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1. Introduction

Definition 1.1. Let κ be a regular uncountable cardinal, let λ be a cardinal with
λ ≥ κ and let S be a stationary subset of Pκλ. Then CBκλ(S), the completely
bounding principle on S, is the following principle:

If f : S → κ is a function such that f(x) < ot(x)+ for every x ∈ S
then there are an α < λ+ and a surjection π : λ → α such that the
set {x ∈ S | ot(π“ x) ≤ f(x)} is nonstationary in Pκλ.

Let CBκλ denote CBκλ(Pκλ).

We prove the following:

Theorem 1.2. Let κ be a regular uncountable cardinal and λ be a cardinal with
λ ≥ κ+ω. Then CBκλ does not hold.

Theorem 1.3. Let λ be a cardinal with λ > ω1. Then CBω1λ does not hold.

This note is constructed as follows:
§1: This section. We present notations and facts used in this note.
§2: We study basics on the completely bounding principle.
§3: We prove Theorem 1.2.
§4: We prove Theorem 1.3.

Notations and Facts
Let M be a structure which has definable well-ordering of its universe. For each

X ⊆M, SkullM(X) denotes the Skolem hull of X in M, that is, SkullM(X) is the
smallest elementary submodel of M including X. We use the following lemma:

Lemma 1.4. Let θ be a regular uncountable cardinal, ∆ be a well-ordering of Hθ

and let M be the structure 〈Hθ,∈, ∆〉. Moreover let M be an elementary submodel
of M, let γ be an ordinal in M and let X be a nonempty subset of γ. Let N :=
SkullM(M ∪X). Then, for every regular cardinal δ with γ < δ ∈ M , sup(N ∩ δ) =
sup(M ∩ δ).

Proof. First we prove the following claim:

Claim 1.4.1. N = {f(s) | s ∈ <ωX ∧ f is a function on <ωγ ∧ f ∈ M}.
Proof of Claim. Let N ′ := {f(s) | s ∈ <ωX ∧ f is a function on <ωγ ∧ f ∈ M}.
Clearly N ′ ⊆ N . We show that N ⊆ N ′. It is easy to see that M ∪X ⊆ N ′. Hence
it suffices to show that N ′ ≺M.

We use Tarski-Vaught’s criterion. Assume that ϕ is a formula, a1, . . . , an ∈ N ′

and M ² ∃uϕ(u, a1, . . . , an). We must show that there is an a∗ ∈ N ′ such that
M ² ϕ(a∗, a1, . . . , an). Let s1, . . . , sn ∈ <ωX and f1, . . . , fn ∈ M be such that fk
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is a function on <ωγ and fk(sk) = ak for each k. Let s∗ := s1 ̂s2 ̂ . . . ̂sn. For
each k, take an function gk ∈ M on <ωγ with gk(s∗) = sk and let hk := fk ◦ gk.
Then hk ∈ M and hk(s∗) = ak for each k.

Now define a function h∗ on <ωγ as follows. For each s ∈ <ωγ, if M ²
∃uϕ(u, h1(s), . . . , hn(s)) then let h∗(s) be the ∆-least a such that M ² ϕ(a, h1(s),
. . . , hn(s)). Otherwise let h∗(s) := 0. Then h∗ belongs to M and is defin-
able in M from parameters h1, . . . , hn. Hence h∗ ∈ M by the elementarity of
M . Let a∗ := h∗(s∗). Then a∗ ∈ N ′. Moreover recall that hk(s∗) = ak.
Hence M ² ϕ(a∗, a1, . . . , an) by the construction of h∗ and the assumption that
M ² ∃uϕ(u, a1, . . . , an). ¤Claim

Let δ be a regular cardinal with γ < δ ∈ M . Take an arbitrary α ∈ N ∩ γ.
We show that α < sup(M ∩ δ). By the claim above, there is a function f ∈ M
on <ωγ and an s ∈ <ωX such that f(s) = α. Then α ≤ sup(ran(f) ∩ δ). But
sup(ran(f) ∩ δ) ∈ M ∩ δ by the elementarity of M and the regularity of δ. ¤

2. Basics

The following lemma is easy (but we prove):

Lemma 2.1. Let κ be a regular uncoutable cardinal, λ be a cardinal with λ ≥ κ
and let α < λ+. Moreover let π, π′ be surjections from λ to α. Then the set
{x ∈ Pκλ | π“ x = π′“ x} contains a club in Pκλ. Hence the set {x ∈ Pκλ |
ot(π“ x) = ot(π′“ x)} contains a club.

