COMPLETELY BOUNDING PRINCIPLE ON $\mathcal{P}_{\kappa}\lambda$

HIROSHI SAKAI

1. Introduction

Definition 1.1. Let κ be a regular uncountable cardinal, let λ be a cardinal with $\lambda \geq \kappa$ and let S be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $CB_{\kappa\lambda}(S)$, the completely bounding principle on S, is the following principle:

If $f: S \to \kappa$ is a function such that $f(x) < \operatorname{ot}(x)^+$ for every $x \in S$ then there are an $\alpha < \lambda^+$ and a surjection $\pi: \lambda \to \alpha$ such that the set $\{x \in S \mid \operatorname{ot}(\pi^*x) \leq f(x)\}$ is nonstationary in $\mathcal{P}_{\kappa}\lambda$.

Let $CB_{\kappa\lambda}$ denote $CB_{\kappa\lambda}(\mathcal{P}_{\kappa}\lambda)$.

We prove the following:

Theorem 1.2. Let κ be a regular uncountable cardinal and λ be a cardinal with $\lambda \geq \kappa^{+\omega}$. Then $CB_{\kappa\lambda}$ does not hold.

Theorem 1.3. Let λ be a cardinal with $\lambda > \omega_1$. Then $CB_{\omega_1 \lambda}$ does not hold.

This note is constructed as follows:

- §1: This section. We present notations and facts used in this note.
- §2: We study basics on the completely bounding principle.
- §3: We prove Theorem 1.2.
- §4: We prove Theorem 1.3.

Notations and Facts

Let \mathcal{M} be a structure which has definable well-ordering of its universe. For each $X\subseteq \mathcal{M}$, Skull $^{\mathcal{M}}(X)$ denotes the Skolem hull of X in \mathcal{M} , that is, Skull $^{\mathcal{M}}(X)$ is the smallest elementary submodel of \mathcal{M} including X. We use the following lemma:

Lemma 1.4. Let θ be a regular uncountable cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and let \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta \rangle$. Moreover let M be an elementary submodel of \mathcal{M} , let γ be an ordinal in M and let X be a nonempty subset of γ . Let $N := \text{Skull}^{\mathcal{M}}(M \cup X)$. Then, for every regular cardinal δ with $\gamma < \delta \in M$, $\sup(N \cap \delta) = \sup(M \cap \delta)$.

Proof. First we prove the following claim:

Claim 1.4.1. $N = \{f(s) \mid s \in {}^{<\omega}X \land f \text{ is a function on } {}^{<\omega}\gamma \land f \in M\}.$

Proof of Claim. Let $N' := \{f(s) \mid s \in {}^{<\omega}X \land f \text{ is a function on } {}^{<\omega}\gamma \land f \in M\}$. Clearly $N' \subseteq N$. We show that $N \subseteq N'$. It is easy to see that $M \cup X \subseteq N'$. Hence it suffices to show that $N' \prec M$.

We use Tarski-Vaught's criterion. Assume that φ is a formula, $a_1, \ldots, a_n \in N'$ and $\mathcal{M} \models \exists u \varphi(u, a_1, \ldots, a_n)$. We must show that there is an $a^* \in N'$ such that $\mathcal{M} \models \varphi(a^*, a_1, \ldots, a_n)$. Let $s_1, \ldots, s_n \in {}^{<\omega}X$ and $f_1, \ldots, f_n \in M$ be such that f_k

1

is a function on ${}^{<\omega}\gamma$ and $f_k(s_k)=a_k$ for each k. Let $s^*:=s_1\,\widehat{}\ s_2\,\widehat{}\ldots\,\widehat{}\ s_n$. For each k, take an function $g_k\in M$ on ${}^{<\omega}\gamma$ with $g_k(s^*)=s_k$ and let $h_k:=f_k\circ g_k$. Then $h_k\in M$ and $h_k(s^*)=a_k$ for each k.

