Club Guessing on $\mathcal{P}_{\kappa}\lambda$

Hiroshi Sakai

Throughout this note, let κ and λ be regular cardinals with $\kappa \leq \lambda$. We consider the following club guessing principle on $\mathcal{P}_{\kappa}\lambda$.

Definition 1. For a stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$, let CG(S) be the following principle:

There is a sequence $\langle b_x \mid x \in S \rangle$ such that

- (1) b_x is an unbounded subset of x for each $x \in S$,
- (2) for every club $B \subseteq \lambda$, $\{x \in S \mid b_x \subseteq B\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

We call $\langle b_x \mid x \in S \rangle$ satisfying (1) and (2) a CG(S)-sequence.

For a regular cardinal $\delta < \kappa$, let

$$E_{\delta}^{\kappa\lambda} := \{ x \in \mathcal{P}_{\kappa}\lambda \mid \operatorname{cf}(\sup x) = \delta \wedge \sup x \notin x \} .$$

Note that $E_{\delta}^{\kappa\lambda}$ is stationary. We prove the following:

Proposition 2. Suppose that δ is a regular cardinal with $\delta^+ < \kappa$. Then CG(S) holds for every stationary $S \subseteq E_{\delta}^{\kappa\lambda}$.

This is a slight generalization of the well-known fact, discovered by Shelah, that if $\delta^+ < \kappa$ then every stationary subset of E^{κ}_{δ} carries a club guessing sequence. $(E^{\kappa}_{\delta} = \{\alpha < \kappa \mid \mathrm{cf}(\alpha) = \delta\}.)$

To prove Proposition 2, first we modify CG slightly:

Definition 3. For a stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$, let CG'(S) be the following principle:

There is a sequence $\langle b_x \mid x \in S \rangle$ such that

- (1') b_x is an unbounded subset of $\sup x$ for each $x \in S$,
- (2) for every club $B \subseteq \lambda$, $\{x \in S \mid b_x \subseteq B\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

We call $\langle b_x | x \in S \rangle$ satisfying (1') and (2) a CG'(S)-sequence.

Lemma 4. CG(S) is equivalent with CG'(S) for every stationary $S \subseteq \mathcal{P}_{\kappa} \lambda$.

Prior to proving Lemma 4, we give a notation:

Notation . For a club $B \subseteq \lambda$ and an ordinal $\alpha < \lambda$, let

$$\mathrm{m}(B,\alpha) \ := \ \left\{ \begin{array}{ccc} \mathrm{max}(B\cap(\alpha+1)) & \cdots & \mathrm{if} \ B\cap(\alpha+1)\neq\emptyset \\ 0 & \cdots & \mathrm{otherwise} \end{array} \right. .$$

Proof of Lemma 4. Let S be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Clearly $\operatorname{CG}(S)$ implies $\operatorname{CG}'(S)$. So we prove the other direction.

Assume that CG'(S) holds. Let $\langle b_x \mid x \in S \rangle$ be a CG'(S)-sequence. Then for each $x \in S$, let

$$a_x := \{ \min(x \setminus \beta) \mid \beta \in b_x \}$$
.

We show that $\langle a_x \mid x \in S \rangle$ is a CG(S)-sequence. Clearly $\langle a_x \mid x \in S \rangle$ satisfies (1) in Definition 1.

To show that $\langle a_x \mid x \in S \rangle$ satisfies (2), take an arbitrary club $B \subseteq \lambda$. Let

$$T := \{ x \in S \mid b_x \subseteq B \land \forall \alpha \in x, \ \operatorname{m}(B, \alpha) \in x \}.$$

Then T is stationary because $\langle b_x \mid x \in S \rangle$ is a $\operatorname{CG}'(S)$ -sequence. We show that $a_x \subseteq B$ for every $x \in T$. On the contrary, assume that $x \in T$ and $a_x \not\subseteq B$. Let $\beta \in b_x$ be such that $\alpha := \min(x \setminus \beta) \notin B$. First note that $\beta \in B$ because $b_x \subseteq B$. Hence $\beta < \alpha$ and $\operatorname{m}(B, \alpha) \in [\beta, \alpha)$. Then, because $\operatorname{m}(B, \alpha) \in x$, $x \cap [\beta, \alpha) \neq \emptyset$. But this contradicts that $\alpha = \min(x \setminus \beta)$. Therefore $a_x \subseteq B$ for every $x \in T$.

This completes the proof. $\Box(Lem. 4)$

Now we prove Proposition 2. By Lemma 4, it suffices to show that $\operatorname{CG}'(S)$ holds for every stationary $S \subseteq E^{\kappa\lambda}_{\delta}$. For this, all we have to do is to translate Shelah's proof of the above mentioned fact into our context.

Proof of Prop. 2. Let δ be a regular cardinal with $\delta^+ < \kappa$ and take an arbitrary stationary $S \subseteq E_{\delta}^{\kappa\lambda}$. By Lemma 4, it suffices to show that CG'(S) holds. For the contradiction, assume that CG'(S) does not hold.