Proof. Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ and
letM be the structure 〈Hθ,∈, ∆〉. We show that if x ∈ Pκλ and SkullM(x)∩ λ = x
then π“ x = π′“ x. Clearly this suffices.

Assume that x ∈ Pκλ and SkullM(x) ∩ λ = x. Let M := SkullM(x). Then
π“ x ⊆ M ∩ α by the elementarity of M . On the other hand, for each β ∈ M ∩ α,
there is an ξ ∈ x with π(ξ) = β because π is surjective and M is an elementary
submodel of M. Hence M ∩ α = π“ x. Similarly M ∩ α = π′“ x. Therefore
π“ x = π′“ x. ¤

Proposition 2.2. Let κ be a regular uncountable cardinal, let λ be a cardinal ≥ κ
and let S be a stationary subset of Pκλ. If NSκλ|S is λ+-saturated then CBκλ(S)
holds.

Definition 2.3. Let κ be a regular uncountable cardinal, λ be a cardinal with λ ≥ κ
and let S be a stationary subset of Pκλ. Then ♦κλ(S) is the following principle:

There is a sequence 〈dx | x ∈ S〉 such that
(1) dx : x → 2 for every x ∈ S,
(2) for every function F : λ → 2, the set {x ∈ S | F ¹ x = dx} is

stationary in Pκλ.

We call 〈dx | x ∈ S〉 a ♦κλ(S)-sequence if it sutisfies (1) and (2) above.

Proposition 2.4. Let κ be a regular uncountable cardinal, λ be a cardinal with
λ ≥ κ and let S be a stationary subset of Pκλ. If ♦κλ(S) holds then CBκλ(S) does
not hold.
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3. Proof of Theorem 1.2

The proof of Theorem 1.2 splits into the following two lemmata:

Lemma 3.1. Let κ be regular uncountable cardinal. Then CBκκ+ω does not hold.

Lemma 3.2. Let κ be regular uncountable cardinal and let λ, λ̄ be cardinals with
κ ≤ λ ≤ λ̄. If CBκλ does not hold then CBκλ̄ does not hold.

First we prove Lemma 3.1. We present two proofs. In the first proof we use the
following fact:

Fact 3.3 (Shelah). Let κ be a regular uncountable cardinal and let λ be a cardinal
with κ < λ and cf(λ) = ω. Then Pκλ splits into λω disjoint stationary sets.

The first proof of Lemma 3.1. Let λ := κ+ω. For each α < λ+, fix a surjection
πα : λ → α. By Lemma 2.1, it suffices to find a function f : Pκλ → κ such that
f(x) < ot(x)+ for every x ∈ Pκλ and {x ∈ Pκλ | f(x) ≥ ot(πα“ x)} is stationary
for every α < λ+.

By Fact 3.3, let 〈Sα | α < λ+〉 be a partition of Pκλ into pairwise disjoint
stationary sets. Let f be a function on Pκλ such that for each x ∈ Sα, f(x) =
ot(πα“ x). Then for each x ∈ Pκλ, f(x) < ot(x)+. Moreover for each α < λ+,
{x ∈ Pκλ | f(x) ≥ ot(πα“ x)} is staitionary because it includes Sα. This completes
the proof. ¤

Next we present the second proof. We use Lemma 1.4 and a basic fact in PCF
theory.

The second proof of Lemma 3.1. Let λ := κ+ω. For each α ∈ λ+, fix a surjection
πα : λ → α. We construct a function f : Pκλ → κ.

First take an increasing sequence of regular cardinals 〈λn | n ∈ ω〉 such that
• κ ≤ λ0 and 〈λn | n ∈ ω〉 is cofinal in λ,
• tcf(Πn∈ωλn/Jbd) = λ+,

where Jbd is the bounded ideal over ω. Let 〈σα | α < λ+〉 be a <Jbd-increasing
cofinal sequence in Πn∈ωλn/Jbd. Moreover, for each x ∈ Pκλ, let σx be the function
on ω with σx(n) = sup(x∩λn) and let αx be the least α < λ+ such that σx <Jbd σα.
Now for each x ∈ Pκλ, let

f(x) := sup{ot(πα“ x) | α ∈ παx“ x} .

