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Q-logic; Introduction

Most mathematical statements are Iy in Set Theory.
M, statements = statements of the form (Va) V, F ¢.

In Q-logic, we focus on the truth of [, statements in Set Theory.



Q-logic; Q2-validity

Q-logic: a logic of forcing absoluteness

Definition (Q-validity)

Let ¢ be a ly-sentence in set theory.
Then ¢ is Q-valid if ¢ is true in any set forcing extension.

Main interest: 0% = {¢ | ¢ is Q-valid}.
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© (Shoenfield) Any Mi-sentence true in V is Q-valid.

Q If V =1L, then the I'I%-sentence “Every real is constructible” is not
Q-valid while it is true in V(=L).

© (Martin-Solovay) Assume X# exists for any set X. Then every
Mi-sentence true in V is Q-valid.

© (Woodin) If there is a proper class of Woodin cardinals, then for any
sentence ¢ true in L(R)Y, ¢*®) ¢ 02,
Q (Steel) PFA implies the same above.

What is behind the above examples?

Mouse operators!
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0% as a mouse

Let j: L — L be non-trivial with & = crit(j) and U; be the measure from j.

Let M = (L(K+)L, €, Uj) and xq be the ¥;-theory of M. Then

© X is independent from j, and
Q xo = 07

Let My be the transitive collapse of Hullé’ll((l)).

We identify Mg with 0%
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Mouse operators and Q2-validity

@ The function X — X# is a mouse operator.

@ The function X — M (X) is a mouse operator, where M (X) is the
least X-mouse with w-many Woodin cardinals and a top measure.

RENETL

© If V is closed under the mouse operator X X# . then any
Mi-sentence true in V is Q-valid.

Q If V is closed under the mouse operator X I\/If(X), then for any
sentence ¢ true in L(R)Y, ¢M&) ¢ 02,
© The following are equivalent:
© V is closed under the mouse operator X — M#(X), and
o AD*®) ¢ o2
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Nevertheless, we will leave mouse operators because
© we do not have the theory of mice with superstrong cardinals, and

@ using mice is unfriendly to people who don’t like inner model theory :)

Is there any notion in set theory which extracts the properties of mouse
operators and which may capture the “essence” of large cardinal properties
such as supercompact cardinals in this context?

One candidate is Universally Baire sets!
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© The collection of all uB sets is closed under complements and
countable unions, hence every Borel set is universally Baire.

© Every I'I%—set of reals is universally Baire.
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© The following are equivalent:
© every Mi-set of reals is universally Baire,
@ V is closed under the mouse operator X — X#, and
© R is closed under the mouse operator X — X#, and the function
x — x* on the reals is universally Baire.

© The following are equivalent:

@ every set of reals in L(R) is universally Baire,

© V is closed under the mouse operator X — M#(X), and

© R is closed under the mouse operator X — M#(X), and the function
x = M (x) on the reals is universally Baire.
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Let A be universally Baire. A countable w-model M of ZFC is A-closed if
for any M-generic filter G on a partial order in M,
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© For a countable w-model M of ZFC, the following are equivalent:
o M is A-closed for any MNi-set A, and
o M is well-founded.

© For a countable w-model M of ZFC, the following are equivalent:

® M is A-closed for every MN3-set A, and
© M is closed under the mouse operator X — X#.
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Two beliefs in Berkeley

O (Mouse set conjecture)

Mouse operators = universally Baire sets

Q (Q-conjecture)
Any phenomenon of forcing absoluteness obtained by strong axioms of
infinity must be explained by looking at mouse operators (or uB sets).
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Then ¢ is Q-provable if there is a universally Baire set A such that

(VM c.t.m. of ZFC) if M is A-closed, then M E ¢.
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Example

Suppose V is closed under the mouse operator X — X#. Then any
Mi-sentence true in V is Q-provable.
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Theorem (Soundness (Woodin))
Let ¢ be a lNy-sentence. Then ¢ is Q-provable, then it is Q-valid.

Conjecture (Q-conjecture (Woodin))

Suppose there is a proper class of Woodin cardinals and let ¢ be a
MN,-sentence. Then ¢ is Q-provable iff ¢ is Q-valid.

Theorem (Woodin)
ZFC + Q-conjecture + “There is a proper class of Woodin cardinals” is
consistent.
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One approach to 2-conjecture
Does UBH for nice iteration trees hold in any set generic extension?

If the answer is yes, then
©Q (Woodin) Q-conjecture holds, and

© (Asperé-Schindler; Schindler-1.) MM™™ implies Woodin's Axiom ()
assuming a proper class of Woodin cardinals.
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Two semantics:
O Full semantics: Highly complex (very powerful), does not enjoy

completeness, w-compactness.
© Henkin semantics: Very simple (very week), enjoys completeness,

w-compactness.
Boolean valued second order logic is a powerful logic sitting between the

two semantics and might enjoy completeness.



2nd-order logic; Henkin models

Henkin models Models of ZFC

2nd-order logic ~ Set theory

Definition

A 2nd-order structure M = (X, G,...) is a Henkin model if it satisfies
Comprehension Axiom for each 2nd-order formula.