Now define a function h^* on ${}^{<\omega}\gamma$ as follows. For each $s \in {}^{<\omega}\gamma$, if $\mathcal{M} \models \exists u\varphi(u,h_1(s),\ldots,h_n(s))$ then let $h^*(s)$ be the Δ -least a such that $\mathcal{M} \models \varphi(a,h_1(s),\ldots,h_n(s))$. Otherwise let $h^*(s):=0$. Then h^* belongs to \mathcal{M} and is definable in \mathcal{M} from parameters h_1,\ldots,h_n . Hence $h^*\in M$ by the elementarity of M. Let $a^*:=h^*(s^*)$. Then $a^*\in N'$. Moreover recall that $h_k(s^*)=a_k$. Hence $\mathcal{M} \models \varphi(a^*,a_1,\ldots,a_n)$ by the construction of h^* and the assumption that $\mathcal{M} \models \exists u\varphi(u,a_1,\ldots,a_n)$.

Let δ be a regular cardinal with $\gamma < \delta \in M$. Take an arbitrary $\alpha \in N \cap \gamma$. We show that $\alpha < \sup(M \cap \delta)$. By the claim above, there is a function $f \in M$ on ${}^{<\omega}\gamma$ and an $s \in {}^{<\omega}X$ such that $f(s) = \alpha$. Then $\alpha \leq \sup(\operatorname{ran}(f) \cap \delta)$. But $\sup(\operatorname{ran}(f) \cap \delta) \in M \cap \delta$ by the elementarity of M and the regularity of δ .

2. Basics

The following lemma is easy (but we prove):

Lemma 2.1. Let κ be a regular uncoutable cardinal, λ be a cardinal with $\lambda \geq \kappa$ and let $\alpha < \lambda^+$. Moreover let π, π' be surjections from λ to α . Then the set $\{x \in \mathcal{P}_{\kappa}\lambda \mid \pi^{"}x = \pi'^{"}x\}$ contains a club in $\mathcal{P}_{\kappa}\lambda$. Hence the set $\{x \in \mathcal{P}_{\kappa}\lambda \mid \operatorname{ot}(\pi^{"}x) = \operatorname{ot}(\pi^{"}x)\}$ contains a club.

Proof. Let θ be a sufficiently large regular cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and let \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta \rangle$. We show that if $x \in \mathcal{P}_{\kappa}\lambda$ and $Skull^{\mathcal{M}}(x) \cap \lambda = x$ then $\pi'' x = \pi''' x$. Clearly this suffices.

Assume that $x \in \mathcal{P}_{\kappa}\lambda$ and $\operatorname{Skull}^{\mathcal{M}}(x) \cap \lambda = x$. Let $M := \operatorname{Skull}^{\mathcal{M}}(x)$. Then $\pi^{"}x \subseteq M \cap \alpha$ by the elementarity of M. On the other hand, for each $\beta \in M \cap \alpha$, there is an $\xi \in x$ with $\pi(\xi) = \beta$ because π is surjective and M is an elementary submodel of \mathcal{M} . Hence $M \cap \alpha = \pi^{"}x$. Similarly $M \cap \alpha = \pi'"x$. Therefore $\pi^{"}x = \pi'^{"}x$.

Proposition 2.2. Let κ be a regular uncountable cardinal, let λ be a cardinal $\geq \kappa$ and let S be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. If $NS_{\kappa\lambda}|S$ is λ^+ -saturated then $CB_{\kappa\lambda}(S)$ holds.

Definition 2.3. Let κ be a regular uncountable cardinal, λ be a cardinal with $\lambda \geq \kappa$ and let S be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $\diamondsuit_{\kappa\lambda}(S)$ is the following principle:

There is a sequence $\langle d_x \mid x \in S \rangle$ such that

- (1) $d_x: x \to 2$ for every $x \in S$,
- (2) for every function $F: \lambda \to 2$, the set $\{x \in S \mid F \upharpoonright x = d_x\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

We call $\langle d_x \mid x \in S \rangle$ a $\Diamond_{\kappa\lambda}(S)$ -sequence if it sutisfies (1) and (2) above.

Proposition 2.4. Let κ be a regular uncountable cardinal, λ be a cardinal with $\lambda \geq \kappa$ and let S be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. If $\diamondsuit_{\kappa\lambda}(S)$ holds then $\mathrm{CB}_{\kappa\lambda}(S)$ does not hold.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 splits into the following two lemmata:

Lemma 3.1. Let κ be regular uncountable cardinal. Then $CB_{\kappa\kappa^{+\omega}}$ does not hold.

