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Let SR([ω3]
ω, ω3) be the following statement:

For any stationary X ⊆ [ω3]
ω there exists δ < ω3 such that X ∩ [δ]ω

is stationary in [δ]ω.

We will prove that SR([ω3]
ω, ω3) does not follow from Martin’s Maximum (MM):

Theorem 1. Assume that there is a supercompact cardinal. Then there exists

a forcing extension in which MM holds, but SR([ω3]
ω, ω3) fails.

In fact we will prove that SR([ω3]
ω, ω3) fails in the standard model of MM

constructed in [1]. Our proof is somewhat similar as the main theorem of [3].
First we give a lemma, due to Shelah [2], which is used to construct a non-

reflecting stationary subset of [ω3]
ω. Below, for regular cardinals µ and ν with

µ < ν let Eν
µ denote the set of all α < ν with cf(α) = µ.

Lemma 2 (Shelah [2]). Let κ and λ be regular uncountable cardinals with κ < λ,

and suppose that ⟨Sα | α < κ⟩ is a sequence of stationary subsets of Eλ
ω. Then

the set

X := {x ∈ [λ]ω | sup(x) ∈ Ssup(x∩κ)}

is stationary in [λ]ω.

We give a proof of this lemma for the completeness of this note. Fix regular
cardinals κ and λ with κ < λ until we finish the proof of the above lemma.

We will use a game. For each function F : [λ]<ω → λ and each α < κ let
⅁(F, α) be the following two players game of length ω:

I γ0 γ1 γ2 · · ·
II δ0 δ1 δ2 · · ·

At the n-th inning, first Player I choose γn < λ, and then Player II choose
δn < λ greater than γn. II wins if and only if

clF ({δn | n < ω} ∪ α) ∩ κ = α ,

where clF (A) denotes the closure of A under F . We claim the following:
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Lemma 3. For any function F : [λ]<ω → λ there exists α ∈ Eκ
ω such that II

has a winning strategy for ⅁(F, α).

Proof. Take an arbitrary F : [λ]<ω → λ. For the contradiction assume that I

does not have a winning strategy for ⅁(F, α) for any α ∈ Eκ
ω. Here note that

each ⅁(F, α) is an open-closed game. So each ⅁(F, α) is determined. Thus I has

a winning strategy τα for ⅁(F, α) for each α ∈ Eκ
ω.

Let θ be a sufficiently large regular cardinal, and take M ≺ ⟨Hθ,∈⟩ such

that α∗ := M ∩ κ ∈ Eκ
ω and such that F, ⟨τα | α ∈ Eκ

ω⟩ ∈ M . By induction on

n < ω let

δn := sup{τα(⟨δm | m < n⟩) + 1 | α ∈ Eκ
ω} ∈ M .

Then for each n < ω let

γn := τα∗(⟨δm | m < n⟩) < δn .

Moreover let A := clF ({δn | n < ω} ∪ α∗).

Note that ⟨γn, δn | n < ω⟩ is a play of ⅁(F, α∗) in which I has moved

according to the winning strategy τα∗ . Hence I wins with this play, that is,

A ∩ κ ̸⊆ α∗. On the other hand, A ⊆ M because {δn | n < ω} ∪ α∗ ⊆ M , and

F ∈ M . So A ∩ κ ⊆ M ∩ κ = α∗. This is a contradiction.

Proof of Lemma 2. Take an arbitrary function F : [λ]<ω → ω. We will find

x ∈ X closed under F .

By Lemma 3 we can take α ∈ Eκ
ω such that II has a winning strategy τ

for ⅁(F, α). Then we can take γ ∈ Sα \ κ closed under τ and F because Sα

is stationary. Take cofinal sequences ⟨αn | n < ω⟩ and ⟨γn | n < ω⟩ in α and

γ, respectively. Moreover let δn := τ(⟨γm | m ≤ n⟩) for each n < ω, and let

x := clF ({δn | n < ω} ∪ {αn | n < ω}).
It suffices to show that x ∈ X. For this first note that γn < δn < γ for

each n < ω, where the latter inequality follows from the closure of γ under

τ . Moreover γ is closed under F . So it follows that sup(x) = γ ∈ Sα. Here

note also that sup(x ∩ κ) = α because τ is a winning strategy of II for ⅁(F, α).
Therefore sup(x ∩ κ) ∈ Eκ

ω, and sup(x) ∈ Ssup(x∩κ).

Now we prove Theorem 1. As we mentioned before, we will prove that
SR([ω3]

ω, ω3) fails in the standard model of MM constructed in [1]:

Proof of Theorem 1. Suppose that κ is a supercompact cardinal in V . Take a

Laver function F : κ → Vκ, and let ⟨Pα, Q̇β | α ≤ κ, β < κ⟩ be the revised

countable support iteration of semi-proper posets along F . For each α ≤ κ let
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Gα be a Pα-generic filter over V . Then MM holds in V [Gκ]. We will show that

SR([ω3]
ω, ω3) fails in V [Gκ]. Note that κ = ω2 in V [Gκ]. We work in V [Gκ].

First note that there are unboundedly many β < κ such that in V [Gβ ],

β = ω2, and (Q̇β)Gβ
is the Nambda forcing. Thus there are unboundedly many

β < κ such that cf(β) = ω and such that β is regular in V . Note also that

(Eκ+

β )V is a stationary subset of Eκ+

ω for each such β because Pκ has the κ-c.c.

Hence for each α < κ the set

Sα := {γ ∈ Eκ+

ω | cfV (γ) > α}

is stationary. Then by Lemma 2 the set

X := {x ∈ [κ+]ω | sup(x) ∈ Ssup(x∩κ)}

is stationary in [κ+]ω. So it suffices to show that X ∩ [δ]ω is non-stationary for

any δ < κ+. Note that

cfV (sup(x)) > sup(x ∩ κ)

for each x ∈ X.

Take an arbitrary δ < κ+. First suppose that cf(δ) = ω. Then the set

Y := {x ∈ [δ]ω | sup(x) = δ ∧ cfV (δ) ≤ sup(x ∩ κ)}

is club in [δ]ω. But cfV (sup(x)) ≤ sup(x ∩ κ) for each x ∈ Y . So X ∩ Y = ∅.
Thus X ∩ [δ]ω is non-stationary.

Next suppose that cf(δ) > ω. In V take a club c ⊆ δ with o.t.(c) ≤ κ.

Moreover define a function f : δ → κ by f(γ) := o.t.(c ∩ γ). Then the set

Z := {x ∈ [δ]ω | sup(x) ∈ Lim(c) ∧ x is closed under f}

is club in [δ]ω. Note that if x ∈ Z, then

cfV (sup(x)) ≤ o.t.(c ∩ sup(x)) ≤ sup(x ∩ κ) .

So X ∩ Z = ∅, that is, X ∩ [δ]ω is non-stationary.
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