Club Guessing on P, A

Hiroshi Sakai

Throughout this note, let x and A be regular cardinals with k < A. We
consider the following club guessing principle on P, A.

Definition 1. For a stationary S C P, A, let CG(S) be the following principle:
There is a sequence (b, | x € S) such that
(1) by is an unbounded subset of x for each x € S,
(2) for every club B C X\, {x € S| b, C B} is stationary in PgA.
We call (b, | x € S) satisfying (1) and (2) a CG(S5)-sequence.
For a regular cardinal § < &, let
Ef = {z € P\ | cf(supz) =6 A supz ¢ ).
Note that E§>‘ is stationary. We prove the following:

Proposition 2. Suppose that § is a regular cardinal with 6 < k. Then CG(S)
holds for every stationary S C Eg”&

This is a slight generalization of the well-known fact, discovered by She-
lah, that if 67 < k then every stationary subset of Ef carries a club guessing
sequence. (Ef = {a < k| cf(a) = d}.)

To prove Proposition 2, first we modify CG slightly:

Definition 3. For a stationary S C P\, let CG'(S) be the following principle:
There is a sequence (by | x € S) such that
(1") b, is an unbounded subset of sup x for each x € S,
(2) for every club B C A\, {x € S| b, C B} is stationary in PiA.
We call (b, | x € S) satisfying (1') and (2) a CG'(S)-sequence.
Lemma 4. CG(S) is equivalent with CG'(S) for every stationary S C P \.
Prior to proving Lemma 4, we give a notation:

Notation . For a club B C X and an ordinal o < A, let

[ max(Bn(a+1)) - if BN(a+1)#£0
m(B,a) = { 0 otherwise



Proof of Lemma 4. Let S be a stationary subset of P, A. Clearly CG(S) implies
CG/(S). So we prove the other direction.

Assume that CG'(S) holds. Let (b, | z € S) be a CG'(S)-sequence. Then
for each x € S, let

a; = {min(z\ B) | B €b,}.
We show that (a, | € S) is a CG(S)-sequence. Clearly (a, | x € S) satisfies
(1) in Definition 1.
To show that (a, | z € S) satisfies (2), take an arbitrary club B C A. Let

T :={2xe€S|byCB AVacz, m(B,a)ex}.

Then T is stationary because (b, | x € S) is a CG'(S)-sequence. We show that
a, C B for every x € T. On the contrary, assume that x € T and a, € B. Let
0 € b, be such that o := min(z\ 8) ¢ B. First note that § € B because b, C B.
Hence 3 < o and m(B, «) € [3,a). Then, because m(B, a) € x, x N[5, a) # 0.
But this contradicts that o = min(x \ §). Therefore a, C B for every x € T.
This completes the proof. O(Lem. 4)

Now we prove Proposition 2. By Lemma 4, it suffices to show that CG'(S)
holds for every stationary S C Ef*. For this, all we have to do is to translate
Shelah’s proof of the above mentioned fact into our context.

Proof of Prop. 2. Let § be a regular cardinal with 67 < x and take an arbitrary
stationary S C Ef*. By Lemma 4, it suffices to show that CG’(S) holds. For
the contradiction, assume that CG’(S) does not hold.
By induction on £ < §1, take a club B: C A, an S¢ C S and a sequence

(bye | x € Se) as follows. We will take them so that

(i) S\ Se is nonstationary in P,

(i) for each z € S¢, by ¢ is an unbounded subset of sup z with 0 ¢ by ¢.
(Base step) Let By := X and let Sy := S. For each z € S, let by o be an
unbounded subset of sup x of order type ¢ with 0 ¢ b, .

(Suc. step) Assume that Be, Sg and (b, ¢ | ¢ € S¢) have been defined to satisfy
(i) and (i) above. Then note that (b, ¢ | z € S¢) is not a CG'(S¢)-sequence
because CG'(S) does not hold. Let By be a club of X such that Beyq C Be
and {z € S¢ | by ¢ C By} is nonstationary. Then let

Ser1 = {x € 8¢ | bye € Beyr A supz € Lim(Beiq)}
and let

begyr = {m(Bgs1,0) | B € bao N m(Beyr, f) > 0}
for each & € Seqq. Clearly Sepq and (by ey1 | @ € Seqq) satisfies (1) and (ii).
(Limit step) Assume that ¢ is a limit ordinal and that B,,, S, and (b, ,, | € Sy)
have been defined to satisfy (i) and (ii) for each n < &. Then let

Be = ﬂn<g B, ,

Se = {z €, |supz € Lim(B¢)} .



Note that S\, ¢ Sy is nonstationary because { < x and S\ S, is nonstationary
for each n < €. Hence S\ S¢ is nonstationary. Finally let

bee = {m(Be,5) | B € bgo N m(Bg,3) >0}

for each x € S¢. Clearly b, ¢ is unbounded in sup .

Now note that .+ S¢ is stationary in P\ because 0* < x and S\ S is
nonstationary for each £ < 6. Take an z € ﬂ£<5+ Se. For each vy < 4, let 3] be
the y-th element of b, o and let B := m(Bg, ;) for each { < §". Then for each
v <6, (8] | € <d7) is decreasing (in the wider sense) because (B¢ | £ < 07) is
C-decreasing. Moreover if § < 6% then b, ¢ = {6/ | v < d}\ {0}. Hence there is
a v < 4 such that 0 < ﬁg ¢ B¢y because x € Sey1. Then ﬁgﬂ < ﬁg for such
7. Thus there is a v < ¢ with 8/, < 3] for each £ < §7. Therefore there is a
v < ¢ such that (3] | £ < 0F) strictly decreases for 6*-many times. This is a
contradiction. O(Prop. 2)