Lemma 3.2. Let κ be regular uncountable cardinal and let $\lambda, \bar{\lambda}$ be cardinals with $\kappa \leq \lambda \leq \bar{\lambda}$. If $CB_{\kappa\lambda}$ does not hold then $CB_{\kappa\bar{\lambda}}$ does not hold.

First we prove Lemma 3.1. We present two proofs. In the first proof we use the following fact:

Fact 3.3 (Shelah). Let κ be a regular uncountable cardinal and let λ be a cardinal with $\kappa < \lambda$ and $\operatorname{cf}(\lambda) = \omega$. Then $\mathcal{P}_{\kappa}\lambda$ splits into λ^{ω} disjoint stationary sets.

The first proof of Lemma 3.1. Let $\lambda := \kappa^{+\omega}$. For each $\alpha < \lambda^{+}$, fix a surjection $\pi_{\alpha} : \lambda \to \alpha$. By Lemma 2.1, it suffices to find a function $f : \mathcal{P}_{\kappa}\lambda \to \kappa$ such that $f(x) < \operatorname{ot}(x)^{+}$ for every $x \in \mathcal{P}_{\kappa}\lambda$ and $\{x \in \mathcal{P}_{\kappa}\lambda \mid f(x) \geq \operatorname{ot}(\pi_{\alpha}^{"}x)\}$ is stationary for every $\alpha < \lambda^{+}$.

By Fact 3.3, let $\langle S_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be a partition of $\mathcal{P}_{\kappa}\lambda$ into pairwise disjoint stationary sets. Let f be a function on $\mathcal{P}_{\kappa}\lambda$ such that for each $x \in S_{\alpha}$, $f(x) = \operatorname{ot}(\pi_{\alpha}"x)$. Then for each $x \in \mathcal{P}_{\kappa}\lambda$, $f(x) < \operatorname{ot}(x)^{+}$. Moreover for each $\alpha < \lambda^{+}$, $\{x \in \mathcal{P}_{\kappa}\lambda \mid f(x) \geq \operatorname{ot}(\pi_{\alpha}"x)\}$ is staitionary because it includes S_{α} . This completes the proof.

Next we present the second proof. We use Lemma 1.4 and a basic fact in PCF theory.

The second proof of Lemma 3.1. Let $\lambda := \kappa^{+\omega}$. For each $\alpha \in \lambda^+$, fix a surjection $\pi_{\alpha} : \lambda \to \alpha$. We construct a function $f : \mathcal{P}_{\kappa} \lambda \to \kappa$.

First take an increasing sequence of regular cardinals $\langle \lambda_n \mid n \in \omega \rangle$ such that

- $\kappa \leq \lambda_0$ and $\langle \lambda_n \mid n \in \omega \rangle$ is cofinal in λ ,
- $\operatorname{tcf}(\Pi_{n \in \omega} \lambda_n / J_{\operatorname{bd}}) = \lambda^+,$

where J_{bd} is the bounded ideal over ω . Let $\langle \sigma_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be a $<_{J_{\mathrm{bd}}}$ -increasing cofinal sequence in $\Pi_{n \in \omega} \lambda_{n} / J_{\mathrm{bd}}$. Moreover, for each $x \in \mathcal{P}_{\kappa} \lambda$, let σ_{x} be the function on ω with $\sigma_{x}(n) = \sup(x \cap \lambda_{n})$ and let α_{x} be the least $\alpha < \lambda^{+}$ such that $\sigma_{x} <_{J_{\mathrm{bd}}} \sigma_{\alpha}$. Now for each $x \in \mathcal{P}_{\kappa} \lambda$, let

$$f(x) := \sup \{ \operatorname{ot}(\pi_{\alpha} "x) \mid \alpha \in \pi_{\alpha_x} "x \} .$$

Clearly $f(x) < \operatorname{ot}(x)^+$ for every $x \in \mathcal{P}_{\kappa}\lambda$. Hence it suffices to show that for every $\beta < \lambda^+$, $\{x \in \mathcal{P}_{\kappa}\lambda \mid f(x) \geq \operatorname{ot}(\pi_{\beta}^{\, "}x)\}$ is stationary. Take an arbitrary $\beta < \lambda^+$ and an arbitrary function $p : {}^{<\omega}\lambda \to \lambda$. It suffices to find an $x^* \in \mathcal{P}_{\kappa}\lambda$ such that $x^* \cap \kappa \in \kappa$, x^* is closed under p and $f(x^*) \geq \operatorname{ot}(\pi_{\beta}^{\, "}x)$.