By induction on $\xi < \delta^+$, take a club $B_{\xi} \subseteq \lambda$, an $S_{\xi} \subseteq S$ and a sequence $\langle b_{x,\xi} \mid x \in S_{\xi} \rangle$ as follows. We will take them so that

- (i) $S \setminus S_{\xi}$ is nonstationary in $\mathcal{P}_{\kappa}\lambda$,
- (ii) for each $x \in S_{\xi}$, $b_{x,\xi}$ is an unbounded subset of $\sup x$ with $0 \notin b_{x,\xi}$.

(Base step) Let $B_0 := \lambda$ and let $S_0 := S$. For each $x \in S$, let $b_{x,0}$ be an unbounded subset of $\sup x$ of order type δ with $0 \notin b_{x,0}$.

(Suc. step) Assume that B_{ξ} , S_{ξ} and $\langle b_{x,\xi} \mid x \in S_{\xi} \rangle$ have been defined to satisfy (i) and (ii) above. Then note that $\langle b_{x,\xi} \mid x \in S_{\xi} \rangle$ is not a $\operatorname{CG}'(S_{\xi})$ -sequence because $\operatorname{CG}'(S)$ does not hold. Let $B_{\xi+1}$ be a club of λ such that $B_{\xi+1} \subseteq B_{\xi}$ and $\{x \in S_{\xi} \mid b_{x,\xi} \subseteq B_{\xi+1}\}$ is nonstationary. Then let

$$S_{\xi+1} := \{ x \in S_{\xi} \mid b_{x,\xi} \not\subseteq B_{\xi+1} \land \sup x \in \text{Lim}(B_{\xi+1}) \}$$

and let

$$b_{x,\xi+1} := \{ m(B_{\xi+1},\beta) \mid \beta \in b_{x,0} \land m(B_{\xi+1},\beta) > 0 \}$$

for each $x \in S_{\xi+1}$. Clearly $S_{\xi+1}$ and $\langle b_{x,\xi+1} | x \in S_{\xi+1} \rangle$ satisfies (i) and (ii).

(Limit step) Assume that ξ is a limit ordinal and that B_{η} , S_{η} and $\langle b_{x,\eta} \mid x \in S_{\eta} \rangle$ have been defined to satisfy (i) and (ii) for each $\eta < \xi$. Then let

$$B_{\xi} := \bigcap_{\eta < \xi} B_{\eta} ,$$

$$S_{\xi} := \{ x \in \bigcap_{\eta < \xi} S_{\eta} \mid \sup x \in \text{Lim}(B_{\xi}) \} .$$

Note that $S \setminus \bigcap_{\eta < \xi} S_{\eta}$ is nonstationary because $\xi < \kappa$ and $S \setminus S_{\eta}$ is nonstationary for each $\eta < \xi$. Hence $S \setminus S_{\xi}$ is nonstationary. Finally let

$$b_{x,\xi} := \{ m(B_{\xi}, \beta) \mid \beta \in b_{x,0} \land m(B_{\xi}, \beta) > 0 \}$$

for each $x \in S_{\xi}$. Clearly $b_{x,\xi}$ is unbounded in $\sup x$.

Now note that $\bigcap_{\xi<\delta^+} S_\xi$ is stationary in $\mathcal{P}_\kappa\lambda$ because $\delta^+<\kappa$ and $S\setminus S_\xi$ is nonstationary for each $\xi<\delta^+$. Take an $x\in\bigcap_{\xi<\delta^+} S_\xi$. For each $\gamma<\delta$, let β_0^γ be the γ -th element of $b_{x,0}$ and let $\beta_\xi^\gamma:=\mathrm{m}(B_\xi,\beta_0^\gamma)$ for each $\xi<\delta^+$. Then for each $\gamma<\delta$, $\langle\beta_\xi^\gamma\mid\xi<\delta^+\rangle$ is decreasing (in the wider sense) because $\langle B_\xi\mid\xi<\delta^+\rangle$ is \subseteq -decreasing. Moreover if $\xi<\delta^+$ then $b_{x,\xi}=\{\beta_\xi^\gamma\mid\gamma<\delta\}\setminus\{0\}$. Hence there is a $\gamma<\delta$ such that $0<\beta_\xi^\gamma\notin B_{\xi+1}$ because $x\in S_{\xi+1}$. Then $\beta_{\xi+1}^\gamma<\beta_\xi^\gamma$ for such γ . Thus there is a $\gamma<\delta$ with $\beta_{\xi+1}^\gamma<\beta_\xi^\gamma$ for each $\xi<\delta^+$. Therefore there is a $\gamma<\delta$ such that $\langle\beta_\xi^\gamma\mid\xi<\delta^+\rangle$ strictly decreases for δ^+ -many times. This is a contradiction.