Partial Stationary Reflection Principles

Toshimichi Usuba (薄葉 季路)
Nagoya University

RIMS Set Theory Workshop 2012 Forcing extensions and large cardinals RIMS Kyoto Univ. December 5, 2012

Stationary reflection

 κ : infinite cardinal $> \omega_1$.

Definition 1.

WRP($[\kappa]^{\omega}$) \equiv Every stationary set $S \subseteq [\kappa]^{\omega}$ reflects to some $X \subseteq \kappa$ with $|X| = \omega_1 \subseteq X$, that is, $S \cap [X]^{\omega}$ is stationary in $[X]^{\omega}$.

Fact 2 (Shelah, Velickovic). *The following are equiconsistent:*

- 1) There is a weakly compact cardinal.
- ② WRP($[\omega_2]^{\omega}$).

Partial stationary reflection

Definition 3. Let $S \subseteq [\kappa]^{\omega}$ be stationary.

WRP(S) \equiv Every stationary subset T of S reflects to some $X \subseteq \kappa$ with $|X| = \omega_1 \subseteq X$.

Fact 4 (Sakai). The statement "WRP(S) holds for some stationary $S \subseteq [\omega_2]^{\omega}$ " is equiconsistent with ZFC.

Theorem 5. Suppose CH. Fix a stationary $\mathcal{X} \subseteq [\kappa]^{\omega_1}$. Then there is a poset \mathbb{P} such that:

- ① \mathbb{P} is σ -closed and has the ω_2 -c.c. (so preserves the stationarity of \mathcal{X}).
- ② In $V^{\mathbb{P}}$, there is a stationary $S \subseteq [\kappa]^{\omega}$ such that every stationary subset $T \subseteq S$ reflects to some $X \in \mathcal{X}$. Hence $\mathsf{WRP}(S)$ holds.
- \Rightarrow WRP(S) for some $S \subseteq [\kappa]^{\omega}$ is not a large cardinal property even if $\kappa > \omega_2$.

Definition 6. κ : regular

 $\mathsf{RP}([\kappa]^\omega) \equiv \mathsf{Every} \; \mathsf{stationary} \; S \subseteq [\kappa]^\omega \; \mathsf{reflects} \; \mathsf{to} \; \mathsf{some} \; X \subseteq \kappa \; \mathsf{with} \; |X| = \omega_1 \subseteq X \; \mathsf{and} \; \mathsf{cf}(\mathsf{sup}(X)) = \omega_1.$

Fact 7 (Krueger). Relative to a certain large cardinal assumption, it is consistent that WRP($[\omega_2]^{\omega}$) but $\neg RP([\omega_2]^{\omega})$.

It is unknown the consistency of WRP($[\kappa]^{\omega}$) $\wedge \neg RP([\kappa]^{\omega})$ for $\kappa > \omega_2$.

But WRP $(S) \land \neg RP(S)$ for some $S \subseteq [\kappa]^{\omega}$ is consistent.

Proof of Proposition

First, define the poset $\mathbb P$ as follows: $\mathbb P$ is the set of all countable set p of $[\kappa]^\omega$ such that $\bigcup (p) \in p$. $p \leq q \iff p \supseteq q$ and for every $x \in p$, $x \subseteq \bigcup q \Rightarrow x \in q$.

It is easy to check that $\mathbb P$ is σ -closed and satisfies the ω_2 -c.c. If G is $(V,\mathbb P)$ -generic, then $S=\bigcup G$ is stationary in $[\kappa]^\omega$.

By the genericity of S, we can construct an iteration of club shootings $\mathbb Q$ which is σ -Baire, has the ω_2 -c.c., and destroys all stationary subsets of S which do not reflect to every $X \in \mathcal X$. Moreover, in V, one can find a σ -closed dense subset of $\mathbb P*\mathbb Q$.

Remark 8 (Shelah, Todorcevic).

 κ : regular \wedge WRP($[\kappa]^{\omega}$) $\Rightarrow \kappa^{\omega} = \kappa$.

Proposition 9. Suppose WRP(S) for some $S \subseteq [\kappa]^{\omega}$. Then every c.c.c. poset preserves WRP(S). In particular, "WRP(S) \wedge 2^{\omega} is arbitrary large" is consistent.

