COMPLETELY BOUNDING PRINCIPLE ON P,

HIROSHI SAKAI

1. INTRODUCTION

Definition 1.1. Let k be a reqular uncountable cardinal, let A be a cardinal with
A >k and let S be a stationary subset of PeX. Then CBiA(S), the completely
bounding principle on S, is the following principle:

If f: S — K is a function such that f(z) < ot(z)T for every x € S
then there are an o < AT and a surjection 7 : X\ — « such that the
set {x € S|ot(n“x) < f(x)} is nonstationary in PyA.

Let CBy) denote CByx(PiA).
We prove the following;:

Theorem 1.2. Let k be a regular uncountable cardinal and \ be a cardinal with
A > k9. Then CB) does not hold.

Theorem 1.3. Let A\ be a cardinal with A > wy. Then CBy,,» does not hold.

This note is constructed as follows:

§1: This section. We present notations and facts used in this note.
§2: We study basics on the completely bounding principle.

83: We prove Theorem 1.2.

§4: We prove Theorem 1.3.

Notations and Facts

Let M be a structure which has definable well-ordering of its universe. For each
X C M, Skull™(X) denotes the Skolem hull of X in M, that is, Skull™(X) is the
smallest elementary submodel of M including X. We use the following lemma:

Lemma 1.4. Let 6 be a regular uncountable cardinal, A be a well-ordering of Hg
and let M be the structure (Hg, €, A). Moreover let M be an elementary submodel
of M, let v be an ordinal in M and let X be a nonempty subset of v. Let N :=
Skull™ (M U X). Then, for every regular cardinal § with v < § € M, sup(N N6) =
sup(M NJ).

Proof. First we prove the following claim:
Claim 1.4.1. N ={f(s)|s€ <“X A f is a function on <Yy A f € M}.

Proof of Claim. Let N’ :={f(s) | s € <“X A f is a function on <“y A f € M}.
Clearly N’ € N. We show that N C N’. It is easy to see that M UX C N’. Hence
it suffices to show that N < M.

We use Tarski-Vaught’s criterion. Assume that ¢ is a formula, ay,...,a, € N’
and M E Jup(u,ai,...,a,). We must show that there is an a* € N’ such that
ME p(a* ay,...,a,). Let s1,...,8, € <X and fi,..., f, € M be such that fj
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is a function on <~y and fx(sx) = ay for each k. Let s* := s1 "s2 " ... "s,. For
each k, take an function g € M on <y with gx(s*) = s; and let hg := fi o gs.
Then hy € M and hg(s*) = ay, for each k.
Now define a function h* on <%~y as follows. For each s € <“~, if M E
Fup(u, h1(s), ..., hy(s)) then let h*(s) be the A-least a such that M F ¢(a, hi(s),
.. hn(s)). Otherwise let h*(s) := 0. Then h* belongs to M and is defin-
able in M from parameters hq,...,h,. Hence h* € M by the elementarity of
M. Let a* := h*(s*). Then a* € N’. Moreover recall that hi(s*) = ag.
Hence M E ¢(a*,ay,...,a,) by the construction of h* and the assumption that
M E Jup(u,ay, ..., a,). OClaim

Let § be a regular cardinal with v < § € M. Take an arbitrary « € N N ~.
We show that o < sup(M N ). By the claim above, there is a function f € M
on <Yy and an s € <“X such that f(s) = a. Then a < sup(ran(f) N ). But
sup(ran(f) Nd) € M N § by the elementarity of M and the regularity of 4. O

2. BAsics

The following lemma is easy (but we prove):

Lemma 2.1. Let k be a reqular uncoutable cardinal, \ be a cardinal with A > &
and let o < At. Moreover let m,7" be surjections from \ to a. Then the set
{x € P | n“x = 7'“a} contains a club in P,X. Hence the set {x € Py |
ot(m“xz) = ot(n'“x)} contains a club.

Proof. Let 0 be a sufficiently large regular cardinal, A be a well-ordering of Hy and
let M be the structure (Hy, €, A). We show that if z € P\ and Skull™(z) N\ = =
then 7“2 = 7’ “x. Clearly this suffices.