Clearly f(x) < ot(x)+ for every x ∈ Pκλ. Hence it suffices to show that for every
β < λ+, {x ∈ Pκλ | f(x) ≥ ot(πβ“ x)} is stationary. Take an arbitrary β < λ+

and an arbitrary function p : <ωλ → λ. It suffices to find an x∗ ∈ Pκλ such that
x∗ ∩ κ ∈ κ, x∗ is closed under p and f(x∗) ≥ ot(πβ“ x).

Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ and
let M be the structure 〈Hθ,∈,∆〉. Take an elementary submodel M of M with
κ, λ, p, σβ ∈ M and |M | < κ. Let σ∗ := σM∩λ and let α∗ := αM∩λ. Note that
α∗ > β because σβ ∈ M . Moreover note that C := {ξ < κ | SkullM(M ∪ ξ ∪
{πα∗

−1(β)}) ∩ κ = ξ} contains a club in κ. Take an ξ∗ ∈ C. Then let N :=
SkullM( M∪ξ∗∪{πα∗

−1(β)} ) and let x∗ := N∩λ. Note that x∗∩κ = ξ∗ ∈ κ. Note
also that x∗ is closed under p because p ∈ N ≺M. We show that f(x∗) ≥ ot(πβ“ x).

Let n∗ ∈ ω be such that πα∗
−1(β) ∈ λn∗ . Then ξ∗ ∪ {πα∗

−1(β)} ⊆ λn∗ . Thus
sup(N ∩λm) = sup(M ∩λm) for every m > n∗ by Lemma 1.4. Hence σx∗ = σ∗ and
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so αx∗ = α∗. Moreover β ∈ πα∗“ x∗ because πα∗
−1(β) ∈ N . Hence β ∈ παx∗ “ x∗.

Therefore f(x∗) ≥ ot(πβ“ x∗) by the construction of f . This completes the proof.
¤

Now we proceed to the proof of Lemma 3.2.

Proof of Lemma 3.2. Assume that CBκλ̄ holds. We show that CBκλ holds. Take
an arbitrary function f : Pκλ → κ such that f(x) < ot(x)+ for every x ∈ Pκλ. We
must find an α∗ < λ+ and a surjection π∗ : λ → α∗ such that {x ∈ Pκλ | f(x) <
ot(π∗“ x)} contains club in Pκλ.

Let f̄ : Pκλ̄ be the function such that f̄(y) = f(y ∩ λ) for each y ∈ Pκλ̄. By
CBκλ̄, take an β̄ ∈ λ̄+ and a surjection π̄ : λ̄ → β̄ such that C̄ := {y ∈ Pκλ̄ |
f̄(y) < ot(π̄“ y)} contains club. Then we can take an W ⊆ λ̄ such that λ ⊆ W ,
|W | = λ and C̄ ∩PκW contains a club in PκW . Let ρ be a bijection from λ to W .
Now let α∗ := ot(π̄“ W ), let τ : α∗ → π̄“ W be the increasing enumeration and let
π∗ := τ−1 ◦ π̄ ◦ ρ. Then the following diagram commutes:

α∗ τ−−−−→ π̄“ W

π∗
x

xπ̄

λ −−−−→
ρ

W

We show that α∗ and π∗ are ones desired. Note that π∗ is a surjection because
ρ, π̄ and π∗ are all surjective. Let C := {x ∈ Pκλ | ρ“ x ∈ C̄∩PκW ∧ (ρ“ x)∩λ = x}.
Then it is easy to see that C contains a club in Pκλ. Moreover for each x ∈ C, the
following holds:

f(x)
(1)
= f̄(ρ“ x)

(2)
< ot(π̄“ (ρ“ x))

(3)
= ot(π∗“ x) .