2nd-order logic; Henkin models

Henkin models  Models of ZFC
2nd-order logic ~ Set theory

Definition
A 2nd-order structure M = (X, G,...) is a Henkin model if it satisfies
Comprehension Axiom for each 2nd-order formula.

| 5\

Example

A 2nd-order structure M = (X, P(X),...) is called a full 2nd-order
structure. )




2nd-order logic; Henkin models

Henkin models  Models of ZFC
2nd-order logic ~ Set theory

Definition
A 2nd-order structure M = (X, G,...) is a Henkin model if it satisfies
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Example

A 2nd-order structure M = (X, P(X),...) is called a full 2nd-order
structure. )

Theorem (Henkin)

The semantics for 2nd-order logic given by Henkin models is sound and
complete to a standard proof system in 2nd-order logic.
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The validity of 2nd-order logic via Henkin semantics is X9.

Henkin semantics gives us a 2nd-order logic similar to 1st-order logic.

Full semantics = semantics with full 2nd-order structures

Theorem (Vaananen)

The validity of 2nd-order logic via full semantics is [1y-complete in ZFC.

Point: One can express the structures of the form (V,, €) via full
2nd-order structures.
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Boolean valued 2nd-order logic; Boolean valued structures

Let £ be a relational language. A Boolean valued L-structure is a tuple
M = (A, B, {RM}) where

© A is a nonempty set,

© B is a complete Boolean algebra, and

© for each n-ary relational symbol R; in £, RM: A" — B.

If B ={0,1}, each RM is a relation in Lst-order logic and M is the same
as lst-order structure.




Truth of 2nd-order formulas in Boolean valued structures

Basic idea: “subsets” are functions from A to B.

Definition

Let M = (A,B,{R;}) be a Boolean valued L-structure. Then we assign
|43, ]| € B to each 2nd-order formula ¢, 3 € <“A, and f € <“("B) as
follows:

Q ¢is Ri(X). Then ||R,()'<')[é’]||M = R,-M(?a').
Q ¢ is X(x). Then || X(x)[a, f]||M = f(a)
© Boolean combinations are as usual.

Q ¢ is Ix¢p. Then [|3x¢[3, FIIM =V yen 410, 3, FIIM.
@ ¢ is 3X¢. Then |3XY[E, FIIM = V. as 015,8, FIIM.




Boolean valued 2nd-order logic; Boolean-validity

Definition

Let £ be relational. A 2nd-order L-sentence ¢ is Boolean-valid if
|4 = 1 for any Boolean valued L-structure M.

Our interest: 0%° = {¢ | ¢ is Boolean-valid}.
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Theorem (Woodin)

Assuming -conjecture and a proper class of Woodins, one can show that
02 is Ay in Set Theory.
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Corollary

Assuming 2-conjecture and a proper class of Woodins, one can show that
0%b is A, in Set Theory.

N

Remark (Vaananen)

The validity of second order logic via full semantics is [ly-complete in ZFC.
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OQ =T 02b.

Key points:

RENETL

Given a Boolean valued structure M = (A, B, {RM}) and a B-generic filter
G over V/, the structure M corresponds to a full 2nd-order structure
M[G] = (A, P(A)VIEL {RMN) in V[G], where

RMCl = (x € A,| RM(x) € G}.

oM = 1 iff M[G] F ¢ for any B-generic

For any 2nd-order sentence ¢,
filter over V.
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Definition

Kk is strongly compact if k is L}m—compact.

Theorem (Magidor)
The following are equivalent:
Q kis Lﬁ,ﬁ—compact,
Q « is extendible.

A\,

Theorem

Suppose there is a proper class of Woodin cardinals, a supercompact
cardinal x, and assume Strong $2-conjecture holds.

Then &k is Lﬁf’ﬁ—compact.

N

Definition (Strong Q-conjecture)

Assume there is a proper class of Woodin cardinals. Then 2-conjecture
with real parameters holds in any set generic extension.
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Result 3; Lowenheim-Skolem number

Q ¢/ (FOL) =¥y
Q / (full SOL) = sup{c | v is Ap-definable}. So

(The first Woodin limit of Woodins) < ¢ (full SOL)
< (The first X5 reflecting card).

| 5\

Theorem

If ZFC + “There is a proper class of Woodin cardinals” is consistent, then
so is ZFC + “There is a proper class of Woodin cardinals” +
“¢ (BVSOL) < (the first Woodin cardinal)”
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Result 4; Completeness

One can formulate the notion of provability in BVSOL (Boolean
provability) in a similar way as Q-provability.

Theorem (Soundness)

If ¢ is Boolean provable, then it is Boolean valid.

Definition (Completeness)

Completeness of BVSOL states the following:
Assume there is a proper class of Woodin cardinals. Then if ¢ is Boolean
valid, then so is Boolean provable.

Completeness of BVSOL implies €2-conjecture.

Note: The converse is not known to be true.




© Does Q-conjecture imply the Completeness of BVSOL?

@ Could ¢ (BVSOL) be less than the first measurable cardinal?



