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Some cardinal invariants

Let X be one of the Polish spaces between 2ω, ωω, R and [0, 1]
with the Lebesgue measure. M denotes the σ-ideal of meager sets
of X, N the σ-ideal of null sets of X. For I ∈ {M,N}, let

add(I) The additivity of the ideal I is the least size of a
family F ⊆ I which union is not in I.

cov(I) The covering of the ideal I is the least size of a
family F ⊆ I which union covers all the reals, i.e.,⋃
F = X.

non(I) The uniformity of the ideal I is the least size of a
subset of X that is not in I.

cof(I) The cofinality of the ideal I is the least size of a
cofinal subfamily of 〈I,⊆〉.
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General context

Context

Consider an increasing sequence 〈<n〉n<ω of closed relations in ωω

and <=
⋃
n<ω <n such that, for every g ∈ ωω,

<g= {f ∈ ωω / f < g} is meager.

For a set Y and a real f ∈ ωω, f is <-unbounded over Y
means that f 6< g for all g ∈ Y ∩ ωω.

b< is the least size of a <-unbounded family.

d< is the least size of a <-dominating family.
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Examples

Define the relation (in ωω) f P g as f(n) 6= g(n) for all but
finitely many n ∈ ω. Here bP = non(M) and dP = cov(M).

In ωω, define f <∗ g as f(n) < g(n) for all but finitely many
n ∈ ω. Here, b<∗ = b and d<∗ = d (the well known
unbounding and dominating numbers).

For f ∈ ωω and ϕ : ω → [ω]<ω slalom (i.e., exists l < ω such
that |ϕ(n)| ≤ (n+ 1)l for all n < ω), define f ⊆∗ ϕ iff
f(n) ∈ ϕ(n) except for finitely many n. Here, b⊆∗ = add(N ),
d⊆∗ = cof(N ).

Fix 〈In〉n<ω an interval partition of ω such that |In| = 2n+1

for every n < ω. For f, g ∈ 2ω, define f t g iff f�In 6= g�In
for all but finitely many n < ω.
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Lemma

cov(N ) ≤ bt ≤ non(M) and cov(M) ≤ dt ≤ non(N ).

For X,A ∈ [ω]ω, define

X splits A iff X ∩A and ArX are infinite.

X ⊆∗ A iff X rA is finite.

Define A b X as “X ⊆∗ A or X ⊆∗ ω rA” (i.e. A does not split
X). Then, bb = s and db = r (the so called splitting and reaping
numbers).
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Say that F ⊆ [ω]ω is a filter base if it is closed under finite
intersections and contains all the coinfinite subsets of ω. A ∈ [ω]ω

is a pseudo-interesection of F if A ⊆∗ X for every X ∈ F . Define

p (pseudo-intersection number): the least size of a filter base
without pseudo-intersection.

u (ultrafilter number): the least size of a filter base that
generates a (non-principal) ultrafilter.
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Applications

Some forcing notions

1 Trivial forcing 1 = {0}.
A Amoeba forcing.

B Random forcing.

C Cohen forcing.

D Hechler forcing.

E Eventually different real forcing.

All these are Suslin c.c.c. forcing notions.

MF Mathias forcing with a filter base F .
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Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Some forcing notions

1 Trivial forcing 1 = {0}.
A Amoeba forcing.

B Random forcing.

C Cohen forcing.

D Hechler forcing.

E Eventually different real forcing.

All these are Suslin c.c.c. forcing notions.

MF Mathias forcing with a filter base F .

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Some forcing notions

1 Trivial forcing 1 = {0}.
A Amoeba forcing.

B Random forcing.

C Cohen forcing.

D Hechler forcing.

E Eventually different real forcing.

All these are Suslin c.c.c. forcing notions.

MF Mathias forcing with a filter base F .

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Some forcing notions

1 Trivial forcing 1 = {0}.
A Amoeba forcing.

B Random forcing.

C Cohen forcing.

D Hechler forcing.

E Eventually different real forcing.

All these are Suslin c.c.c. forcing notions.

MF Mathias forcing with a filter base F .

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Some forcing notions

1 Trivial forcing 1 = {0}.
A Amoeba forcing.

B Random forcing.