(1) holds by the construction of f̄ and the fact that (ρ“ x) ∩ λ = x. (2) holds
because ρ“ x ∈ C̄. For (3), first note that π̄“ (ρ“ x) = τ“ (π∗“ x) because the above
diagram commutes. Then (3) holds because τ is the increasing enumeration.

This completes the proof. ¤

4. Proof of Theorem 1.3

Theorem 1.3 is a corollary of Proposition 2.4 and the following fact by Shelah.

Fact 4.1 (Shelah). For every cardinal λ > ω1, ♦ω1λ holds.

Here we present a direct proof of Theorem 1.3. We use the following lemma. For
each regular uncountable cardinal δ, let Eδ

ω := {η ∈ δ | cf(η) = ω}.
Lemma 4.2. Let δ be a regular cardinal with δ > ω1, let λ be a cardinal with λ ≥ δ
and let 〈Eξ | ξ < ω1〉 be a partition of Eδ

ω into pairwise disjoint stationary subsets.
For each countable set y, let ξy be such that sup(y ∩ δ) ∈ Eξy . (If sup(y ∩ δ) is a
successor ordinal then let ξy = 0.)

Then T := {y ∈ Pω1λ | ot(y) ≤ ξy} is stationary in Pω1λ.

First we prove Theorem 1.3 using Lemma 4.2.

Proof of Theorem 1.3. Let 〈Eξ | ξ < ω1〉 be a partition of Eω2
ω into pairwise disjoint

stationary subsets. For each countable set y, let ξy be such that sup(y ∩ω2) ∈ Eξy .
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(If sup(y ∩ ω2) is a successor ordinal then let ξy = 0.) We show that the function
x 7→ ξx (x ∈ Pω1λ) witnesses ¬CBω1λ.

Take an arbitrary α < λ+ and an arbitrary surjection π : λ → α. Let T := {y ∈
Pω1λ

+ | ξy ≤ ot(y) ∧ y is closed under π } and let S := {y ∩ λ | y ∈ T}. Then,
by Lemma 4.2, T is stationary in Pω1λ

+ and so S is stationary in Pω1λ. Hence it
suffices to show that ot(π“ x) ≤ ξx for every x ∈ S. Assume x ∈ S. Take a y ∈ T
with y ∩ λ = x. Then the following holds:

ot(π“ x)
(1)

≤ ot(y)
(2)

≤ ξy
(3)
= ξx .

(1) holds because y ∩ λ = x and y is closed under π. (2) holds because y ∈ T . (3)
holds because y ∩ λ = x and λ ≥ ω2.

This completes the proof. ¤
The rest of this section is devoted to the proof of Lemma 4.2. In the rest of

this section, fix a regular cardinal δ > ω1 and a cardinal λ ≥ δ. We need some
preliminaries.

Notation 4.3. Let p : <ωλ → λ be a function and let z ⊆ λ.
clp(z) denotes the closure of z under p. By induction on n ∈ ω, define clnp (z) as

follows:
• cl0p(z) = z.
• cln+1

p (z) = clnp (z) ∪ p“ <n (clnp (z)).

All that we use are the following properties of clnp . Assume that z = {ζn | n ∈ ω}
and let zn := {ζk | k ≤ n}. Then

• clp(z) =
⋃

n∈ω clnp (zn),
• clnp (zn) ⊆ cln+1

p (zn+1),
• clnp (zn) is finite.

We use the following game:

Definition 4.4. For each function p : <ωλ → λ and ξ < ω1, let Γp ξ be the following
two players game of length ω.

In the n-th stage, first player I chooses an ordinal ηn < δ. After that player
II chooses an ordinal ζn with ηn ≤ ζn < δ and a strictly order preserving map
hn : clnp ({ζk | k ≤ n}) → ξ which extends hn−1. If such ζn and hn do not exist then
the game is over.

I η0 η1 · · · ηn · · ·
II ζ0, h0 ζ1, h1 · · · ζn, hn · · ·

If II could continue to play for ω-stages then II wins. Otherwise I wins.

Note that Γp ξ is a closed game for II. Hence it is determined. Note also that if
〈ηn, ζn, hn | n ∈ ω〉 is a play of Γp ξ then

⋃
n∈ω hn is a strictly order preserving map

from clp({ζn | n ∈ ω}). Hence ot(clp({ζn | n ∈ ω}) ≤ ξ.