Assume that € P.A and Skull™(z) N A = 2. Let M := Skull™(z). Then
7“2 C M Na by the elementarity of M. On the other hand, for each g € M N «,
there is an £ € x with 7(§) = 8 because = is surjective and M is an elementary
submodel of M. Hence M N« = w“z. Similarly M Na = 7’“xz. Therefore

T =7'“. ]

Proposition 2.2. Let k be a regular uncountable cardinal, let X be a cardinal > Kk
and let S be a stationary subset of PuX. If NSka|S is AT -saturated then CB,)(S)
holds.

Definition 2.3. Let k be a regular uncountable cardinal, A be a cardinal with X > k
and let S be a stationary subset of PxA. Then $wa(S) is the following principle:

There is a sequence {d, | x € S) such that

(1) dy : 2 — 2 for every x € S,

(2) for every function F : X — 2, the set {x € S| F [z = d,} is
stationary in P .

We call (dy | x € S) a Ora(S)-sequence if it sutisfies (1) and (2) above.
Proposition 2.4. Let k be a reqular uncountable cardinal, \ be a cardinal with

A >k and let S be a stationary subset of Pe. If $a(S) holds then CBA(S) does
not hold.



COMPLETELY BOUNDING PRINCIPLE ON P\ 3

3. PROOF OF THEOREM 1.2
The proof of Theorem 1.2 splits into the following two lemmata:
Lemma 3.1. Let k be reqular uncountable cardinal. Then CB,. .+ does not hold.

Lemma 3.2. Let r be regular uncountable cardinal and let A\, A be cardinals with
Kk <A< A If CBgy does not hold then CB, 5 does not hold.

First we prove Lemma 3.1. We present two proofs. In the first proof we use the
following fact:

Fact 3.3 (Shelah). Let x be a regular uncountable cardinal and let \ be a cardinal
with K < X\ and cf(A\) = w. Then P\ splits into A\ disjoint stationary sets.

The first proof of Lemma 3.1. Let X := x¥“. For each a < A", fix a surjection
Ta @ A — «a. By Lemma 2.1, it suffices to find a function f : P.A — k such that
f(z) < ot(z)T for every x € P, A and {z € P\ | f(z) > ot(ma“x)} is stationary
for every a < \T.

By Fact 3.3, let (S, | @ < A") be a partition of P,\ into pairwise disjoint
stationary sets. Let f be a function on P\ such that for each = € S,, f(x) =
ot(mq “x). Then for each z € P\, f(z) < ot(z)T. Moreover for each o < AT,
{z € P | f(z) > ot(m, “x)} is staitionary because it includes S,. This completes
the proof. O

Next we present the second proof. We use Lemma 1.4 and a basic fact in PCF
theory.

The second proof of Lemma 3.1. Let A := k1%, For each a € AT, fix a surjection
To @ A — a. We construct a function f : P — K.
First take an increasing sequence of regular cardinals (A, | n € w) such that

o k<) and (\, |n € w) is cofinal in A,

b th(HnEwAn/de) = /\+7
where Jpq is the bounded ideal over w. Let (0, | @ < AT) be a <, ,-increasing
cofinal sequence in I, ¢, Ay /Jpa. Moreover, for each z € P A, let o, be the function
on w with 0,(n) = sup(zN\,) and let a, be the least o < AT such that o, <j,, 4.
Now for each x € P\, let

f(z) :=sup{ot(ma“2) | @ € mo, “x} .

Clearly f(x) < ot(z)™ for every z € P, \. Hence it suffices to show that for every
B <At {z € P.A| f(z) > ot(mg“x)} is stationary. Take an arbitrary f < AT
and an arbitrary function p : <X — \. It suffices to find an z* € P\ such that
x* Nk € Kk, x* is closed under p and f(z*) > ot(mg“x).

Let 0 be a sufficiently large regular cardinal, A be a well-ordering of Hy and
let M be the structure (Hg, €, A). Take an elementary submodel M of M with
kAN D03 € M and |M| < k. Let 0* := onmna and let @ := apny. Note that
. > [ because o3 € M. Moreover note that C' := {¢ < & | Skull’™(M U¢U
{ma+"Y(B)}) Nk = &} contains a club in k. Take an ¢* € C. Then let N :=
SkullM( MUE* U{ma-"1(B)} ) and let 2* := NNA. Note that 2*Nk = &* € k. Note
also that z* is closed under p because p € N < M. We show that f(z*) > ot(mz“ ).