C Cohen forcing.

D Hechler forcing.

E Eventually different real forcing.

All these are Suslin c.c.c. forcing notions.

MF Mathias forcing with a filter base F .

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Preservation properties

Fix κ an uncountable regular cardinal.
For F ⊆ ωω consider the property

(N,<, F, κ) For all X ⊆ ωω, if |X| < κ, then there exists an
f ∈ F which is <-unbounded over X.

For a forcing notion P, consider the property

(+κ
P,<) P is κ-c.c. and, for every ḣ P-name for a real in ωω,

there exists a Y ⊆ ωω, |Y | < κ such that, for every
real f that is <-unbounded over Y , 
 f 6< ḣ.

For κ = ℵ1 the previous properties are denoted by (N,<, F ) and
(+P,<), respectively.
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For κ = ℵ1 the previous properties are denoted by (N,<, F ) and
(+P,<), respectively.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Preservation properties

Fix κ an uncountable regular cardinal.
For F ⊆ ωω consider the property

(N,<, F, κ) For all X ⊆ ωω, if |X| < κ, then there exists an
f ∈ F which is <-unbounded over X.

For a forcing notion P, consider the property

(+κ
P,<) P is κ-c.c. and, for every ḣ P-name for a real in ωω,
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Preservation properties

Lemma

(N,<, F, κ) implies b< ≤ |F | and κ ≤ d<.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

Forcing notions satisfying (+κ
·,<) preserve (N,<, F, κ) and λ ≤ d<

for any λ ≥ κ.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

(+κ
·,<) is preserved in f.s.i. of κ-c.c. notions.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Preservation properties

Lemma

(N,<, F, κ) implies b< ≤ |F | and κ ≤ d<.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

Forcing notions satisfying (+κ
·,<) preserve (N,<, F, κ) and λ ≤ d<

for any λ ≥ κ.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

(+κ
·,<) is preserved in f.s.i. of κ-c.c. notions.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Preservation properties

Lemma

(N,<, F, κ) implies b< ≤ |F | and κ ≤ d<.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

Forcing notions satisfying (+κ
·,<) preserve (N,<, F, κ) and λ ≤ d<

for any λ ≥ κ.

Theorem (Judah and Shelah, 1990, Brendle, 1991)

(+κ
·,<) is preserved in f.s.i. of κ-c.c. notions.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Preservation properties
Applications

Particular cases

Every forcing notion of size < κ satisfies (+κ
·,<). In particular,

(+C,<) holds.

(+B,<∗) and (+E,<∗) hold (last by Miller, 1981).

(Brendle, 1991) Given µ < κ, µ-centered forcing notions
satisfies (+κ

·,t).

(Judah and Shelah, 1990, Brendle, 1991) Given µ < κ, every
µ-centered forcing notion satisfies (+κ

·,⊆∗).

(Kamburelis, 1989) Every subalgebra of B satisfies (+·,⊆∗).

(Baumgartner, Dordal, 1985) (+D,b) holds.
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Applications

Theorem

Let µ1 ≤ µ2 ≤ κ be uncountable regular cardinals, λ ≥ κ a cardinal
such that cf(λ) ≥ κ. Then, it is consistent that add(N ) = µ1,
cov(N ) = µ2, p = non(M) = κ and cov(M) = c = λ.

Here, s = κ and r = u = λ.
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Applications

If µ1 ≤ µ2 ≤ µ3 ≤ κ are regular uncountable, λ ≥ κ and
cf(λ) ≥ µ3, we can get models of ZFC plus:

p = s = µ3 and r = u = c = λ.
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Question 1

(1) Does (+E,b) hold?

(2) Which conditions do we require for a suborder P of D so that
(+P,b) holds?

(3) In general, if S is a suslin ccc poset, does (+S,b) hold?
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Relative complete suborder

Fix M ⊆ N transitive standard models of ZFC.

If P ∈M and Q are p.o., we say that P is a complete
suborder of Q respect to M , denoted by P �M Q, iff P ⊆ Q
and every maximal antichain of P in M is a maximal
antichain of Q.

