operatorname{Lim}(\omega_1) \rangle$  is a sequence of Q(X)-name of a CG-sequence, and Cremains a club subset of  $\omega_1$  in  $V^{Q(X)}$ .

Then  $p \Vdash_{Q(X)}$  " $\beta \notin \dot{b}_{\alpha}$ " for every  $\beta \geq \gamma$  with  $\beta \notin C$ . Thus, by the choice of  $Y_{\alpha}$ ,  $p \upharpoonright Y_{\alpha} \times \omega \Vdash_{Q(X)}$  " $\beta \notin \dot{b}_{\alpha}$ " for every  $\beta \geq \gamma$  with  $\beta \notin C$ . Therefore  $p \upharpoonright Y_{\alpha} \times \omega \Vdash_{Q(X)} "\dot{b}_{\alpha} \setminus \gamma \subseteq C".$ 

Now  $\alpha$ ,  $\gamma$  and  $p \upharpoonright Y_{\alpha} \times \omega$  witness the claim.  $\Box(Claim)$ 

By the claim above, for each  $C \in \mathcal{C}$  take  $\alpha_C \in \text{Lim}(\omega_1), \gamma_C < \alpha_C$  and  $p_C \in Q(Y_{\alpha_C})$  such that

$$p_C \Vdash_{Q(X)} "\dot{b}_{\alpha_C} \setminus \gamma_C \subseteq C"$$
.

Here note that  $Q(Y_{\alpha})$  is countable for each  $\alpha \in \text{Lim}(\omega_1)$  because  $Y_{\alpha}$  is countable. For each  $\alpha \in \text{Lim}(\omega_1)$  fix an enumeration  $\langle p_n^{\alpha} \mid n \in \omega \rangle$  of  $Q(Y_{\alpha})$ . Moreover for each  $C \in \mathcal{C}$  let  $n_C$  be such that  $p_C = p_{n_C}^{\alpha_C}$ .

Then, by Lemma 6, there exists  $n^* \in \omega$  such that the set  $\mathcal{C}^* = \{C \in \mathcal{C} \mid$  $n_C = n^*$  is  $\subseteq$ -dense. Now for each  $\alpha \in \text{Lim}(\omega_1)$  define  $b_{\alpha}^* \subseteq \alpha$  as follows:

$$b_{\alpha}^{*} = \{ \beta < \alpha \mid (\exists p \in Q(X)) \ p \leq p_{n^{*}}^{\alpha} \land p \Vdash_{Q(X)} "\beta \in \dot{b}_{\alpha} " \}$$

We show that  $\langle b_{\alpha}^* \mid \alpha \in \text{Lim}(\omega_1) \rangle$  is a CG-sequence.

First we check that  $b_{\alpha}^*$  is an unbounded subset of  $\alpha$  for each  $\alpha \in \text{Lim}(\omega_1)$ . Clearly  $b_{\alpha}^*$  is a subset of  $\alpha$  because  $b_{\alpha}$  is a Q(X)-name of a subset of  $\alpha$ . To show unboundedness, take an arbitrary  $\delta < \alpha$ . Then, because  $b_{\alpha}^*$  is a Q(X)name of an unbounded subset of  $\alpha$ , there exist  $p \leq p_{n^*}^{\alpha}$  and  $\beta \geq \delta$  such that  $p \Vdash_{Q(X)} "\beta \in \dot{b}_{\alpha}$ ". Hence  $\beta \in b_{\alpha}^* \setminus \delta \neq \emptyset$ .

Next we check that for every  $C \in \mathcal{C}$  there exist  $\alpha \in \text{Lim}(\omega_1)$  and  $\gamma < \alpha$  with  $b_{\alpha}^* \setminus \gamma \subseteq C$ . Because  $\mathcal{C}^*$  is  $\subseteq$ -dense it suffices to show that such  $\alpha$  and  $\gamma$  exist for every  $C \in \mathcal{C}^*$ .

Take an arbitrary  $C \in \mathcal{C}^*$ . We show that  $b_{\alpha_C}^* \setminus \gamma_C \subseteq C$ . First note that  $n^* = n_C$  and thus that  $p_{n^*}^{\alpha_C} = p_{n_C}^{\alpha_C} = p_C$ . So

$$p_{n^*}^{\alpha_C} \Vdash_{Q(X)} "\dot{b}_{\alpha_C} \setminus \gamma_C \subseteq C"$$

by the choice of  $\alpha_C$ ,  $\gamma_C$  and  $p_C$ . Hence if  $p \leq p_{n^*}^{\alpha_C}$ ,  $\beta \geq \gamma_C$  and  $p \Vdash_{Q(X)}$  " $\beta \in$  $\dot{b}_{\alpha_C}$ " then  $\beta \in C$ . Therefore  $b_{\alpha_C}^* \setminus \gamma_C \subseteq C$  by the construction of  $b_{\alpha_C}^*$ . This completes the proof.