Lemma 4.5. For every function p : <ωλ → λ, there is a ξ < ω1 such that II has a
winning strategy for Γp ξ.

Proof. Assume that p : <ωλ → λ is a function and I has a winning strategy σξ for
Γp ξ for every ξ < ω1. We construct a play 〈ηn, ζn, hn | n ∈ ω〉 of Γp ξ∗ in which
I has played according to σξ∗ . If such a play was constructed then it contradicts
that σξ∗ is a winning strategy.
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Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ and let
M be the structure 〈Hθ,∈,∆〉. Take a countable M ≺ M with δ, λ, p, 〈σξ | ξ <
ω1〉 ∈ M . Then let ξ∗, h∗ and N be as follows:

• ξ∗ = ot(M ∩ δ) < ω1.
• h∗ : M ∩ λ → ξ∗ is the transitive collapse.
• N = SkullM(M ∪ {ξ∗}).

Note that σξ∗ ∈ N . Note also that sup(N ∩ δ) = sup(M ∩ δ) by Lemma 1.4.
By induction on n, we construct a play 〈ηn, ζn, hn | n < ω〉 so that each ζn and

hn have the following additional properties:
• ζn ∈ M ∩ δ.
• hn = h∗ ¹ clnp ({ζk | k ≤ n}).

Here note that if ζk ∈ M ∩δ for each k ≤ n then clnp ({ζk | k ≤ n}) ⊆ M ∩λ because
M is closed under p. Moreover h∗ ¹ clnp ({ζk | k ≤ n}) ∈ N because clnp ({ζk | k ≤ n})
is a finite subset of N and ran(h∗) = ξ∗ ⊆ N .

Assume that n ∈ ω and 〈ηm, ζm, hm | m < n〉 has been constructed. First let
ηn := σξ∗(〈ζm, hm | m < n〉). Note that ηn ∈ N ∩ δ because ζm, hm ∈ N for each
m < n and σξ∗ ∈ N . Hence ηn < sup(N ∩ δ) = sup(M ∩ δ). Let ζn be such that
ηn ≤ ζn ∈ M ∩ δ and let hn := h∗ ¹ clnp ({ζk | k ≤ n}). This completes the inductive
construction. Moreover it is easy to check that 〈ηn, ζn, hn | n ∈ ω〉 is a play in
which I has played according to σξ∗ . ¤

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Take an arbitrary function p : <ωλ → λ. We must find an
element of T which is closed under p.

By Lemma 4.5, take a ξ∗ ∈ ω1 such that II has a winning strategy σ∗ for Γp ξ∗ .
Let θ be a sufficiently large regular cardinal, ∆ be a well-ordering of Hθ and let
M := 〈Hθ,∈, ∆〉. Let M be an elementary submodel ofM such that σ∗, p, δ, λ ∈ M
and M∩δ ∈ Eξ∗ . Then take an increasing cofinal sequence 〈ηn | n ∈ ω〉 in M∩δ and
let 〈ζn, hn〉 := σ∗(〈ηm | m < n〉) for each n ∈ ω. Finally let y∗ := clp({ζn | n ∈ ω}).
It suffices to show that y∗ ∈ T .

Claim 4.5.1. sup(y∗ ∩ δ) = M ∩ δ.

Proof of Claim. First note that ηn ≤ ζn ∈ M ∩ δ for each n ∈ ω. ζn ∈ M ∩ δ follows
from the fact that M is closed under σ∗. Hence {ζn | n ∈ ω} is a cofinal subset
of M ∩ δ. Thus sup(y∗ ∩ δ) ≥ M ∩ δ. But y∗ ⊆ M because M is closed under p.
Hence sup(y∗ ∩ δ) ≤ M ∩ δ. Therefore sup(y∗ ∩ δ) = M ∩ δ. ¤Claim

Recall that M∩δ ∈ Eξ∗ . Hence ξy∗ = ξ∗. On the other hand ot(y∗) ≤ ξ∗ because⋃
n∈ω hn is a strictly order preserving map from y∗ to ξ∗. Thus ot(y∗) ≤ ξy∗ .

Therefore y∗ is an element of T which is closed under p. ¤