Let n* € w be such that m,«"1(8) € A\p+. Then & U {mo-"1(B)} C Ap+. Thus
sup(N N Ay,) = sup(M N A,,) for every m > n* by Lemma 1.4. Hence o,+ = ¢* and
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S0 = = . Moreover 3 € Ty« “a* because T+ 1(8) € N. Hence 3 € m,,. “a*.

Therefore f(x*) > ot(ms“x*) by the construction of f. This completes the proof.
[l

Now we proceed to the proof of Lemma 3.2.

Proof of Lemma 3.2. Assume that CB,; holds. We show that CB, holds. Take
an arbitrary function f: P\ — & such that f(z) < ot(z)* for every x € P, \. We
must find an o* < AT and a surjection 7* : A — o* such that {x € P\ | f(z) <
ot(m*“x)} contains club in P,

Let f : P, be the function such that f(y) = f(y N A) for each y € P.\. By
CB,., take an 3 € AT and a surjection 7 : A — (3 such that C' := {y € P\ |
f(y) < ot(7“y)} contains club. Then we can take an W C X such that A C W,
|[W| =X and CNP,W contains a club in P,W. Let p be a bijection from \ to W.
Now let o* := ot(7“W), let 7 : a* — T“W be the increasing enumeration and let

7* ;=771 o7 op. Then the following diagram commutes:

= 4

.
of — T“W

T

A — W
p

We show that a* and 7* are ones desired. Note that 7* is a surjection because
p, 7 and 7* are all surjective. Let C := {x € P\ | p“z € CNP.W A (p“z)N\ = z}.
Then it is easy to see that C contains a club in P A. Moreover for each z € C, the
following holds:

f@) 2 Fpea) 2 ot(@ (px)) € ot(r  z) .

(1) holds by the construction of f and the fact that (p“z) N A = x. (2) holds
because p“x € C. For (3), first note that 7 (p“x) = 7% (7*“x) because the above
diagram commutes. Then (3) holds because 7 is the increasing enumeration.

This completes the proof. O

4. PROOF OF THEOREM 1.3
Theorem 1.3 is a corollary of Proposition 2.4 and the following fact by Shelah.
Fact 4.1 (Shelah). For every cardinal A > wy, $uwyx holds.

Here we present a direct proof of Theorem 1.3. We use the following lemma. For
each regular uncountable cardinal §, let ES := {n € § | cf(n) = w}.

Lemma 4.2. Let § be a regular cardinal with 6 > w1, let A be a cardinal with X > 0
and let (E¢ | € < wy) be a partition of E°, into pairwise disjoint stationary subsets.
For each countable set y, let &, be such that sup(y N J) € Eg,. (If sup(y Nd) is a
successor ordinal then let &, = 0.)

Then T := {y € Py, A | ot(y) < &} is stationary in Py, A.

First we prove Theorem 1.3 using Lemma 4.2.

Proof of Theorem 1.3. Let (E¢ | £ < w1) be a partition of E¥? into pairwise disjoint
stationary subsets. For each countable set y, let £, be such that sup(yNws) € Eg, .
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(If sup(y Nw2) is a successor ordinal then let {, = 0.) We show that the function
x— & (x € Py, A) witnesses =CBy, ».

Take an arbitrary a < A* and an arbitrary surjection 7 : A — «. Let T := {y €
P AT | & < ot(y) A yis closed under w} and let S := {yN A |y € T}. Then,
by Lemma 4.2, T is stationary in P, AT and so S is stationary in P,, A. Hence it
suffices to show that ot(m“x) < &, for every x € S. Assume x € S. Takeay €T
with y N A = 2. Then the following holds:

(1) (2) (3)
ot(ra) < ot(y) < & 2 &
(1) holds because y N A = z and y is closed under 7. (2) holds because y € T. (3)
holds because y N A =z and A\ > ws.
This completes the proof. [

The rest of this section is devoted to the proof of Lemma 4.2. In the rest of
this section, fix a regular cardinal 6 > w; and a cardinal A > §. We need some
preliminaries.