Let θ be a sufficiently large regular cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and let \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta \rangle$. Take an elementary submodel M of \mathcal{M} with $\kappa, \lambda, p, \sigma_{\beta} \in M$ and $|M| < \kappa$. Let $\sigma^* := \sigma_{M \cap \lambda}$ and let $\alpha^* := \alpha_{M \cap \lambda}$. Note that $\alpha_* > \beta$ because $\sigma_{\beta} \in M$. Moreover note that $C := \{\xi < \kappa \mid \operatorname{Skull}^{\mathcal{M}}(M \cup \xi \cup \{\pi_{\alpha^*}^{-1}(\beta)\}) \cap \kappa = \xi\}$ contains a club in κ . Take an $\xi^* \in C$. Then let $N := \operatorname{Skull}^{\mathcal{M}}(M \cup \xi^* \cup \{\pi_{\alpha^*}^{-1}(\beta)\})$ and let $x^* := N \cap \lambda$. Note that $x^* \cap \kappa = \xi^* \in \kappa$. Note also that x^* is closed under p because $p \in N \prec \mathcal{M}$. We show that $f(x^*) \geq \operatorname{ot}(\pi_{\beta}^* x)$.

Let $n^* \in \omega$ be such that $\pi_{\alpha^*}^{-1}(\beta) \in \lambda_{n^*}$. Then $\xi^* \cup \{\pi_{\alpha^*}^{-1}(\beta)\} \subseteq \lambda_{n^*}$. Thus $\sup(N \cap \lambda_m) = \sup(M \cap \lambda_m)$ for every $m > n^*$ by Lemma 1.4. Hence $\sigma_{x^*} = \sigma^*$ and

so $\alpha_{x^*} = \alpha^*$. Moreover $\beta \in \pi_{\alpha^*}$ " x^* because $\pi_{\alpha^*}^{-1}(\beta) \in N$. Hence $\beta \in \pi_{\alpha_{x^*}}$ " x^* . Therefore $f(x^*) \ge \operatorname{ot}(\pi_{\beta}$ " x^* " by the construction of f. This completes the proof.

Now we proceed to the proof of Lemma 3.2.

Proof of Lemma 3.2. Assume that $CB_{\kappa\bar{\lambda}}$ holds. We show that $CB_{\kappa\lambda}$ holds. Take an arbitrary function $f: \mathcal{P}_{\kappa}\lambda \to \kappa$ such that $f(x) < \operatorname{ot}(x)^+$ for every $x \in \mathcal{P}_{\kappa}\lambda$. We must find an $\alpha^* < \lambda^+$ and a surjection $\pi^* : \lambda \to \alpha^*$ such that $\{x \in \mathcal{P}_{\kappa}\lambda \mid f(x) < \operatorname{ot}(\pi^*"x)\}$ contains club in $\mathcal{P}_{\kappa}\lambda$.

Let $\bar{f}: \mathcal{P}_{\kappa}\bar{\lambda}$ be the function such that $\bar{f}(y) = f(y \cap \lambda)$ for each $y \in \mathcal{P}_{\kappa}\bar{\lambda}$. By $CB_{\kappa\bar{\lambda}}$, take an $\bar{\beta} \in \bar{\lambda}^+$ and a surjection $\bar{\pi}: \bar{\lambda} \to \bar{\beta}$ such that $\bar{C}:=\{y \in \mathcal{P}_{\kappa}\bar{\lambda} \mid \bar{f}(y) < \operatorname{ot}(\bar{\pi}^*y)\}$ contains club. Then we can take an $W \subseteq \bar{\lambda}$ such that $\lambda \subseteq W$, $|W| = \lambda$ and $\bar{C} \cap \mathcal{P}_{\kappa}W$ contains a club in $\mathcal{P}_{\kappa}W$. Let ρ be a bijection from λ to W. Now let $\alpha^* := \operatorname{ot}(\bar{\pi}^*W)$, let $\tau: \alpha^* \to \bar{\pi}^*W$ be the increasing enumeration and let $\pi^* := \tau^{-1} \circ \bar{\pi} \circ \rho$. Then the following diagram commutes:

$$\alpha^* \xrightarrow{\tau} \bar{\pi}^* W$$

$$\pi^* \uparrow \qquad \qquad \uparrow_{\bar{\pi}}$$

$$\lambda \xrightarrow{\rho} W$$

We show that α^* and π^* are ones desired. Note that π^* is a surjection because $\rho, \bar{\pi}$ and π^* are all surjective. Let $C := \{x \in \mathcal{P}_{\kappa} \lambda \mid \rho^{\text{"}} x \in \bar{C} \cap \mathcal{P}_{\kappa} W \land (\rho^{\text{"}} x) \cap \lambda = x\}$. Then it is easy to see that C contains a club in $\mathcal{P}_{\kappa} \lambda$. Moreover for each $x \in C$, the following holds:

$$f(x) \stackrel{(1)}{=} \bar{f}(\rho^{\text{"}}x) \stackrel{(2)}{<} \operatorname{ot}(\bar{\pi}^{\text{"}}(\rho^{\text{"}}x)) \stackrel{(3)}{=} \operatorname{ot}(\pi^{*\text{"}}x).$$

(1) holds by the construction of \bar{f} and the fact that $(\rho^{\,}x) \cap \lambda = x$. (2) holds because $\rho^{\,}x \in \bar{C}$. For (3), first note that $\bar{\pi}^{\,}(\rho^{\,}x) = \tau^{\,}(\pi^{*}x)$ because the above diagram commutes. Then (3) holds because τ is the increasing enumeration.

This completes the proof.

4. Proof of Theorem 1.3

Theorem 1.3 is a corollary of Proposition 2.4 and the following fact by Shelah.

Fact 4.1 (Shelah). For every cardinal $\lambda > \omega_1$, $\diamondsuit_{\omega_1 \lambda}$ holds.

Here we present a direct proof of Theorem 1.3. We use the following lemma. For each regular uncountable cardinal δ , let $E_{\omega}^{\delta} := \{ \eta \in \delta \mid \mathrm{cf}(\eta) = \omega \}.$

Lemma 4.2. Let δ be a regular cardinal with $\delta > \omega_1$, let λ be a cardinal with $\lambda \geq \delta$ and let $\langle E_{\xi} | \xi < \omega_1 \rangle$ be a partition of E_{ω}^{δ} into pairwise disjoint stationary subsets. For each countable set y, let ξ_y be such that $\sup(y \cap \delta) \in E_{\xi_y}$. (If $\sup(y \cap \delta)$ is a successor ordinal then let $\xi_y = 0$.)

Then $T := \{ y \in \mathcal{P}_{\omega_1} \lambda \mid \operatorname{ot}(y) \leq \xi_y \}$ is stationary in $\mathcal{P}_{\omega_1} \lambda$.

First we prove Theorem 1.3 using Lemma 4.2.

Proof of Theorem 1.3. Let $\langle E_{\xi} \mid \xi < \omega_1 \rangle$ be a partition of $E_{\omega}^{\omega_2}$ into pairwise disjoint stationary subsets. For each countable set y, let ξ_y be such that $\sup(y \cap \omega_2) \in E_{\xi_y}$.

(If $\sup(y \cap \omega_2)$ is a successor ordinal then let $\xi_y = 0$.) We show that the function $x \mapsto \xi_x \ (x \in \mathcal{P}_{\omega_1} \lambda) \text{ witnesses } \neg CB_{\omega_1 \lambda}.$

Take an arbitrary $\alpha < \lambda^+$ and an arbitrary surjection $\pi : \lambda \to \alpha$. Let $T := \{y \in \{y \in A\}\}$ $\mathcal{P}_{\omega_1}\lambda^+ \mid \xi_y \leq \operatorname{ot}(y) \wedge y$ is closed under π and let $S := \{y \cap \lambda \mid y \in T\}$. Then, by Lemma 4.2, T is stationary in $\mathcal{P}_{\omega_1}\lambda^+$ and so S is stationary in $\mathcal{P}_{\omega_1}\lambda$. Hence it suffices to show that $ot(\pi^*x) \leq \xi_x$ for every $x \in S$. Assume $x \in S$. Take a $y \in T$ with $y \cap \lambda = x$. Then the following holds:

$$\operatorname{ot}(\pi^{"}x) \overset{(1)}{\leq} \operatorname{ot}(y) \overset{(2)}{\leq} \xi_{y} \overset{(3)}{=} \xi_{x} .$$

(1) holds because $y \cap \lambda = x$ and y is closed under π . (2) holds because $y \in T$. (3) holds because $y \cap \lambda = x$ and $\lambda \geq \omega_2$.