Theorem (Brendle, Fischer, 2011)

Let δ be an ordinal, P0,δ = 〈P0,α, Q̇0,α〉α<δ a f.s.i. of c.c.c. forcing
defined in M and P1,δ = 〈P1,α, Q̇1,α〉α<δ a f.s.i. of c.c.c. forcing
defined in N . Then, P0,δ �M P1,δ iff, for every α < δ,
P0,α �M P1,α and 
P1,α,N Q̇0,α �MP0,α Q̇1,α.
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Preservation of <-unbounded reals

Consider the context for the relation <. If P ∈M , Q ∈ N ,
P �M Q and c ∈ N ∩ ωω is a <-unbounded real over M , define
the property

(?,P,Q,M,N,<, c) For every ḣ ∈M P-name for a real in ωω,

Q,N c 6< ḣ. This is equivalent to say that 
Q,N“c is
<-unbounded over MP”, i.e., c is <-unbounded over
M [G ∩ P] for every G Q-generic over N .
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Preservation of <-unbounded reals

Theorem (Brendle, Fischer,2011)

With the hypothesis of the previous theorem, if P0,δ �M P1,δ,
(?,P0,δ,P1,δ,M,N,<, c) iff, for every α < δ,
(?,P0,α,P1,α,M,N,<, c) and

P1,α,N (?, Q̇0,α, Q̇1,α,M

P0,α , NP1,α ,<, c).
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Cases of preservation of <-unbounded reals

Theorem

Let c ∈ N be a <-unbounded real over M .

(a) If P is a Suslin c.c.c. forcing notion with parameters in M and
(+P,<) holds in M , then (?,PM ,PN ,M,N,<, c).

(b) (Brendle, Fischer, 2011) If P ∈M is a p.o., then
(?,P,P,M,N,<, c).

Note also that every Cohen real over M is <-unbounded over M .
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A case of preservation of unbounded reals

Theorem (Blass, Shelah, 1984)

In M , let U be an ultrafilter. If c ∈ N is a <∗-unbounded real over
M , then there exists an ultrafilter V in N extending U such that
(?,MU ,MV ,M,N,<∗, c) holds.

The same holds if we consider ⊆∗ instead of <∗.
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Matrix iterations of c.c.c. forcing notions

For δ, γ ordinals, in a ground model V we consider a matrix
iteration 〈〈Pα,ξ, Q̇α,ξ〉ξ<γ〉α≤δ defined by the following conditions.

(1) Pδ,0 = 〈Pα,0, Ṙα〉α<δ is a f.s.i. of c.c.c. notions.

(2) For a fixed α ≤ δ, Pα,γ = 〈Pα,ξ, Q̇α,ξ〉ξ<γ is a f.s.i. of c.c.c
forcing notions.

(3) For α < β ≤ δ, ξ < γ, Pα,ξ �V Pβ,ξ.
(4) For α < β ≤ δ, ξ < γ, 
β,ξ Q̇α,ξ �V Pα,ξ Q̇β,ξ.
(3)+(4) is equivalent to Pα,ξ �V Pβ,ξ for every α ≤ β ≤ δ, ξ ≤ γ.
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Like in the case of “linear” iterations, Vα,ξ denotes a
Pα,ξ-extension for α ≤ δ, ξ ≤ γ. Here, V0,0 = V and the generic
extensions can be seen as in the figure.
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An application

Theorem

Let µ1 ≤ µ2 ≤ κ be uncountable regular cardinals, λ ≥ κ a
cardinal such that cf(λ) ≥ µ1. Then, it is consistent with ZFC that
add(N ) = µ1, cov(N ) = p = cof(M) = µ2, non(N ) = r = κ and
cof(N ) = c = λ.
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Sketched proof

Start with V a model of ZFC plus add(N ) = non(M) = µ1 and
cov(M) = c = λ. Also, there exists an A of size µ1 such that (N, A,⊆∗, µ1).
Let t : κµ2 → κ such that, for each α < κ and η < κµ2, there exists a δ such
that η < δ < κµ2 and t(δ) = α. Also, fix a bijection g : λ→ κ× λ. Perform a
matrix iteration 〈〈Pα,ξ, Q̇α,ξ〉ξ<λκµ2〉α≤κ (dimensions κ× (λκµ2)) as follows:
let Pα,0 be the α-iteration of Cohen forcing, ċα the Pα+1,0-name of the Cohen
real added in the step α+ 1. We proceed to define the horizontal iterations in
the interval [λρ, λ(ρ+ 1)) for each ρ < κµ2.