Notation 4.3. Let p: <Y\ — X be a function and let z C \.
cly(2) denotes the closure of z under p. By induction on n € w, define Clg(z) as
follows:

. clg(z) =z.
. chH(z) = cly(z) Up“ <" (cl}(2)).
All that we use are the following properties of cl;;. Assume that z = {(, | n € w}
and let z, := {¢x | K <n}. Then
hd CIP(Z) = UnEw ClZ(Zn)7
e cly(z,) C Clz+1(2n+1),
e cl;(2n) is finite.
We use the following game:

Definition 4.4. For each functionp : <“X\ — X and § < wy, let T')¢ be the following
two players game of length w.

In the n-th stage, first player I chooses an ordinal n, < 6. After that player
II chooses an ordinal , with n, < (, < § and a strictly order preserving map
hy ey ({Ck | B < n}) — & which extends hy—1. If such ¢, and h,, do not exist then
the game is over.

I no mo o M
IT| ¢o,ho Ciyhi -+ Coyhn

If II could continue to play for w-stages then IT wins. Otherwise I wins.

Note that I', ¢ is a closed game for II. Hence it is determined. Note also that if
(M Cns hn | M € w) is a play of T'p¢ then (J,,c,, hn is a strictly order preserving map
from cl,({¢n | n € w}). Hence ot(cl,({(, | n € w}) <&

Lemma 4.5. For every function p: <Y\ — X, there is a £ < wy such that II has a
winning strategy for I'pe.

Proof. Assume that p : <“X — X is a function and I has a winning strategy o¢ for
[pe for every £ < wi. We construct a play (m,, . hn | n € w) of T'pe+ in which
I has played according to o¢«. If such a play was constructed then it contradicts
that o¢« is a winning strategy.
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Let 6 be a sufficiently large regular cardinal, A be a well-ordering of Hy and let
M be the structure (Hy, €, A). Take a countable M < M with 6, \,p, (o¢ | £ <
w1) € M. Then let £*,h* and N be as follows:

e & =ot(MNJ) <w.
o h*: M NA— £ is the transitive collapse.
o N = Skull™(M U {¢*}).
Note that oe« € N. Note also that sup(/N N ) = sup(M N ) by Lemma 1.4.

By induction on n, we construct a play (n,, (u, by | n < w) so that each ¢, and
h,, have the following additional properties:

e (, € MNG.

o hy=h*[cly({G | K <n}).
Here note that if ¢, € M N ¢ for each k < n then clj} ({Cx | k < n}) € M NA because
M is closed under p. Moreover h* [ cly ({Cx | k < n}) € N because cly ({¢x | k < n})
is a finite subset of N and ran(h*) = &* C N.

Assume that n € w and (1, (i, A | m < n) has been constructed. First let
Ny i= 0g+ ((Cm, Am | m < n)). Note that n, € N NJ because (,, b, € N for each
m < n and g¢« € N. Hence 1, < sup(N N§) = sup(M N6). Let ¢, be such that
N < Cn € M N6 and let hy, == h* [ clj({Cx | k < n}). This completes the inductive
construction. Moreover it is easy to check that (n,,(n,h, | n € w) is a play in
which I has played according to o¢-. (Il

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Take an arbitrary function p : <X — A. We must find an
element of T which is closed under p.

By Lemma 4.5, take a {* € w; such that II has a winning strategy o* for I'y¢-.
Let 6 be a sufficiently large regular cardinal, A be a well-ordering of Hy and let
M = (Hp, €,A). Let M be an elementary submodel of M such that o*,p, 6, A € M
and MNJ € E¢-. Then take an increasing cofinal sequence (,, | n € w) in M'N¢ and
let (Cny hn) := 0" ((Nm | m < n)) for each n € w. Finally let y* := cl,({{n | n € w}).
It suffices to show that y* € T.

Claim 4.5.1. sup(y*NJ) =M nNS4.

Proof of Claim. First note that n, < (, € M N4 for each n € w. ¢, € M NJ follows
from the fact that M is closed under o*. Hence {(, | n € w} is a cofinal subset
of M NJ. Thus sup(y* Nd) > M NJ. But y* C M because M is closed under p.
Hence sup(y* Nd) < M N 4. Therefore sup(y* Nd) = M N . OClaim

Recall that M N6 € Eg-. Hence &+ = £*. On the other hand ot(y*) < £* because
Unew fin is a strictly order preserving map from y* to £*. Thus ot(y*) < §,-.
Therefore y* is an element of T" which is closed under p. ([