This completes the proof.
$$\Box$$

The rest of this section is devoted to the proof of Lemma 4.2. In the rest of this section, fix a regular cardinal $\delta > \omega_1$ and a cardinal $\lambda \geq \delta$. We need some preliminaries.

Notation 4.3. Let $p: {}^{<\omega}\lambda \to \lambda$ be a function and let $z \subseteq \lambda$.

 $\operatorname{cl}_p(z)$ denotes the closure of z under p. By induction on $n \in \omega$, define $\operatorname{cl}_p^n(z)$ as follows:

- $\bullet \operatorname{cl}_p^0(z) = z.$ $\bullet \operatorname{cl}_p^{n+1}(z) = \operatorname{cl}_p^n(z) \cup p^{\text{``} < n} (\operatorname{cl}_p^n(z)).$

All that we use are the following properties of cl_p^n . Assume that $z = \{\zeta_n \mid n \in \omega\}$ and let $z_n := \{\zeta_k \mid k \leq n\}$. Then

- $\operatorname{cl}_p(z) = \bigcup_{n \in \omega} \operatorname{cl}_p^n(z_n),$ $\operatorname{cl}_p^n(z_n) \subseteq \operatorname{cl}_p^{n+1}(z_{n+1}),$ $\operatorname{cl}_p^n(z_n)$ is finite.

We use the following game:

Definition 4.4. For each function $p: {}^{<\omega}\lambda \to \lambda$ and $\xi < \omega_1$, let $\Gamma_{p\xi}$ be the following two players game of length ω .

In the n-th stage, first player I chooses an ordinal $\eta_n < \delta$. After that player II chooses an ordinal ζ_n with $\eta_n \leq \zeta_n < \delta$ and a strictly order preserving map $h_n: \operatorname{cl}_p^n(\{\zeta_k \mid k \leq n\}) \to \xi$ which extends h_{n-1} . If such ζ_n and h_n do not exist then the game is over.

If II could continue to play for ω -stages then II wins. Otherwise I wins.

Note that $\Gamma_{p\,\xi}$ is a closed game for II. Hence it is determined. Note also that if $\langle \eta_n, \zeta_n, h_n \mid n \in \omega \rangle$ is a play of $\Gamma_{p\xi}$ then $\bigcup_{n \in \omega} h_n$ is a strictly order preserving map from $cl_p(\{\zeta_n \mid n \in \omega\})$. Hence $ot(cl_p(\{\zeta_n \mid n \in \omega\}) \leq \xi$.

Lemma 4.5. For every function $p: {}^{<\omega}\lambda \to \lambda$, there is a $\xi < \omega_1$ such that II has a winning strategy for $\Gamma_{p\xi}$.

Proof. Assume that $p: {}^{<\omega}\lambda \to \lambda$ is a function and I has a winning strategy σ_{ξ} for $\Gamma_{p\,\xi}$ for every $\xi < \omega_1$. We construct a play $\langle \eta_n, \zeta_n, h_n \mid n \in \omega \rangle$ of $\Gamma_{p\,\xi^*}$ in which I has played according to σ_{ξ^*} . If such a play was constructed then it contradicts that $\sigma_{\mathcal{E}^*}$ is a winning strategy.

Let θ be a sufficiently large regular cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and let \mathcal{M} be the structure $\langle \mathcal{H}_{\theta}, \in, \Delta \rangle$. Take a countable $M \prec \mathcal{M}$ with $\delta, \lambda, p, \langle \sigma_{\xi} \mid \xi < 0$ $\omega_1 \rangle \in M$. Then let ξ^*, h^* and N be as follows:

- ξ* = ot(M ∩ δ) < ω₁.
 h*: M ∩ λ → ξ* is the transitive collapse.
 N = Skull^M(M ∪ {ξ*}).

