Martin's maximum and stationary reflection at ω_3

Hiroshi Sakai

October 27, 2013

Let $SR([\omega_3]^{\omega}, \omega_3)$ be the following statement:

For any stationary $X \subseteq [\omega_3]^{\omega}$ there exists $\delta < \omega_3$ such that $X \cap [\delta]^{\omega}$ is stationary in $[\delta]^{\omega}$.

We will prove that $SR([\omega_3]^{\omega}, \omega_3)$ does not follow from Martin's Maximum (MM):

Theorem 1. Assume that there is a supercompact cardinal. Then there exists a forcing extension in which MM holds, but $SR([\omega_3]^{\omega}, \omega_3)$ fails.

In fact we will prove that $SR([\omega_3]^{\omega}, \omega_3)$ fails in the standard model of MM constructed in [1]. Our proof is somewhat similar as the main theorem of [3].

First we give a lemma, due to Shelah [2], which is used to construct a non-reflecting stationary subset of $[\omega_3]^{\omega}$. Below, for regular cardinals μ and ν with $\mu < \nu$ let E^{ν}_{μ} denote the set of all $\alpha < \nu$ with $\mathrm{cf}(\alpha) = \mu$.

Lemma 2 (Shelah [2]). Let κ and λ be regular uncountable cardinals with $\kappa < \lambda$, and suppose that $\langle S_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of stationary subsets of E_{ω}^{λ} . Then the set

$$X := \{x \in [\lambda]^{\omega} \mid \sup(x) \in S_{\sup(x \cap \kappa)}\}$$

is stationary in $[\lambda]^{\omega}$.

We give a proof of this lemma for the completeness of this note. Fix regular cardinals κ and λ with $\kappa < \lambda$ until we finish the proof of the above lemma.

We will use a game. For each function $F:[\lambda]^{<\omega} \to \lambda$ and each $\alpha < \kappa$ let $\Im(F,\alpha)$ be the following two players game of length ω :

At the *n*-th inning, first Player I choose $\gamma_n < \lambda$, and then Player II choose $\delta_n < \lambda$ greater than γ_n . II wins if and only if

$$\operatorname{cl}_F(\{\delta_n \mid n < \omega\} \cup \alpha) \cap \kappa = \alpha$$
,

where $\operatorname{cl}_F(A)$ denotes the closure of A under F. We claim the following:

Lemma 3. For any function $F: [\lambda]^{<\omega} \to \lambda$ there exists $\alpha \in E_{\omega}^{\kappa}$ such that II has a winning strategy for $\Im(F, \alpha)$.

Proof. Take an arbitrary $F: [\lambda]^{<\omega} \to \lambda$. For the contradiction assume that I does not have a winning strategy for $\partial(F,\alpha)$ for any $\alpha \in E^{\kappa}_{\omega}$. Here note that each $\partial(F,\alpha)$ is an open-closed game. So each $\partial(F,\alpha)$ is determined. Thus I has a winning strategy τ_{α} for $\partial(F,\alpha)$ for each $\alpha \in E^{\kappa}_{\omega}$.

Let θ be a sufficiently large regular cardinal, and take $M \prec \langle \mathcal{H}_{\theta}, \in \rangle$ such that $\alpha^* := M \cap \kappa \in E_{\omega}^{\kappa}$ and such that $F, \langle \tau_{\alpha} \mid \alpha \in E_{\omega}^{\kappa} \rangle \in M$. By induction on $n < \omega$ let

$$\delta_n := \sup \{ \tau_{\alpha}(\langle \delta_m \mid m < n \rangle) + 1 \mid \alpha \in E_{\alpha}^{\kappa} \} \in M.$$

Then for each $n < \omega$ let

$$\gamma_n := \tau_{\alpha^*}(\langle \delta_m \mid m < n \rangle) < \delta_n$$
.

Moreover let $A := \operatorname{cl}_F(\{\delta_n \mid n < \omega\} \cup \alpha^*).$

Note that $\langle \gamma_n, \delta_n \mid n < \omega \rangle$ is a play of $\supseteq (F, \alpha^*)$ in which I has moved according to the winning strategy τ_{α^*} . Hence I wins with this play, that is, $A \cap \kappa \not\subseteq \alpha^*$. On the other hand, $A \subseteq M$ because $\{\delta_n \mid n < \omega\} \cup \alpha^* \subseteq M$, and $F \in M$. So $A \cap \kappa \subseteq M \cap \kappa = \alpha^*$. This is a contradiction.

Proof of Lemma 2. Take an arbitrary function $F:[\lambda]^{<\omega} \to \omega$. We will find $x \in X$ closed under F.