Proof

Pick $p \in \mathbb{P}$ and $p \Vdash "\dot{T} \subseteq S$ is stationary". Let

$$T = \{x \in S : \exists q \le p (q \Vdash x \in \dot{T})\}.$$

T is stationary, so reflects to some $X \in [\kappa]^{\omega_1}$.

Fix a bijection $\pi:\omega_1\to X$ and let

$$E = \{ \alpha < \omega_1 : \pi ``\alpha \in T \cap [X]^\omega \}.$$

E is stationary in ω_1 . Then, since $\mathbb P$ has the c.c.c., one can find $r \leq p$ such that $r \Vdash ``\{\alpha \in E : \pi ``\alpha \in \dot{T}\}$ is stationary", hence $q \Vdash ``\dot{T} \cap [X]^\omega$ is stationary".

Simultaneous stationary reflection

Definition 10.

WRP²($[\kappa]^{\omega}$) \equiv Every stationary sets $S_0, S_1 \subseteq [\kappa]^{\omega}$ reflect to some $X \subseteq \kappa$ with $|X| = \omega_1 \subseteq X$ simultaneously, that is, both $S_0 \cap [X]^{\omega}$ and $S_1 \cap [X]^{\omega}$ are stationary in $[X]^{\omega}$.

Remark 11. κ : weakly compact.

Then WRP²($[\omega_2]^{\omega}$) holds in $V^{\text{col}(\omega_1,<\kappa)}$. Hence WRP²($[\omega_2]^{\omega}$) is still equiconsistent with the existence of a weakly compact cardinal.

Simultaneous partial stationary reflection

Definition 12. Let $S_0, S_1 \subseteq [\kappa]^{\omega}$ be stationary.

WRP (S_0, S_1) \equiv Every stationary subsets $T_0 \subseteq S_0, T_1 \subseteq S_1$ reflect to some $X \subseteq \kappa$ with $|X| = \omega_1 \subseteq X$ simultaneously.

So WRP($[\kappa]^{\omega}$, $[\kappa]^{\omega}$) \equiv WRP²($[\kappa]^{\omega}$).

Definition 13. κ : regular.

 $\square(\kappa) \equiv$ there is $\langle C_{\alpha} : \alpha < \kappa \rangle$ such that:

- ① $C_{\alpha} \subseteq \alpha$ is a club in α .
- ② For every $\beta \in \lim(C_{\alpha})$, $C_{\beta} = C_{\alpha} \cap \beta$.
- ③ There is no club C in κ such that $C \cap \alpha = C_{\alpha}$ for $\alpha \in \lim(C)$.

Fact 14 (Jensen). There following are equiconsistent:

- ① There is a weakly compact cardinal.

Proposition 15. λ : regular with $\omega_2 \leq \lambda \leq \kappa$.

If WRP (S_0, S_1) holds for some stationary $S_0, S_1 \subseteq [\kappa]^{\omega}$, then $\square(\lambda)$ fails.

Corollary 16. There following are equiconsistent:

- 1 There is a weakly compact cardinal.
- ② WRP($[\omega_2]^{\omega}$) holds.
- 3 WRP²($[\omega_2]^{\omega}$) holds.
- $\textcircled{WRP}(S_0, S_1)$ holds for some stationary $S_0, S_1 \subseteq [\omega_2]^{\omega}$.

Lemma 17. λ : regular with $\omega_2 \leq \lambda \leq \kappa$.

 $S_0, S_1 \subseteq [\kappa]^{\omega}$: stationary.

Then there are stationary $T_0 \subseteq S_0$ and $T_1 \subseteq S_1$ such that if T_0 and T_1 reflect to $X \in [\kappa]^{\omega_1}$, then $\mathrm{cf}(\sup(X \cap \lambda)) = \omega_1$.

Proof of Lemma in the case $\kappa = \lambda$

Let S_0 , S_1 be stationary and suppose to the contrary that for every stationary $T_0\subseteq S_0$ and $T_1\subseteq S_1$, there is $X\subseteq \kappa$ such that

- ② $\sup(X \cap \lambda) \notin X$ and $\operatorname{cf}(\sup(X \cap \lambda)) = \omega$.
- $\ \ \,$ both $T_0\cap [X]^\omega$ and $T_1\cap [X]^\omega$ are stationary in $[X]^\omega$.