Note that $\sigma_{\xi^*} \in N$. Note also that $\sup(N \cap \delta) = \sup(M \cap \delta)$ by Lemma 1.4.

By induction on n, we construct a play $\langle \eta_n, \zeta_n, h_n \mid n < \omega \rangle$ so that each ζ_n and h_n have the following additional properties:

- $\zeta_n \in M \cap \delta$.
- $h_n = h^* \upharpoonright \operatorname{cl}_p^n(\{\zeta_k \mid k \le n\}).$

Here note that if $\zeta_k \in M \cap \delta$ for each $k \leq n$ then $\operatorname{cl}_p^n(\{\zeta_k \mid k \leq n\}) \subseteq M \cap \lambda$ because M is closed under p. Moreover $h^* \upharpoonright \operatorname{cl}_p^n(\{\zeta_k \mid k \leq n\}) \in N$ because $\operatorname{cl}_p^n(\{\zeta_k \mid k \leq n\})$ is a finite subset of N and $ran(h^*) = \xi^* \subseteq N$.

Assume that $n \in \omega$ and $\langle \eta_m, \zeta_m, h_m \mid m < n \rangle$ has been constructed. First let $\eta_n := \sigma_{\xi^*}(\langle \zeta_m, h_m \mid m < n \rangle)$. Note that $\eta_n \in N \cap \delta$ because $\zeta_m, h_m \in N$ for each m < n and $\sigma_{\xi^*} \in N$. Hence $\eta_n < \sup(N \cap \delta) = \sup(M \cap \delta)$. Let ζ_n be such that $\eta_n \leq \zeta_n \in M \cap \delta$ and let $h_n := h^* \upharpoonright \operatorname{cl}_p^n(\{\zeta_k \mid k \leq n\})$. This completes the inductive construction. Moreover it is easy to check that $\langle \eta_n, \zeta_n, h_n \mid n \in \omega \rangle$ is a play in which I has played according to σ_{ξ^*} .

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Take an arbitrary function $p: {}^{<\omega}\lambda \to \lambda$. We must find an element of T which is closed under p.

By Lemma 4.5, take a $\xi^* \in \omega_1$ such that II has a winning strategy σ^* for $\Gamma_{p\xi^*}$. Let θ be a sufficiently large regular cardinal, Δ be a well-ordering of \mathcal{H}_{θ} and let $\mathcal{M} := \langle \mathcal{H}_{\theta}, \in, \Delta \rangle$. Let M be an elementary submodel of \mathcal{M} such that $\sigma^*, p, \delta, \lambda \in M$ and $M \cap \delta \in E_{\xi^*}$. Then take an increasing cofinal sequence $\langle \eta_n \mid n \in \omega \rangle$ in $M \cap \delta$ and let $\langle \zeta_n, h_n \rangle := \sigma^*(\langle \eta_m \mid m < n \rangle)$ for each $n \in \omega$. Finally let $y^* := \operatorname{cl}_p(\{\zeta_n \mid n \in \omega\})$. It suffices to show that $y^* \in T$.

Claim 4.5.1. $\sup(y^* \cap \delta) = M \cap \delta$.

Proof of Claim. First note that $\eta_n \leq \zeta_n \in M \cap \delta$ for each $n \in \omega$. $\zeta_n \in M \cap \delta$ follows from the fact that M is closed under σ^* . Hence $\{\zeta_n \mid n \in \omega\}$ is a cofinal subset of $M \cap \delta$. Thus $\sup(y^* \cap \delta) \geq M \cap \delta$. But $y^* \subseteq M$ because M is closed under p. Hence $\sup(y^* \cap \delta) \leq M \cap \delta$. Therefore $\sup(y^* \cap \delta) = M \cap \delta$.

Recall that $M \cap \delta \in E_{\xi^*}$. Hence $\xi_{y^*} = \xi^*$. On the other hand $\operatorname{ot}(y^*) \leq \xi^*$ because $\bigcup_{n\in\omega}h_n$ is a strictly order preserving map from y^* to ξ^* . Thus $\operatorname{ot}(y^*)\leq \xi_{y^*}$. Therefore y^* is an element of T which is closed under p.