(a) If ξ = λρ, let

Q̇α,ξ =

{
1, if α ≤ t(ρ),
Ḃρ, if α > t(ρ),

where Ḃρ is a Pt(ρ),ξ-name for B.

(b) If ξ = λρ+ 1, Q̇α,ξ is a Pα,ξ-name for Ḋ.
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where Ḃρ is a Pt(ρ),ξ-name for B.

(b) If ξ = λρ+ 1, Q̇α,ξ is a Pα,ξ-name for Ḋ.
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real added in the step α+ 1. We proceed to define the horizontal iterations in
the interval [λρ, λ(ρ+ 1)) for each ρ < κµ2.

(a) If ξ = λρ, let

Q̇α,ξ =

{
1, if α ≤ t(ρ),
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(c) If ξ = λρ+ 2, let

Q̇α,ξ =

{
1, if α ≤ t(ρ),
MU̇ρ , if α > t(ρ),

where U̇ρ is a Pt(ρ),ξ-name for a non-principal ultrafilter on ω.

Now, for α < κ, consider, 〈Ȧρ
α,γ〉γ<λ and 〈Ḟρα,γ〉γ<λ the Pα,λρ+3-names for all

suborders of AVα,λρ+3 of size < µ1 and all filter basis in Vα,λρ+3 of size < µ2,
respectively. For ε < λ,

(d) If ξ = λρ+ 3 + 2ε, put

Q̇α,ξ =

{
1, if α ≤ (g(ε))0,

Ȧ
ρ
g(ε), if α > (g(ε))0.

(e) If ξ = λρ+ 3 + 2ε+ 1, put

Q̇α,ξ =

{
1, if α ≤ (g(ε))0,
MḞρ

g(ε)
, if α > (g(ε))0.
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Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

Sketched proof

Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

Sketched proof

Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

Sketched proof

Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

Sketched proof

Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

Sketched proof

Theorem (Brendle, Fischer, 2011)

If ξ ≤ λκµ2 and x is a real in Vκ,ξ, then x ∈ Vα,ξ for some α < κ.

In the iterations for each ρ < κµ2, BVt(ρ),λρ adds a random real
rρ ∈ Vt(ρ)+1,λρ+1 over Vt(ρ),λρ and MUρ adds a Mathias real
mρ ∈ Vt(ρ)+1,λρ+3 over Vt(ρ),λρ+2.

Claim

For every family of Borel non-null sets coded in Vκ,λκµ2 of size < µ2, there is a
rρ that is not in its union. Thus, µ2 ≤ cov(N ) and non(N ) ≤ κ.

Claim

For every family of size < µ2 of infinite subsets of ω in Vκ,λκµ2 there is some
mρ which cannot be splitted by any member of the family. Thus, r ≤ κ.

Diego Alejandro Mej́ıa Guzmán Models of some cardinal invariants with large continuum



Introduction
Preserving <-unbounded families

Preserving <-unbounded reals
Matrix Iterations

Questions

Definition
Applications

More applications

Similarly, with µ1 ≤ µ2 ≤ µ3 ≤ κ uncountable regular cardinals,
λ ≥ κ, we can get models of ZFC plus:
When cf(λ) ≥ ℵ1,

Here, p = s = µ1 and r = κ.
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Here, p = s = µ2 and r = κ.
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When cf(λ) ≥ µ2,

Here, p = s = µ3 and r = κ.
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More applications

When cf(λ) ≥ µ2,

Here, p = s = r = u = µ3.
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Question 2

Does Blass-Shelah Theorem hold for t instead of <∗?

A positive answer to this will lead to a model of ZFC plus
u < non(N ) < cof(N ) = c.
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Question 3

If ℵ1 < κ0 < κ1 < κ2 for κ0, κ1, κ2 regular cardinals, is it
consistent with ZFC that ℵ1 = non(M) = cov(M) < κ0 = d =
cof(M) < κ1 = non(N ) < κ2 = cof(N ) = c?
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