For each $\alpha < \kappa$ with $cf(\alpha) = \omega$, fix $\langle \gamma_i^{\alpha} : i < \omega \rangle$ an increasing sequence with limit α .

For n < 2, $i < \omega$, and $\delta < \kappa$, let

$$S_{n,i,\delta} = \{x \in S_n : \delta = \min(x \setminus \gamma_i^{\sup(x)})\}.$$

Then for every n<2 and $i<\omega$ there is $\delta<\kappa$ such that $S_{n,i,\delta}$ is stationary.

Claim 18. For every $i < \omega$ and $\delta_0, \delta_1 < \kappa$, if S_{0,i,δ_0} and S_{1,i,δ_1} are stationary then $\delta_0 = \delta_1$.

This means that if $S_{0,i,\delta}$ and $S_{0,i,\delta'}$ are stationary, then $\delta = \delta'$. This is impossible.

Proof of Proposition in the case $\lambda = \kappa$

If WRP (S_0, S_1) holds for some stationary $S_0, S_1 \subseteq [\kappa]^{\omega}$, then $\square(\kappa)$ fails.

Let $\langle c_{\alpha} : \alpha < \kappa \rangle$ be a coherent sequence.

For $\alpha < \kappa$ and n < 2, let

$$S_{n,\alpha} = \{x \in S_n : C_{\sup(x)} \cap \sup(x \cap \alpha) = C_\alpha \cap \sup(x \cap \alpha)\}.$$

For n < 2,

$$A_n = \{ \alpha < \kappa : S_{n,\alpha} \text{ is stationary} \}.$$

Claim 19. A_n is unbounded in κ .

Claim 20. For each $\alpha \in A_0$ and $\beta \in A_1$, if $\alpha \leq \beta$ then $C_{\alpha} = C_{\beta} \cap \alpha$, and $\beta \leq \alpha$ then $C_{\beta} = C_{\alpha} \cap \beta$.

By WRP (S_0, S_1) , there is $X \subseteq \kappa$ such that $\mathrm{cf}(\sup(X)) = \omega_1$, $\alpha, \beta \in X$, and both $S_{0,\alpha} \cap [X]^\omega$ and $S_{1,\beta} \cap [X]^\omega$ are stationary. Then for almost all $x \in S_{0,\alpha} \cap [X]^\omega$,

 $C_{\alpha} \cap \sup(x \cap \alpha) = C_{\sup(x)} \cap \sup(x \cap \alpha) = C_{\sup(X)} \cap \sup(x \cap \alpha).$

Since $\{\sup(x\cap\alpha): x\in S_{0,\alpha}\cap [X]^\omega\}$ is unbounded in $\sup(X\cap\alpha)$,

$$C_{\alpha} \cap \sup(X \cap \alpha) = C_{\sup(X)} \cap \sup(X \cap \alpha).$$

Similarly,

$$C_{\beta} \cap \sup(X \cap \beta) = C_{\sup(X)} \cap \sup(X \cap \beta).$$

So

$$C_{\beta} \cap \sup(X \cap \alpha) = C_{\alpha} \cap \sup(X \cap \alpha).$$

Since the set of $X \in [\kappa]^{\omega_1}$ at which $S_{0,\alpha}$ and $S_{1,\beta}$ reflect is stationary, we have $C_{\alpha} = C_{\beta} \cap \alpha$.

Finally, let $C = \bigcup \{C_{\alpha} : \alpha \in A_0\}$. Then $C \cap \alpha = C_{\alpha}$ for every $\alpha \in \lim(C)$. Hence $\langle C_{\alpha} \rangle$ is not a $\square(\kappa)$ -sequence.

Proposition 21. Suppose PFA⁺⁺. Then every c.c.c. poset \mathbb{P} forces "WRP(($[\kappa]^{\omega}$) V ,($[\kappa]^{\omega}$) V) for every κ ".

So WRP (S_0, S_1) also does not decide 2^{ω} .

Proposition 22. Suppose there is a weakly compact cardinal. Then there is a forcing extension in which the following hold:

- ① WRP($[\omega_2]^{\omega}$) holds.
- ② WRP (S_0, S_1) holds for some stationary $S_0, S_1 \subseteq [\omega_2]^{\omega}$.
- ③ But WRP²($[\omega_2]^{\omega}$) fails.

ご清聴ありがとうございました.