By Lemma 3 we can take $\alpha \in E_{\omega}^{\kappa}$ such that II has a winning strategy τ for $\supseteq(F,\alpha)$. Then we can take $\gamma \in S_{\alpha} \setminus \kappa$ closed under τ and F because S_{α} is stationary. Take cofinal sequences $\langle \alpha_n \mid n < \omega \rangle$ and $\langle \gamma_n \mid n < \omega \rangle$ in α and γ , respectively. Moreover let $\delta_n := \tau(\langle \gamma_m \mid m \leq n \rangle)$ for each $n < \omega$, and let $x := \operatorname{cl}_F(\{\delta_n \mid n < \omega\} \cup \{\alpha_n \mid n < \omega\})$.

It suffices to show that $x \in X$. For this first note that $\gamma_n < \delta_n < \gamma$ for each $n < \omega$, where the latter inequality follows from the closure of γ under τ . Moreover γ is closed under F. So it follows that $\sup(x) = \gamma \in S_{\alpha}$. Here note also that $\sup(x \cap \kappa) = \alpha$ because τ is a winning strategy of II for $\partial(F, \alpha)$. Therefore $\sup(x \cap \kappa) \in E_{\omega}^{\kappa}$, and $\sup(x) \in S_{\sup(x \cap \kappa)}$.

Now we prove Theorem 1. As we mentioned before, we will prove that $SR([\omega_3]^{\omega}, \omega_3)$ fails in the standard model of MM constructed in [1]:

Proof of Theorem 1. Suppose that κ is a supercompact cardinal in V. Take a Laver function $F: \kappa \to V_{\kappa}$, and let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$ be the revised countable support iteration of semi-proper posets along F. For each $\alpha \leq \kappa$ let

 G_{α} be a \mathbb{P}_{α} -generic filter over V. Then MM holds in $V[G_{\kappa}]$. We will show that $\mathsf{SR}([\omega_3]^{\omega}, \omega_3)$ fails in $V[G_{\kappa}]$. Note that $\kappa = \omega_2$ in $V[G_{\kappa}]$. We work in $V[G_{\kappa}]$.

First note that there are unboundedly many $\beta < \kappa$ such that in $V[G_{\beta}]$, $\beta = \omega_2$, and $(\dot{\mathbb{Q}}_{\beta})_{G_{\beta}}$ is the Nambda forcing. Thus there are unboundedly many $\beta < \kappa$ such that $\mathrm{cf}(\beta) = \omega$ and such that β is regular in V. Note also that $(E_{\beta}^{\kappa^+})^V$ is a stationary subset of $E_{\omega}^{\kappa^+}$ for each such β because \mathbb{P}_{κ} has the κ -c.c. Hence for each $\alpha < \kappa$ the set

$$S_{\alpha} := \{ \gamma \in E_{\omega}^{\kappa^{+}} \mid \operatorname{cf}^{V}(\gamma) > \alpha \}$$

is stationary. Then by Lemma 2 the set

$$X := \{ x \in [\kappa^+]^\omega \mid \sup(x) \in S_{\sup(x \cap \kappa)} \}$$

is stationary in $[\kappa^+]^\omega$. So it suffices to show that $X \cap [\delta]^\omega$ is non-stationary for any $\delta < \kappa^+$. Note that

$$\operatorname{cf}^{V}(\sup(x)) > \sup(x \cap \kappa)$$

for each $x \in X$.

Take an arbitrary $\delta < \kappa^+$. First suppose that $cf(\delta) = \omega$. Then the set

$$Y := \{ x \in [\delta]^{\omega} \mid \sup(x) = \delta \wedge \operatorname{cf}^{V}(\delta) \le \sup(x \cap \kappa) \}$$

is club in $[\delta]^{\omega}$. But $\operatorname{cf}^V(\sup(x)) \leq \sup(x \cap \kappa)$ for each $x \in Y$. So $X \cap Y = \emptyset$. Thus $X \cap [\delta]^{\omega}$ is non-stationary.

Next suppose that $cf(\delta) > \omega$. In V take a club $c \subseteq \delta$ with o.t. $(c) \le \kappa$. Moreover define a function $f: \delta \to \kappa$ by $f(\gamma) := \text{o.t.}(c \cap \gamma)$. Then the set

$$Z := \{x \in [\delta]^{\omega} \mid \sup(x) \in \operatorname{Lim}(c) \land x \text{ is closed under } f\}$$

is club in $[\delta]^{\omega}$. Note that if $x \in \mathbb{Z}$, then

$$\operatorname{cf}^{V}(\sup(x)) \leq \operatorname{o.t.}(c \cap \sup(x)) \leq \sup(x \cap \kappa)$$
.

So $X \cap Z = \emptyset$, that is, $X \cap [\delta]^{\omega}$ is non-stationary.

References

 M. Foreman, M. Magidor and S. Shelah, Martin's maximum, saturated ideals and nonregular ultrafilters I, Ann. of Math. (2) 127 (1988), no.1, 1-47.

- [2] S. Shelah, Reflection implies the SCH, Fund. Math. 198 (2008), 95–111.
- [3] H. Sakai, Semistationary and stationary reflection, J. Symbolic Logic **73** (2008), no.1, 181–192.