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-logi
; Introdu
tion
Most mathemati
al statements are �2 in Set Theory.�2 statements = statements of the form (8�) V� � �.In 
-logi
, we fo
us on the truth of �2 statements in Set Theory.
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: a logi
 of for
ing absolutenessDe�nition (
-validity)Let � be a �2-senten
e in set theory.Then � is 
-valid if � is true in any set for
ing extension.Main interest: 0
 = f� j � is 
-validg.
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tible" is not
-valid while it is true in V (= L).3 (Martin-Solovay) Assume X# exists for any set X . Then every�13-senten
e true in V is 
-valid.4 (Woodin) If there is a proper 
lass of Woodin 
ardinals, then for anysenten
e � true in L(R)V , �L(R) 2 0
.5 (Steel) PFA implies the same above.QuestionWhat is behind the above examples?Mouse operators!
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-
onje
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lass of Woodin 
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ture M = (X ;P(X ); : : :) is 
alled a full 2nd-orderstru
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s for 2nd-order logi
 given by Henkin models is sound and
omplete to a standard proof system in 2nd-order logi
.
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sCorollaryThe validity of 2nd-order logi
 via Henkin semanti
s is �01.Henkin semanti
s gives us a 2nd-order logi
 similar to 1st-order logi
.Full semanti
s = semanti
s with full 2nd-order stru
turesTheorem (V�a�an�anen)The validity of 2nd-order logi
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s is �2-
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ture is a tupleM = (A; B ; fRMi g) where1 A is a nonempty set,2 B is a 
omplete Boolean algebra, and3 for ea
h n-ary relational symbol Ri in L, RMi : An ! B .ExampleIf B = f0; 1g, ea
h RMi is a relation in 1st-order logi
 and M is the sameas 1st-order stru
ture.
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turesBasi
 idea: \subsets" are fun
tions from A to B .De�nitionLet M = (A; B ; fRi g) be a Boolean valued L-stru
ture. Then we assignk�[~a;~f ℄kM2 B to ea
h 2nd-order formula �, ~a 2 <!A, and ~f 2 <!(AB ) asfollows:1 � is Ri(~x). Then kRi (~x)[~a℄kM = RMi (~a).2 � is X (x). Then kX (x)[a; f ℄kM = f (a).3 Boolean 
ombinations are as usual.4 � is 9x . Then k9x [~a;~f ℄kM = Wb2A k [b;~a;~f ℄kM .5 � is 9X . Then k9X [~a;~f ℄kM = Wg : A!B k [~a; g ;~f ℄kM .
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Result 2; Compa
tness numbersDe�nition� is strongly 
ompa
t if � is L1�;�-
ompa
t.Theorem (Magidor)The following are equivalent:1 � is L2�;�-
ompa
t,2 � is extendible.TheoremSuppose there is a proper 
lass of Woodin 
ardinals, a super
ompa
t
ardinal �, and assume Strong 
-
onje
ture holds.Then � is L2b�;�-
ompa
t.De�nition (Strong 
-
onje
ture)Assume there is a proper 
lass of Woodin 
ardinals. Then 
-
onje
turewith real parameters holds in any set generi
 extension.
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Result 3; L�owenheim-Skolem numberExample1 ` (FOL) = �02 ` (full SOL) = supf� j � is �2-de�nableg. So(The �rst Woodin limit of Woodins) < ` (full SOL)� (The �rst �2 re
e
ting 
ard):TheoremIf ZFC + \There is a proper 
lass of Woodin 
ardinals" is 
onsistent, thenso is ZFC + \There is a proper 
lass of Woodin 
ardinals" +\` (BVSOL) < (the �rst Woodin 
ardinal)"
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Result 4; CompletenessOne 
an formulate the notion of provability in BVSOL (Booleanprovability) in a similar way as 
-provability.Theorem (Soundness)If � is Boolean provable, then it is Boolean valid.De�nition (Completeness)Completeness of BVSOL states the following:Assume there is a proper 
lass of Woodin 
ardinals. Then if � is Booleanvalid, then so is Boolean provable.TheoremCompleteness of BVSOL implies 
-
onje
ture.Note: The 
onverse is not known to be true.



Questions
1 Does 
-
onje
ture imply the Completeness of BVSOL?2 Could ` (BVSOL) be less than the �rst measurable 
ardinal?


